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We construct closed, embedded, totally geodesic surfaces in

two hyperbolic manifolds obtained as knot complements.

1. INTRODUCTIONThere is considerable interest in the question ofexistence of �1-injective closed surfaces, immersedor embedded, in three-manifolds. If a three-mani-fold is endowed with a metric, we may ask whethersuch a surface exists which is totally geodesic withrespect to the given metric.In the case of hyperbolic three-manifolds, Long[1987] has shown that if such immersed surfacesexist there is a �nite cover containing an embed-ded totally geodesic closed surface. Menasco andReid [1992] have obtained results on the nonexis-tence of embedded totally geodesic closed surfacesin certain link complements in the three-sphere.For link complements admitting an arithmeticstructure, examples of closed immersed totally geo-desic surfaces are fairly easy to construct when thelink has more than one component. At a more al-gebraic level, Maclachlin [1986] has proved the ex-istence of Fuchsian subgroups of arithmetic groupsPSL(2;Od), but without describing their realiza-tions as compact or noncompact surfaces in three-manifolds.Alan Reid [1991b] has shown by arithmetic argu-ments that the complement of the �gure-eight knotin S3, with its complete hyperbolic metric, containsin�nitely many commensurability classes of totallygeodesic immersed closed surfaces. Commensura-bility classes in the arithmetic case are also dis-cussed in [Maclachlan and Reid 1987]. The �gure-eight knot is the only arithmetic knot, a result alsodue to Reid [1991a]. No other hyperbolic knot
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138 Experimental Mathematics, Vol. 6 (1997), No. 2complements were known to contain immersed to-tally geodesic closed surfaces. No explicit descrip-tion of those in the �gure-eight knot complementhave appeared in the literature.We describe two knots containing such surfaces,the dodecahedral knots Df and Ds. The knot Dfwas constructed by Thurston in 1982 [Riley 1989].We describe an orientation-reversing involution onthe complement of Thurston's knot Df , as wellas one on Ds. Our approach derives partly fromconversations with Bill Thurston and is construc-tive. The knot Ds should be named \Long's knot",since its construction derives from the question \Isthere. . . ?", asked of the authors by Long.This paper is organized as follows. We start bygiving a nonanalytic direct argument for the exis-tence of closed totally geodesic immersed surfacesin these knot complements, and recall the knots'original construction. Two pictures of the viewfrom in�nity of an ideal dodecahedron are given,the �rst with a vertex at in�nity. This enables usto see directly the cusp and trace �elds describedin [Neumann and Reid 1992], but is also an excuseto draw some beautiful pictures related to stellatedPlatonic solids and the face structure of icosahedra.We calculate the dihedral angles for the immersedsurfaces, and matrix representatives for the tessel-lation f5; 6g of the immersed surface. The secondview, again in the upper-half space model for hy-perbolic space, has an endpoint of a �vefold axis ofsymmetry at 1, and derives metrically from twonested pentagrams associated to an immersed non-regular decagon. Finally we present the initial seg-ments of the length spectra of these knots, withouto�ering any explanation for their surprising simi-larity.This work �rst appeared as a University of Mel-bourne Research Report in 1990. Our motivationwas the belief that a high degree of symmetry of thetessellation of the universal cover of a hyperbolicknot complement might yield an equivariant collec-tion of hyperbolic planes giving a closed orientableimmersed totally geodesic surface in the knot com-plement. Since the two dodecahedral knots arise

from the same tessellation, it is natural to com-pare other geometric properties potentially sharedby them, such as degree of symmetry, and lengthspectra. Amusingly, both knot complements ad-mit nontrivial symmetries, whereas a motivationfor Riley's examination of the complement of theknot 932 was a claim made by Thurston in 1981that the knot Df admitted no such nontrivial sym-metry.
2. THE TESSELLATION f5; 3; 6g OF HYPERBOLIC

SPACEConsider the unit-ball model for H 3, with hyper-bolic space modelled by the interior of the unit ballin R3 . We use the standard Euclidean coordinatesx, y and z, with the z-axis vertical.Take a Euclidean dodecahedron with two facesparallel to the xy-plane, with vertices lying on 4meridians of the unit sphere, also parallel to the xy-plane. The z-axis is an axis for a �vefold rotationalsymmetry of the dodecahedron.Keeping the same vertices, convert this Euclideandodecahedron to an ideal hyperbolic dodecahedronD. The dihedral angles become �=3, and H 3 can betessellated by isometric copies ofD by reections infaces. This gives the tessellation f5; 3; 6g, with 6dodecahedra about each edge [Coxeter 1956]. Notethat each edge is a geodesic axis of sixfold rota-tional symmetry of the tessellation. Denote by �the in�nite group of symmetries of this tessella-tion. � is generated by the 120 symmetries of D,together with reections in the faces of D.The xy-plane intersects D in a decagon. If wetranslate D upwards along the z-axis, we can ar-range for D to have its bottom face F lying in thexy-plane as a regular ideal pentagon. The verticesof D still lie on horizontal meridians. At this stage,the xy-plane is tessellated by faces of dodecahe-dra, which thus induce the 2-dimensional hyper-bolic tessellation f5;1g [Coxeter 1956].Choose one of the 5 edges of D, designated E,emanating from a vertex V of F, with E not an edgeof F. The other endpoint of E lies on a meridian



Aitchison and Rubinstein: Geodesic Surfaces in Knot Complements 139with positive z-coordinate, and consequently E isdisjoint from the z-axis, but coplanar with it.SlideD back down the z-axis until the edge E liessymmetrically about the xy-plane, and is thereforeorthogonal to it. At this stage, the xy-plane isorthogonal to two distinct axes of rotational sym-metry of the tessellation. Hence rotating abouteither the z-axis, or E, both the tessellation andthe xy-plane are preserved. The intersection ofthe xy-plane with D is now a regular �=3-angledpentagon, since the plane is orthogonal to E andthe other four edges emanating from the verticesof F. Hence the intersections of the xy-plane withall dodecahedra of the tessellation f5; 3; 6g inducethe tessellation f5; 6g on the plane [Coxeter 1956].The circle on the sphere at in�nity correspondingto this plane is therefore disjoint from all ideal ver-tices of the tessellation f5; 3; 6g.By symmetry, there is an in�nite �-invariantfamily of planes in H 3, the intersection each ofwhich with any dodecahedron being either emptyor a regular pentagon parallel to a unique face.Each dodecahedron contains 12 such pentagons ofintersection. As an immediate consequence, wehave the result:
Theorem 2.1. Suppose that G is a torsion-free sub-group of � of �nite index . Then the �nite-volumenoncompact hyperbolic three-manifold MG = H 3=Gcontains an immersed , totally geodesic closed sur-face.
Corollary 2.2. Each of the dodecahedral knots Df ,Ds constructed in [Aitchison and Rubinstein 1992]contains an immersed closed surface in its com-plement in S3, totally geodesic with respect to thecomplete constant curvature metric.
Proof. These knots are shown in [Aitchison and Ru-binstein 1992] to arise as in the theorem. �
3. THE DODECAHEDRAL KNOTSWe recall the construction of the two dodecahe-dral knots Ds and Df [Aitchison and Rubinstein1992]. Take two copies of an ideal regular hyper-

bolic dodecahedron, and colour the faces of one us-ing two colours, so that no vertex is surrounded byfaces all of the same colour. Identify correspond-ing faces of the two copies by isometries, rotationsof �2�=5, with sign determined by the colour ofthe face. There are essentially two choices for suchcolourings, as shown in Figure 1, and the resultingtopological spaces after face identi�cations are thecomplements of the two knots Ds and Df . Theknots Ds and Df are illustrated in Figure 2.
FIGURE 1. The two ways to shade the faces of adodecahedron with two colors so that no vertex issurrounded by faces all of the same color.

Proposition 3.1. The two knots Ds and Df are dis-tinct .
Proof. The Seifert surfaces determined by apply-ing Seifert's algorithm to the given projections areminimal [Murasugi 1963], and of di�erent genus.The knot Df is �bred [Aitchison and Rubinstein1992], with �bre surface that from the projection,and hence is distinct from Ds, which has lowergenus. �Neumann and Reid [1992] have demonstrated someremarkable properties of these knots:
(i) These are the �rst known examples of knotswith cusp �eld and trace �eld di�ering (respec-tively Q(p�3) and Q(p�3;p5)).
(ii) They are the only known nonarithmetic knotswith cusp �eld Q(p�3), that of the �gure-eightknot.
(iii) They are the only known nonarithmetic knotswith hidden symmetries. (Equivalently, the knotcomplements nonnormally cover some orbifold.)
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FIGURE 2. The knots Ds (left) and Df (right).Aspects of these properties will emerge later.
4. �1-INJECTIVE SURFACESIn [Aitchison and Rubinstein 1992], it is shown thatthese knot complements admit singular polyhedralmetrics, with respect to which there exist immersed�1-injective totally geodesic closed surfaces Ss, Sf .Each of these surfaces arises topologically by iden-tifying edges of the 24 pentagons parallel to the24 faces of the two dodecahedra. The surfaces soobtained are topologically exactly those appearingin the smooth construction.
Theorem 4.1. The surfaces Ss and Sf are regularlyhomotopic to totally geodesic closed surfaces in thestandard complete hyperbolic metric on S3�Ds andS3 �Df respectively .
5. IDEAL REGULAR DODECAHEDRA IN HYPERBOLIC

SPACECoxeter [1948; 1949] described the four possibletessellations of H 3 by regular ideal Platonic solids.The tessellation f5; 3; 6g, corresponding to the reg-ular ideal dodecahedron D, has symmetry group

� the tetrahedral group T [5; 2; 2; 2; 3; 6] [Neumannand Reid 1992; Lee 1985a]. This is generated byrotations in the edges of one of the 120 isomet-ric tetrahedra of the barycentric subdivision of D.Thus � is also generated by reections in the facesof D, together with the order-120 group of symme-tries of D. There are six dodecahedra around eachedge, so the dihedral angles are all �=3.We determine matrices in SL(2;C) correspond-ing to generators of �. The tetrahedron has ver-tices v; e; f; c, with v at in�nity, and with e, f andc corresponding to an edge, a face and the centreof D respectively.We use the upper-half space model for H 3, withthe ideal vertex v of the tetrahedron at 1. Thegeodesic edges ev, fv and cv become parallel ver-tical lines in this model, with dihedral angles �=6,�=2 and �=3 respectively. Viewed from 1, as inFigure 3, the vertices e, f and c project to thevertices of the triangle E, F and C arranged tobe at the points 0, ��=2 and ��5=p3 where � =exp i�=6 = p3=2 + i=2 in the complex plane, and� = (1 +p5)=2 is the golden mean.
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FIGURE 3. Elements of the hyperbolic tetrahedronD, with vertices c, e, f , and v (at in�nity).The face ecf of the tetrahedron is the intersec-tion of the triangular chimney over ECF with thehyperbolic plane corresponding to the circle in thecomplex plane of radius 1, centred at E = 0. Itis a straightforward calculation to show that thedihedral angles at the edges ec, cf and fe are re-spectively �=2, �=5 and �=2. This completes theconstruction of the tetrahedron [5; 2; 2; 6; 3; 2]. SeeFigure 3.

6. TETRAHEDRAL GROUP GENERATORSThe tetrahedral group T [�1; �2; �3; �1; �2; �3] de-termined by positive integers �1; �2; �3; �1; �2; �3has presentation [Lee 1985b]hx; y; z :x�1=y�2=z�3=(xy)�1=(xz)�2=(y�1z)�3=1i:In this notation, we have T [5; 2; 2; 6; 3; 2] generatedby these M�obius transformations:rotation about cf by 2�=5 = x = ��� �11 0 �rotation about fe by 2�=2 = y = � 0 ii 0�rotation about ec by 2�=2 = z = � 0 i��1i� 0 �

rotation about ev by 2�=6 = y�1z = � � 00 ��1 �rotation about cv by 2�=3 = xz = ��i� �i���10 i��1 �rotation about fv by 2�=2 = xy = ��i �i�0 i �The �xed points on the sphere at 1 correspond-ing to these elliptic elements are 1, E, C and F ,corresponding to the latter 3 elements, and the in-tersections of the unit circle with the straight linesdetermined by CF , FE and EC. From the dodec-ahedral symmetry, we know that the hyperbolicplane in H 3 determined by ecf contains two edges,meets another two edges orthogonally, bisects fourfaces and contains four ideal vertices. Similarlythe endpoints of the geodesic determined by vc areboth ideal vertices.
7. CUSP AND TRACE FIELDSWe can obtain a view of the cusp structure by aslight elaboration of Figure 3, enabling the cuspand trace �elds to be seen directly. Coxeter [1948;1949] does not treat stereographic projection, sowe give a fairly complete description.In Figure 4, left, we have constructed an equilat-eral triangle E, P , Q of base length � . The circleof radius 1 centred at E = 0 intersects the edgesof this triangle at the points RE and SE. Simi-larly, unit circles centred at P and Q determine thepoints RP , SP , RQ and SQ. Next we add the edgesjoining vertices of the equilateral triangle to thetwo points just constructed on the opposite edge.These segments intersect in twelve points, six ofwhich are labelled A1; : : : ; A6, and three B1; B2; B3in the �gure. Points A6 and A3 are, like SE andRE , at distance 1 from E. We draw segments join-ing the Bi to the center C of the original triangle,and the segments A1A6, A2A3, and A4A5.Erasing superuous lines (Figure 4, right) we areleft with a pattern of nine pentagons:QREA3A2SP , ERPA5A4SQ, PRQA1A6S



142 Experimental Mathematics, Vol. 6 (1997), No. 2at the vertices of the original triangle;RSQA4B2A3, RPSA6B3A5, RQSPA2B1A1at the edges; andA2A3B2CB1, A4A5B3CB2, A6A1B1CB3at the centre.Together with the three pentagons 1PRQSPQ,1QRSQE and1ERPSP, we have the twelve facesof the ideal dodecahedron D.Viewed from the parabolic �xed point at in�nity,we see the tessellation of the plane by equilateraltriangles, each of which corresponds to an idealdodecahedron with a vertex at 1. We see directlythat the cusp �eld is Q(p�3). Moreover, from[Neumann and Reid 1992] we know that the trace�eld is generated by parabolic �xed points in theplane, after three of which have been conjugated tolie at the points 0;�1;1. From the matrix gener-ators of the symmetry group �, and the existenceof a parabolic �xed point at �� , we conclude as

in [Neumann and Reid 1992] that the trace �eld isQ(p�3;p5).The reader may have observed the similiaritybetween Figure 4 and the diagram appearing in[Coxeter 1956, p. 97], showing the 18 lines of inter-section of planes determined by faces of a regularEuclidean icosahedron with the plane of a distin-guished face. These 18 lines are depicted in Fig-ure 5. The three lines of the equilateral triangle,together with the remaining six lines through thevertices so determined, give nine lines from whichthe dodecahedron is constructed.That this diagram arises can be understood asfollows. Consider a spherical dodecahedron, andtake the metric on the graph of vertices and edges,with all edges of length 1. Choose any vertex v,and consider the circle Cv passing through the sixvertices at distance 2 from v. This circle lies in aplane orthogonal to the axis vv�, where v� is thevertex antipodal to v. Dually, the six circles aboutthe vertices at distance 2 from v, all pass throughv. Another three planes passing through v are de-
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P

E

P

Q
SE RPSP RQ
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RE SQ
FIGURE 4. Left: Triangle EPQ has side length � = (1 +p5)=2. On the edges we mark SE and RE atdistance 1 from E, etc. Connecting these points to the opposite vertices creates nine additional pointsA1; : : : ; A6; B1; : : : ; B3. Together with the center of the construction, all these points form 19 of the vertices ofa dodecahedron, seen in stereographic projection from the last vertex (right).
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FIGURE 5. The 18 lines of intersection of planesdetermined by faces of a regular Euclidean icosa-hedron with the plane of a distinguished face.termined by the three faces of the dodecahedronincident at v. Stereographically projecting the do-decahedron onto a plane from the point v, the 3faces determine the equilateral triangle, and thesix circles give rise to the six lines throught thevertices of the equilateral triangle. These six linesintersect in points corresponding to the vertices ofthe dodecahedron at which the circles intersect.The icosahedron can be constructed by truncat-ing the vertices of a dodecahedron by planes or-thogonal to radial lines from the centre of the do-decahedron to the vertices. The six lines abovethus correspond to six faces of the icosahedron.The existence of these six circles through eachvertex of the dodecahedron facilitates the construc-tion of the diagram directly. The regular Euclideanor spherical dodecahedron, stereographically pro-jected from a vertex onto the tangent plane of thesphere at the antipodal vertex, appears as in Fig-ure 4, right, since there are straight lines containingsix vertices, such as QA3B2A5RP1. Calculatingthe tangent of the angle RPQE in di�erent waysleads to a simple quadratic equation whose solutioninvolves the golden mean.

8. DIHEDRAL ANGLESWe have given a geometric argument for the exis-tence of the family of hyperbolic planes in section 2,using the ball model for hyperbolic space. In thissection we consider some analytic aspects, in orderto calculate the dihedral angle between any twosuch planes.We have associated a hypersurface H(D;F;Ei)to each triple (D;F;Ei), where D � F and Ei hasan ideal vertex in common with F. By rotationalsymmetry about the �vefold axis F orthogonal toF, this hypersurface is independent of edge choiceEi.Now consider the family H� of all hypersurfacesarising in this fashion. We use the view from in�n-ity to calculate the dihedral angle between any twointersecting planes in H�. Without loss of gener-ality we may consider the following situation.Denote by  the geodesic axis of �vefold rota-tional symmetry preserving the ideal pentagonalface F = A3B2A4SQRE of the dodecahedron D ofFigure 4. Thus  also passes through the centreof the face PRQA1A6SE. The hyperbolic planeH(D;F) is orthogonal to the edges QRE, A3A2,B2C, A4A5, SQE, as well as to the adjacent facesto F. Hence H(F) = H(D;F) has F as its cen-tre for the corresponding limit circle C1 at in�nity,by symmetry. This circle meets the (planar) edgesjust mentioned orthogonally, and inverting in thecircle interchanges the endpoints of these edges.This explains why the edges, extended into the in-teriors of pentagons, are concurrent. In particular,we see another reason why the centre of C1 is thepoint F .To calculate the radius �1 of C1, change coordi-nates so that F is the origin, and Q;E lie at thepoints ��=2 on the x-axis. Then SQ and RE arerespectively �(2� �)=2. Hence�21 = (2� �)2 : �2 = (� � 1)4 :Another hyperbolic plane inH� is orthogonal tothe sixfold axis ev, and thus has its circle at in�nity



144 Experimental Mathematics, Vol. 6 (1997), No. 2C2 centred at E, and orthogonal to the edges E1,RPSE, A5B3, A4B2; SQRE. We calculate its radius�2 analogously, since inversion in C2 interchangesRE and SQ. �22 = j1� � j : 1 = (� � 1):The angle at which the circles C1 and C2 intersectin the plane is exactly the dihedral angle at whichthe corresponding planes in hyperbolic space meet.Since the centres of these circles are at distance �=2apart, we calculate this angle ascos � = �21 + �22 � � 2=42�1�2 = (2� � 3)�2 = 1� �2= 3�p54 � 0:190983006;so � � 79�.
Remark 8.1. Hass and Scott [1992] have shown thatimmersed surfaces meeting at such an angle auto-matically satisfy their 4-plane, 1-line property.We have drawn circles determining such hypersur-faces in Figure 6. Note that there are six pentagonssliced o� by the hypersurface orthogonal to the six-fold z-axis.

FIGURE 6. The circle C2 and six copies of C1, on thesphere at in�nity (as seen from one point thereof).

9. ANOTHER VIEW OF THE DODECAHEDRONThat the surfaces constructed above slice o� pen-tagons parallel to the faces of dodecahedra can alsobe seen by a di�erent view of the dodecahedron,again in the upper-half plane model, but conju-gated so that the endpoints of an axis of �vefoldrotation lie at 0 and 1. We will eventually de-scribe a simple construction of the stereographicprojection of a regular dodecahedron based on anirregular decagon.We begin with a ruler and compass construction(Figure 7), and then reconcile the emergent picturewith the tessellation using cross-ratios. We start byconstructing two lines through an initial point O,at an angle of �=5 (recall that the regular pentagonis constructible!). Choose a point A on one of theselines, and construct B as the intersection of theother line with the line AB at an angle of �=3 toOA. Similarly construct C on the line OA usinga line at angle �=3 to AB at B. With a compasscentred at B, construct the isosceles triangle CBD,with BC = BD. Construct a line through D atangle �=3 to OB at D, thereby �nding E on OA.Finally construct F on OB, so that \DEF = �=3.Choose orthogonal axes through O and a scaleso that F is the point 1 in the complex plane. Thepoint D is thus at the point w satisfying the quad-ratic equationw2 + w(2� 3�) + 1 = 0: (9.1)

O 36�F EX60� D60� x
Cx

B60�
A60�

FIGURE 7. A ruler and compass construction.



Aitchison and Rubinstein: Geodesic Surfaces in Knot Complements 145This can be obtained by dropping a perpendicularfrom E to X on OB, and calculating cos �=5 =OX=OE: if jOXj = z, and jODj = w, thenjOXj = (z + w)=2;jEXj = p3jFXj = p3(w � z)=2jOEj2 = jOXj2 + jEXj2� = 2 cos �=5 = jEXj=jOEj:
1 w��w

FIGURE 8. The points F , D, C, A of Figure 7,plus their images under �ve-fold rotation about O,correspond to the vertices of an ideal regular hy-perbolic dodecahedron D.Now take the four points F;D;C;A and theirimages under �vefold rotation about O. This givesus the twenty points in Figure 8. It turns out thatthese twenty points are the vertices of a regularideal dodecahedron in the upper half-space model,with �vefold axis of symmetry having endpoints at0 and 1.To see this, note that, by symmetry considera-tions, the distribution of points of an ideal regulardodecahedron D in the required arrangement mustbe similar to that of Figure 8. It su�ces to verifythat Figure 8 is metrically correct.

Each face of D is a regular pentagon, so eachfour consecutive vertices on any face must havethe same cross-ratio as corresponding points of thestandard Euclidean regular pentagon. (Recall thatthe cross-ratio of four ordered points z1; z2; z3; z4 inthe Riemann sphere is[z1; z2; z3; z4] = z1 � z3z1 � z4 z2 � z4z2 � z3 ;and that the cross-ratio is preserved under M�obiustransformations.) Setting � = exp 2�i=5, one caneasily verify that the cross-ratio [1; �; �2; �3] of fourconsecutive vertices of a regular pentagon, takencounter-clockwise, equals � . Also by direct com-putation, we see that the cross-ratiot = [�w; �; 1; w]of the four labeled points in Figure 8 satis�es thelinear equationw2 + w(2� 3t) + 1 = 0;comparing with (9.1), we see that t = � .To verify that the other points are correctly dis-tributed, observe that, by construction, there arecircles (whose circles are the points E and B of Fig-ure 7) going through �ve points as a time. Symme-try considerations then show that point C of Fig-ure 7 is a vertex, and similarly for the other points.Thus Figure 8 does describe the vertex distributionof a regular ideal dodecahedron.It is now a simple matter to explicitly �nd theequations for planes orthogonal to the �vefold andsixfold axes described above. We seek a circle, cen-tre the origin and of radius �, inversion in whichinterchanges the points 1 and w. This requires�2 = w; w2 + (2� 3�)w + 1 = 0:It is now obvious that this plane slices through Das a pentagon parallel to a face, and that edges ofD are met symmetrically. Since the hypersurfacemeets each edge orthogonally, the dihedral angle�=3 at each edge is also the angle at the vertex ofeach pentagon in the induced tessellation of thisplane.
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10. YET ANOTHER DESCRIPTIONConsider again the stereographic projection of thedodecahedron from the north pole viewed as theendpoint of a �vefold symmetry axis. Take any faceadjacent to the bottom face, and consider the circleC0 at in�nity of hyperbolic space passing throughthe ideal vertices of this face. If we take a fam-ily Ct of meridianal circles on S2, parallel to C0,and with C1 passing through the vertices of theopposite face of the dodecahedron, for some t = �we must have the north pole lying on C� . Eachof these circles projects to a circle in the plane,with C� projecting to a straight line. Each of thesecircles de�nes an inversion interchanging the sametwo points, the endpoints of the axis of the dodec-ahedron orthogonal to the hyperbolic planes corre-sponding to the circles. The Euclidean centres ofthe projections of the circles Ct describe a straightline on the complex plane, with one point at in�n-ity, whereas the hyperbolic axis about which theyare simultaneously symmetric has �xed endpoints.The Euclidean centres of C0 and C1 can be foundas the intersections of the perpendicular bisectorsof the edges of the respective pentagons.Thus an interesting aspect of the projections ofthe dodecahedron we have given has been broughtto light by the family of hyperbolic planes we havebeen constructing.The hyperbolic plane parallel to a face, meet-ing edges orthogonally, determines a reection ofhyperbolic space which interchanges the endpointsof these intersected edges. In the plane, inversionin the corresponding circle interchanges the end-points of the straight-line segments correspondingto these edges. Accordingly, each of these edges isorthogonal to the circle, so the centre of the circleis the common point of intersection of these edgesextended into the pentagon. This is true for eachof the pentagons. This leads to both the conve-nient means of calculating the dihedral angle oftwo of these hyperbolic planes, given above, andalso an alternative way of constructing a stereo-graphic projection of a regular dodecahedron.

Construct an immersed decagon in the plane bytaking ten edges of equal length and laying themend to end with interior angles alternately equalto �=3 and 7�=15. The con�guration so obtainedis shown in Figure 9, left. The interior of this�gure is a nonregular decagon. Construct a regu-lar pentagram with vertices at the vertices of thisdecagon of smaller angle. The interior pentagon isone of the faces of the dodecahedron. Constructa larger pentagon by extending all edges throughthe 7�=15-vertices, and taking vertices determinedby the intersections of such extended edges on ei-ther side of a �=3 vertex. Construct a pentagramon these vertices. The pentagon interior to thispentagram has 5 edges, with an irregular pentagonbased on each edge, in the interior of the pentagon.The construction is illustrated in Figure 9, middle.Finally, Figure 9, right, we delete some extraneousedges, to obtain the projected dodecahedron withedges extended to intersect concurrently in the in-teriors of faces.That this con�guration really is the regular do-decahedron can be seen by studying the variousangles in Figure 9, and comparing with Figure 7.
11. MATRIX GENERATORS FOR THE TESSELLATIONf5; 6gThat totally geodesic surfaces might exist in thedodecahedral knot complements was suggested inpart by the great similarity of their length spectra,calculated by SnapPea [Weeks 1990{96].The immersed surfaces in the knot complementsare covered by hyperbolic planes, tessellated by�=3-angled pentagons. The group generated by a�vefold and sixfold rotation, about coplanar dis-joint axes, acts transitively on the cells of this tes-sellation. In the upper half space model, the sixfoldrotation with �xed points at1 and u is determinedby the matrix � � �iu0 ��1 � :
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FIGURE 9. Left: An immersed decagon with alternating angles �=3 and 7�=15. Middle: The extended decagon.Right: Erasing certain lines leads again to the pattern of the ideal regular dodecahedron, as in Figure 8.For convenience, we may take as generators for thetessellation the two matrices��� �11 0 � and � � i��20 ��1 � :The latter de�nes a rotation with �xed points at���2 = ��=2 +p3�=2i and 1.
12. LENGTH SPECTRAThe symmetry of the the universal cover of thedodecahedral knots had suggested the possibilityof existence of immersed totally geodesic surfaces.This viewpoint was reinforced by the similarity oflength spectra for the two knot complements, ob-tained using SnapPea [Weeks 1990{96]. We havelisted these spectra in Table 1, since their intrigu-ing similarity is not yet understood.It is a remarkable empirical fact that the spec-trum for Ds appears as a subset of the spectrumof Df , at least up to a cuto� of 6.0 with a radiusof 7.0. The complex lengths common to both areindicated with \sym". Although only four signi�-cant places are given, the agreement is actually totwelve decimal places. The gaps in the table thus

correspond to complex lengths occuring for Df butnot for Ds. Note that the �rst di�erence betweenthe �bred and symmetric knots occurs for an ele-ment with � rotational part, with length that of atotally-geodesic surface element.
Proposition 12.1. For both Df and Ds, the knotcomplement admits an orientation-reversing invo-lution. Hence all complex lengths occur in conju-gate pairs.
Proof. Each knot can be arranged on the graph of adodecahedron on a two-sphere in S3. In each case,the involution interchanges the centres of the idealdodecahedra of the complement.For Df , take the equator as a Hamiltonian cir-cuit for a nonregular dodecahedron. Twisted bandsare added along �ve arcs in each hemisphere (fromwhich structure we know the knot �bres). The �vearcs at the back and front are interchanged by a ro-tation of the sphere, and a further reection in thesphere gives the desired involution; the plumbingsat the back and front occur with di�erent parity.The shading of the dodecahedron giving rise to Dsis the more symmetric. Rotate the sphere by an



148 Experimental Mathematics, Vol. 6 (1997), No. 21.9848 0.4276*2.7432 0.2107*2.8211 0.1184*2.9016 0.2446*3.0687 0.0000*3.1284 0.4604*3.2043 0.3442*3.4739 0.0819*3.5759 0.4151*3.6071 0.0000*3.6647 0.4285*3.7358 0.2546*3.7854 0.2463*3.8794 0.1349*3.9449 0.4647*3.9451 0.4152*3.9696 0.1446*4.0869 0.4179*4.1730 0.2691*4.2444 0.1706*4.2859 0.5000*4.3357 0.0000*4.3357 0.40004.3425 0.1179*4.4031 0.2756*4.4374 0.2265*4.5334 0.27914.5370 0.0468*4.5462 0.3930*4.5506 0.47764.5663 0.1959*4.5725 0.3189*4.5829 0.4382*4.5829 0.1533*4.5934 0.4743*4.6233 0.1693*4.6250 0.14974.6366 0.2008*4.6674 0.01664.6701 0.3257*

4.6758 0.4505*4.6917 0.1444*4.7136 0.0695*4.7235 0.2239*4.7272 0.4645*4.7681 0.35134.7836 0.0670*4.7983 0.2951*4.8029 0.3106*4.8113 0.2122*4.8132 0.4966*4.8306 0.4575*4.8507 0.2147*4.8644 0.0000*4.8659 0.2963*4.8690 0.4550*4.8704 0.4235*4.9058 0.0000*4.9058 0.2879*4.9080 0.08744.9234 0.1020*4.9279 0.3353*4.9284 0.0474*4.9505 0.19554.9563 0.0613*4.9567 0.12514.9649 0.4836*4.9709 0.0000*4.9877 0.4092*4.9892 0.4475*5.0083 0.2901*5.0147 0.3800*5.0318 0.2852*5.0344 0.1862*5.0381 0.26285.0478 0.4069*5.0562 0.05825.0753 0.3133*5.0782 0.3567*5.0796 0.2557*

5.0821 0.4421*5.0910 0.0436*5.0945 0.1307*5.0982 0.3832*5.1039 0.2291*5.1115 0.3777*5.1167 0.4401*5.1195 0.14365.1393 0.32195.1449 0.43345.1729 0.35565.1754 0.1339*5.1904 0.4718*5.1911 0.3808*5.1938 0.4662*5.1968 0.32225.2012 0.2732*5.2083 0.0539*5.2144 0.3425*5.2145 0.44305.2153 0.16815.2182 0.1826*5.2194 0.1446*5.2252 0.00005.2334 0.48575.2452 0.1653*5.2473 0.1796*5.2508 0.0732*5.2521 0.45405.2547 0.29495.2636 0.0323*5.2662 0.1193*5.2690 0.32725.2748 0.16805.2752 0.2426*5.2782 0.27075.2848 0.42635.2862 0.13125.2903 0.20475.2977 0.4180*

5.2995 0.23895.3042 0.0712*5.3087 0.2959*5.3119 0.4793*5.3152 0.3153*5.3213 0.4047*5.3238 0.09525.3256 0.45725.3285 0.29175.3312 0.2404*5.3329 0.3775*5.3333 0.4489*5.3374 0.39675.3405 0.4284*5.3555 0.3274*5.3596 0.4274*5.3675 0.0000*5.3686 0.1544*5.3818 0.0493*5.3820 0.0999*5.3847 0.06105.3859 0.4785*5.3932 0.2974*5.3945 0.27425.3968 0.3716*5.4035 0.4018*5.4120 0.2933*5.4124 0.09835.4161 0.1851*5.4251 0.1294*5.4257 0.0070*5.4308 0.2450*5.4326 0.04815.4340 0.0296*5.4382 0.01825.4389 0.42365.4408 0.2190*5.4423 0.1823*5.4606 0.0959*5.4649 0.4367*

5.4649 0.02915.4682 0.0655*5.4736 0.1069*5.4745 0.34545.4761 0.30565.4770 0.2696*5.4809 0.3167*5.4865 0.4214*5.4878 0.4399*5.4929 0.0759*5.4935 0.19855.4951 0.49765.5002 0.0000*5.5006 0.25925.5038 0.3236*5.5041 0.4696*5.5048 0.3452*5.5082 0.2483*5.5160 0.22345.5222 0.07485.5249 0.4449*5.5302 0.0000*5.5305 0.03905.5322 0.05665.5359 0.4082*5.5370 0.2496*5.5387 0.4862*5.5406 0.0107*5.5422 0.0347*5.5436 0.37295.5439 0.4189*5.5511 0.4618*5.5519 0.32385.5527 0.3449*5.5539 0.1837*5.5551 0.36865.5556 0.0803*5.5597 0.0451*5.5598 0.1960*5.5599 0.0000
TABLE 1. Lengths of closed geodesics for the complements of Df (all entries) and Ds (entries marked withan asterisk). Each entry consists of real and imaginary parts; the real part is the translation distance of thecorresponding hyperbolic transformation, and the imaginary part gives the torsion in units of 2�. The imaginarypart can be taken with either sign, since, due to the existence of an orientation-reversing involution, all complexlengths occur in conjugate pairs.



Aitchison and Rubinstein: Geodesic Surfaces in Knot Complements 149involution interchanging faces of opposite colour,and again compose with a reection of S3 in thetwo-sphere. This gives the desired involution ofS3 �Ds. �If one considers only the real parts, and conjecturesthe existence of a �-invariant locally �nite fam-ily of hyperbolic planes in the universal cover, thesimilarity of length spectra does not seem unrea-sonable. However, a Fuchsian element has vanish-ing rotational part, and only a few of the complexlengths have this property. Only some of those inTable 1 arise as multiples of lengths correspondingto the tessellation f5; 6g.
13. OPEN PROBLEMS

Problem 13.1. The two subgroups of � producingthese knots are of the same index, and have thesame fundamental domain. The spectra are thusboth subsets of a common set, but appear to becloser than one might expect. Explain the similar-ity of length spectra of the dodecahedral knots.
Problem 13.2. The length spectra of the dodeca-hedral knots contain several complex lengths withvanishing imaginary part which do not correspondto the surface constructed in this paper. Do theyarise from some other immersed totally geodesicsurface? Note that there are several naturally oc-curing noncompact immersed surfaces. Moreover,some of the lengths corresponding to potential im-mersed surfaces occur for Df . Does Df containsome other compact surface not arising from thetessellation?
Problem 13.3. Determine whether or not each of thedodecahedral knots contain in�nitely many com-mensurability classes of immersed totally geodesicclosed surfaces.
Problem 13.4. By [Long 1987], each of the dodecahe-dral knot complements has a �nite cover containingan embedded totally geodesic surface. Character-ize such covers.

Problem 13.5. In [Aitchison and Rubinstein 1992], itis shown that every three-manifold arising by non-trivial Dehn surgery on each of the dodecahedralknots contains a �1-injective immersed closed sur-face, satisfying the 4-plane, 1-line condition [Hassand Scott 1992]. Determine which of these are vir-tually Haken, in light of the preceding problem.
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