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De computer is niet de steen,
maar de slijpsteen der wijzen.

Hugo Battus, Rekenen op taal (1983)

In recent years | have computed versal deformations of vari-
ous singularities, partly by hand, but mostly with the program
Macaulay. | explain here how to do these computations. As an
application | discuss the smoothability of a certain curve singu-
larity, a case | had not been to settle with general methods. As
a result | find an example of a reduced curve singularity with
several smoothing components.

INTRODUCTION

The study of well-chosen examples has always been
an important tool in mathematics. In modern days,
with powerful computers widely available, long and
dull computations have become easy. This is espe-
cially useful for deformation theory, a subject in
which there are hardly any general results beyond
the existence of versal deformations [Schlessinger
1968; Grauert 1972]. Indeed, it seems that every
imaginable pathology occurs: the versal base space
is in general reducible, with components of varying
dimension, including embedded components.

In recent years I have computed versal deforma-
tions of various singularities (I always use the term
singularity to refer to a germ of a complex ana-
lytic space, but one may as well think of singular
points of affine algebraic varieties), partly by hand,
but mostly with the program Macaulay [Bayer and
Stillman]. In this paper I explain how to do these
computations.

As an application I discuss the solution of a prob-
lem from [Stevens 1989]. As a result I find an ex-
ample (to my knowledge the first) of a reduced
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curve singularity with several smoothing compo-
nents.

Spaces can be described in a variety of ways.
My deformation computations use equations, and
their result is a set of equations for the total space
and for the base space. A description in terms of
equations is only to be considered adequate if it is
short; here all sorts of symbolic notations should
be allowed. The maximum length is a changeable
parameter, whose default value depends on the im-
portance of the equations, the person doing the
computation, the journal publishing the result....
For this article I have set the value at half a page.
Although a system of equations gives a ‘complete’
description, natural questions like the number of
irreducible components may be difficult to answer.

The concepts of deformations and versality can
be formulated in very abstract terms. I recall the
definitions in a version adapted to the needs of ac-
tual computation. Computing a versal deforma-
tion comes down to solving a deformation equa-
tion. Since this may be useful in other deforma-
tion contexts, I first discuss solution methods in a
general, abstract set-up (the example of modules is
treated in [Laudal 1982]). Such considerations can
already be found in [Nijenhuis 1969; Griffiths 1965],
but I develop them here to stress that the under-
standing of deformation theory benefits from one’s
thinking about the deformation equation. As an
illustration of deformations of singularities I treat
a toy example of a curve with an embedded com-
ponent, namely the general hyperplane section of
two planes meeting in one point (the simplest non-
normal surface singularity).

Computer computations are indispensible in the
study of the general curve singularity of type L$,,
consisting of 14 lines through the origin in C°®. I
wanted to know whether this curve is smoothable
[Stevens 1989]. The computation shows that there
are 16 smoothing components. However, it is not
possible to write down a specific one-parameter de-
formation. Therefore I also compute the versal
deformation (in negative degrees) of a special L§,
that is still ‘general enough’. Its equations contain

relatively few monomials. In practice this is a nec-
essary condition to obtain useful explicit results.

1. HOW TO SOLVE THE DEFORMATION EQUATION

The first modern deformation theory is the Ko-
daira—Spencer theory of deformations of compact
complex manifolds. Deformations are described by
solutions of the following equation, which expresses
the integrability condition:

d9+ 19,9 =0 (1.1)

as equation in the Dolbeault complex computing
H*(M,0) [Kuranishi 1971, Chapter VII]. This is
an instance of a general phenomenon in deforma-
tion theory: the problem is governed by a complex
with a product, which makes the cohomology of the
complex into a graded Lie algebra [Nijenhuis 1969;
Griffiths 1965]. Laudal writes: ‘It is now folklore
that the hull of a deformation functor of an alge-
braic geometric object, in some way is determined
by the appropriate cohomology of the object and
its “Massey products”’ [Laudal 1982]. For recent
work in this direction see [Goldman and Millson
1990].

I discuss methods to solve (1.1) in the abstract
set-up of a complex K~ with a bracket operation,
which descends to the cohomology. Think of the
complex K as describing a deformation problem,
with first-order infinitesimal deformations given by
H'(K") and obstructions lying in H?*(K"), while
H°(K") gives infinitesimal automorphisms. For
¢ € K* consider the equation

de + 3lp, ] = 0. (1.2)

The problem is to find the ‘general’ solution of this
equation. To give an exact meaning to this term,
one can introduce a solution functor [Goldman and
Millson 1990, § 1], which leads back to the language
of deformation theory a la Grothendieck.
Equation (1.2) is a very simple, quadratic, equa-
tion. To get a finite-dimensional solution (of di-
mension h'(K")), one needs a transverse slice to



the orbit of K°; this involves in one way or an-
other the implicit function theorem. Therefore one
has to specify some analytic structure in which this
theorem holds; for deformations of compact com-
plex manifolds one can take the K* to be complex
Banach spaces [Kuranishi 1971, Chapter X]. This
method leads to the existence of a ‘general’ solu-
tion, but gives no way to compute it.

A different approach is to look for formal solu-
tions, with a power series Ansatz. Write

© =tpr + t2ps + s + - - (1.3)

and substitute in (1.2). In this formula ¢ is a pa-
rameter, which I use in a naive sense. Collecting
powers of ¢ one finds the equations

0=dyp;
0=dyp; + %[9017‘»01]
0 =dps+ [¢1, p2] (1.4)

0=dpn+ 150 o onil.

The first equation states that ; is a cocycle, in ac-
cordance with the fact that the equivalence classes
of first-order infinitesimal deformations are given
by H'(K"). The second equation gives the pri-
mary obstruction: the condition for extending ¢,
is that the cocycle [¢1, 1] is a coboundary; in other
words, if the cohomology class of [p1, p1] in H*(K")
is zero, one can find a ,, which is determined up
to cocycles. The secondary obstruction is only de-
fined if 5 can be found; one can still change the
specific choice of y,, giving an indeterminacy char-
acteristic of Massey triple products.

The procedure above tries to find a curve in the
solution space, and the higher-order obstructions
depend on the choices made in earlier steps. To
avoid this problem, I will include the choices: I
make a multivariable power series Ansatz for the
‘general’ solution. Let dim H*(K ") = 7, and choose
representatives ¢, ..., ¢, € Z'(K") of a basis of
HY(K"). Let t = (4, ..., t,) be the corresponding
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coordinates. I construct the local ring S of the so-
lution space as a quotient of C[¢]l. Let m, be the
maximal ideal of C[t]. Over S; := C[[t]/m2 one
has the solution > t;p;. To find the higher-order
terms, write in multi-index notation an equation

similar to (1.3):
o= "

|a|>1
The primary obstruction comes from
Do ttdpati Dot fpug] =0 (9
=2 li|=lj]=1

One can express the class of [¢;, p;] in H*(K") in
terms of a basis Q, ..., Q, of H*(K") as

cl([pi, p5]) = ZCZ‘Qk-
k
Equation (1.5) is solvable if and only if

Y ittt =0

lil=lj[=1

k
9" =13

for all k. It is possible that some (or all) g{* are

zero, even if dim H2(K") > 0. Set
Sz == C[[t]/(g2) + m3,
where (g2) is an abbreviation for the vector

(95", 957),
and choose a basis B, of monomials for m2/(gs) +
m?; this can be done with a standard basis of the
ideal (g2). I will denote the set of exponents of
these monomials by B, as well. Over S, one can
solve (1.5): there are ¢, € K', with @ € B,, such
that

Z t*dos + 3 Z t't’ [ps, ;] = 0 mod go.

acB? lil=lgl=1

The ¢, are not unique, but determined up to el-
ements 1, € K' with d¢, = 0. The indetermi-
nacy can be reduced to a finite-dimensional one by
choosing at the beginning a complement C*(K ") to
the coboundaries B*(K") C K*'; the possible lifts
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then form a homogeneous space under H*(K"). If
one uses an algorithm based on standard bases,
the choices are unique (depending on the chosen
monomial ordering).

For the next step one has to solve the equation

Z t*dp, + Z t't* [0s, Pa] = 0 mod g,.

la|=3 lé|=1
aEB;

Note that, although the ideal (g2) is defined in
C[t]/m3, the ideal m,(g2) C m2/m? is well-defined
and does not depend on the extension of (gs) to
C[t]/m%. The class of [p;,ps] in H*(K") is a
Massey triple product. Write

Z chk

‘Pw ‘Poc]

This gives

D= et

li|=1
aEBy

which defines the extension of (g5). Set G =
9 4+ ¢ and define S; as the ring C[[t]/(G3) +
m2. Choose a basis B3 of monomials for m3 N
(CIt]/(Gs) + m%). Over S; one can solve equa-
tion (1.4) using ¢, with a € Bs.

The notation becomes cumbersome, so 1 stop
here, but the general procedure should be clear by
now (see also [Laudal 1982]).

The number of nontrivial equations G{¥) becomes
stationary. As I am working with power series,
the computation will in general be infinite, and
therefore not suited for practical purposes. For
deformations of singularities I will ensure finite-
ness by considering only deformations in negative
degrees of weighted homogeneous germs. The con-
vention here is that a deformation corresponds to
a 0/0t;, so the parameters t; have positive weight,
and therefore there is a bound on the possible ex-
ponents «; indeed, the whole set-up reduces to a
finite-dimensional one, and the process ends after
a finite number of steps.

2. DEFORMATIONS OF SINGULARITIES

The definition of a deformation involves the notion
of flatness, which accounts for the difficulties in
explaining and understanding it. Mumford [1989]
writes: ‘The concept of flatness is a riddle that
comes out of algebra, but which is technically the
answer to many prayers.” Intuitively, in a flat fam-
ily the fibres depend continuously on the points of
the parametrising base space.

In this section all spaces considered are germs at
the origin. Let m : X — S be a map of analytic
germs, and suppose an embedding of the fibre X, =
71(0) € CV is given. Then 7 can be realised as
the composition of an embedding X C S x CV
and the projection of S x CV onto the first factor
(for a proof see [Fischer 1976, 0.35]). In terms of
equations one has generators (Fi, ..., Fy) of the
ideal I of X in Og{x}, while the f;(z) := F;(0,z)
generate the ideal Iy of X in Oy = C{z}.

Definition. The map 7 : X — S'is flat in 0, if every
relation Y f;r; = 0 between the f; lifts to a relation
Y F;R; =0 € Oy between the F;.

It suffices to lift the generators of the module of
relations. Consider a presentation of Ox,:

— (C{=})".

The entries of the row vector f = (f1, ..., fx) gen-
erate the ideal Iy, and the columns of the matrix
r generate the module of relations. The flatness
condition is that this presentation can be lifted to

— (Os{z})".

Example (complete intersections). If the map-germ f :
Cr — C* defines a complete intersection X, the
Koszul complex on the components f; of f resolves
the ring Ox,. In particular, the relations between
the f; are generated by the obvious ones, f;f; —
fifi =0, or, in vector notation,

0 — Ox, e Cfz} <L (C{z})*

0 «— Ox «— Os{z} «— (Os{z})*

(f17'"7fi7"'7fj7"'7fk)'(07"'7fj7"' f17 (AR}

0)°
= 0.



For any deformation F'(¢,z) of f(x) one can lift the
relation f; f;— f; fi = 0 to the relation F; F;— F; F; =
0, and therefore the flatness condition is always
satisfied.

Definition. A deformation of a germ X, is a flat
map-germ 7 : X — S such that X, is isomorphic
to the fibre 7~1(0) under a given isomorphism 4 :
Xo — 7 1(0).

A morphism between deformations 7 : X — S and
' X' — 5 of Xp is a commutative diagram
H

X = X
L
s g

compatible with the embeddings 7 : Xy — X and
i Xo —» X', s0o Hoi = 4. I write in short
X — X', or, to emphasise the base spaces, (X —
S) — (X' — 5").

Let h : T — S be a holomorphic map. The
induced deformation is the flat map h*(7) : X Xxg
T-—-T.

Definition. A deformation 7 : X — S of X, is called
versal if it satisfies the following lifting property:
Let (Y — T) — (Y' — T") be a morphism of
deformations, over an embedding T — T'. Then
every morphism (Y — T) — (X — S) can be
lifted to a morphism (Y' - T') — (X — S) such
that the composition T — T — S equals T — S.
A deformation is formally versal if the lifting prop-
erty is satisfied for zero-dimensional spaces T". It
is (formally) semi-universal if it is (formally) ver-
sal, and if the induced morphism To(17") — To(.S)
on the tangent spaces is uniquely determined (by
Y - Y'and Y — S). For semi-universal the term
miniversal is also used.

In particular, by taking Y equal to X,, one sees
that every deformation p : Y’ — T' of X, is iso-
morphic to a deformation h*(7w), for some map
h :T" — S. This property is often given as defini-
tion of versality. It is however not strong enough
to prove that a versal deformation is the product
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of a miniversal one with a trivial factor [Flenner
1981, Lemma (5.3)]. This result allows one to
speak (sloppily) about the versal deformation, i.e.,
to use the terminology of [Grauert 1972], where
versal stands for miniversal, while versal is called
complete. Sometimes it is easier to compute a ver-
sal but not miniversal deformation, if this leads to
more symmetric formulas.

Grauert [1972] has shown the existence of ver-
sal deformations for isolated singularities. A for-
mally versal formal object exists by the results of
[Schlessinger 1968]. Every (holomorphic) deforma-
tion that is formally versal is already versal; this
is a special case of a result of Flenner in a general
deformation-theoretic context [Flenner 1981, Satz
(5.2)]. In particular, a formal computation that
happens to yield a convergent, or even polynomial,
result already gives the versal family.

The method to compute versal deformations is
the power series Ansatz of the previous Section.
The relevant complex is the cotangent complex [Pa-
lamodov 1976], and the quadratic equation to be
solved comes down to FFR = 0. Indeed, one can
view the maps f and r as parts of a differential d
in a complex; if one resolves Ox, with a differential
graded algebra, the 7™ can be defined as the coho-
mology groups of its derivation algebra, in which
the differential is given by éu = [d,u|. The de-
formation equation is obtained from the condition
that the perturbed differential d + ¢ gives again a
complex: the equation [d + ¢, d + ¢] = 0 yields

bo+ e, 0] =0.

For concrete computations it suffices to use direct,
ad hoc definitions of T* and T [Schlessinger 1973].

Since I am interested from now on in a fixed
singularity, I will slightly change the notation and
write X for the germ that is deformed, and I for
its ideal in the power series ring Oy.

Definition. A first-order infinitesimal deformation
of X is a deformation over the double point D, the
zero-dimensional space having as local ring the ring



134 Experimental Mathematics, Vol. 4 (1994), No. 2

of dual numbers C[e] := C[t]/(¢?). By definition
e? =0.

Proposition 2.1. The Ox-module of first-order defor-
mations is isomorphic to the normal module Nx =

HOHIX(I/IZ, OX)

Proof. Let F' = f+e¢f' be an infinitesimal deforma-
tion, and let R = r + er' be a lift of the relations.
Since €2 = 0, the flatness condition FR = 0 gives

(f+efY(r+er')=fr+e(fr' + f'r)=0.

Because fr = 0, one obtains the equation fr' +
f'r=0in (Oy)". The Oy-homomorphism Ox* —
On that sends a generator e; to f/ maps the image
of r into I, because f'r = —fr'. Hence f' induces
a homomorphism

p(f) : 08" /Imr = T — Oy,

which sends f; to (f/ mod I).
Conversely, given a homomorphism

2] € HOI'le(I/IZ, OX) = HOH].ON(I, OX),
one lifts the vector

p(f) = ((f1), -

to a vector f' € Oy", inducing a homomorphism
@ : Oy® — Op. For every relation r; the func-
tion f'r; = @¢(r;) is a lift of p(> firi;) = 0 € Ox.
Therefore one can find a matrix r’ with f'r+ fr' =
0. Any two liftings of ¢(f) differ by a g € I*, so
they determine the same deformation. O

L o(fi) € Ok

An infinitesimal deformation f + ef’ is trivial if
there is an automorphism @(z,¢) = (z + €b6(z), )
of C¥ xID such that f+ef’ and foe determine the
same ideal. Let Oy be module of germs of vector
fields at the origin. The computation

d d
£f 0 p(T,€)|e=0 = £f(17 +€6(z))c=0

shows that the trivial deformations are the image
of the natural map

On|x = On ® Ox — Homy, (I,0x) = Nx,

which sends a vector field 6 to the homomorphism
g — 6(g). The kernel of this map is the Ox-
module ©x = {8|x | 6(I) C I}. One has Ox =
HOIHX(Q%, OX)

Definition. The module 7% of isomorphism classes
of first-order infinitesimal deformations is

T)lc = coker{®N|X — Nx}

Remark. Suppose the singularity X admits a good
C*-action, so Ox is a (positively) graded module.
Then all modules considered above inherit a grad-
ing.

Theorem 2.2 [Pinkham 1974, 2.3]. A singularity X
with good C*-action has a C*-equivariant versal de-
formation w : X — S. The restriction m_ : X_ —
S_ to the subspace of negative weight is versal for
deformations of X with negative weight.

Remark. For a given singularity, 7" can be com-
puted with a computer algebra package that com-
putes standard bases and syzygies. The first step
is to determine the Ox-module Nx. Every gener-
ator f + ef’ satisfies f'r = 0 mod I. Taking the
transpose gives r‘f"* = 0 mod I; in other words,
f' is a syzygy between the columns of the matrix
r* over the ring Ox: the module Nx is the syzygy
module of the matrix 7*. The image of Oy|x is
the submodule J of Nx generated by the partial
derivatives of the row vector f. The resolution

17t k 51 s  S2 t
gives a presentation of Nx:
0+— Nx « 0% &2 05 & 0
X b'e b'e X-

Lift the module J to a submodule J + Im 8o of the
free module O% by lifting the generators: find a
matrix j with f/dx = 5,7, and define J as mod-
ule generated by the columns of 7. Then Ty



0% /(J + Ims,). Choose representatives of a C-
basis of the quotient; to get a basis of T, which has
a direct interpretation in terms of perturbations of
the equations, take the image of the representatives
under the map s;.

I have written a script in Macaulay [Bayer and
Stillman| for these computations (see section on
Electronic Availability at the end of this article).
Since Macaulay only computes in graded rings, the
script can compute 7 for singularities with good
C*-action. For general singularities the program
Singular [Greuel et al. 1994] will be useful.

Definition. As before, let On A ONk — ONl be
a presentation of the ring Ox. Let R = ONl/kerr
be the module of relations, and let R, be the sub-
module of Koszul relations. Then R/R, is an Ox-
module. With these notations,

T2 = coker{r" : Homx (0%, 9x) — Homx (R/R¢, Ox)}.

Example. For complete intersections one has R =
Ry, so T? = 0.

Proposition 2.3. Let 0 — J — A" — A — 0 be
a small extension of Artinian rings (which means
that J* = 0). The obstruction to extending a de-
formation of X over A to a deformation over A’
lies in Ty ® J.

Proof. For notational convenience, I will consider
one-parameter deformations: let A = C[t]/(t"),
and consider F,_; and R,_; with F,_{R,_1 = 0
mod t". I want a deformation over

A =C[t]/ (™).

Wl"ite Fn = anl + tnf(n) a,nd Rn = Rnfl + t’"’r(")
The equation F,R, = 0 mod t"*! gives

Fo 1Rn 1 +t"(f™r 4+ fr™) =0 mod t" .

Because F,, R, ; = 0 mod t", one has the equa-
tion
t™"Fy 1Rn 1+ f™r=0mod ¢

in O%. A simple computation shows that the vec-
tor t "F,_ 1R, ; mod t € O% (or, equivalently,
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F, 1R, 1 mod t"™' € (Ox.t")") depends only on
r (and F,_1), but not on the lift R,_; of r. This
vector represents an element of HomoN(ONl, Ox),
which vanishes on kerr. The value of the homo-
morphism on any relation can be computed by
taking a suitable lift R’ of the particular relation.
The canonical choice for a Koszul relation gives
F, R’ =0 € Oyn. The equation t "F,,_1R,_1 +
f™r = 0 can be solved if and only if the homo-
morphism ¢t "F,,_1R,,_; € Hom(R/Ry, Ox) can be
lifted to the element of Hom(Oy*, Ox) given by the
vector f(™. O

To compute T2, one first calculates the resolution
of Ox one step further:

0 — Ox —— Oy <1 (On)F < (On)F <= (O§)™.

Represent the Koszul relations by a [ x ('2“) matrix
k; the concatenation ks defines a presentation of
R/Ry, and Homx (R/Re, Ox) is the syzygy mod-
ule of (ks)* over Ox. Dividing out the submodule
generated by the columns of the matrix r! gives
T?. Also for these computations I have written a
Macaulay script.

Example. Let X be the the singularity consisting of
two intersecting lines, with an imbedded compo-
nent at the origin. In the same notation as above,
the resolution of the local ring has the form

0e— Ox e— O X (05)* < (93)* <= O3 — 0,

with matrices f = (xy,wz,yz,yz)a

0 0 -y —=z
, -y 0 0 'y
0 —=z T 0
T Y 0 0

and s = (y, —z,—2,y)". The presentation of the
normal module Nx is given by the matrices

0 0

S1 =

o o8 O
o ow O
o o
o O OoO8
oo ow

0 O
0y
z 0

< O OO
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and a matrix s, consisting of the last 20 columns
of the following concatenation:

(.7782):

001 00000 O O O0O0O000000 —-2zyz
010 00000 O O O0OO0O00OO0Oxz yO0OO
020 00000 O O OOOOOzy=zO 00O0O0
001 00000—-2 0-y00y=z0000 0000
000 00000 O0—-2 2zyz2000000 0000
100 00000 =z y 0O00O00O0O0O0O0OOO0O O0OOOO

010-y00yz2 0 O 000000000 O0O0OO

000 zyz00 O O 000OO0O0OOOOO0 O0OOOO

It follows that
dimT! = dim((OX)S/(j—i— Imsg)) =5,

and one can write as perturbed equations

(z+s1)y, zz+yss, y(y+ss), (y+t)(z+sq).
A lift of the matrix r is given by
—84 0 -y —83 —=2
R, = —y—t 0 0 Y
So —2Z — 8, T+ 81 —S9
x y—t+s3 0 S1

Modulo third-order terms one obtains the obstruc-
tion vector

0 = (ztsqy — ytss + ysass — ysi84, —zt(t — s3), 0,
—YS283 + YS184 + 2tS1).

To find the class in 72, one first computes the ma-
trix ks, which describes R/Rq:

0 0 0 0 —=z 0 Y
0 0 —=z 0 0 -y —=zx
0 -y —2z -z 0 0 —=z
-z 0 0 Y 0 0 Y

ks =

Over Ox the syzygy matrix of the matrix (ks)* is

—y 0 0Oz 0 z y O
0O —z 0 ww =z 0 0 O
0 T 0 0 0 0 y

0 z 0 0 0 0 O

A simple computation shows that 72 is concen-
trated in degree —2; the first four columns of the
above matrix are the columns of r* (in a different
order), so the last four columns give a basis of Tx.
In terms of these generators for Homx (R/Ro, Ox)
one finds the following expression for the obstruc-
tion vector:

0 = (—S383 + $184, 0, tsy1, 0, —t(t — s3),

t84, —t82, —tSl).

The last four entries are the equations of the base
space. The first four entries give the new quadratic
terms of the equations of the total space. The final
result is:

F=((z+s1)y, zz 4+ (y + $3)S2 — S154,
y(y + s3), (y + ) (2 + 54))-

One checks that FFR; = 0 modulo the equations
for the base space: ts; = tsy = t(s3 —t) = ts, = 0.

The deformation space has two components, a
one-dimensional component s; = s, = §3 —t =
s4 = 0 with

(zy, z2, y(y + 1), (y +1)2)

as total space (two planes intersecting in one point)
and a four-dimensional component where the em-
bedded point can move off the curve.

3. SMOOTHING COMPONENTS OF CURVES

If the fibre X, over some point s in the base space
of a versal deformation X — S is smooth, s is a
regular point of S (by openness of versality) and
all nearby fibres are also smooth. In the terminol-
ogy of [Wahl 1981] the irreducible component of S
containing s is a smoothing component.

For a reduced curve singularity the dimension e
of smoothing components is an invariant of the sin-
gularity, and does not depend on the component.
Deligne’s formula for it simplifies for quasihomo-
geneous curves to e = p + ¢t — 1 [Greuel 1982];
here t = dimw/mw is the Cohen-Macaulay type,
and the Milnor number p can be computed as p =



20 —r+1, with r the number of branches and é the
number of virtual double points. Greuel used this
formula to show that certain curve singularities are
not smoothable.

Consider the curve L7 consisting of r general
lines through the origin in C”; it is the affine cone
over r general points in P*71. If n < r < (";1),
then 6 =2r—n—1,t=r —nand e =4r — 3n —
2. The number of moduli of r general points is
(n —1)(r —n — 1); if the general curve is smooth-
able, the dimension of the smoothing component
is greater than the number of moduli, giving

(n—5)(r—n—2)<6.

In this case every deformation X; of X, = L7
comes from a projective deformation X, of X,
the projective cone over the r points. If X, is
smooth, X, . is a hyperplane section (at infin-
ity) of a smooth curve (of genus ¢ = r — n) and
XO,ooa our set of r points, is at least a limit of hy-
perplane sections. Pinkham arrived at the same
bound (n—5)(r —n —2) < 6 by a dimension count
in this context [Pinkham 1974, §11].

The number of moduli of r points in P"~! is
equal to that of r points in P"~"~1. In fact, the
concept of association [Coble 1915] provides a bi-
rational isomorphism of moduli spaces of ordered
point sets [Dolgachev and Ortland 1988, Chap-
ter III]. In [Stevens 1989] I proved that a hyper-
plane section {py,...,p,} of a nonspecial curve C
of genus g in "9, and its image {¢(p1),...,¢(p,)}
under the canonical embedding px : C — P971,
are associated point sets. Therefore a set of r gen-
eral points in P"~! is a hyperplane section (and
the cone L7 over it is smoothable) if and only if r
general points in P" "1 always lie on a canonical
curve. Define N(g) as the greatest number 7 such
that there is a canonical curve passing through r
general points in P9~ 1. The set of all pairs

(€, {p1,---,pr}),

with C' a canonical curve of genus g and {p, ..., p,}
a set of r distinct points in it, is an open subset of
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a certain Hilbert scheme, and there is a natural
projection map to the Hilbert scheme parametris-
ing point sets of degree r in P~!. The number
N(g) is the largest value of r for which this map
is generically surjective. An upper bound is ob-
tained by computing the dimensions of the spaces
involved. Not surprisingly, the result is the same
as before; formulated in terms of g it is N(g) <
g+ 5+1[6/g —2]. Surjectivity can be studied on
the level of tangent spaces at points correspond-
ing to singular curves. In this way I showed that
N(g) > g+ 5 [Stevens 1989, Corollary 6].

For low values of g the exact value of N(g) is
easily found:

N(3) = 14: plane quartics are determined by 14
points.

N(4) = 9: a canonical curve is the complete in-
tersection of a cubic and a unique quadric. This
quadric is determined by 9 points, while 6 addi-
tional points on it specify the curve.

N(5) = 12: the general curve is a complete inter-
section of three quadrics.

N(6) = 11: the general curve lies on a del Pezzo
surface S of degree 5, which is determined by 11
points.

N(7) = 13: see [Stevens 1989, 2.2], where a spe-
cial, reducible curve is constructed.

In these examples N(g) = g + 5 for g even and
N(g) = g+ 5+ [6/9g — 2] for g odd. This sug-
gests for the remaining case N(8) = 13. Despite
great efforts I did not succeed in proving this. In
fact, it turns out that the upper bound is obtained:
N(8) = 14; this follows from the solution of the
original problem, namely, that a general LS, is
smoothable. For r = 14 and n = 6, equality holds
in the formula (n — 5)(r —n — 2) <6.

4. THE VERSAL DEFORMATION OF L,

In this Section I describe the computations that
show that the general L%, is smoothable. Actu-
ally, I computed the versal deformation in nega-
tive degree for two different curves of type L¢,, one
with generic (random) coordinates, and afterwards
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a special one, which is more manageable, but still
general enough. It is not possible to give details
but I discuss separately the different stages of the
computation. (See also the section on Electronic
Availability at the end.)

Step 0: The Equations of the Singularity

The computations work with equations, but often
they are not the most natural description of a sin-
gularity. In this case the starting point are the
coordinates of the 14 points in P°. Since there are
35 moduli, it seemed out of the question to use
variable coefficients. Instead, I produced a general
curve X with Macaulay by using random coordi-
nates: from a 6 X 14 matrix, which was the con-
catenation of a 6 x 6 identity matrix and a random
6 x 8 matrix, the script points by David Eisenbud
supplied 7 quadratic equations.

Step 1: T'

In the computation one can take advantage of the
fact that the matrix of relations has quadratic en-
tries: among the 35 are the 21 Koszul relations.
Before transposing the matrix r, I first determined
a minimal set of generators of the module, gener-
ated over the ring Ox by the columns of r; this left
me with a 14 X 7 matrix 7*. The dimension of T" is
43; in accordance with the results of [Greuel 1982,
3.5] and [Pinkham 1974, 11.1], there are no defor-
mations in positive degree, and the degree 0 part
has dimension 35, which is the number of mod-
uli of 14 points in P®. The surprising result was
that dim 7" (—1) = 8; the dimension of a smooth-
ing component is 36.

In general, the basis of T" that comes out of the
computation is not the most suitable to continue
with; for example, for rational surface singularities
the base space has at least one smooth component
of maximal dimension, and it is advisable to have
this as an intersection of coordinate hyperplanes.
Therefore it is essential to analyse the results. In
this case, due to the generic nature of the equa-
tions, every basis seems equally (un)suitable.

Step 2: T?

For L%, one finds dim7? = dim T2, = 21. There-
fore one only has to compute the first obstruction.
A second consequence is that the Ox-module T
is annihilated by the maximal ideal, so there is no
difference between generators of the module and
generators of the C-vector space.

Although generators of T2 are needed, and will
be computed again, over the ring in which the ac-
tual computation takes place (a ring with 14 vari-
ables in two blocks: 6 coordinates xi, ..., x5 and
8 deformation variables s1, ..., sg), the calculation
of T before setting up the computation of the ver-
sal deformation is useful to estimate its size. Since
determining 72 costs a lot of time and memory
space, it is a good idea to stop standard basis and
syzygy computations after the degree, in which the
set of generators is complete. These degrees can be
found at this stage.

Step 3: The Actual Computation

I compute the deformations only in negative de-
gree, to ensure a finite calculation. This is not a
severe restriction, as the transverse structure of the
base space along the 35-dimensional equisingular
locus will be (topologically) locally trivial for gen-
eral moduli of the curve L$,—this could define the
term ‘general’.

As in the example in Section 2, I form the row
vector f(x)+ f'(z, s) over the ring C[z, s]: iftis a
7 X 8 matrix representing T"(—1), then f!(z,s) =
> tijs;. 1 lift only 14 relations, which generate
the module R/Ry, so r(x) is a 7 x 14 matrix. Let
r'(z, s) be a matrix with fr' + f'r = 0.

Let m, be the maximal ideal of C[s], and let
J = m?/m3. The transpose of the vector f'r' rep-
resents an element of Homy (R/Ry, Ox) ® J, and
projects onto an element of T2 @ J. To get an
explicit expression, use a presentation of the mod-
ule Homx (R/Ry, Ox), computed over the quotient
ring C[z, s]/(f). Modulo the equations for the base
space obtained by expressing f'r’ in a basis of T,
I find a vector f”(s), and F = f+ f'+ f" gives the



versal family. The total computation takes about
an hour on a Mac SE 30, and needs 1.5 Megabytes
of memory.

Step 4: Analysis of the Results

I do not reproduce here equations of the base space
S of the versal deformation in negative degrees;
there are 21 quadratic equations (in 8 variables),
which contain together 336 monomials—the maxi-
mal number for a standard basis. The coefficients
give the impression of being ‘random’. The ideal
of S has degree 16 and codimension 7. With the
jacobian criterion one finds that S is smooth out-
side the origin; in fact it suffices to compute the
first minor of the jacobian matrix to conclude that
S is a cone over 16 distinct points; these points are
not in general position: they impose one condition
less on quadrics. The points form a self-associated
point set in P7; such sets depend on 28 moduli
[Dolgachev and Ortland 1988, Theorem III.4].

All 16 components of the base space are smooth-
ing components, as can be seen by computing the
relative critical locus; it suffices to take 3 x 3 minors
of the matrix 0F (z,s)/0z, because all curve sin-
gularities in C* are smoothable (computing with
5 x 5 minors takes too long). It could be that
the ‘random’ singularity is not generic, but spe-
cial. Nevertheless, one can draw conclusions about
the general curve, because the base space T' of the
versal deformation (in all degrees) has a C* action
with weights 0 and 1, which defines a projection of
T onto the degree 0 part.

Proposition 4.1. A general curve singularity L8, is
smoothable, and has 16 smoothing components of
dimension 36, while dimT* = 43.

The curve LS, gives, to my knowledge, the first ex-
ample of a curve singularity with several smooth-
ing components. As the moduli of the curve en-
ter in the equations of the base space, it is hope-
less to find irreducible components and to actually
write down a smoothing for a generic curve. But
it is possible to compute with a special L8, that
is still ‘general enough’ and get explicit equations
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for one-parameter deformations. I follow the same
programme as before.

Step 0: The Equations of the Singularity

I start by looking for a singularity defined by oligo-
nomials [Khovanskii 1984]: polynomials in which
only a few monomials occur. The hope is that
this property persists through the entire compu-
tation, which is therefore shorter and faster, and
that the final results are more manageable. The
first idea, to take the 6 coordinate axes and the
cone over 8 points on a rational normal curve, does
not work, because the ideal is then generated by
quadrics and cubics. Instead, consider 6 coordi-
nate points, 6 points s° — t% on the curve (s°, s°t,
..., t%), and two other points; after some experi-
mentation I took (1,1,0,1,0,1) and (1,0,1,0,1,1).
The first 12 points give a L%, with particular nice
equations:

TiTiys — Tiy1Tiv2  and Ty 1Tip) — Ti_aTip,

where i € Z/6Z. This curve has only equisingu-
lar deformations: a computation reveals that T is
concentrated in degree 0. This shows again that
N(6) = 11.

Steps 1-3

Again dim 7" (—1) = 8. Some simplification of the
matrix for T is possible, but it is not clear what
the simplest form is. For the rest the computation
is similar to the general case, and somewhat faster
(forty minutes on a Mac SE 30).

Steps 4: Analysis of the Results

The equations for the base space and the total
space are still rather complicated. In order to sim-
plify them, I first computed the primary decompo-
sition of the ideal J of the base space S. This can
be done by computing ideal quotients (J : [) for
various linear functions /; since there are 21 equa-
tions, and J has degree 3 and dimension 2 (eas-
ily computed from a standard basis), one quickly
finds some components. A coordinate transforma-
tion placing the components as far as possible in



140 Experimental Mathematics, Vol. 4 (1994), No. 2

the intersection of coordinate hyperplanes gives the following equations for S:

8281, 8384, 8283, 8288, 8385, S1S85, S488, (382 + 85)57, (383 + 88)56, 82(85 + 386), 83(58 + 387),
$9(684—2s6+3s7), S3(651 —287+3s6), S4(654+3s7—2s6—451), 81(681+3s6—257—4s4), (281 —2535+ s¢)Ss,
(254 — 282 + s7)s5, (282 — 284 — s7+ sg)se, (283 — 2s1 — sg + S5)87, S184 — S¢S7, S557 + S6S8 + 356S7.
After further coordinate transformations on the total space the equations contain only 124 monomials;
this number can be brought down, at the cost of complicating the equations for S. The equations are
not very enlightening, but I write them down to show how complicated things can get, even in favourable
circumstances.
T3T4 — T2T5 — S6S7, T2T3 — T4Ts5 + T3Te — T5Te — T281 — T286 — T3S7 + T4S6 + T5S7 + TeS1 + 25387,
—ZT1T2 + T1%T4 + T3Te — T5Te + T154 — T251 — TS84 + TeS1 + 25256 + 25357,
T1To — Tol3 + Toaks — TaXs — T1Lg + TsTe — 2184 — 22157 + 2T281 + 2S¢
+ ©387 + 486 + 2T584 + T5S7 — 2xgS1 — 2656 — 65154 — 45456 — 45157,
T1T2 + T1T3 — T3Te — T4Te — T152 — T151 — T156 + T281 — %33383 - %1’357
— I38g + %17482 + X485 + %17486 — TgS1 + TeS3 + TgS4 + TeST — 25387,
2171.’132—‘1-:173.’135—172.’136—:173.’136—%16181—%33153—%17186—%:17187—33188+%$282—$253+$285+%$256—%$381+%$383—$384
—gasgse—:vg,sQ—%xg,sﬁ—§x553+a:584—%xg,56—w683+x654+x657+23236+§3136—%8386+§s§+28187+55657,
—X1%4 + Loy — T1T5 + 5L — T182 + 181 + T186 + %17282 + 281 — T83 — §w284
— 22087 + 23452 — T4S1 — 5T4S4 — STyS7 — T5S2 + w583 + 2557 + L5585 — DTS2
— %$654 — XgSy — %:17686 — %%57 + 25486 — 16—35257 + 2s3s7 + %5457 + 5sgs7 + %s%

The 7Z/27Z-symmetry on the singularity induces the involution (si,...,Ss) — (S, S3, S2, S1, Ss, S7, S6, S5)
on the base space S. There are nine components. Three of them have dimension two, C7 : the (s7, sg)-plane,
Cs : the (ss, sg)-plane, and Cy : the (ss, s¢)-plane; Cy intersects Cr; and Cy in a line, while C; N Cy = @.
The other components have dimension one; four of them are reduced, while Cs and Cg have a multiplicity
two structure. The general fibre over each of these components is reducible.

Each line L in S defines a one parameter deformation X — L of X; all fibres X; with [ # 0 are isomorphic,
and the projective closure of X; is isomorphic to the projective curve, defined in P" = P(C® x L) by the
equations of X.

The total space over the component Cy is given by the equations

T3T4—ToTs, T2L3—T4T5+IT3LE—L5Le, —L1T2+TL1T4+T3Le—TL5L6, —L1T4+T2L4—T1T5+T5Le+T5S8—L6S5,
T1T2+T1X3—L3L6—T4T—T3S8 T X485, T1T2+T3T5—TL2T6—T3Le—L1S8+TL285, T1T2—T2X3+T2T5—T4T5—T1T6+T5L6-
It has seven components of degree two, given by
2
(x4 — x6, T3 — 5, T2 — Te, T5 + S8, (1 + T5)T5 + (v1 — 5 — T + 55)T6), (21, T3, T5, Te — S5, T2Ty — T3),
2
(z1 — x3, T2 — T4, T — T5, To + S5, T2(@2 + x6) + T1(T6 — 1 — 2 + 58)), (@2, T4, T6, T1 — S8, T3T5 — T]),
2 2 2
(x4 — wzg, T2 —w x6, T3 — W w1, Tz — w1, T1(T1 — 88) — W ze(T6 — S5)),
where w® = 1 in the last expression (so it stands for three quadrics). Over the intersection with the

component C; one has s5 = 0, so the second and third quadric are reducible. The projective curve now
consists of four lines:

il - (wl,x2,$3,$4,$5), i2 = (wl — X3, T2, T4, T1 — Ts, Tg — T1 + 38)7

i3 = (131,5172,173,[65,136), ig = (131,5173,174,[65,136),



and five conics:

i5s = (x4 — 6, T3 — T5, Tz — T, T5 + Sg,
(z1 — 6) (25 + 6) + 23),
iﬁ = (Cl?]_ — 88, T2, T4, T6, 113% - :1:31:5);
ir,is,19 = (T4 — WT6, Tz — W T6, T3 — W T1,

x5 — wxy, T1(T1 — S8) — wzx?i).

Through the point P=(0:0:0:0:0:0:1)
pass the lines 44, 75, 3, and all conics. In affine co-
ordinates the lines are the coordinate axes in the
three-dimensional (3, x4, zg)-space, while the tan-
gent to a conic is given by z, = w?zg, T4, = wWTs;
this gives six lines not on a quadric cone, so P
is a singular point of type L}. The intersection
(0:—=1:0:—-1:1:0:1) of 44, 36 and iy is of type
L3. Finally there are 6 ordinary double points: i3
intersects i4, g intersects is, ig and 49, while 75
intersects i in two points. The curve has indeed
arithmetic genus 8.

The embedding dimension of the singular points
is at most 3. This implies that the base space of
the versal deformation (in all degrees) is smooth in
a general point of C7 N Cs. The same is true over
Cs N Cy. Therefore these three components of S
lie in the same smoothing component. This shows
that one has to be careful, when drawing conclu-
sion from the negative degree part about the ver-
sal base. What happens here can be understood
in the following way: the three components to-
gether are the cone over a curve of degree 3 of
arithmetic genus 0; the ideal of such a curve is
generated by 3 quadrics, yoked together by 2 lin-
ear relations. A general (non flat) perturbation of
the quadrics gives a complete intersection, consist-
ing of 8 points, and if the number of deformation
parameters is large enough, the total space will be
smooth. The base space is not normally flat along
the equisingular locus.

The double component C5 has ideal

2
(s8, 85+ 356, 254 — 51 + 57, S3, 51 + 25, 52 — S, Sg),

so its reduction is the line 2s4 + s; = 0 in the
(84, s7)-plane. The total space over this line has 7
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components; it is the cone over a curve with one
singular point of type L3, and 12 ordinary dou-
ble points. Therefore this curve represents also a
smooth point of the base of the versal deformation.
A model for the smoothing component in question
is a pinch point times a smooth factor. The same
holds for the other double component of S.

Proposition 4.2. The special L8, considered above
has 7 smoothing components.

5. REMARKS

1. It seems to be well known that the complex-
ity of the basic algorithms is doubly exponential.
In practical applications one observes that the size
and length of computations grows rapidly, say as
the codimension of the singularity increases. The
same tends to be true for the results of computa-
tions. Beyond the cases one can compute by hand,
there is a small number of examples open to com-
puter treatment, and after that the problems are
too large. To get results, it is important to try to
limit the size. This is also the reason that I do
not have a Macaulay script for the computation of
versal deformations, in contrast with 7' and T2
I need control over the progress of a computation,
and, if necessary, need to be able to exploit special
properties of a specific example.

A good approach is to compute only for singular-
ities with special moduli; the case of LS, shows that
this strategy has to be used with caution. Candi-
dates are singularities with extra symmetry. Al-
though the symmetry does not enter directly into
machine calculations, it is important for two rea-
sons. Firstly, since an equivariant deformation ex-
ists [Rim 1980], there are constraints on the mono-
mials, occurring in the equations. Secondly, the
extra structure makes it easier to give an interpre-
tation of the results.

Even without symmetry, one should look for sin-
gularities defined by oligonomials. There is no
guarantee that the versal deformation is also de-
fined by oligonomials, but in many cases this hap-
pens. The toy example of Section 2 is defined by
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monomials, but there is no coordinate transforma-
tion, which makes the total space over the largest
component monomial.

2. It is not necessary to lift all relations. It is clear
that one can ignore Koszul relations. Less obvious
is the case of determinantal singularities. Let the
equations of X consist of the (;) minors of a 2 X n

matrix:
( fi e fn)_
g]_ gn

Each 3 x 3 minor of the 3 X n matrix

fl fn
fl fn
g1 --- Gn

gives a relation, and since one can also repeat the
second row, this construction gives 2(;‘) relations,
which together generate the module of relations if
X is Cohen—Macaulay of codimension n — 1 (only
in this case is X called determinantal). To com-
pute deformations it suffices to lift the (g) relations
obtained by doubling only one row. For small n it
is not worthwhile to single out these relations, but
for larger n one obtains a significant simplification.

3. Macaulay computes only in finite fields. This
poses the problem of lifting the results back to
characteristic zero. In the example of the special
LS, the coefficients in the final equations (after my
coordinate transformations) have denominator at
most 6, and numerator at most 13; the compu-
tation was done in characteristic 31991, which is
large enough to safely assume the validity of the
result. In intermediate steps large coefficients do
occur.

In other situations one can repeat the computa-
tion in a different characteristic. Here again the
course to follow depends on the results; equations
with large (integer) coefficients are less useful, un-
less an interpretation of these coefficients exists.

4. A second restriction of Macaulay is that it can
only compute standard bases of quasihomogeneous
modules. Singular [Greuel et al. 1994] will work in
power series rings, so it will be able to compute 7"

and T for nongraded singularities. As to the com-
putation of versal deformations in the general case,
there is no guarantee that the process stops after a
finite number of steps. In some cases a (weighted)
tangent cone gives enough information about the
structure of the base space, so a computation up to
low powers of the deformation variables will suffice.

5. According to the algorithm, as described, one
has to express the obstruction vector in a C-basis
of T?. With Macaulay one finds an expression in
terms of Ox-generators of T?. As a C-basis consists
of monomial multiples of Ox-generators, it suffices
to take coeflicients.

6. In the obstruction calculus one has to reduce ex-
pressions modulo the ideals (G,,) + m™*. As the
number of generators of m™*! tends to be large,
finding a standard basis will take a long time. A
useful trick is to replace the deformation parame-
ters s; by €0;, with ¢ a new parameter (of weight 1;
take wt o; = 2wt s; — 1, and multiply the weights of
the z; by 2). It now suffices to reduce modulo the
ideal, generated by G,,(¢0) and e™**. On the other
computations this substitution has hardly any in-
fluence.
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