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We consider Catalan’s equation P — y?4 = 1 (where all vari-
ables are integers and p, q are greater than 1), which has the
obvious solution 9 — 8 = 1. Are there others? Applying old
and new theoretical results to a systematic computation, we
were able to improve on recent work of Mignotte and show
that Catalan’s equation has only the obvious solutions when
min{p, ¢} < 10651. Two crucial tools used are a new re-
sult of Laurent, Mignotte, and Nesterenko on linear forms of
logarithms, and a criterion obtained by W. Schwarz in 1994.

1. INTRODUCTION AND OVERVIEW

In 1843, Eugene Catalan considered the following
question: Are there pairs of consecutive integers
that are both powers, other than (—1,0), (0,1) and
(8,9)? The general opinion, known as Catalan’s
conjecture, is that the answer is no. Formally, the
relevant diophantine equation is ™ —y™ = 1, with
x,y are integers and m,n integers greater than 1.
Of course, we can assume that the exponents are
prime numbers, and, possibly after interchanging
the two terms on the left, that = and y are both
nonnegative. Excluding the trivial case of z = 1
and y = 0, the equation we are interested in is

P —y? =1, (1.1)

where p, ¢ are prime numbers and z,y are integers
greater than 1.

The main results toward the verification of Cata-
lan’s conjecture are of relatively recent vintage (see
[Ribenboim 1994] for a more detailed account). An
important step was taken by Tijdeman [1976], who
proved that the problem is finite: using Baker’s re-
sults on linear forms in logarithms, he showed that
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all unknowns are effectively bounded. The same
year, Langevin [1977] obtained the explicit bound
10'*° for max{p, ¢}, and enormous bounds for x
and y. Since then progress on linear forms has led
to better bounds. Two years ago, it was possible
to prove max{p, q} < 10*', and now it seems that
max{p,q} < 10 could be proved. However, we
shall not pursue upper bounds in the present pa-
per, but will focus our attention on improving the
known lower bounds on min{p, ¢}.

The first result in this direction [Nagell 1920] was
min{p, ¢} # 3. Almost half a century elapsed until
Ko Chao proved that min{p, ¢} # 2 [Ko 1965]. The
best result published since then [Mignotte 1994]
had been

min{p, q} > 13.

Here we report a significant advance, proving that
min{p, g} > 10651.

This result was obtained thanks to several the-
oretical advances and a lot of computation. To
explain our strategy, it is convenient to generalize
(1.1) slightly to

2P —y? =¢, withe =21 and 2,y > 1 (1.2)

(still assuming p, g prime). This is so that we can
interchange the roles of (z,p) and (y, ¢) as needed.

The first theoretical advance, discussed in Sec-
tion 2, is a new lower bound for two linear forms
in logarithms [Laurent et al.]. Applied to (1.2) for
a fixed prime p, it leads to an upper bound

4 < Gmax(D)-

We have made great efforts to get a good value
for this bound, in order to decrease computation
time for the present work and to help the future
improvement of upper bounds on max{p,q}. In
the process (Section 2.1) we present a technical re-
finement of the congruences obtained in 1964 by
Hyyro.

Then, for a fixed p, we have to consider the
range ¢ < (max(p). For each pair (p,q) we have
several theoretical tools to attack (1.2), which in

most cases are sufficient to eliminate the possibil-
ity of solutions. Specifically, for each prime p one
can define two sets F'(p) and H(p) such that a so-
lution of (1.2) can only exist for

q € F(p)U H(p).

The first set corresponds to Fermat quotients:

F(p) = {q :p?™' =1 mod q2}.

Experiments show that this set is generally very
small, but its computation takes a very long time.
In our case, to compute all these sets for p < 10625
took more than two weeks on a parallel computer
with 32 processors. The reason for the strange
value 10625 is purely technical: the program was
written in C, in double precision, and 10625 is the
highest value for which we can compute congru-
ences mod ¢? with this program.

The second set H(p) is related to certain class
numbers, and comes from the first general alge-
braic criterion on Catalan’s equation, obtained by
Inkeri [1990]. Inkeri’s criterion allows us to put

H(p) = {q < Guax(p) : q divides h(K])}, (1.3)

where h(K) represents the class number of a num-
ber field K and

_ (U
;= { g

The case p = 1 mod 4 leads to very serious difficul-
ties; the class number of Q[e*™/?] is not known for
p > 71. There is a way to overcome this problem:
Given g, and setting h, = h(Q[e*™/?]), there are
procedures that output either the answer “q does
not divide h,” or “gq may divide h,”. But these
procedures are very slow. In April 1993, Mignotte
[1995] was able to replace the field K, in the pre-
vious criterion by

if p =3 mod 4,
if p =1 mod 4.

K, = the subfield of Q[e*"/?] of degree 2,

where 2¢ is the maximal power of 2 in p — 1. For
many values of p the degree of this new field K, is
much smaller than p — 1, and h(K),) can be easily
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computed. But there are still difficult examples,
like p = 257, where this degree is 256.

The newest result we use is from [Schwarz 1995],
to the effect that in (1.3) we can replace h(K,)
by h™(K,), the relative class number of K, over
K} (that is, the quotient h(K,)/h(K,"); here K}
is the maximal real subfield of K,). This rep-
resents an enormous progress from the computa-
tional point of view: one can compute h~(K,) for
any p [Washington 1982]. Without this improve-
ment we had serious computational difficulties to
get min{p, g} > 570, whereas now the most expen-
sive computational step is computing the Fermat
quotients.

To summarize the discussion so far, we eliminate
most possibilities for (p, ¢) by using the bound g <
gmax(p) and the following fact:

Criterion 1.1. Let p and q be odd prime numbers.
Let p— 1 = 241, where | is odd. Let K = K, be
the subfield of Q[e*™/?] of degree 2¢. Denote by
hx the relative class number of K over K*. Then
(1.2) has no solution when both of these relations
are satisfied:

qfhg

Now suppose that, for a given p, we want to ana-
lyze a value of ¢ that does not satisfy Criterion 1.1
(that is, ¢ € F(p) U H(p)). We have two ways of
attack. The more natural, and generally quicker,
way is to try Criterion 1.1 on the pair (gq,p). We
illustrate with the first values of p. For p = 5,
we have gmax(5) = 110000, F(5) = {20771, 40487},
and H(5) = @; we therefore consider p = 20771
and p = 40487, and examine the possibility of
q = 5. Since

5¢ F(20771),
5 ¢ F(40487),

and p?' # 1 mod ¢*.

5¢ H(20771) = {41},
5 ¢ H(40487) = {179},

we conclude that (1.2) has no solution when p = 5.
Similarly, for p = 7, we have gma.x(7) = 110000,
F(7) = {5}, and H(7) = @, since we already know
that p = 5 leads to no solution, we conclude that
p = 7 also leads to no solution.

Sometimes this strategy fails; the smallest ex-
ample, already noticed by Inkeri [1964], is the pair
(p,q)=(83,4871), because

4871 € F(83) and 83 € F(4871).

In such cases, we try to use the following elemen-
tary criterion from [Mignotte 1993]:

Criterion 1.2. Let p and q be odd prime numbers,
and let | be a prime number such that | = hpg+ 1,
with h a positive integer. Let a and b be integers
such that ap = 1 mod [ and bg = 1 mod [. Then
(1.2) has no solution when all the following rela-
tions are satisfied: ¢"? # 1 mod I, p"? # 1 mod I,
and

(1 + ag’®)? — 1)hp # 1 mod !

forallj €{0,1, ..
root mod .

., hp—1}, where g is a primitive

For all pairs (p, q) unresolved by the use of Crite-
rion 1.1 (with p < 10651), the use of Criterion 1.2
was sufficient to show the absence of solutions, ex-
cept for the pair (2903, 18787). This last case could
be solved by congruences mod 327231967 applied
to the formulas obtained during the proof of the
first criterion of Inkeri; the details are too techni-
cal to be given here.

The conclusion of our computations is, therefore:

Theorem 1.3. Catalan’s equation
e —yl =1,

where p and q are primes and x,y > 1 are inte-
gers, has no solutions other than 9 — 8 = 1 when
min{p, ¢} < 10651.

The computed data can be obtained from the au-
thors.

In Section 2 we derive the bound ¢ < ¢upax(p)
that makes the problem tractable. In Section 3
we present a result that is not used in the proof
of Theorem 1.3, but shows that the special case of
Catalan’s equation with exponents congruent to 3
mod 4 could be simpler than the general case.
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2. BOUNDING ONE EXPONENT AS A FUNCTION OF
THE OTHER
Arithmetical Relations

Suppose (z,y,p,q) is a solution to Catalan’s equa-
tion (1.2). Cassels [1960] proved that there exist
integers r and s such that
sP rd
y+e=— and Tz—ec=—.
q p

According to [Hyyro 1964], there exist also integers
ap > 1 and uy > 2 such that a = qay — € and

u = p?tuy + 1 satisfy
r—e=pi"a? and z*—e= (pua)’.

(Hyyro gives additional relations satisfied by these
numbers, but we will not need them.)

Since u > 2p?~1, we get

a? —e > (2pa)? > (2p%(q — 1))q,
so that
a? > (2(¢ — 1)p?)". (2.1)

This implies

rP=plz—e)>x—1> ((q — l)pq)q/p > pqz/p,

whence

logr > g log p. (2.2)
p

This lower bound seems to be new. In any case, it
is quite useful for the estimates in the remainder
of this section.

A Crude Bound

It is easy to prove that s < 4'/P¢Y9r and r <
41/Ppl/rs and also that the linear form

rP

A =plogp—qlog pra——
satisfies 0 < |A| < 4p*r~7. Let’s assume that
q> max{400plogp, 90000 logp}. (2.3)
Combined with (2.2), this implies

log |A| < —0.999999 g log - (2.4)

We shall apply the following result from [Laurent
et al.], where, for « an algebraic number, h(a) =
log M («)/deg « is the logarithmic height of « (here
M () is the Mahler measure of «, the definition of
which is recalled on page 267).

Theorem 2.1. Let «;, sz be two multiplicatively in-
dependent algebraic numbers with |aq], |az| > 1,
and let log ay and logas be any determination of
their logs. Put

A= b2 logaz — b1 logal,

where by and by are positive integers. Put
[@(041,042) : Q]
[R(O&l,ag) : R] )

Let K be an integer > 2, let L, Ry, Ry, S1, So be
positive integers, and let p > 1 be a real number.
Suppose that

D=

Rlsl Z L G/ﬂd RQSQ > (K - 1)L (25)
PutR:R1+R2—1,5251+52—1,
_ l £ (2.6)
97417 12RS’ '

and
K-1 —2/(K?~K)
b= ((R—1)by+ (S — 1)by) <H k!) .

Suppose also that
(p—1)log o + 2Dh(a;) < a; fori=1,2,

that the numbers rby + sby, for 0 <r < R—1 and
0<s< 8 -1, are pairwise distinct, and that
K(L—-1)logp—(D+1)logKL

— D(K —1)log(b/2) — gL(Ra; + Saz) > 0. (2.7)

Then we have the lower bound

|A'| > prL+%’ (2.8)
where
LSeLSIAl/(2b2) [, ReLRIAI/(201)
A=A - U
max { T ) 2, }
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Before applying Theorem 2.1, we apply a corollary
of it [Laurent et al., Corollary 2], which is weaker
but much simpler to use.

Corollary 2.2. With the notations of Theorem 2.1,
suppose moreover that a; and as are positive real
numbers. Then

2112
log |A|>—24.34 D* (max{log b'+0.5, 5}) log A; log As,

where
logA->ma,x{i [log o] h(or)} fori=1,2
i 2 D D i y 4
by

dy = —1 .
an IOg A2 + log A1

We apply the corollary with b; = ¢, by = p,

0

qr®
(s* —eq)’
as = p, and D = 1. Notice that a; and «a, are
multiplicatively independent: otherwise A would
be an integer times log p, contradicting the trivial
estimate 0 < |A| < 1.

Notice also that

lo A
[log a;| < pTgp + % < g log(p + 1).

a1 =

Moreover,

h(on) < max{plogr + log g, log(s” + q)}
< max{(p +1)logr, plogs+ 27”}
<(p+1)logr,

since g < s. Clearly, log as = h(az) = logp. Thus
we can apply Corollary 2.2 with

logA; = (p+1)logr and logA, = logp.

(Note that to apply Corollary 2.2 we only have to
choose log A; and log A;. Then b’ is defined in
terms of by, by, log A; and log A;. The corollary
gives a lower bound for A depending only on these
previous quantities and on D.)

Hence, by (2.3), we have

. q P < 1.001 ¢
~logp  (p+1)logr ~ logp

We get

log |A| > —24.34 (max{21, log(g/log p) + 0.51})”
X (p+1)logplogr.

Comparing this inequality with (2.4) leads to

q < 24.4 (p+1) log p(max{21, log(g/log p)+0.51}) ?
(2.9)
In particular, ¢ < 170000 for p < 7.

A Sharper Bound

In this section we assume p > 11. We can apply
Theorem 2.1 with

a; =2(p+ 1)(1 + %) logr

and as = (p + 1) logp. We shall take 17 < p < 25.
By (2.2) and (2.3), we have a; > 2¢qlogp, so that
a; > 1.03 x 105, ap > 43.16, and a;a, > 3.51 x 107.
Then, to satisfy condition (2.5), we take

Ro=1, S =1I,
Ry, = [\/ (K — 1)La2/a1] +1,
Sy = [/ (K —1)Lai/as | + 1.

We suppose that 7 < L < 5logp. We take K =
[u?Layaz] + 1, where p is some real number to be
chosen later, satisfying 0.2 < p < 0.5; thus

K >0.2%x7x1.03x10%x 43.16 > 1.24 x 10".

If there exist two integers ro and sg, with |ry| <
R and |s¢| < S, such that robs + soby = 0, then ¢
divides rq, so that

g<R<15uL(p+1)p

<1.5x0.5x5x26xplogp < 100p logp,

which contradicts (2.3). Hence, the numbers
sz + Sbh

for0<r<R-—1and 0<s<§—1, are pairwise
distinct.

We have the following general upper bound for b
[Laurent et al., Lemma 6]:
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< ((R —1)by + (S — 1)61)

- K-1

_log@r(K-1)/VE)
K-1

log K
6K (K — 1))

Thanks to our hypotheses on L and K, this leads
to

logbg 1.5+log(\/z(\/f+1)(b1\/a1/a2+b2\/a2/a1))

X exp(%

log(3.8 K)
log(K —1) 1
L./ .
§1.5+10g( vL ajas )—i—logb'lOg(g 8K)
(p+1) (VK -1) K-1
1 log(3.8 K)
<1.5- ! —
<1.5-log((p+1)p) +logb'+ JE—1 1
q
<1.5-1 1 1
<1.5-log((p+1)u)+ %% 10ep
+(p+1)p 1 log(3.8K)
242 -1 K 1 °
since now
b b
V= (p+1)(+2)
(03] aj

< 4 p(p+1) < 4 <1+(p+1)p>‘
logp  2(p+1)logr ~— logp 2q?

Now we consider the quantity g of (2.6). From
the relations

R:R1+R2—1 S \ (K—l)LaQ/al,
S251+Sg—1§L+\/(K—1)La1/a2,

we get
9L(Ray + Sas)

= %L(Ral + Saz) —

KIL? (a1 %> (2.10)

12 \sTxr

KI? /a a
2 3/2 1 2
<%L a2+%L/ \/(K—l)alag——12 (—S +—>.

We have

1,
R~ /(K —1)Lay/a;’

and the identity

1 1
v, v
r+y T

implies

L 1 L

S~ /(K —-1)Lay/ay, (K —1)Lay/a,
+ CL2L2

ai(K —1)L(L++/(K —1)La;/as )

Hence we obtain the lower bound

a1 (42]

2 (1 > _ 2 (Q1 | Q2
KI (G + )2 -0 (G + %)
Z 2L3/2\/ (K — 1)a1a2 — G2L2
G2L3

TIT V& - Diajm

Plugging this into (2.10) gives

gL(Ra; 4+ Saz) < %L3/2 (K — 1)ajas

a2L3
12(L++/(K —1)Lai/as )
Ignoring the last term, we get

gL(Ra; + Saz) < %L?’“\/ (K —1)ajas + %asz.

Besides, since logr > (q/p) log p, we have

=+ %Lzaz

(p+1)logp p+1
2(p+1)(q¢/p)logp = 2q °

Using these remarks, we see that condition (2.7)
is satisfied if, putting A = log p, we have

0<K(L-1)A+ (K —1)log2—2log(KL)
— %Lg/z\/ (K — 1)(11(1,2 — %ang
—(K—-1)( 1.5—1og((p+ 1)u)+log<i)
logp

(p+1)p+ 1 log(3.8K) o
2¢? K-1 K-1

as _ (p+1)logp
a; ~ 2(p+1)logr

_l’_

Now the right-hand side of (2.11) is greater than
or equal to ® + ©, where

® = K(L-1)A+Klog1.999—1L**\/(K — 1)aa,

(K - 1) (1.5 —log((p+ 1)p) + log<$>>
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and
1
© = 5K x 10 *—log(K L?) 4{@ VK ~layL?.
q

It is easy to verify that O is positive. Indeed,

1 26
o+ Lp —<2x107,
q> 90000 x 400 x log” p
VK
~——<284x107*
K et
log(K L? log K
Og(K ) <3 Oi <4x107°,
sa,L? < al? L 5logp
K ~ 352Laja; 35%a; ~ 6x0.22 xqlogp
> <1.1x1074,

< 6 x0.22 x 200000

s0 ©® > K(5—4.6) x 107* > 0. Then, dividing ®
by Lajas, we see that condition (2.7) is satisfied
when

u((L— 1)A+1og 1.999 — 1.5+ log(p+1) —log — )
logp

+ plogp — 3L >0. (2.12)

In such a case, by (2.8) and the inequality R+ S <
K, we get

log |[A| > —KLlogp —log(KL).
Comparing this inequality with (2.4) gives
q < 2.0001 u*L3*(p + 1)(p + 1) log plog p.

Now we can describe the procedure used to get
an upper bound ¢u.x(p) for the exponent ¢ in (1.2),
when p is fixed. We first apply condition (2.9) to
get a first upper bound, say qo, for this exponent.
Then, for a suitable choice of p and L, we use this
upper bound to find a value g for which (2.11)
holds. Then (2.11) gives an upper bound ¢; < go.
If g1 < qo we repeat this process using the new up-
per bound ¢; and some choice of p and L (possibly
the same as before), which gives an upper bound
q> < ¢q;- We continue in this way, and stop after

a certain number of tries, obtaining a value ¢..
Finally we take

Gmax(p) = max{90000 log p, 400 p log p, ¢o },

in order to respect (2.3). Notice that guax(p) =
90000 log p for p < 53.
Since A = log p, condition (2.12) is equivalent to

1 )—i—,ulog,u—%L >0,

p(L log p—9+log(l+%) —log Togp

where we put = 1.5 — log 1.999. This can also be
written as

1
L(plogp — %) > u(0—10g<1+ —) + log q )
p logp
We choose "
k= 310gp;

then the previous condition becomes
1
(9 —10g<1 + —) + log q )
3logp p log p

For p = 22.9 (so that u = 0.2129... € [0.2,0.5)),
we find that this inequality holds if

L>3x

L > 0.6388(log g — loglogp 4 0.765),
and we can take
L =1[0.63881og(gq/log p) + 1.49].

(We verify the condition 7 < L < 5logp. From
(2.3), we have

L > 0.638810og 90000 > 7.
Put z = g/log p; then (2.3) implies z > 11.407 and
max{21, log(q/logp) + 0.51} < 1.841 z;
thus (2.9) gives
2 < 24.4 % 1.841% (p + 1) log® z,
which leads to
log z < log 82.7 + log(p + 1) 4 2log log =

and
log z < 1.746 log(82.7 (p + 1)).
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Then an elementary numerical study shows that
L < 4logp for p > 11. This ends the verification.)
Thus we get

g < 6.7853 (p+1)(0.6388 log(q/log p) +1.49)” log p,

which implies

q < 2.769 (p+1) (log(q/log p) +2.333)* log p (2.13)

for p > 11; thus

qg< 2.77p(10g(q/10gp) + 2.333)2 logp (2.14)

for p > 3000.

On the range 11 < p < 10651, we have com-
puted the best possible value gyax(p) obtained by
Theorem 2.1. Inequality (2.14) is given as a refer-
ence for possible further computations. Example:
for p < 10* we have gpa,(p) < 8.7 x 107.

3. AN APPLICATION OF INKERI’S FIRST CRITERION

We now prove a result that is not used in the proof
of Theorem 1.3, but shows that the special case of
Catalan’s equation with exponents congruent to 3
mod 4 could be simpler than the general case.

Instead of (1.2) we will work with the equation
xP —y? =1, where ¢ > p > 1 are positive integers
and z, y are (possibly negative) integers with |z|,
ly| > 1. We will in fact assume that p > 50.

We recall briefly the work in [Inkeri 1964]. For p
prime, with p = 3 mod 4, suppose that a runs over
the quadratic residues mod p and that b runs over
the nonresidues. Put

AX) =[x -¢, BX) =[x -,

a b

where ¢ = €%"/?. Then

P _
4 ); 11 = 2A(X) - 2B(X) = Y2(X) + pZ*(X),
where

The polynomials Y and Z have integer coefficients.
Clearly, degY = 1(p — 1) and

Y(X)= 2XP-1/2 L
L(Y) < L(A) + L(B) < 2®+H/2)
where L(P) denotes the length of the polynomial P

(that is, the sum of the modules of its coefficients).
From the formula on Gauss sums,

¢ =Y ¢ =v-p,

we see that deg Z = 3(p — 3) and that

Z(X) = X®=3)/2 4
L(Z) < (L(A) + L(B)) /b < 2772/ /p.

Now, by Hyyrd’s theorem (see the beginning of
Section 2), there exist integers a and w such that

|z —1=p? 'a? and |z’ —1= (|z|— 1)pu’.

Thus 4pu? = Y? + pZ? and, if Y; = Y/(2p) and
Z, = %Z, then

u? = (Zy + Yiv/—p)(Z1 — Y1v/-D);

moreover Y; and Z; are coprime integers [Inkeri
1964]. In the quadratic field Q(y/—p), this implies
a relation

(Zl +}/1V_p) = bqa

where b is some ideal of this field. If we assume
that g does not divide the class number of Q(1/—p),
there exists an algebraic integer (3, belonging to
this field, such that

Zy +Yiv/—p = B

Hence, 37 — 37 = 2Y1y/=p and #7+ 3 = 2Z;. Put
B = |Ble, with |#] < 7. Then

N
W) = e T Y (al)
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Using the previous estimates relative to Y and Z,
we get
|| (P=3)/2 4 2(p+1)/2| 4| (P5)/2
lcot(ad)] < VP or 7 g
_ g LR 2yp
~ VPl (1 — 20072 |z]) © Ba]’

since |z| > p? by an argument like the one leading
to (2.1). Thus there exists an integer k such that
the linear form A := kim — ¢(2i6) satisfies
2
A < VP

||
We now use [Laurent et al., Theorem 3|:

Theorem 3.1. Let o be an algebraic number of mod-
ulus 1 that is not a root of unity, let by and by be
two positive integers, and set A = byim — by log a.

Put D = 1[Q(a) : @,
¢ > max{20, 12.85 |log a| + Dh(a)},

by by
H= {17, D1 <— ) 4.6D 3.25}.
max %8\2q T 25.70) THOPT
Then log |A| > —9tH?. O

In our case we take by = k, by = ¢, a = 3/ = €%,
and D = 1.

For an algebraic number +, let M (y) denote the
Mabhler measure of «, that is, the product

d
|aol Hmax{l, i1}
j=1

where a, is the leading coefficient and the v, the
roots of an irreducible polynomial with integer co-
efficients of which « is a root. We have the esti-
mates

M(a) = |B]” < (1Z:] + [Y1lv/p)™*
< (m(p—l)/zf/q — g-D/a,

or, in terms of the height,

-1
h(a) < qu log .

This implies, with the notation of Theorem 3.1,
that

-1
12.85 x 2w + d

logx < e log z;
2q
indeed, (2.1) says that |z| > p?/?, so that
1
— log|z| > 12.85 x 2w
2q

because of (2.3). Thus we can take

t:% log

(which implies ¢ > 2qlogp), and then we have
H < max{17, logq + 3.46}.

(Proof: We have 0 < k < g and ¢ > %qlogp, SO

by by
Dl (— ) 4.6D + 3.25
08 2a + 25.77 + +

< 10g< +7.85

q ) 4 25.7mw
25. 7w 2a

< 3.459,

which proves that H < max{17, logq + 3.46}.)
Comparing the lower bound of log |A| with its up-
per bound, after some easy simplifications, we get

q < 4.51 pH? = 4.51 p (max{17, log g + 3.46})*.

This upper bound, like (2.13) and (2.14), is derived
here as a reference for possible further computa-
tions. Note that it is better than (2.13) for p > 31.
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