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A normalized modular eigenform f is said to be ordinary at

a prime p if p does not divide the p-th Fourier coefficient of

f. We take f to be a modular form of level 1 and weight

k 2 f12, 16, 18, 20, 22, 26g and search for primes where f is

not ordinary. To do this, we need an efficient way to compute

the reduction modulo p of the p-th Fourier coefficient. A con-

venient formula was known for k = 12; trying to understand

it leads to generalized Rankin–Cohen brackets and thence to

formulas that we can use to look for non-ordinary primes. We

do this for p � 1 000 000.In the 1980s, H. Hida introduced the notion ofa p-ordinary modular form, and demonstrated in aseries of papers [Hida 1986a; 1986b; 1989] that itplayed a fundamental role in the p-adic theory ofmodular forms. In this context, one usually startswith a �xed prime p, and chooses forms that areordinary. It seems inevitable to reverse the ques-tion.Suppose we start with a normalized eigenformf = q + a2q2 + a3q3 + � � �+ anqn + � � �of some weight and level 1. (Here, and in the re-mainder of this paper, we follow the usual conven-tion of writing q = e2�iz;where z is in the complex upper halfplane.) Thenwe can ask for which primes f is p-ordinary inHida's sense. Since we are dealing with an eigen-form, the answer seems simple: f is p-ordinaryif p does not divide ap. For example, considerthe unique normalized eigenform of weight 12 andlevel 1, namely
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196 Experimental Mathematics, Vol. 6 (1997), No. 3� = 1Xn=1 �(n)qn= q�24q2+252q3�1472q4+4830q5�6048q6�16744q7+84480q8�113643q9�115920q10+534612q11+ � � � ;where this equation is taken as the de�nition of�(n). Since � is an eigenform, one can see, byfactoring the coe�cients, that � is ordinary for p =11 but not for p = 2; 3; 5; 7. In fact, continuing theexpansion, one �nds that � seems to be ordinaryfor most primes, and it seems natural to ask formore information. Is it true that \most" primeswill be ordinary? Can we turn this vague phraseinto precise asymptotics?These questions seem very hard to answer, so wecan turn to the computer to try to obtain some nu-merical data. In the case of �, some informationturns out to have been in the literature long beforethe importance of ordinary forms was known: a1975 paper by Niebur described an interesting for-mula for computing �(n) and used it to compute�(n) modulo n for n prime and less than 65064.(See [Niebur 1975]; the formula and the results ofthe computation are described below.) Niebur'sresult is often quoted when people mention Hida'stheory (for example, [Gouvêa 1992]), but few otherexamples are discussed.What is special about �? The crucial fact seemsto be that � is the unique normalized cuspform ofits weight and level one, i.e., that the space of cusp-forms of weight 12 and level 1 is one-dimensional.Since the same is true for weights 16, 18, 20, 22,and 26, there seems to be some hope of extend-ing Niebur's formula and performing the analogouscomputation in those cases. This is the startingpoint for this paper. We �nd that Niebur's identityis a special case of a generalized \Rankin{Cohenbracket" construction, and we use this construc-tion to extend Niebur's computation.An alternative method for doing such compu-tations is to use the Selberg trace formula (again,because the spaces are one-dimensional). We chose

the method above because it allowed us to use com-putation modulo n throughout and did not requirestoring a large table of precomputed values.
1. NIEBUR’S FORMULA AND ITS GENERALIZATIONSNiebur's computation is based on the formula�(n) = n4�(n)�24 n�1Xk=1(35k4 � 52k3n+ 18k2n2)�(k)�(n � k);where �(n) is the sum of the divisors of n. Thisis very convenient for the computation we need todo, for two reasons. First, it only involves �(n),and not the more general �k(n) (the sum of thek-th powers of the divisors of n), which are muchlarger and therefore present more of a computa-tional challenge. Second, and more important, theformula is easily reduced modulo n, to get�(n) � �840 n�1Xk=1 k4�(k)�(n � k) mod n;which is easy to compute (for example, for smalln one can compute this without needing in�nite-precision arithmetic). Using this formula, Nieburchecked that the only primes between 2 and 65064for which � is not ordinary are 2, 3, 5, 7, and 2411.(As we will remark below, small primes|here 2, 3,5, and 7|are often forced to be non-ordinary byHida's theory.)The best way to understand Niebur's formulais to view it as a di�erential equation relating �to the Eisenstein series E2 of weight 2, which hasFourier expansionE2 = 1� 24 1Xn=1 �(n)qn;whre, as before, a = e2�iz. Recall that E2 is nota modular form. As a function on the upper half-



Gouvêa: Non-Ordinary Primes: A Story 197plane a modular form f of weight k (and level 1)must satisfy f(z + 1) = f(z);f(�1=z) = zkf(z)for any z in the upper half-plane. E2 satis�es thetransformation lawsE2(z + 1) = E2(z);E2(�1=z) = z2E2(z) + 12z2�i ;which make it almost, but not quite, a modularform of weight 2.Let � be the di�erential operator� = 12�i ddz = q ddqacting on functions on the upper half-plane. Tomake the notation lighter, we denote the action of� by a prime; thus, given a function on the upperhalf-plane, we writef 0(z) = �(f)(z) = 12�i ddz f(z):In terms of Fourier expansions,f = 1Xn=0 anqn implies f 0 = 1Xn=1 nanqn:In particular, E02 = 1Xn=1 n�(n)qn;and it is easy to see that Niebur's formula is relatedto products of higher derivatives of E2.If f is a modular form of weight k, then f 0 isnormally not a modular form. Nevertheless, onewants to think of f 0 as being \almost" a modularform, of weight k+2. This can be made precise invarious di�erent ways. One that is particularly in-triguing in this context is the fact that the Fourierexpansion of f 0 is indeed the q-expansion of a p-adic modular form of weight k + 2. (See [Colemanet al. 1995] for an extended discussion of this idea.)

A more elementary point is simply to note that iff is a modular form of weight k, thenf 0 � k12fE2is a modular form of weight k+2. We can think ofthis as saying that the way f 0 fails to be modularcompensates for the non-modularity of E2. (Thisis a special case of the results in the next section;see below.)Using this di�erentiation operator, Niebur's for-mula can be rewritten as� = 124E(4)2 E2 + 23E0002 E02 � 34E002E002 :(Note that if we give the k-th derivative E(k)2 weight2+2k, then each term in this equation is of weight12.)As Niebur remarks in his paper, it is easy toprove such a formula once it is written down. If Fdenotes the right-hand side, it is clear thatF (z + 1) = F (z);using the transformation property of E2 under z 7!�1=z, one checks directly that F (�1=z) = z12F (z).This shows that F is a multiple of �, and thenchecking the �rst term of the Fourier expansiongives the equality. The trick, Niebur says, is to�nd the equation in the �rst place.Given, however, programs that can do symbolicalgebra, �nding such identities (if any identities ex-ist) is also easy: one �nds Fourier expansions forE2 and its derivatives, multiplies the appropriateones to create terms of the desired weight, and thenlooks for a linear combination which gives the formwe are looking for.For example, let's consider weight k = 16. Thereis a unique normalized eigenform �16 of weight 16(and level 1). If a Niebur-like formula is to exist,we hope to express �16 as a linear combination ofE(7)2 ; E(6)2 E2; E(5)2 E02; E(4)2 E002 ; E0002 E0002(these are actually linearly dependent, so that wecan do without any one of them and still be �ne;



198 Experimental Mathematics, Vol. 6 (1997), No. 3we will omit the �rst one). Solving the linear equa-tions given by the �rst few terms of the Fourierexpansion gives�16 = � 124E(6)2 E2+ 98E(5)2 E02� 458 E(4)2 E002+ 5512E0002 E0002 :Once again, this is easily checked by working outhow it transforms under z 7! �1=z. As before,one can easily translate it into a formula for thecoe�cients that is convenient for calculation of theFourier coe�cients.Being successful for k = 16, we may want to trythe other weights for which the space of cusp formsis one-dimensional. For k = 18, 22, and 26, we �ndthat there is no formula of this kind. For k = 20,we do �nd a formula:�20 = � 124E(8)2 E2 + 74E(7)2 E02 � 976 E(6)2 E002+ 67712 E(5)2 E0002 � 852 E(4)2 E(4)2 :Finding such formulas raises more questions thanit answers. Why do such formulas exist when theweight is divisible by 4? Why do they fail to ex-ist for other weights? It is also natural to want toplace the formulas in a wider context. (For exam-ple, could we predict the coe�cients in the formu-las a priori?) Finally, we would like formulas forthe modular forms of weights 18, 22, and 26.
2. RANKIN–COHEN BRACKETSThe best way to understand the formulas in theprevious section is via the theory of Rankin{Cohenbrackets, which gives a family of di�erential oper-ators which map modular forms to modular forms.We follow the exposition in [Zagier 1994].Let f be a modular form of weight k and level 1.Form the power series�f (z;X) = 1Xn=0 f (n)(z)n!(n+ k � 1)! (2�iX)n:Since we have f(z + 1) = f(z), the same is truefor all higher derivatives of f , and hence we have

�f(z+1;X) = �f(z;X). The behavior under z 7!�1=z is more complicated: we have�f ��1z ; Xz2� = zkeX=z�f (z;X): (2.1)Proving this boils down to proving a sequence ofidentities describing how the n-th derivative of ftransforms:f (n)(�1=z)n!(n+ k � 1)!= nXm=0 zk+n+m(2�i)n�m(n�m)! f (m)(z)m!(m+ k � 1)! : (2.2)These identities aren't hard to prove by induction,starting with the modular property of f . (See [Za-gier 1994] for a di�erent proof of the functionalequation for �f .)Now suppose we are given two modular formsf and g of weights k and l, and we consider thepower series�f(z;X)�g(z;�X)= 1Xn=0 [f; g]n(z)(n+ k � 1)!(n+ l � 1)! (2�iX)n:We take this equation as the de�nition of the func-tions [f; g]n, so that[f; g]n(z)= Xr+s=n(�1)s�n+k�1s ��n+l�1r �f (r)(z)g(s)(z):The transformation law for �f and �g gives�f(�1=z;X=z2)�g(�1=z;�X=z2)= zk+l�f(z;X)�g(z;�X);since the exponential factors cancel. It follows that[f; g]n is a modular form of weight k + l + 2n; itis called the n-th Rankin{Cohen bracket of f andg. (See [Zagier 1994] for a lot more information onRankin{Cohen brackets.)Consider the case f = g. Then [f; f ]n will be alinear combinations of terms of the form f (r)f (s),



Gouvêa: Non-Ordinary Primes: A Story 199which is exactly the sort of thing we see in the for-mulas in section 1. Of course, in those formulasf = E2, which is not modular. As Henri Cohenhas pointed out to me, it turns out that one onlyneeds a very slight modi�cation of the Rankin{Cohen construction to handle this case.Let's start with the \almost modular" propertyof E2: E2(�1=z) = 12z2�i + z2E2(z):Di�erentiating this|that is, applying our di�eren-tial operator (1=2�i)d=dz|givesE02(�1=z) = 12z2(2�i)2 + 2z32�iE2(z) + z4E02(z):By induction, we get a formula for the n-th deriva-tive:E(n)2 (�1=z)n(n+ 1)! = 12zn+1(2�i)n+1(n+ 1)!+ nXm=0 z2+n+m(2�i)n�m(n�m)! E(m)2 (z)m!(m+ 1)! :This is very similar to formula (2.2) above; in fact,we can �t the two formulas together with a bit ofnotational magic:
1. We de�ne (�1)! = 1=12.
2. If f is a modular form, we de�ne its minus-�rstderivative to be zero: f (�1)(z) = 0.
3. On the other hand, we set E(�1)2 (z) = 1.Then the transformation lawf (n)(�1=z)n!(n+ k � 1)!= nXm=�1 zk+n+m(2�i)n�m(n�m)! f (m)(z)m!(m+ k � 1)! (2.3)holds both when f is a modular form of weight kand when f = E2 and k = 2. We then modify thede�nition of �f accordingly:�f (z;X) = 1Xn=�1 f (n)(z)n!(n+ k � 1)! (2�iX)n:

As before, it follows from (2.3) that�f ��1z ; Xz2� = zkeX=z�f (z;X); (2.4)this leads to an extended de�nition of the Rankin{Cohen brackets:[f; g]n(z)= Xr+s=n(�1)s�n+k�1s ��n+l�1r �f (r)(z)g(s)(z);where now n � �2, �1 � r; s � n + 1, f and gare either modular forms of weights k and l or areequal to E2 (whose weight we take to be 2), andwe de�ne� m�1� = m!(�1)!(m + 1)! = 12m!(m+ 1)! = 12m+ 1 :As before, [f; g]n is a modular form of weight k +l + 2n. (One thing we do lose is the fact that theoriginal Rankin{Cohen brackets have integral coef-�cients; when E2 is involved, we get brackets withrational coe�cients. Thus, if f has integral Fouriercoe�cients, [f;E2]n may only have rational Fouriercoe�cients.)It's a bit surprising that our formalism leads usto de�ne a (�2)-nd and a (�1)-st bracket, but notethat [f; g]�2 = 0 unless f = g = E2, in which caseit is a constant (which yes, is a modular form ofweight 2 + 2� 2 � 2 = 0), and that[f; g]�1 = 8<: 0 if neither f nor g is E2,�12f if f 6= E2 and g = E2,0 if f = g = E2,all of which are forms of the correct weight. It'salso interesting to note that if f is of weight k weget that [f;E2]0 = fE2 � 12k f 0is a modular form of weight k + 2, so that we re-cover the fact mentioned above. (While it is wellknown that f 7! f 0 � k12fE2 maps modular formsof weight k to modular forms of weight k+2, its in-terpretation as a bracket of weight 0 shows it in anunusual light. When f and g are modular forms,



200 Experimental Mathematics, Vol. 6 (1997), No. 3[f; g]0 = fg is just multiplication. Thus, the op-eration f 7! f 0 � k12fE2 is seen here as a sort of\multiplication by E2," and the appearance of f 0is seen as a correction factor.)Let's consider the case f = g = E2. Since ingeneral we have [g; f ]n = (�1)n[f; g]n, it's clearthat [f; f ]n = 0 if n is odd, so we need only look ateven values of n. The case n = �2 was discussedabove.
1. n = 0: We get [E2; E2]0 = E22 � 12E02; thismust be a form of weight 4; in fact, we haveE22 � 12E02 = E4.
2. n = 2: We get [E2; E2]2 = �6E0002 + 6E2E002 �9E02E02. This is visibly a cusp form, and shouldbe of weight 8, and hence we conclude that�E0002 +E2E002 � 32E02E02 = 0;which is well-known to be true (see, for example,[van der Pol 1951]). Di�erentiating this iden-tity shows that for each k � 2, the productsE(r)2 E(s)2 , with �1 � r � s and r + s = k, arelinearly dependent, as we mentioned above.
3. n = 4: We expect a form of weight 12, andtherefore a multiple of �12. We get�4E(5)2 + 10E2E(4)2 � 100E02E0002 + 100E002E002= �144�12:This looks di�erent from Niebur's formula insection 1, but recall that the terms are linearlydependent. In fact, di�erentiating the equationwe get from n = 2 twice gives�E(5)2 +E2E(4)2 �E02E0003 � 2E002E002 = 0;and subtracting 4 times this equation from theoriginal, then dividing by �144, yields Niebur'sformula for �12.
4. Similarly, taking n = 6 and n = 8 yields (for-mulas equivalent to) the formulas for �16 and�20 in section 1.
5. What if we take n = 10? Then [E2; E2]10 is aform of weight 24, which is clearly a cusp form

with rational coe�cients. Of course, the eigen-forms of weight 24 do not have rational coe�-cients, so that this is not an eigenform.Thus we see that all the formulas in section 1 areexamples of (extended) Rankin{Cohen brackets.We can also see the reason for the restriction toweights that are divisible by 4: the bracket [E2;E2]nis of weight 4+ 2n, and it is non-zero only when nis even.If we want to get similar formulas for weightk = 18, 22, and 26, we can use brackets [E2; E4]n,which will be modular forms of weight 6 + 2n. Weare most interested in what happens for n even,0 � n � 10, which will give forms of the weightswe need. (In this case we are not restricted to evenn, but odd n will give us formulas for weights 12,16 and 20 that, because they will involve the �3(n)function, are signi�cantly less useful computation-ally that those obtained from the [E2; E2]n.)Let's consider what happens for several values ofn:
1. n = 0: We get[E2; E4]0 = E2E4 � 3E04 = E6;as discussed above.
2. n = 2; 4: We should get cusp forms of weight10 and 14, which must be zero. This gives twoidentities involving derivatives of E2 and E4:[E2;E4]2 = 3E002E4�15E02E04+10E2E004�2E0004 =0and[E2; E4]4 = 35E(4)2 E4 � 175E0002 E04 + 210E002E004� 70E02E0004 + 5E2E(4)4 � 32E(5)4= 0:
3. n = 3: We should get another formula for �12,and we do:[E2; E4]3 = 4E0002 E4 � 36E002E04 + 60E02E004� 20E2E0004 + 127 E(4)4= � 70027 �12:
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4. n = 6: We get a multiple of the cuspform ofweight 18. Indeed:[E2; E4]6 = 84E(6)2 E4� 882E(5)2 E04+2646E(4)2 E004� 2940E0002 E0004 +1260E002E(4)4� 189E02E(5)4 +7E2E(6)4 � 65E(7)4= �624�18:
5. Similarly for n = 8 and n = 10:[E2; E4]8 = 165E(8)2 E4 � 2970E(7)2 E04 + 16632E(6)2 E004� 38808E(5)2 E0004 + 41580E(4)2 E(4)4� 20790E0002 E(5)4 + 4620E002E(6)4� 396E02E(7)4 + 9E2E(8)4 �E(9)4= �2040�22and[E2; E4]10 = 286E(10)2 E4�7865E(9)2 E04+70785E(8)2 E004� 283140E(7)2 E0004 + 566280E(6)2 E(4)4� 594594E(5)2 E(5)4 + 330330E(4)2 E(6)4� 94380E0002 E(7)4 + 12870E002E(8)4� 715E02E(9)4 + 11E2E(10)4 � 67E(11)4= � 310087 �26:We can use these formulas to compute the Fouriercoe�cients of �18, �22 and �26 in terms of thedivisor functions �(n) and �3(n).
3. HOW MANY NON-ORDINARY PRIMES?Given an eigenform f of weight k, what is thedistribution of the primes p such that f is notordinary at p? Very little is known about this,but heuristic arguments suggest that non-ordinaryprimes should be rare.What is known? First of all, if we relax ourassumption that we are dealing with forms of level1 and consider more general levels, we can look atthe case of weight 2. If f is a cuspidal eigenform ofweight 2, level N , and integral coe�cients, then fcorresponds to an elliptic curve de�ned over Q , andf is ordinary at p if and only if E has either good

ordinary reduction or multiplicative reduction atp. Thus, (except for �nitely many primes) non-ordinary primes for f are simply primes where Ehas good supersingular reduction. The distributionof such primes has been studied, and partial resultsare known. For more information on this case, see[Elkies 1992], for example.Going back to level N = 1, we note that the caseof Eisenstein series is trivial: if we normalize Gkby requiring a1 = 1, then ap = �k�1(p) = 1+ pk�1,which is never divisible by p, so that there are nonon-ordinary primes.In the case of cuspforms of level N = 1, we haveweight k � 12. There is very little that one can sayin general. For p = 2 and p = 3, it is known, by[Hatada 1979], that there are no p-ordinary formsof level 1. For p � 5, one can use Hida's theoryto show that any form of level 1 will often fail tobe ordinary at small enough primes. Let Sk be thevector space of cuspforms of weight k, and let S0k bethe subspace spanned by the ordinary eigenforms.Let d0(k) be the dimension of this subspace. ThenHida proves that if k1 � k2 mod p � 1 and k1 �k2 � 3, then d0(k1) = d0(k2). Now, one knowsthat Sk is of dimension zero for k < 12 and fork = 14; a fortiori we have d0(k) = 0 for such k.Now supppose we start with a form f of weightk � p + 2, and suppose f is ordinary at p. Thend0(k) > 0. Since k�(p�1) � 3, it follows by Hida'stheory that d0(k � (p� 1)) > 0 also. If k � (p� 1)is small enough (speci�cally, less than 12 or equalto 14), this is a contradiction. Thus:
Proposition 3.1. Let k � 0 be an integer , let p � 5 bea prime, and let k0 be the unique integer de�ned bythe conditions 3 � k0 � p+1 and k � k0 mod p�1.If k0 � 10 or k0 = 14, then there are no p-ordinarymodular forms of weight k.Of course, this proposition is only interesting whenk > p+ 1, i.e., when p < k � 1.Given a cuspidal eigenform f of weight k > 2, let�1(x; f) denote the number of primes p � x suchthat f is not ordinary at p. It would be interesting



202 Experimental Mathematics, Vol. 6 (1997), No. 3to know something about the asymptotic behaviorof �1(x; f) as x!1.It seems that nothing is known about this. For avery rough guess, we might assume that the valueof ap modulo p is random for p � k�1, i.e., that theprobability that ap � 0 mod p is 1=p. If so, onewould expect that �1(x; f) = O(log log x). Thisgives a more precise form to the expectation thatnon-ordinary primes are very rare (once one hasp � k � 1). Unfortunately, it is hard to test thisguess numerically, since log log x grows so slowly;there is no easy way to distinguish O(log log x)from O(1) computationally.
4. COMPUTATIONS FOR k DIVISIBLE BY 4The formulas in section 1 are easily used to com-pute Fourier coe�cients of the cuspforms of weight12, 16, and 20, particularly when we want to re-duce modulo n. To uniformize the notation, wewrite �k, where k 2 f12; 16; 18; 20; 22; 26g, for theunique normalized eigenform of weight k and level1, and we set �k =P �k(n)qn. The results in sec-tion 1 give us formulas for �k(n) modulo n whenk = 12, 16, or 20:�12(n) � �840 n�1Xk=1 k4�(k)�(n� k) mod n�16(n) � �6552 n�1Xk=1 k6�(k)�(n� k) mod n�20(n) � �67320 n�1Xk=1 k8�(k)�(n � k) mod nAs long as n is not too large, we can compute mod-ulo n without needing to use packages for in�nite-precision arithmetic. (This is probably the reasonfor the limit in Niebur's original computation.) Ifwe want to handle large values of n we need to usein�nite-precision arithmetic; we used the GNU MPpackage to do this. One �rst computes and storesa table of �(m) for m � 1 000 000, then computes�k(n) modulo n. The �rst three tables on page 203give the results for prime n � 1 000 000. Once we

know which n to look at, it is not too costly to com-pute the actual value of �k(n) using the pari sys-tem, and to compute the precise power of n whichdivides �k(n). These are included in the tables.For the case of �12, one can in fact do muchbetter: there are formulas (for example, due toRamanujan) that allow very fast recursive compu-tation of �(n). According to Blair Kelly (emailcommunication, May 10, 1996), who has used suchformulas to perform the computations, there are infact no non-ordinary primes p � 7; 196; 993 exceptfor those listed in our table for k = 12.
5. COMPUTATIONS FOR k � 2 mod 4The formulas in section 2 yield formulas for �k interms of � and �3, which we can once again reducemodulo n without problems. We get:�18(n) � 73920 n�1Xk=1 k6�(k)�3(n� k) mod n�22(n) � 355680 n�1Xk=1 k8�(k)�3(n� k) mod n�26(n) � 2550240 n�1Xk=1 k10�(k)�3(n� k) mod nThese are harder to work with, since �3(n) growsroughly like n3. Once again we used the GNUMP package to handle in�nite-precision arithmetic.This time, we need to compute and store the val-ues of �(m) and �3(m), and then proceed as be-fore. The results are interesting: for k = 18, 22,and 26, the only non-ordinary primes are the onespredicted by Proposition 3.1. The proposition pre-dicts that� �18 is not ordinary for p = 2, 3, 5, 7, 11, 13,� �22 is not ordinary for p = 2, 3, 5, 7, 13, 19(notice that for p = 11 we have, with notationsas in Proposition 3.1, k0 = 12), and� �26 is not ordinary for p = 2, 3, 5, 7, 11, 13, 17,19, 23.



Gouvêa: Non-Ordinary Primes: A Story 203k = 12p �12(p) ordp(�12(p))2 �24 33 252 25 4830 17 �16744 12411 4542041100095889012 1
k = 16p �16(p) ordp(�16(p))2 216 33 �3348 35 52110 17 2822456 111 20586852 113 �190073338 159 9858856815540 115271 �8993438621168072057711693894248 1187441 72366564118086321196551211656933454802 1k = 18p �18(p) ordp(�18(p))2 �528 43 �4284 25 �1025850 27 3225992 111 �753618228 113 2541064526 1

k = 20p �20(p) ordp(�20(p))2 456 33 50652 35 �2377410 17 �16917544 211 �16212108 113 50421615062 117 225070099506 13371 �1247220165833479125222462786471468 164709 487561492441266310170136412780007334338572670 1k = 22p �22(p) ordp(�22(p))2 �288 53 �128844 35 21640950 27 �768078808 113 �80621789794 117 3052282930002 119 �7920788351740 1
k = 26p �26(p) ordp(�26(p))2 �48 43 �195804 35 �741989850 27 39080597192 211 8419515299052 113 �81651045335314 117 �2519900028948078 119 �6082056370308940 123 �94995280296320424 1Non-ordinary primes p � 106 for �k.



204 Experimental Mathematics, Vol. 6 (1997), No. 3The last three tables on page 203 give the resultsof the computation. In each case, we tested primesp � 1 000 000.It is unclear whether one should ascribe any im-portance to the fact that in this case we �nd no\unexpected" non-ordinary primes, since this iscertainly consistent with the heuristic estimate�1(f; x) = O(log log x):Since the division into the two cases k � 0 mod 4and k � 2 mod 4 is an artifact of our method of

computation, it seems likely that the overall be-havior is the same in both cases.
6. FORMULASWe have given, above, the formulas for �k(n) modn that can be deduced from our identities. It maybe of interest to record the full formulas for �k(n);this is done below. For k divisible by 4, the formu-las involve only the � function, and are relativelysimple. For k � 2 mod 4, the formulas involve both� and �3, and are considerably more complicated.

Case k � 0 mod 4. Let m 2 f3; 4; 5g. Then�4m(n) = n2m�2�(n) + n�1Xk=1 fm(n; k)�(k)�(n � k);where f3(n; k) = �840k4 + 1248k3n� 432k2n2;f4(n; k) = 2640k3n3 � 11160k4n2 + 15048k5n� 6552k6;f5(n; k) = �24480k4n4 + 130416k5n3 � 253680k6n2 + 215040k7n� 67320k8:
Case k � 2 mod 4.13�18(n) = 42n6�(n)� (35n6 � 6n7)�3(n) + n�1Xk=1 g18(n; k)�(k)�3(n� k);�2040�22(n) = �3960n8�(n) + (�240n9 + 2160n8)�3(n) + n�1Xk=1 g22(n; k)�(k)�3(n� k);�31008�26(n) = �48048n10�(n) + (18480n10 � 1440n11)�3(n) + n�1Xk=1 g26(n; k)�(k)�3(n� k);whereg18(n; k) = 840n6 � 27720kn5 + 277200k2n4 � 1201200k3n3+ 2522520k4n2 � 2522520k5n+ 960960k6;g22(n; k) = �51840n8 + 2695680kn7 � 44029440k2n6 + 330220800k3n5 � 1320883200k4n4+ 2994001920k5n3 � 3849431040k6n2 + 2612113920k7n� 725587200k8 ;g26(n; k) = �443520n10 + 33264000kn9 � 798336000k2n8 + 9047808000k3n7� 57001190400k4n6 + 216604523520k5n5 � 515725056000k6n4+ 773587584000k7n3 � 709121952000k8n2 + 362440108800k9n� 79077841920k10 :Formulas for �k(n).
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