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We report the results of some computer experiments on the

orbit structure of the discrete maps on a finite set which arise

when an expanding map of the circle is iterated “naively” on

the computer. We also comment on what mathematical ques-

tions ought to be answered in order to account for the reli-

ability in practice of orbit following on the computer as an

indicator of the ergodic properties of the underlying map.

1. INTRODUCTIONIt is a fact of experience that computer simula-tions|of a relatively naive sort|are generallyfairly reliable indicators of the properties of con-crete dynamical systems. In the interest of brevity,let me explain what I mean by giving an explicitexample, and leave it to the reader to think aboutgeneralizations. Consider the mappingx 7! f(x) := 2x+ 0:5x(1 � x) (mod 1);for 0 � x � 1: (1–1)It is perhaps better to think of this mapping as act-ing on the unit interval with endpoints identi�ed,i.e., on the circle. Note that f 0(x) � 1:5 every-where, so f is strictly expanding in a particularlyclean and simple sense. As a consequence of expan-sivity, this mapping has about the best imaginableergodic properties:� It admits a unique invariant measure � equiva-lent to Lebesgue measure.� The abstract dynamical system (f; �) is ergodicand in fact isomorphic to a Bernoulli shift.� A central limit theorem holds, etc.
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318 Experimental Mathematics, Vol. 7 (1998), No. 4(One respect in which our example is less than opti-mal is that, when regarded as acting on the circle,it has a discontinuous �rst derivative at the ori-gin. This could be �xed by studying instead, say,x 7! 2x + � sin 2�x (mod 1) with j�j < 1=(2�).We chose the above example because it is cheap tocompute and because the e�ects of round-o� errorare relatively easy to analyze.)One consequence of the ergodicity of f relativeto � is that, for Lebesgue almost all initial points xin the unit interval, the corresponding orbit fn(x)is asymptotically distributed over the unit intervalaccording to �, i.e.,limm!1 1m m�1Xn=0 '(fn(x)) = Z '(t)�(dt)for all well-behaved functions '. (This assertionis simply a clever reading of the pointwise ergodictheorem applied to (f; �) together with the factthat �-almost all and Lebesgue-almost all are thesame.) Intuitively: If we choose an initial point atrandom, then we should be very surprised if thecorresponding orbit fails to distribute itself as in-dicated.This mathematically rigorous result leads one toexpect something quite similar to happen when themapping is iterated on the computer. More for-mally:Choose an initial point which is not too special(the points 0 and 1, for example, are obviously nottypical); compute numerically a few tens of mil-lions of points on the orbit of the point in ques-tion; divide the working interval into a few hundredequal subintervals; count the number of points ofthe computed orbit lying in each of these inter-vals; and plot the resulting histogram. It would besurprising if this process failed to produce a graphlooking very much like that of the density of theabsolutely continuous invariant measure.I want to begin by making the very simple andgeneral point that, reasonable as this expectationis, it is not so obvious how to prove that it iscorrect. The reason is that, because of the ex-

pansivity of the mapping, the growth of round-o� error normally means that the computed or-bit will remain near the true orbit with the choseninitial condition only for a relatively small num-ber of steps|typically, of the order of the num-ber of bits of precision with which the calcula-tion is done. It is true that the above mapping|like many \chaotic" mappings|satis�es a shad-owing theorem which ensures that the computedorbit stays near to some true orbit over arbitrarilylarge numbers of steps. The aw in this idea asan explanation of the behavior of computed orbitsis that the shadowing theorem says that the com-puted orbit approximates some true orbit, but notnecessarily that it approximates a typical one. Infact, the simple example x 7! 2x (mod 1) showsthat computed orbits do not always approximatetypical exact orbits (and also makes clear that theexpectation expressed in the preceding paragraphis not always ful�lled).It appears to me that the precise formulationof these questions will require the setting-up of alimiting regime in which precision of calculationand number of steps of iteration both go to in�n-ity, with relations between the rates. In fact: In avery general way, this problem reminds me quitea lot of the notoriously di�cult one of derivingnon-equilibrium statistical mechanics from atomicphysics. As with statistical mechanics, there aretwo very di�erent length scales, a macroscopic oneon which the state space looks like a continuumand the mapping smooth, and a microscopic oneon which the state space looks like a discrete setof points and the mapping has a certain amountof jaggedness. This suggests the discouraging pos-sibility that this problem may be as hard of thatof non-equilibrium statistical mechanics. As withstatistical mechanics, the problem can probably bemade much easier by the judicious introduction ofa stochastic element in the microscopic evolution.As in statistical mechanics, I think this is cheating:For me, a satisfactory solution will have to take se-riously the fact that computer iteration is perfectlydeterministic.
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2. EXPERIMENTAL RESULTSBut these are issues of general philosophy, and Idon't want to discuss them in detail here. I men-tion them only as a preface to saying that whatI do want to talk about is an experimental studyof an inappropriate limiting regime|one in whichthe number of iterations is too large relative to theprecision of calculation. The question addressedis the following: The exact mathematical problemconcerns iterating a smooth mapping on an inter-val. The computer, working with �xed �nite preci-sion, is able to represent �nitely many points in theinterval in question. It is probably good, for pur-poses of orientation, to think of the case where therepresentable points are uniformly spaced in theinterval. The true smooth mapping is then approx-imated by a discretized mapping, sending the �niteset of representable points in the interval to itself.Describing the discretized mapping exactly is usu-ally complicated, but it is roughly the mappingobtained by applying the exact smooth mappingto each of the discrete representable points and\rounding" the result to the nearest representablepoint. (The reason why this simple description isnot quite realistic is that, in practice, intermediatequantities, and not just the �nal result, undergorounding.) However the discretization is done, theupshot is that what is really iterated on the com-puter is a mapping of a �nite|albeit large|set toitself. Every orbit of such a mapping is, trivially,eventually periodic, i.e., eventually lands exactlyon a periodic cycle. The question addressed hereis the orbit structure of such a discretized map:� How many periodic cycles are there, and whatare their periods?� How large are their respective basins of attrac-tion, i.e., for each periodic cycle, how many ini-tial points give orbits which eventually land onthe cycle in question?I have done two kinds of experiments to explorethis question:

� For relatively coarse discretizations|say about107 representable points|determine the orbitstructure completely, i.e., �nd all the periodiccycles and the exact sizes of their basins of at-traction.� For iteration using ordinary (IEEE-754) double-precision arithmetic| so that the working in-terval contains of the order of 1016 representablepoints|sample the orbit structure by choos-ing some number|1000 in the case reportedhere| initial points at random and determin-ing the cycles to which they converge.For purposes of logical simplicity, it seemed mildlyadvantageous to look at evenly spaced discretiza-tions. For the experiments with double precision,this was accomplished by shifting the working in-terval from [0; 1] to [1; 2], i.e., the mapping actuallyiterated wasx 7! 2x+ 0:5(x � 1)(2 � x) (mod 1)from [1; 2] to itself.Some representative results results are given on thenext page (Table 1).Many more examples could be given, but thosegiven may serve to illustrate the intriguing charac-ter of the results: The outcome proves to be ex-tremely sensitive to the details of the experiment,but the results all have a similar avor: A rela-tively small number of cycles attract nearly all or-bits, and the lengths of these signi�cant cycles aremuch larger than one but much smaller than thenumber of representable points.
3. MODELLINGIt seems clear that there are regularities here whichought to be understood. I know of no ideas whichcontribute, in my judgment, to a fundamentalunderstanding of these regularities. There is, onthe other hand, a very persuasive idea about howone might model them. The idea, which I �rstheard from D. Ruelle (see Section 7 and the notefollowing it), runs as follows: Since the mapping



320 Experimental Mathematics, Vol. 7 (1998), No. 4N = 222 = 4;194;30413 cyclesperiod basin size3,864 2,523,929 60%1,337 538,712 13%718 513,839 12%295 238,486 6%130 203,587 5%1,338 152,942 4%297 12,359 0:3%169 5,056 0:1%97 3,012 < 0:1%17 2,346 < 0:1%6 21 < 0:1%1 8 < 0:1%7 7 < 0:1%N = 224 = 16;777;2162 cyclesperiod basin size5,300 16,777,214 100%1 2 < 0:1%

N = 223 = 8;388;6087 cyclesperiod basin size4,898 5,441,432 65%1,746 2,946,734 35%13 205 < 0:1%6 132 < 0:1%30 96 < 0:1%4 8 < 0:1%1 1 < 0:1%N = 224 � 1 = 16;777;21510 cyclesperiod basin size3,081 7,502,907 45%699 3,047,369 18%3,469 2,905,844 17%1,012 2,774,926 17%563 290,733 2%2,159 221,294 1%138 21,610 0:1%421 12,477 < 0:1%9 54 < 0:1%1 1 < 0:1%

N = 225 = 33;554;4328 cyclesperiod basin size4,094 32,114,650 96%621 918,519 3%283 516,985 2%126 2,937 < 0:1%6 887 < 0:1%55 433 < 0:1%4 20 < 0:1%1 1 < 0:1%double precision (sampling)1000 initial points7 cycles foundperiod \basin size"27,627,856 517 52%88,201,822 320 32%4,206,988 147 15%4,837,566 17 2%802,279 8 1%6,945,337 6 1%2,808,977 1 0:1%
TABLE 1. Census of cycles for representative discretizations. N is the order of the discretization; thus therepresentable points are the numbers j=N , with 0 � j < N .is \chaotic," it is reasonable to think of modelingcomputed orbits by simply choosing the successivepoints at random. This model only makes sense,however, until some point has been chosen twice;thereafter, the fundamentally deterministic char-acter of the mapping can no longer be neglectedand the future of the orbit is unambiguously de-termined. An elementary calculation shows thatthe probability that there is no repetition in a setof n points chosen independently from a populationof N (with equal weights) is aboute�n2=(2N);provided that N is large and n not too much larger

thanpN . Loosely: The number of steps before the�rst repetition is typically of the order ofpN . Thisrule of thumb is roughly consistent with the exper-imental results cited above. (A moment's thoughtshows that the above computation of distributionof \�rst-repeat times" is equivalent to computingthe �rst-repeat time for a randomly chosen map.Hence, one speaks of the \random-map model" forcomputing periods of cycles, etc.)These remarks also permit me to be a little morespeci�c about what I think the right limiting regimefor theorem proving about the reliability of numer-ical experiments of the sort described earlier shouldbe: One should look at a discretization toN points,



Lanford: Informal Remarks on the Orbit Structure of Discrete Approximations to Chaotic Maps 321and at time averages over m steps, with m and Nboth large but withlogN � m�pN:The �rst � allows the computed orbit to deviatemacroscopically from the true one over most of itslength; the second is in any case usually satis�edin practice and ought to mean that the times con-sidered are short enough so that the e�ects of thestrict �niteness of the space of states are not im-portant. In fact: it might be prudent to replacethe second � by the stronger conditionlogm� logN;but it isn't so clear that this condition is satis�edin practice.
4. SPATIAL DISTRIBUTION OF CYCLESAs noted at the beginning, almost all the orbitsof the mathematically exact mapping distributethemselves asymptotically over the working inter-val according to the unique invariant probabilitymeasure � which is absolutely continuous with re-spect to Lebesgue measure. On the other hand, avery long computed orbit simply runs many timesaround whatever periodic cycle it lands on, i.e.,has the same asymptotic distribution as that cy-cle. It is therefore interesting to know whether theperiodic cycles are distributed according to the ab-solutely continuous invariant measure. This can ofcourse only hold in an approximate sense, since aperiodic cycle is only a �nite set of points. Some-what surprisingly, it does appear that, at least inthe example we are considering, the periodic cy-cles do approximate the absolutely continuous in-variant measure quite well. To be somewhat moreconcrete: I looked, from this point of view, onlyat the double-precision discretization. The work-ing interval was partitioned into 200 equal subin-tervals and, for each of the seven cycles listed inTable 1, the points of the cycle in each subintervalwere counted. The resulting histogram for the �rstcycle| the one which seems to attract a majorityof the orbits| is shown in Figure 1. The same
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FIGURE 1. Histogram of the main cycle and densityof the absolutely continuous invariant measure.�gure shows the density of the absolutely contin-uous invariant measure, but the agreement is sogood that it is nearly impossible to distinguish thetwo plots (except when magni�ed, as in the insetbox). The results for the other cycles (not shown)are similar, with the following systematic variation:Very simple ideas lead to the surmise that the oc-cupation numbers ni of the various intervals shouldshow uctuations of the order of pni. The ni's areroughly proportional to the period of the cycle, andthe periods of the cycles vary by about a factor of100; thus, it is to be expected that the histogramsfor cycles with relatively small periods look signif-icantly noisier than those for cycles with relativelylarge periods. This is indeed what happens.To get a more quantitative measure of the agree-ment between the distribution of the cycles and theinvariant measure, we compute for each cycle the�2-statistic, �2 = 200Xi=1 (ni � �ni)2�ni ; (4–1)where ni is the number of points on the cycle lyingin the ith subinterval, and �ni the \expected" num-ber, i.e., the period of the orbit multiplied by theprobability assigned to the ith subinterval by the



322 Experimental Mathematics, Vol. 7 (1998), No. 4period �227,627,856 170.48088,201,822 229.7284,206,988 122.2584,837,566 264.920802,279 184.2706,945,337 215.2952,808,977 197.632
TABLE 2. The �2-statistic as de�ned in (4{1) foreach of the seven cycles found for the double-pre-cision discretization.absolutely continuous invariant probability mea-sure. The results are as shown in Table 2. Forcomparison: For sample of p points chosen inde-pendently according to the invariant probabilitymeasure, �2 has probability about 0.05 of beingsmaller than 167 and also probability about 0.05 ofbeing larger than 233.1 The third and fourth orbitslook a little suspect at �rst glance; the probabilitythat �2 is < 123 (respectively > 264) is only about5:4� 10�6 (respectively 1:4� 10�3). On reection,however, it is clear that these probabilities shouldbe taken with a grain of salt; it would be more con-vincing to compare the uctuations of the distri-butions of periodic cycles about the invariant mea-sure with the typical sizes of uctuations of longsegments of true orbits around this same measure.The latter uctuations are indeed Gaussian { i.e.,the system satis�es a central limit theorem|butthe covariance (presumably) does not have the sim-ple form corresponding to an independent choice ofp points (and furthermore does not seem to be easyto compute).

5. ANOTHER MAPPINGTo show that the above is not the whole story,we present the results of one other experiment|a1As is customary, the computation of these probabilities is doneunder the assumption that the central limit theorem gives a \suf-�ciently accurate" description of the uctuations of the ni abouttheir mean values �ip. This assumption should certainly holdvery well in this situation, but it seems to be hard to estimatethe error reliably.

sampling study in double precision of a discretiza-tion of the mappingx 7! 1� 2x2 on [�1; 1]. (5–1)This mapping also has excellent ergodic proper-ties but in a more subtle and unstable way thanthe previous example. (The precise discretizationstudied is obtained by �rst exploiting evenness tofold the interval [�1; 0] onto [0; 1], i.e. replacing(5{1) by x 7! j1� 2x2j on [0; 1]. (5–2)It is not di�cult to see that the folded mappinghas the same set of periods as the original one.The working interval is then shifted from [0; 1] to[1; 2] by translation, and the iteration of the trans-lated folded mapping is programmed in a straight-forward way.) Out of 1000 randomly chosen initialpoints,� 890| the overwhelming majority|convergedto the �xed point corresponding to the �xedpoint �1 in the original representation (5{1);� 108 converged to a cycle of period 3,490,273;� the remaining 2 converged to a cycle of period1,107,319.Thus, in this case at least, the very long-term be-havior of numerical orbits is, for a substantial frac-tion of initial points, in agrant disagreement withthe true behavior of typical orbits of the originalsmooth mapping.
6. SOME DETAILSAs should now be apparent, the orbit structure ofa discretized map tends to depend sensitively onthe details of the discretization. One consequenceis that an attempt to reproduce the reported or-bit structures is not likely to give the same resultsunless care is taken to use exactly the same dis-cretization. For the relatively low-precision \arti-�cial" discretization, it is not di�cult to describethe discretization precisely. We denote by N the



Lanford: Informal Remarks on the Orbit Structure of Discrete Approximations to Chaotic Maps 323number of points in the discretized working inter-val, so that the points themselves are thexj = jN ; with 0 � j � N � 1.The discretized map we study can be described asthe result of the following three-step procedure:
1. Apply the exact mapping (1{1) to xj . The re-sult lies between 0 and 2� 1=N .
2. If the result of step 1 is � 1 � 1=2N , subtract1; otherwise, leave it unchanged. In either case,the result in now in [�1=2N; 1�1=2N).
3. Round the result of step 2 to the nearest num-ber of the form k=N . If it lies exactly halfwaybetween two of these lattice points, choose theone with k even.(We emphasize that this is an \implementation-independent"characterization of the the discretizedmap, not an algorithm adapted to computing it.)The prescription in step 2 to reduce to the interval[�1=2N; 1�1=2N), rather than the more natural-seeming [0; 1], serves to ensure that we round to anumber of the form k=N with k � N � 1. Notethat the plausible alternative of rounding beforereducing to the interval [0; 1) gives the same resultsfor N even, but not necessarily for N odd, becauseof rounding-to-even in the case of a tie.For the sampling experiments in double preci-sion, it is not so easy to give a short precise speci-�cation of how the mapping is discretized. The waythe experiment was actually done was to write rea-sonably straightforward C-language code for themapping and pass it through a compiler. The Ccode was:double f (double x) {double w;w = 2*(x-1)+0.5*(x-1.0)*(2.0-x);if (w < 1.0) w += 1.0;return(w);}The compiler used for the experiment reported herewas the GNU C compiler, version 2.7.0, running on

an Intel Pentium under the Linux operating sys-tem. \Unoptimized" compilation was requested.Because the Pentium's internal oating point reg-isters provide 64 bit precision rather than the 52bits of double precision numbers, the exact dis-cretization algorithm depends on which intermedi-ate quantities are kept in registers and which arerounded to double precision in order to be stored.2I have not attempted to sort out in all detail whatwas really happening in the experiment performed;the objective was simply to imitate how such acomputation would be done in practice. It maybe worth noting that the above code produces dif-ferent results when compiled and run on a Sparc(again using the GNU C compiler).
7. A FEW BIBLIOGRAPHIC REMARKSAs noted earlier, I learned from D. Ruelle the ideathat the \random iteration" described earlier mightbe a sensible way to model the structure of peri-odic cycles of chaotic maps (and hence that typicalperiods should be of the order of the square root ofthe number of accessible states). Ruelle proposedthis idea to account for some anomalies in numer-ical experiments performed by Y. Levy, and theidea appears in [Levy 1982]. These ideas were de-veloped more generally|and a technical emenda-tion proposed to Levy's Ansatz| in [Grebogi et al.1988]. Recently, a group at Deakin University andthe University of Queensland has been studyingdiscretized mappings systematically. One direc-tion they have pursued is the quantitative studyof how well the random-maps model predicts theorbit structure of discretizations. They have alsostudied ways of improving on the random-mapsmodel to take into account relevant properties ofthe map being discretized, notably the presence of2There is in fact yet another complication. In its default mode,the Intel oating point hardware performs oating point opera-tions by �rst rounding to 64 bits, then rounding that to 52 whenit is stored. Because of the round-to-even tie-breaking rule, thisis not the same as rounding directly to 52 bits. Thus, even if allintermediate quantities are stored, the results will not always bethe same as with pure 52-bit arithmetic.



324 Experimental Mathematics, Vol. 7 (1998), No. 4critical points. See, for example, [Diamond et al.1996]; the extensive bibliography of this article alsoprovides a more thorough overview of prior workthan can be given here.
NOTE ADDEDI am indebted to the anonymous referee for callingto my attention the very relevant work of T. Er-ber and his collaborators, in which, among manyother things, the idea of modelling the orbit struc-ture of a chaotic map by that of a random mapappears prior to the aforementioned work of Levy.In [Erber et al. 1979], orbit structure of discretiza-tions of x 7! 2 � x2 and its dependence on theprecision of the discretization are studied in verymuch the same spirit as the experiments reportedhere. (Curiously, the phenomenon of collapse ofa signi�cant fraction of the orbits onto the �xedpoint|at x = �2 in this way of writing the map-ping|which was so prominent in our experimentsturned up only rarely in those reported in this pa-per.) This paper and the related one [Erber et al.1983] present a wealth of intriguing heuristic ideasbearing on the modelling of the orbit structure ofthese discretizations.
ACKNOWLEDGEMENTSThe programming on which this report is based

was mostly done during an extended stay at theInstitut des Hautes �Etudes Scienti�ques in Bures-sur-Yvette, France, in the Fall and Winter of 1993{94. I thank the IHES and especially Professor Mar-cel Berger, its Director at that time, for their hospi-tality. I am also grateful to Henri Epstein for manystimulating discussions and for encouragement.
REFERENCES[Diamond et al. 1996] P. Diamond, A. Klemm, P.Kloeden, and A. Pokrovskii, \Basin of attraction ofcycles of discretizations of dynamical systems withSRB invariant measures", J. Statist. Phys. 84 (1996),713{733.[Erber et al. 1979] T. Erber, P. Everett, and P. W.Johnson, \The simulation of random processes ondigital computers with �Ceby�sev mixing transforma-tions", J. Comput. Phys. 32 (1979), 168{211.[Erber et al. 1983] T. Erber, T. M. Rynne, W. F.Darsow, and M. J. Frank, \The simulation of randomprocesses on digital computers: unavoidable order",J. Comput. Phys. 49 (1983), 394{419.[Grebogi et al. 1988] C. Grebogi, E. Ott, and J. A.Yorke, \Roundo�-induced periodicity and the corre-lation dimension of chaotic attractors", Phys. Rev. A38 (1988), 3688{3692.[Levy 1982] Y. E. Levy, \Some remarks about computerstudies of dynamical systems", Phys. Lett. A 88(1982), 1{3.Oscar E. Lanford III, Mathematics Department, ETH-Z�urich, 8092 Z�urich, Switzerland (oscar.lanford@math.ethz.ch,http://www.math.ethz.ch/~lanford)Received December 3, 1997; accepted in revised form June 22, 1998


