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In recent years I have computed versal deformations of vari-

ous singularities, partly by hand, but mostly with the program

Macaulay. I explain here how to do these computations. As an

application I discuss the smoothability of a certain curve singu-

larity, a case I had not been to settle with general methods. As

a result I find an example of a reduced curve singularity with

several smoothing components.

INTRODUCTIONThe study of well-chosen examples has always beenan important tool in mathematics. In modern days,with powerful computers widely available, long anddull computations have become easy. This is espe-cially useful for deformation theory, a subject inwhich there are hardly any general results beyondthe existence of versal deformations [Schlessinger1968; Grauert 1972]. Indeed, it seems that everyimaginable pathology occurs: the versal base spaceis in general reducible, with components of varyingdimension, including embedded components.In recent years I have computed versal deforma-tions of various singularities (I always use the termsingularity to refer to a germ of a complex ana-lytic space, but one may as well think of singularpoints of a�ne algebraic varieties), partly by hand,but mostly with the program Macaulay [Bayer andStillman]. In this paper I explain how to do thesecomputations.As an application I discuss the solution of a prob-lem from [Stevens 1989]. As a result I �nd an ex-ample (to my knowledge the �rst) of a reduced
c
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curve singularity with several smoothing compo-nents.Spaces can be described in a variety of ways.My deformation computations use equations, andtheir result is a set of equations for the total spaceand for the base space. A description in terms ofequations is only to be considered adequate if it isshort; here all sorts of symbolic notations shouldbe allowed. The maximum length is a changeableparameter, whose default value depends on the im-portance of the equations, the person doing thecomputation, the journal publishing the result: : : .For this article I have set the value at half a page.Although a system of equations gives a `complete'description, natural questions like the number ofirreducible components may be di�cult to answer.The concepts of deformations and versality canbe formulated in very abstract terms. I recall thede�nitions in a version adapted to the needs of ac-tual computation. Computing a versal deforma-tion comes down to solving a deformation equa-tion. Since this may be useful in other deforma-tion contexts, I �rst discuss solution methods in ageneral, abstract set-up (the example of modules istreated in [Laudal 1982]). Such considerations canalready be found in [Nijenhuis 1969; Gri�ths 1965],but I develop them here to stress that the under-standing of deformation theory bene�ts from one'sthinking about the deformation equation. As anillustration of deformations of singularities I treata toy example of a curve with an embedded com-ponent, namely the general hyperplane section oftwo planes meeting in one point (the simplest non-normal surface singularity).Computer computations are indispensible in thestudy of the general curve singularity of type L614,consisting of 14 lines through the origin in C 6 . Iwanted to know whether this curve is smoothable[Stevens 1989]. The computation shows that thereare 16 smoothing components. However, it is notpossible to write down a speci�c one-parameter de-formation. Therefore I also compute the versaldeformation (in negative degrees) of a special L614that is still `general enough'. Its equations contain

relatively few monomials. In practice this is a nec-essary condition to obtain useful explicit results.
1. HOW TO SOLVE THE DEFORMATION EQUATIONThe �rst modern deformation theory is the Ko-daira{Spencer theory of deformations of compactcomplex manifolds. Deformations are described bysolutions of the following equation, which expressesthe integrability condition:�@ #+ 12 [#; #] = 0 (1.1)as equation in the Dolbeault complex computingH�(M;�) [Kuranishi 1971, Chapter VII]. This isan instance of a general phenomenon in deforma-tion theory: the problem is governed by a complexwith a product, which makes the cohomology of thecomplex into a graded Lie algebra [Nijenhuis 1969;Gri�ths 1965]. Laudal writes: `It is now folklorethat the hull of a deformation functor of an alge-braic geometric object, in some way is determinedby the appropriate cohomology of the object andits \Massey products" ' [Laudal 1982]. For recentwork in this direction see [Goldman and Millson1990].I discuss methods to solve (1.1) in the abstractset-up of a complex K_ with a bracket operation,which descends to the cohomology. Think of thecomplex K_ as describing a deformation problem,with �rst-order in�nitesimal deformations given byH1(K_) and obstructions lying in H2(K_), whileH0(K_) gives in�nitesimal automorphisms. For' 2 K1 consider the equationd'+ 12 [';'] = 0: (1.2)The problem is to �nd the `general' solution of thisequation. To give an exact meaning to this term,one can introduce a solution functor [Goldman andMillson 1990, x 1], which leads back to the languageof deformation theory �a la Grothendieck.Equation (1.2) is a very simple, quadratic, equa-tion. To get a �nite-dimensional solution (of di-mension h1(K_)), one needs a transverse slice to
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the orbit of K0; this involves in one way or an-other the implicit function theorem. Therefore onehas to specify some analytic structure in which thistheorem holds; for deformations of compact com-plex manifolds one can take the Ki to be complexBanach spaces [Kuranishi 1971, Chapter X]. Thismethod leads to the existence of a `general' solu-tion, but gives no way to compute it.A di�erent approach is to look for formal solu-tions, with a power series Ansatz. Write' = t'1 + t2'2 + t3'3 + � � � (1.3)and substitute in (1.2). In this formula t is a pa-rameter, which I use in a naive sense. Collectingpowers of t one �nds the equations0 = d'10 = d'2 + 12 ['1; '1]0 = d'3 + ['1; '2]...0 = d'n + 12Pn�1i=1 ['i; 'n�i]:
(1.4)

The �rst equation states that '1 is a cocycle, in ac-cordance with the fact that the equivalence classesof �rst-order in�nitesimal deformations are givenby H1(K_). The second equation gives the pri-mary obstruction: the condition for extending '1is that the cocycle ['1; '1] is a coboundary; in otherwords, if the cohomology class of ['1; '1] inH2(K_)is zero, one can �nd a '2, which is determined upto cocycles. The secondary obstruction is only de-�ned if '2 can be found; one can still change thespeci�c choice of '2, giving an indeterminacy char-acteristic of Massey triple products.The procedure above tries to �nd a curve in thesolution space, and the higher-order obstructionsdepend on the choices made in earlier steps. Toavoid this problem, I will include the choices: Imake a multivariable power series Ansatz for the`general' solution. Let dimH1(K_) = � , and chooserepresentatives '1, : : :, '� 2 Z1(K_) of a basis ofH1(K_). Let t = (t1, : : :, t� ) be the corresponding

coordinates. I construct the local ring S of the so-lution space as a quotient of C [[t]]. Let m� be themaximal ideal of C [[t]]. Over S1 := C [[t]]=m2� onehas the solution P ti'i. To �nd the higher-orderterms, write in multi-index notation an equationsimilar to (1.3): ' = Xj�j>1 t�'�:The primary obstruction comes fromXj�j=2 t� d'� + 12 Xjij=jjj=1 titj ['i; 'j] = 0 : (1.5)

One can express the class of ['i; 'j] in H2(K_) interms of a basis 
1, : : :, 
s of H2(K_) ascl(['i; 'j]) =Xk ckij
k:Equation (1.5) is solvable if and only ifg(k)2 := 12 Xjij=jjj=1 ckij titj = 0
for all k. It is possible that some (or all) g(k)2 arezero, even if dimH2(K_) > 0. SetS2 := C [[t]]=(g2) +m3� ;where (g2) is an abbreviation for the vector(g(1)2 ; : : : ; g(s)2 );and choose a basis B2 of monomials for m2�=(g2) +m3� ; this can be done with a standard basis of theideal (g2). I will denote the set of exponents ofthese monomials by B2 as well. Over S2 one cansolve (1.5): there are '� 2 K1, with � 2 B2, suchthatX�2B2 t� d'� + 12 Xjij=jjj=1 titj ['i; 'j] � 0 mod g2:
The '� are not unique, but determined up to el-ements  � 2 K1 with d � = 0. The indetermi-nacy can be reduced to a �nite-dimensional one bychoosing at the beginning a complement C1(K_) tothe coboundaries B1(K_) � K1; the possible lifts
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then form a homogeneous space under H1(K_). Ifone uses an algorithm based on standard bases,the choices are unique (depending on the chosenmonomial ordering).For the next step one has to solve the equationXj�j=3 t� d'� + Xjij=1�2B2 tit� ['i; '�] � 0 mod g2:
Note that, although the ideal (g2) is de�ned inC [[t]]=m3� , the ideal m� (g2) � m3�=m4� is well-de�nedand does not depend on the extension of (g2) toC [[t]]=m4� . The class of ['i; '�] in H2(K_) is aMassey triple product. Writecl(['i; '�]) =Xk cki�
k:
This gives g(k)3 = Xjij=1�2B2 cki�tit�;which de�nes the extension of (g2). Set G(k)3 =g(k)2 + g(k)3 , and de�ne S3 as the ring C [[t]]=(G3) +m4� . Choose a basis B3 of monomials for m3� \(C [[t]]=(G3) + m4� ). Over S3 one can solve equa-tion (1.4) using '� with � 2 B3.The notation becomes cumbersome, so I stophere, but the general procedure should be clear bynow (see also [Laudal 1982]).The number of nontrivial equationsG(k)n becomesstationary. As I am working with power series,the computation will in general be in�nite, andtherefore not suited for practical purposes. Fordeformations of singularities I will ensure �nite-ness by considering only deformations in negativedegrees of weighted homogeneous germs. The con-vention here is that a deformation corresponds toa @=@ti, so the parameters ti have positive weight,and therefore there is a bound on the possible ex-ponents �; indeed, the whole set-up reduces to a�nite-dimensional one, and the process ends aftera �nite number of steps.

2. DEFORMATIONS OF SINGULARITIESThe de�nition of a deformation involves the notionof 
atness, which accounts for the di�culties inexplaining and understanding it. Mumford [1989]writes: `The concept of 
atness is a riddle thatcomes out of algebra, but which is technically theanswer to many prayers.' Intuitively, in a 
at fam-ily the �bres depend continuously on the points ofthe parametrising base space.In this section all spaces considered are germs atthe origin. Let � : X ! S be a map of analyticgerms, and suppose an embedding of the �breX0 =��1(0) � C N is given. Then � can be realised asthe composition of an embedding X � S � C Nand the projection of S � C N onto the �rst factor(for a proof see [Fischer 1976, 0.35]). In terms ofequations one has generators (F1, : : :, Fk) of theideal I of X in OSfxg, while the fi(x) := Fi(0; x)generate the ideal I0 of X0 in ON = C fxg.
Definition. The map � : X ! S is 
at in 0, if everyrelationP firi = 0 between the fi lifts to a relationPFiRi = 0 2 ON between the Fi.It su�ces to lift the generators of the module ofrelations. Consider a presentation of OX0:0 � OX0  � C fxg f � (C fxg)k r � (C fxg)l :The entries of the row vector f = (f1, : : :, fk) gen-erate the ideal I0, and the columns of the matrixr generate the module of relations. The 
atnesscondition is that this presentation can be lifted to0 � OX  � OSfxg F � (OSfxg)k R � (OSfxg)l:
Example (complete intersections). If the map-germ f :C n ! C k de�nes a complete intersection X0, theKoszul complex on the components fi of f resolvesthe ring OX0. In particular, the relations betweenthe fi are generated by the obvious ones, fifj �fjfi = 0, or, in vector notation,(f1; : : : ; fi; : : : ; fj; : : : ; fk) � (0; : : : ; fj; : : : ;�fi; : : : ;0)t= 0:
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For any deformation F (t; x) of f(x) one can lift therelation fifj�fjfi = 0 to the relation FiFj�FjFi =0, and therefore the 
atness condition is alwayssatis�ed.
Definition. A deformation of a germ X0 is a 
atmap-germ � : X ! S such that X0 is isomorphicto the �bre ��1(0) under a given isomorphism i :X0 ! ��1(0).A morphism between deformations � : X ! S and�0 : X 0 ! S0 of X0 is a commutative diagramX H�! X 0??y ??yS h�! S0compatible with the embeddings i : X0 ! X andi0 : X0 ! X 0, so H � i = i0. I write in shortX ! X 0, or, to emphasise the base spaces, (X !S) �! (X 0 ! S0).Let h : T ! S be a holomorphic map. Theinduced deformation is the 
at map h�(�) : X �ST ! T .
Definition. A deformation � : X ! S ofX0 is calledversal if it satis�es the following lifting property:Let (Y ! T ) �! (Y 0 ! T 0) be a morphism ofdeformations, over an embedding T ! T 0. Thenevery morphism (Y ! T ) �! (X ! S) can belifted to a morphism (Y 0 ! T 0) �! (X ! S) suchthat the composition T ! T 0 ! S equals T ! S.A deformation is formally versal if the lifting prop-erty is satis�ed for zero-dimensional spaces T 0. Itis (formally) semi-universal if it is (formally) ver-sal, and if the induced morphism T0(T 0) ! T0(S)on the tangent spaces is uniquely determined (byY ! Y 0 and Y ! S). For semi-universal the termminiversal is also used.In particular, by taking Y equal to X0, one seesthat every deformation � : Y 0 ! T 0 of X0 is iso-morphic to a deformation h�(�), for some maph : T 0 ! S. This property is often given as de�ni-tion of versality. It is however not strong enoughto prove that a versal deformation is the product

of a miniversal one with a trivial factor [Flenner1981, Lemma (5.3)]. This result allows one tospeak (sloppily) about the versal deformation, i.e.,to use the terminology of [Grauert 1972], whereversal stands for miniversal, while versal is calledcomplete. Sometimes it is easier to compute a ver-sal but not miniversal deformation, if this leads tomore symmetric formulas.Grauert [1972] has shown the existence of ver-sal deformations for isolated singularities. A for-mally versal formal object exists by the results of[Schlessinger 1968]. Every (holomorphic) deforma-tion that is formally versal is already versal; thisis a special case of a result of Flenner in a generaldeformation-theoretic context [Flenner 1981, Satz(5.2)]. In particular, a formal computation thathappens to yield a convergent, or even polynomial,result already gives the versal family.The method to compute versal deformations isthe power series Ansatz of the previous Section.The relevant complex is the cotangent complex [Pa-lamodov 1976], and the quadratic equation to besolved comes down to FR = 0. Indeed, one canview the maps f and r as parts of a di�erential din a complex; if one resolves OX0 with a di�erentialgraded algebra, the T � can be de�ned as the coho-mology groups of its derivation algebra, in whichthe di�erential is given by �u = [d; u]. The de-formation equation is obtained from the conditionthat the perturbed di�erential d+ ' gives again acomplex: the equation [d+ '; d+ '] = 0 yields�'+ 12 [';'] = 0:For concrete computations it su�ces to use direct,ad hoc de�nitions of T 1 and T 2 [Schlessinger 1973].Since I am interested from now on in a �xedsingularity, I will slightly change the notation andwrite X for the germ that is deformed, and I forits ideal in the power series ring ON .
Definition. A �rst-order in�nitesimal deformationof X is a deformation over the double point D , thezero-dimensional space having as local ring the ring
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of dual numbers C [ " ] := C [t]=(t2). By de�nition"2 = 0.
Proposition 2.1. The OX-module of �rst-order defor-mations is isomorphic to the normal module NX =HomX(I=I2;OX).
Proof. Let F = f +"f 0 be an in�nitesimal deforma-tion, and let R = r + "r0 be a lift of the relations.Since "2 = 0, the 
atness condition FR = 0 gives(f + "f 0)(r + "r0) = fr + "(fr0 + f 0r) = 0:Because fr = 0, one obtains the equation fr0 +f 0r = 0 in (ON)l. The ON -homomorphism ONk !ON that sends a generator ei to f 0i maps the imageof r into I, because f 0r = �fr0. Hence f 0 inducesa homomorphism�(f 0) : ONk= Im r �= I ! OX ;which sends fi to (f 0i mod I).Conversely, given a homomorphism' 2 HomX(I=I2;OX) �= HomON (I;OX);one lifts the vector'(f) = ('(f1), : : :, '(fk)) 2 OkXto a vector f 0 2 ONk, inducing a homomorphism~' : ONk ! ON . For every relation rj the func-tion f 0rj = ~'(rj) is a lift of '(P firij) = 0 2 OX .Therefore one can �nd a matrix r0 with f 0r+fr0 =0. Any two liftings of '(f) di�er by a g 2 Ik, sothey determine the same deformation. �An in�nitesimal deformation f + "f 0 is trivial ifthere is an automorphism '(x; ") = (x + "�(x); ")of C N �D such that f+"f 0 and f �' determine thesame ideal. Let �N be module of germs of vector�elds at the origin. The computationdd"f � '(x; ")j"=0 = dd"f(x+ "�(x))j"=0=Xj @f@xj �j(x)

shows that the trivial deformations are the imageof the natural map�N jX = �N 
 OX ! HomON (I;OX) = NX ;which sends a vector �eld � to the homomorphismg 7! �(g). The kernel of this map is the OX-module �X = f�jX j �(I) � Ig. One has �X =HomX(
1X ;OX).
Definition. The module T 1X of isomorphism classesof �rst-order in�nitesimal deformations isT 1X = cokerf�N jX ! NXg:
Remark. Suppose the singularity X admits a goodC �-action, so OX is a (positively) graded module.Then all modules considered above inherit a grad-ing.
Theorem 2.2 [Pinkham 1974, 2.3]. A singularity Xwith good C �-action has a C �-equivariant versal de-formation � : X ! S. The restriction �� : X� !S� to the subspace of negative weight is versal fordeformations of X with negative weight .
Remark. For a given singularity, T 1 can be com-puted with a computer algebra package that com-putes standard bases and syzygies. The �rst stepis to determine the OX-module NX . Every gener-ator f + "f 0 satis�es f 0r � 0 mod I. Taking thetranspose gives rtf 0t � 0 mod I; in other words,f 0t is a syzygy between the columns of the matrixrt over the ring OX : the module NX is the syzygymodule of the matrix rt. The image of �N jX isthe submodule J of NX generated by the partialderivatives of the row vector f . The resolutionOlX rt � OXk s1 � OsX s2 � OtXgives a presentation of NX :0 � NX  � OkX s1 � OsX s2 � OtX :Lift the module J to a submodule ~J + Im s2 of thefree module OsX by lifting the generators: �nd amatrix ~| with @f=@x = s1~|, and de�ne ~J as mod-ule generated by the columns of ~|. Then T 1X �=
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OsX=( ~J + Im s2). Choose representatives of a C -basis of the quotient; to get a basis of T 1, which hasa direct interpretation in terms of perturbations ofthe equations, take the image of the representativesunder the map s1.I have written a script in Macaulay [Bayer andStillman] for these computations (see section onElectronic Availability at the end of this article).Since Macaulay only computes in graded rings, thescript can compute T 1 for singularities with goodC �-action. For general singularities the programSingular [Greuel et al. 1994] will be useful.
Definition. As before, let ON f � ONk r � ONl bea presentation of the ring OX . Let R = ONl= ker rbe the module of relations, and let R0 be the sub-module of Koszul relations. Then R=R0 is an OX-module. With these notations,T 2X = cokerfrt : HomX(OkX ;OX)!HomX(R=R0;OX)g:
Example. For complete intersections one has R =R0, so T 2 = 0.
Proposition 2.3. Let 0 ! J ! A0 ! A ! 0 bea small extension of Artinian rings (which meansthat J2 = 0). The obstruction to extending a de-formation of X over A to a deformation over A0lies in T 2X 
 J .
Proof. For notational convenience, I will considerone-parameter deformations: let A = C [t]=(tn),and consider Fn�1 and Rn�1 with Fn�1Rn�1 � 0mod tn. I want a deformation overA0 = C [t]=(tn+1):Write Fn = Fn�1 + tnf (n) and Rn = Rn�1 + tnr(n).The equation FnRn � 0 mod tn+1 givesFn�1Rn�1 + tn(f (n)r + fr(n)) � 0 mod tn+1:Because Fn�1Rn�1 � 0 mod tn, one has the equa-tion t�nFn�1Rn�1 + f (n)r � 0 mod tin OlX . A simple computation shows that the vec-tor t�nFn�1Rn�1 mod t 2 OlX (or, equivalently,

Fn�1Rn�1 mod tn+1 2 (OX :tn)l ) depends only onr (and Fn�1), but not on the lift Rn�1 of r. Thisvector represents an element of HomON (ONl;OX),which vanishes on ker r. The value of the homo-morphism on any relation can be computed bytaking a suitable lift R0 of the particular relation.The canonical choice for a Koszul relation givesFn�1R0 = 0 2 ON . The equation t�nFn�1Rn�1 +f (n)r � 0 can be solved if and only if the homo-morphism t�nFn�1Rn�1 2 Hom(R=R0; OX) can belifted to the element of Hom(OUk;OX) given by thevector f (n). �To compute T 2, one �rst calculates the resolutionof OX one step further:0 � OX  � ON f � (ON)k r � (ON)l s � (ON)m:Represent the Koszul relations by a l� �k2� matrixk; the concatenation ks de�nes a presentation ofR=R0, and HomX(R=R0;OX) is the syzygy mod-ule of (ks)t over OX . Dividing out the submodulegenerated by the columns of the matrix rt givesT 2. Also for these computations I have written aMacaulay script.
Example. Let X be the the singularity consisting oftwo intersecting lines, with an imbedded compo-nent at the origin. In the same notation as above,the resolution of the local ring has the form0 � OX  � O3 f � (O3)4 r � (O3)4 s � O3 � 0;with matrices f = (xy; xz; y2; yz),

r = 0BB@ 0 0 �y �z�y 0 0 y0 �z x 0x y 0 0
1CCA

and s = (y;�x;�z; y)t. The presentation of thenormal module NX is given by the matrices
s1 =

0BB@ 0 0 0 0 0 y x y0 0 0 x y z 0 00 0 y 0 0 0 0 0y z 0 0 0 0 0 0
1CCA
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and a matrix s2 consisting of the last 20 columnsof the following concatenation:(~|; s2) =0BBBBBBBBBBBBB@

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �z x y z0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x y 0 0 00 2 0 0 0 0 0 0 0 0 0 0 0 0 0 x y z 0 0 0 0 00 0 1 0 0 0 0 0 �z 0 �y 0 0 y z 0 0 0 0 0 0 0 00 0 0 0 0 0 0 0 0 �z x y z 0 0 0 0 0 0 0 0 0 01 0 0 0 0 0 0 0 x y 0 0 0 0 0 0 0 0 0 0 0 0 00 1 0 �y 0 0 y z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0 x y z 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1CCCCCCCCCCCCCA
:

It follows thatdimT 1 = dim�(OX)8=( ~J + Im s2)� = 5;and one can write as perturbed equations(x+ s1)y; xz+ ys2; y(y+ s3); (y+ t)(z+ s4):A lift of the matrix r is given by
R1 =

0BB@ �s4 0 �y � s3 �z�y � t 0 0 ys2 �z � s4 x+ s1 �s2x y � t+ s3 0 s1
1CCA :

Modulo third-order terms one obtains the obstruc-tion vectoro = (xts4 � yts2 + ys2s3 � ys1s4; �zt(t� s3); 0;�ys2s3 + ys1s4 + zts1):To �nd the class in T 2, one �rst computes the ma-trix ks, which describes R=R0:
ks = 0BB@ 0 0 0 0 �z 0 y0 0 �x 0 0 �y �x0 �y �z �z 0 0 �z�x 0 0 y 0 0 y

1CCA :
Over OX the syzygy matrix of the matrix (ks)t is0BB@�y 0 0 x 0 x y 00 �z 0 y z 0 0 00 x y 0 0 0 0 yy 0 z 0 0 0 0 0

1CCA :

A simple computation shows that T 2 is concen-trated in degree �2; the �rst four columns of theabove matrix are the columns of rt (in a di�erentorder), so the last four columns give a basis of T 2X .In terms of these generators for HomX(R=R0;OX)one �nds the following expression for the obstruc-tion vector:o = (�s2s3 + s1s4; 0; ts1; 0; �t(t� s3);ts4; �ts2; �ts1):The last four entries are the equations of the basespace. The �rst four entries give the new quadraticterms of the equations of the total space. The �nalresult is:F = ((x+ s1)y; xz + (y + s3)s2 � s1s4;y(y + s3); (y + t)(z + s4)):One checks that FR1 � 0 modulo the equationsfor the base space: ts1 = ts2 = t(s3 � t) = ts4 = 0.The deformation space has two components, aone-dimensional component s1 = s2 = s3 � t =s4 = 0 with (xy; xz; y(y + t); (y + t)z)as total space (two planes intersecting in one point)and a four-dimensional component where the em-bedded point can move o� the curve.
3. SMOOTHING COMPONENTS OF CURVESIf the �bre Xs over some point s in the base spaceof a versal deformation X ! S is smooth, s is aregular point of S (by openness of versality) andall nearby �bres are also smooth. In the terminol-ogy of [Wahl 1981] the irreducible component of Scontaining s is a smoothing component .For a reduced curve singularity the dimension eof smoothing components is an invariant of the sin-gularity, and does not depend on the component.Deligne's formula for it simpli�es for quasihomo-geneous curves to e = � + t � 1 [Greuel 1982];here t = dim!=m! is the Cohen{Macaulay type,and the Milnor number � can be computed as � =
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2��r+1, with r the number of branches and � thenumber of virtual double points. Greuel used thisformula to show that certain curve singularities arenot smoothable.Consider the curve Lnr consisting of r generallines through the origin in C n ; it is the a�ne coneover r general points in Pn�1 . If n < r � �n+12 �,then � = 2r � n� 1, t = r � n and e = 4r � 3n�2. The number of moduli of r general points is(n� 1)(r � n� 1); if the general curve is smooth-able, the dimension of the smoothing componentis greater than the number of moduli, giving(n� 5)(r � n� 2) � 6:In this case every deformation Xt of X0 = Lnrcomes from a projective deformation �Xt of �X0,the projective cone over the r points. If �Xt issmooth, �Xt;1 is a hyperplane section (at in�n-ity) of a smooth curve (of genus g = r � n) and�X0;1, our set of r points, is at least a limit of hy-perplane sections. Pinkham arrived at the samebound (n� 5)(r�n� 2) � 6 by a dimension countin this context [Pinkham 1974, x 11].The number of moduli of r points in Pn�1 isequal to that of r points in Pr�n�1 . In fact, theconcept of association [Coble 1915] provides a bi-rational isomorphism of moduli spaces of orderedpoint sets [Dolgachev and Ortland 1988, Chap-ter III]. In [Stevens 1989] I proved that a hyper-plane section fp1; : : : ; prg of a nonspecial curve Cof genus g in Pr�g , and its image f'(p1); : : : ; '(pr)gunder the canonical embedding 'K : C ! Pg�1 ,are associated point sets. Therefore a set of r gen-eral points in Pn�1 is a hyperplane section (andthe cone Lnr over it is smoothable) if and only if rgeneral points in Pr�n�1 always lie on a canonicalcurve. De�ne N(g) as the greatest number r suchthat there is a canonical curve passing through rgeneral points in Pg�1 . The set of all pairs(C; fp1; : : : ; prg);with C a canonical curve of genus g and fp1, : : :, prga set of r distinct points in it, is an open subset of

a certain Hilbert scheme, and there is a naturalprojection map to the Hilbert scheme parametris-ing point sets of degree r in Pg�1 . The numberN(g) is the largest value of r for which this mapis generically surjective. An upper bound is ob-tained by computing the dimensions of the spacesinvolved. Not surprisingly, the result is the sameas before; formulated in terms of g it is N(g) �g + 5 + [6=g � 2]. Surjectivity can be studied onthe level of tangent spaces at points correspond-ing to singular curves. In this way I showed thatN(g) � g + 5 [Stevens 1989, Corollary 6].For low values of g the exact value of N(g) iseasily found:N(3) = 14: plane quartics are determined by 14points.N(4) = 9: a canonical curve is the complete in-tersection of a cubic and a unique quadric. Thisquadric is determined by 9 points, while 6 addi-tional points on it specify the curve.N(5) = 12: the general curve is a complete inter-section of three quadrics.N(6) = 11: the general curve lies on a del Pezzosurface S of degree 5, which is determined by 11points.N(7) = 13: see [Stevens 1989, 2.2], where a spe-cial, reducible curve is constructed.In these examples N(g) = g + 5 for g even andN(g) = g + 5 + [6=g � 2] for g odd. This sug-gests for the remaining case N(8) = 13. Despitegreat e�orts I did not succeed in proving this. Infact, it turns out that the upper bound is obtained:N(8) = 14; this follows from the solution of theoriginal problem, namely, that a general L614 issmoothable. For r = 14 and n = 6, equality holdsin the formula (n� 5)(r � n� 2) � 6.
4. THE VERSAL DEFORMATION OF L6

14In this Section I describe the computations thatshow that the general L614 is smoothable. Actu-ally, I computed the versal deformation in nega-tive degree for two di�erent curves of type L614, onewith generic (random) coordinates, and afterwards
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a special one, which is more manageable, but stillgeneral enough. It is not possible to give detailsbut I discuss separately the di�erent stages of thecomputation. (See also the section on ElectronicAvailability at the end.)
Step 0: The Equations of the SingularityThe computations work with equations, but oftenthey are not the most natural description of a sin-gularity. In this case the starting point are thecoordinates of the 14 points in P5 . Since there are35 moduli, it seemed out of the question to usevariable coe�cients. Instead, I produced a generalcurve X with Macaulay by using random coordi-nates: from a 6 � 14 matrix, which was the con-catenation of a 6�6 identity matrix and a random6�8 matrix, the script points by David Eisenbudsupplied 7 quadratic equations.
Step 1: T1In the computation one can take advantage of thefact that the matrix of relations has quadratic en-tries: among the 35 are the 21 Koszul relations.Before transposing the matrix r, I �rst determineda minimal set of generators of the module, gener-ated over the ring OX by the columns of r; this leftme with a 14�7 matrix rt. The dimension of T 1 is43; in accordance with the results of [Greuel 1982,3.5] and [Pinkham 1974, 11.1], there are no defor-mations in positive degree, and the degree 0 parthas dimension 35, which is the number of mod-uli of 14 points in P5 . The surprising result wasthat dimT 1(�1) = 8; the dimension of a smooth-ing component is 36.In general, the basis of T 1 that comes out of thecomputation is not the most suitable to continuewith; for example, for rational surface singularitiesthe base space has at least one smooth componentof maximal dimension, and it is advisable to havethis as an intersection of coordinate hyperplanes.Therefore it is essential to analyse the results. Inthis case, due to the generic nature of the equa-tions, every basis seems equally (un)suitable.

Step 2: T2For L614 one �nds dimT 2 = dimT 2�2 = 21. There-fore one only has to compute the �rst obstruction.A second consequence is that the OX-module T 2Xis annihilated by the maximal ideal, so there is nodi�erence between generators of the module andgenerators of the C -vector space.Although generators of T 2 are needed, and willbe computed again, over the ring in which the ac-tual computation takes place (a ring with 14 vari-ables in two blocks: 6 coordinates x1, : : :, x6 and8 deformation variables s1, : : :, s8), the calculationof T 2 before setting up the computation of the ver-sal deformation is useful to estimate its size. Sincedetermining T 2 costs a lot of time and memoryspace, it is a good idea to stop standard basis andsyzygy computations after the degree, in which theset of generators is complete. These degrees can befound at this stage.
Step 3: The Actual ComputationI compute the deformations only in negative de-gree, to ensure a �nite calculation. This is not asevere restriction, as the transverse structure of thebase space along the 35-dimensional equisingularlocus will be (topologically) locally trivial for gen-eral moduli of the curve L614|this could de�ne theterm `general'.As in the example in Section 2, I form the rowvector f(x)+ f 0(x; s) over the ring C [x; s]: if t is a7 � 8 matrix representing T 1(�1), then f 0i(x; s) =P tijsj . I lift only 14 relations, which generatethe module R=R0, so r(x) is a 7 � 14 matrix. Letr0(x; s) be a matrix with fr0 + f 0r = 0.Let ms be the maximal ideal of C [s], and letJ = m2s=m3s. The transpose of the vector f 0r0 rep-resents an element of HomX(R=R0; OX) 
 J , andprojects onto an element of T 2 
 J . To get anexplicit expression, use a presentation of the mod-ule HomX(R=R0; OX), computed over the quotientring C [x; s]=(f). Modulo the equations for the basespace obtained by expressing f 0r0 in a basis of T 2,I �nd a vector f 00(s), and F = f +f 0+f 00 gives the
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versal family. The total computation takes aboutan hour on a Mac SE 30, and needs 1.5 Megabytesof memory.
Step 4: Analysis of the ResultsI do not reproduce here equations of the base spaceS of the versal deformation in negative degrees;there are 21 quadratic equations (in 8 variables),which contain together 336 monomials|the maxi-mal number for a standard basis. The coe�cientsgive the impression of being `random'. The idealof S has degree 16 and codimension 7. With thejacobian criterion one �nds that S is smooth out-side the origin; in fact it su�ces to compute the�rst minor of the jacobian matrix to conclude thatS is a cone over 16 distinct points; these points arenot in general position: they impose one conditionless on quadrics. The points form a self-associatedpoint set in P7 ; such sets depend on 28 moduli[Dolgachev and Ortland 1988, Theorem III.4].All 16 components of the base space are smooth-ing components, as can be seen by computing therelative critical locus; it su�ces to take 3�3 minorsof the matrix @F (x; s)=@x, because all curve sin-gularities in C 3 are smoothable (computing with5 � 5 minors takes too long). It could be thatthe `random' singularity is not generic, but spe-cial. Nevertheless, one can draw conclusions aboutthe general curve, because the base space T of theversal deformation (in all degrees) has a C � actionwith weights 0 and 1, which de�nes a projection ofT onto the degree 0 part.
Proposition 4.1. A general curve singularity L614 issmoothable, and has 16 smoothing components ofdimension 36, while dimT 1 = 43.The curve L614 gives, to my knowledge, the �rst ex-ample of a curve singularity with several smooth-ing components. As the moduli of the curve en-ter in the equations of the base space, it is hope-less to �nd irreducible components and to actuallywrite down a smoothing for a generic curve. Butit is possible to compute with a special L614 thatis still `general enough' and get explicit equations

for one-parameter deformations. I follow the sameprogramme as before.
Step 0: The Equations of the SingularityI start by looking for a singularity de�ned by oligo-nomials [Khovanskii 1984]: polynomials in whichonly a few monomials occur. The hope is thatthis property persists through the entire compu-tation, which is therefore shorter and faster, andthat the �nal results are more manageable. The�rst idea, to take the 6 coordinate axes and thecone over 8 points on a rational normal curve, doesnot work, because the ideal is then generated byquadrics and cubics. Instead, consider 6 coordi-nate points, 6 points s6 � t6 on the curve (s6, s5t,: : :, t6), and two other points; after some experi-mentation I took (1; 1; 0; 1; 0; 1) and (1; 0; 1; 0; 1; 1).The �rst 12 points give a L612 with particular niceequations:xixi+3 � xi+1xi+2 and xi�1xi+1 � xi�2xi+2;where i 2 Z=6Z . This curve has only equisingu-lar deformations: a computation reveals that T 1 isconcentrated in degree 0. This shows again thatN(6) = 11.
Steps 1–3Again dimT 1(�1) = 8. Some simpli�cation of thematrix for T 1 is possible, but it is not clear whatthe simplest form is. For the rest the computationis similar to the general case, and somewhat faster(forty minutes on a Mac SE 30).
Steps 4: Analysis of the ResultsThe equations for the base space and the totalspace are still rather complicated. In order to sim-plify them, I �rst computed the primary decompo-sition of the ideal J of the base space S. This canbe done by computing ideal quotients (J : l) forvarious linear functions l; since there are 21 equa-tions, and J has degree 3 and dimension 2 (eas-ily computed from a standard basis), one quickly�nds some components. A coordinate transforma-tion placing the components as far as possible in
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the intersection of coordinate hyperplanes gives the following equations for S:s2s1; s3s4; s2s3; s2s8; s3s5; s1s5; s4s8; (3s2 + s5)s7; (3s3 + s8)s6; s2(s5 + 3s6); s3(s8 + 3s7);s2(6s4�2s6+3s7); s3(6s1�2s7+3s6); s4(6s4+3s7�2s6�4s1); s1(6s1+3s6�2s7�4s4); (2s1�2s3+s6)s8;(2s4 � 2s2 + s7)s5; (2s2 � 2s4 � s7 + s8)s6; (2s3 � 2s1 � s6 + s5)s7; s1s4 � s6s7; s5s7 + s6s8 + 3s6s7:After further coordinate transformations on the total space the equations contain only 124 monomials;this number can be brought down, at the cost of complicating the equations for S. The equations arenot very enlightening, but I write them down to show how complicated things can get, even in favourablecircumstances.x3x4 � x2x5 � s6s7; x2x3 � x4x5 + x3x6 � x5x6 � x2s1 � x2s6 � x3s7 + x4s6 + x5s7 + x6s1 + 2s3s7;�x1x2 + x1x4 + x3x6 � x5x6 + x1s4 � x2s1 � x5s4 + x6s1 + 2s2s6 + 2s3s7;x1x2 � x2x3 + x2x5 � x4x5 � x1x6 + x5x6 � 2x1s4 � 2x1s7 + 2x2s1 + x2s6+ x3s7 + x4s6 + 2x5s4 + x5s7 � 2x6s1 � 2x6s6 � 6s1s4 � 4s4s6 � 4s1s7;x1x2 + x1x3 � x3x6 � x4x6 � x1s2 � x1s1 � x1s6 + x2s1 � 32x3s3 � 12x3s7� x3s8 + 32x4s2 + x4s5 + 12x4s6 � x6s1 + x6s3 + x6s4 + x6s7 � 2s3s7;x1x2+x3x5�x2x6�x3x6� 43x1s1� 56x1s3� 23x1s6� 12x1s7�x1s8+ 32x2s2�x2s3+x2s5+ 12x2s6� 43x3s1+ 23x3s3�x3s4� 53x3s6�x5s2� 43x5s1+ 23x5s3+x5s4� 23x5s6�x6s3+x6s4+x6s7+2s2s6+ 43s1s6� 136 s3s6+ 23s26+2s1s7+5s6s7;�x1x4 + x2x4 � x1x5 + x5x6 � x1s2 + x1s1 + x1s6 + 23x2s2 + x2s1 � x2s3 � 43x2s4� 23x2s7 + 23x4s2 � x4s1 � 43x4s4 � 53x4s7 � x5s2 + 32x5s3 + 12x5s7 + x5s8 � 56x6s2� 43x6s4 � x6s5 � 12x6s6 � 23x6s7 + 2s4s6 � 136 s2s7 + 2s3s7 + 43s4s7 + 5s6s7 + 23s27:The Z=2Z-symmetry on the singularity induces the involution (s1; : : : ; s8) 7! (s4; s3; s2; s1; s8; s7; s6; s5)on the base space S. There are nine components. Three of them have dimension two, C7 : the (s7; s8)-plane,C8 : the (s5; s8)-plane, and C9 : the (s5; s6)-plane; C8 intersects C7 and C9 in a line, while C7 \ C9 = ?.The other components have dimension one; four of them are reduced, while C5 and C6 have a multiplicitytwo structure. The general �bre over each of these components is reducible.Each line L in S de�nes a one parameter deformation X! L ofX; all �bres Xl with l 6= 0 are isomorphic,and the projective closure of Xl is isomorphic to the projective curve, de�ned in P7 = P(C 6 � L) by theequations of X.The total space over the component C8 is given by the equationsx3x4�x2x5; x2x3�x4x5+x3x6�x5x6; �x1x2+x1x4+x3x6�x5x6; �x1x4+x2x4�x1x5+x5x6+x5s8�x6s5;x1x2+x1x3�x3x6�x4x6�x3s8+x4s5; x1x2+x3x5�x2x6�x3x6�x1s8+x2s5; x1x2�x2x3+x2x5�x4x5�x1x6+x5x6:It has seven components of degree two, given by(x4 � x6; x3 � x5; x2 � x6; x5 + s8; (x1 + x5)x5 + (x1 � x5 � x6 + s5)x6); (x1; x3; x5; x6 � s5; x2x4 � x26);(x1 � x3; x2 � x4; x1 � x5; x2 + s5; x2(x2 + x6) + x1(x6 � x1 � x2 + s8)); (x2; x4; x6; x1 � s8; x3x5 � x21);(x4 � !x6; x2 � !2x6; x3 � !2x1; x5 � !x1; x1(x1 � s8)� !2x6(x6 � s5));where !3 = 1 in the last expression (so it stands for three quadrics). Over the intersection with thecomponent C7 one has s5 = 0, so the second and third quadric are reducible. The projective curve nowconsists of four lines:i1 = (x1; x2; x3; x4; x5);i3 = (x1; x2; x3; x5; x6); i2 = (x1 � x3; x2; x4; x1 � x5; x6 � x1 + s8);i4 = (x1; x3; x4; x5; x6);
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and �ve conics:i5 = (x4 � x6; x3 � x5; x2 � x6; x5 + s8;(x1 � x6)(x5 + x6) + x25);i6 = (x1 � s8; x2; x4; x6; x21 � x3x5);i7; i8; i9 = (x4 � !x6; x2 � !2x6; x3 � !2x1;x5 � !x1; x1(x1 � s8)� !2x26):Through the point P = (0 : 0 : 0 : 0 : 0 : 0 : 1)pass the lines i1, i2, i3, and all conics. In a�ne co-ordinates the lines are the coordinate axes in thethree-dimensional (x2; x4; x6)-space, while the tan-gent to a conic is given by x2 = !2x6, x4 = !x6;this gives six lines not on a quadric cone, so Pis a singular point of type L36. The intersection(0 : �1 : 0 : �1 : 1 : 0 : 1) of i4, i6 and i7 is of typeL33. Finally there are 6 ordinary double points: i3intersects i4, i6 intersects i5, i8 and i9, while i5intersects i7 in two points. The curve has indeedarithmetic genus 8.The embedding dimension of the singular pointsis at most 3. This implies that the base space ofthe versal deformation (in all degrees) is smooth ina general point of C7 \ C8. The same is true overC8 \ C9. Therefore these three components of Slie in the same smoothing component. This showsthat one has to be careful, when drawing conclu-sion from the negative degree part about the ver-sal base. What happens here can be understoodin the following way: the three components to-gether are the cone over a curve of degree 3 ofarithmetic genus 0; the ideal of such a curve isgenerated by 3 quadrics, yoked together by 2 lin-ear relations. A general (non 
at) perturbation ofthe quadrics gives a complete intersection, consist-ing of 8 points, and if the number of deformationparameters is large enough, the total space will besmooth. The base space is not normally 
at alongthe equisingular locus.The double component C5 has ideal(s8; s5 + 3s6; 2s4 � s1 + s7; s3; s1 + 2s6; s2 � s6; s26);so its reduction is the line 2s4 + s7 = 0 in the(s4; s7)-plane. The total space over this line has 7

components; it is the cone over a curve with onesingular point of type L33, and 12 ordinary dou-ble points. Therefore this curve represents also asmooth point of the base of the versal deformation.A model for the smoothing component in questionis a pinch point times a smooth factor. The sameholds for the other double component of S.
Proposition 4.2. The special L614 considered abovehas 7 smoothing components.
5. REMARKS

1. It seems to be well known that the complex-ity of the basic algorithms is doubly exponential.In practical applications one observes that the sizeand length of computations grows rapidly, say asthe codimension of the singularity increases. Thesame tends to be true for the results of computa-tions. Beyond the cases one can compute by hand,there is a small number of examples open to com-puter treatment, and after that the problems aretoo large. To get results, it is important to try tolimit the size. This is also the reason that I donot have a Macaulay script for the computation ofversal deformations, in contrast with T 1 and T 2;I need control over the progress of a computation,and, if necessary, need to be able to exploit specialproperties of a speci�c example.A good approach is to compute only for singular-ities with special moduli; the case of L614 shows thatthis strategy has to be used with caution. Candi-dates are singularities with extra symmetry. Al-though the symmetry does not enter directly intomachine calculations, it is important for two rea-sons. Firstly, since an equivariant deformation ex-ists [Rim 1980], there are constraints on the mono-mials, occurring in the equations. Secondly, theextra structure makes it easier to give an interpre-tation of the results.Even without symmetry, one should look for sin-gularities de�ned by oligonomials. There is noguarantee that the versal deformation is also de-�ned by oligonomials, but in many cases this hap-pens. The toy example of Section 2 is de�ned by
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monomials, but there is no coordinate transforma-tion, which makes the total space over the largestcomponent monomial.
2. It is not necessary to lift all relations. It is clearthat one can ignore Koszul relations. Less obviousis the case of determinantal singularities. Let theequations of X consist of the �n2� minors of a 2�nmatrix: � f1 : : : fng1 : : : gn� :Each 3� 3 minor of the 3� n matrix0@ f1 : : : fnf1 : : : fng1 : : : gn

1A
gives a relation, and since one can also repeat thesecond row, this construction gives 2�n3� relations,which together generate the module of relations ifX is Cohen{Macaulay of codimension n � 1 (onlyin this case is X called determinantal). To com-pute deformations it su�ces to lift the �n3� relationsobtained by doubling only one row. For small n itis not worthwhile to single out these relations, butfor larger n one obtains a signi�cant simpli�cation.
3. Macaulay computes only in �nite �elds. Thisposes the problem of lifting the results back tocharacteristic zero. In the example of the specialL614 the coe�cients in the �nal equations (after mycoordinate transformations) have denominator atmost 6, and numerator at most 13; the compu-tation was done in characteristic 31991, which islarge enough to safely assume the validity of theresult. In intermediate steps large coe�cients dooccur.In other situations one can repeat the computa-tion in a di�erent characteristic. Here again thecourse to follow depends on the results; equationswith large (integer) coe�cients are less useful, un-less an interpretation of these coe�cients exists.
4. A second restriction of Macaulay is that it canonly compute standard bases of quasihomogeneousmodules. Singular [Greuel et al. 1994] will work inpower series rings, so it will be able to compute T 1

and T 2 for nongraded singularities. As to the com-putation of versal deformations in the general case,there is no guarantee that the process stops after a�nite number of steps. In some cases a (weighted)tangent cone gives enough information about thestructure of the base space, so a computation up tolow powers of the deformation variables will su�ce.
5. According to the algorithm, as described, onehas to express the obstruction vector in a C -basisof T 2. With Macaulay one �nds an expression interms of OX-generators of T 2. As a C -basis consistsof monomial multiples of OX-generators, it su�cesto take coe�cients.
6. In the obstruction calculus one has to reduce ex-pressions modulo the ideals (Gm) + mm+1� . As thenumber of generators of mm+1� tends to be large,�nding a standard basis will take a long time. Auseful trick is to replace the deformation parame-ters si by "�i, with " a new parameter (of weight 1;take wt�i = 2wt si�1, and multiply the weights ofthe xi by 2). It now su�ces to reduce modulo theideal, generated byGm("�) and "m+1. On the othercomputations this substitution has hardly any in-
uence.
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