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We describe a computational, heuristic approach to the prob-
lem of deciding whether or not a given finitely presented group
has a free quotient of rank two or more. Our strategy is to con-
struct a finite nilpotent quotient of the given group, to search for
quotients that are free within a variety containing that quotient,
and then lift to the original group. We give theoretical justi-
fication to our strategy, and describe successful computations
with sections of the Picard group SLa(Z]i]).

1. INTRODUCTION

This article discusses the following problem: If G is
a group with a given finite presentation (X | R) =
(X1, T2y yTm |T1,T2, ..., Tn), how can we decide
whether or not G has a free nonabelian quotient?
Alternatively, and equivalently, how do we decide
whether or not G has a free quotient of rank two?
We describe a computational approach to the prob-
lem, relating to actual calculations with the Picard
group SLy(Z[3]).

We know that G has a free quotient of rank k if
and only if there is a homomorphism from the free
group on X onto the free group of rank k£ whose
kernel contains each of the words in R. Such homo-
morphisms correspond to sequences (wy, ..., w,,)
of freely reduced words in k generators (where w;
is the image of z;), and can be enumerated by a
backtrack search. That a given homomorphism is
surjective can also be verified using a backtrack-
ing search. Thus there is a clear procedure to find
eventually a free quotient if one exists. However
this method can not be used to prove the nonexis-
tence of a free quotient, and is totally impractical
for large presentations. Hence we take an entirely
different and heuristic approach.

We attempt to construct free quotients of G by
identifying additional relations to add to those in
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the given presentation, that is, we search for a set
R' of words in the generators for G such that the
group (X | RUR') is free.

Briefly our strategy is as follows. We start by
looking not at G but at a nilpotent quotient I' of
G. Typically T' is in the variety of p-groups, for
some prime p, with exponent p class 2; occasion-
ally we need to look at a higher class. We search
for additional relations that should be added to de-
fine a quotient of I" that is free within a restricted
variety of groups containing I'. If we are successful
in our search, we lift those additional relations to
G, and hope that the quotient of G thus defined is
free (we verify this by simplifying the presentation
we now have with Tietze transformations). If it is
not we try again with a larger quotient I'.

The remainder of this paper is organised as fol-
lows. Section 2 describes our motivation for ex-
amining the problem, and discusses other possible
applications. Section 3 gives some details about
the particular problem with the Picard group that
we were trying to solve. Section 4 describes in de-
tail the strategy outlined above, and gives some
theoretical justification. Section 5 describes our
successful calculations with the Picard group.

2. APPLICATION

Our original interest in this problem arose out of a
problem from Alec Mason about the principal con-
gruence subgroups of the Picard group SLy(Z[i]).
Details will given in Section 3, and we shall use this
example to illustrate our approach to searching for
free quotients, which will be described in Section 4.
But the question appears to be of more general in-
terest. Certainly a group with a nonabelian free
quotient has a very rich finite quotient structure,
and maps onto any finite simple group. Clearly
also such a group is SQ-universal, that is, has ev-
ery countable group as a subgroup of a quotient.
Knowledge of free quotients may also be inter-
esting for three-manifold groups, since it gives in-
formation about the possible decompositions of a
group as an HNN-extension or a free product with

amalgamation. For example, by [Dicks and Dun-
woody 1989, Theorem V1.4.5], if a finitely pre-
sented group G has a free quotient of rank n, it
is of the form Axp where A and B, are finitely
generated and A has a free quotient of rank n — 1.
(Recall that Axp = (A,t|tbt™ = p(b) for b € B),
where ¢ is an isomorphism from the subgroup B
of A to a subgroup C of A.)

Waldhausen’s conjecture (raised as a problem in
[Waldhausen 1978]) states that every irreducible
three-manifold M has a finite cover M’ that is ei-
ther simply connected or Haken (admits an embed-
ding of a closed surface S whose fundamental group
embeds nontrivially in that of M’, and hence which
allows a decomposition of M"). If M' is Haken, its
fundamental group is either a free product with
amalgamation (if S separates M’ into two disjoint
manifolds) or an HNN-extension. A stronger form
of Waldhausen’s conjecture states that M must al-
ways have a finite cover whose fundamental group
is either trivial or an HNN-extension.

An algorithm to search directly for decompo-
sitions of a given finitely presented group as an
HNN-extension or free product with amalgama-
tion is described in [Bartholomew 1987], and is
implemented as a C-program to run on DOS ma-
chines. The algorithm involves the construction of
a two-dimensional cell complex from the presenta-
tion, and then a search for ‘tracks’ (certain subsets
of the complex) that give information about possi-
ble decompositions. In general there are infinitely
many tracks, but for certain presentations a finite
set of tracks is sufficient to determine the existence
of a decomposition, so the algorithm decides con-
clusively whether of not the group decomposes.

3. A QUESTION ABOUT THE PICARD GROUP

Let G be the Picard group SLy(Z[i]). For any in-
teger n, let G(n) be the kernel of the natural map
from G to SL(Z[i]/nZ[i])), and let E(n) be the
normal closure in G of the subgroup generated by

the n-th powers of the matrices u = ((1);) and
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G(n)/E(n).

In a private communication, Alec Mason asked if
one could find out for which n the group GE(n) has
a free nonabelian quotient. He conjectured that

Finally, let GE(n) be the quotient of

there was such a quotient for all but finitely many
n. If there were free nonabelian quotients for some
n, then the Picard group would have uncountably
many nonnormal ‘standard’ subgroups.

Our calculations showed that GE(5), GE(6) and
GE(7) had free quotients of rank two. The calcula-
tions, of which some details are given below, were
large and so caused us to develop what appears to
be an effective strategy to deal with the problem.
It would probably be possible to carry out similar
calculations in GE(n) for larger values of n, al-
though this starts to become more difficult as the
index of GE(n) in G increases, because the length
of the computed presentation for GE(n) increases
roughly in proportion to this index.

To put this particular problem into perspective,
we remark that Bass, Milnor and Serre proved in
[Bass et al. 1967] that, for any arithmetic Dedekind
domain A, no subgroup of finite index in SL,(A4)
has a free nonabelian quotient when n > 2. This
is also true for n = 2 when A has infinitely many
units, so the interesting groups from this point of
view are SLy(A) where A has finitely many units.

Let d be a positive integer and let R = Q4 be
the ring of integers of Q[v/—d]. Mason and Odoni
[1996] have now proved without the use of comput-
ers that, for infinitely many ideals I of R, the kernel
K of the surjection SLy(R) — SL2(R/I) has a free
nonabelian quotient whose kernel contains all the
elementary matrices of K. Hence it is now known
that every Bianchi group SLy(R) has uncountably
many nonnormal ‘standard’ subgroups. Another
related result, proved recently by Grunewald, Men-
nicke, and Vaserstein, is that SLo(Z[t])/U2(Z[t])
has free quotients of arbitrarily large ranks.

The theoretical methods used to prove results of
this sort are only useful for congruence subgroups
of large index, so the use of the computer is likely to
remain important for examining low-index cases.
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We tried to perform corresponding calculations
in some of the other Bianchi groups, and in partic-
ular for d = 2 and 3. We were in fact successful in
finding free quotients of the corresponding groups
GE(5) in these two cases. Since these calculations
did not contain any distinctive features, however,
we shall restrict ourselves here to describing the
case d = 1, the Picard group.

The following presentation for SLy(Z][i]) is given
in [Swan 1968]:

(a,t,u,l,j|
azzlzz(ta)3:(al 2:(t1)2:(u1)2: ual)3:j,
.72:[0'7.7]:[taj]:[ua.y]:[laj :[ y U :1>

The elements a,t,u,l,j can be represented by the
following 2 x 2 matrices over the Gaussian integers:

. (0 —1) ‘ (1 1> - (1 z>
1 0)’ 0 1)’ 0 1)’
(3903 )
0 i)’ 0o -1/

We used standard computational techniques to
build presentations for the groups GE(n) for n < 6.
More precisely, for a particular n, we started by
adjoining the relations t" = u™ = 1 to those of
G = SL»(Z][i]) to give us a presentation of G/E(n).

We used our program QUOTPIC [Holt and Rees
1993] to obtain, via descending series with simple
and elementary abelian factors, presentations for
normal subgroups of G/E(n), and generators for
those subgroups, as words in the original genera-
tors for G/E(n). The matrices representing the
subgroup generators could easily be computed as
products of the matrices listed above (an elemen-
tary task, using GAP [Schonert et al. 1994]), al-
lowing us to identify GE(n) precisely as the kernel
of the map of G/E(n) onto SLy(Z[i]/nZ][i])/E(n)
from among various normal subgroups at the bases
of series with the same composition factors as

SLy(Z[3]/nZ]i])/E(n).
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(Where n = £¢5>. .. €% as a product of Gaussian
primes, the group SLo(Z[i]/nZ[i]) is a product of
factors

SLa(Z[i] /&8 Z11]).-

Each of these groups has a normal series with top
factor SLy(Z[]/&:Z[i]) = SLa(q), where ¢ = |&?,
and k—1 other factors each isomorphic to the addi-
tive group of 2 x 2 trace-zero matrices over GF(q).)

In fact the indices of GE(n) in G/E(n) for n =
2,3,4,5,6 are 48, 720, 3072, 14400 and 34560, and
in each case we used the Reidemeister—Schreier al-
gorithm to obtain a presentation of this subgroup.

It is not difficult to prove directly from these
presentations that GE(2) and GE(3) are trivial,
and that GE(4) is free abelian of rank 4. Using
the methods of this paper we were able to show
that each of GE(5), GE(6) and GE(7) has a free
quotient of rank two. In all three cases the presen-
tations were large. For GE(5), we obtained, after
simplification, a presentation with 24 generators
and 115 relators, and total length 4598 (since the
derived quotient is free abelian of rank 24, there
can be no presentation with fewer than 24 gener-
ators). For GE(6) we found a presentation with
209 generators and 585 relators, and total length
12985. The index of GE(7) in G/E(7) is 117600
(the factor group is SL(2,49)), and although it was
still possible to compute a subgroup presentation
of GE(7), the result was too long and unwieldy
to be useful for further calculations. We there-
fore tried to find a subgroup H/E(7) of G/E(7),
properly containing GE(7), for which we could find
a free quotient of rank two or more. Since, by
the Schreier subgroup theorem [Hall 1959, Theo-
rem 7.2.8], a subgroup of index n in a free group
of rank r is free of rank 1 + n(r — 1), GE(7) it-
self must have a free quotient of rank at least two.
After some experimentation, we found such a sub-
group of index 1225 (the stabiliser of an unordered
pair in the natural permutation representation of
SL(2,49)). This presentation initially had 409 gen-
erators, 768 relators and length 2378.

Details of how we found the free quotients of
each of these three groups are given in Section 5.

4. SEARCHING FOR ADDITIONAL RELATIONS

We search for a set R’ of words in the generators
for G such that the group (g1,...,9m | RUR') is
free, that is, we look for relations we can add to G
to make it free.

We look first not at G but at a quotient I' of G,
and search for a quotient of I'; which is free within
the variety containing I'. The rank of that quotient
of I" bounds the rank of a free quotient of G. Then
we try to lift the new relations we have added to
I' up to G.

We need only find a good choice for I'. Clearly "
must be large enough that quotients of I" that are
free within its variety have a reasonable chance of
lifting to free quotients of G. It must also be small
enough for the computation of its presentation to
be feasible. (In practice our presentation for G may
be very large.)

We elect to choose I' from among various abelian
and nilpotent quotients of G, namely the maximal
abelian quotient G/G’ of G, the maximal elemen-
tary p-abelian quotient G/G'G? of G, the maxi-
mal nilpotent quotient G/7.+1(G) of class ¢ (de-
fined by 11(G) = G and 741 (G) = [%(G),G)),
and the maximal nilpotent p-quotient G/7.+1,(G)
of exponent p class ¢ (defined by v,,(G) = G,
125(G) = G'GP, and 7141,(G) = [5(G), GIG?).
For all of these choices, presentations in standard
form can be computed relatively easily by solving
systems of linear equations over the integers (or
integers mod p, for some prime p). An abelian
quotient of a group is maybe too small a slice of it
to be of much use here, and mod p calculations are
often feasible where integer calculations are not;
hence a good choice seems to be to choose I' to be
G/v3,(G) for some p.

Our strategy is as follows:

Step 1. (a) Add relations w = 1 to G for relations
w® = 1 for k > 1, and for any word w that is
clearly implied by the presentation to be central.



(b) Add relations g; = 1 for all generators appearing
in short relators of exponent sum 0.

In this way we form a quotient G, of G with a
smaller presentation. We search for a free quotient
of G,.

Step 2. Compute the p group I' = G /73 ,(Go) for
some prime p.

Step 3. Find relations that define a quotient of I'
that is free in the variety N,, of p-groups with
exponent p class 2.

Step 4. Lift the new relations to G and hope to
find a free quotient of G. If not, replace G, by
the current quotient and repeat steps 2 and 3 with
I' = Go/Ye+1,0(Go) for some ¢ > 2.

Tietze transformations are used to simplify the
presentations at each stage after new relations have
been added; we know that we have a free quotient
when the presentation simplifies to one with no
relations!

Step 1 is a preprocessing step, to help us to han-
dle large presentations. Since free groups have no
torsion or centre, central and torsion elements must
lie in the kernel of any free quotient, so nothing can
be lost by performing step 1(a). In step 1(b), we
choose to kill off generators in relators of exponent
sum 0 because we are interested in causing the col-
lapse of commutator relations in G. Of course, not
all such generators are necessarily in the kernel of
a free quotient, but this seems a reasonable tactic
if the presentation would otherwise be unmanage-
able. Precisely what is meant by a short relator
may well be decided by trial and error. Step 2 can
be carried out using the ANU p-quotient algorithm
(described in [Havas and Newman 1980; Newman
and O’Brien]). Step 3 is explained below. For step
4, we rely on good luck and intuition.

It turns out that a finitely presented group I' in
N, , has a quotient that is free in Ny, if and only
if a particular system of second-order equations
has a solution from the integer set {0, ..., p — 1},
which we describe below. A similar result is true
for higher nilpotency classes; for N, , the equations
are of order c.
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The ANU p-quotient algorithm computes a stan-
dard power commutator presentation for the group
I' = G/7vs,(G). This is a presentation on genera-
tors

91y---39m19mi+1s - - -y Gmi+mas

of which the first m, are known as the weight-one
generators and the last my as the weight-two gen-
erators, with relations as follows:

(i) for each generator g; with ¢ > m,, relations g7 =
1 and [g;, g;] = 1 for each j < i,
(ii) for each generator g; with ¢+ < m;, relations

gf = w(gm1+17 R 7gm1+mz)a
[gj> gz] = w,(gm1+17 e agm1+m2) for .7 <.

A standard power commutator presentation has

the additional property that, for each weight-two

generator g, one of the relations is designated as

the definition of g, and has right-hand side equal

to g. (The class-c quotient G/7.41,(G) has a sim-

ilar presentation, with generators of weights 1,2,
.,C)

From now on we suppose that I' € N, is given
by a standard power commutator presentation as
described above. The following result is straight-
forward to prove.

Lemma4.1. LetI'/N be free in N5 ,. Then there are
weight-one generators g;,, ..., g, such that the ele-
ments Ngi,,...,Ng;, freely generate I'/N in Ny,
In particular:

(i) Set wrs = [gi,,9:,] and wyo = g}. Then (Nw,,)
is elementary p-abelian of rank 3 f(f + 1).

(i) Each relation in I'/N is a consequence of the
Nuw,,’s being central in T'/N of order p.

Conversely, suppose that g;,, . . ., g;, are weight-one
generators for T', and for each remaining weight-
one generator g; let u; be a product v;g; ", where v;
is a word in gi,,...,9;,, and let N = (u;)". Then
I'/N is generated by {Ng; }, /N is free in Ny, if
and only if (i) and (ii) hold.
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We use this lemma to derive a set of second-order
equations whose solution is equivalent to the exis-
tence of a quotient I'/N as above. We introduce
some simplifying notation to make the equations

more readable. If a = (aj.) is an m; x f inte-
ger matrix, we define h_ (a), where r = 1,..., f,
s =0,...,f, and i = m; +1,...,m; + msy, by

the following rule: If the weight-two generator g;
is defined by [g;, gx] = gi, then

h’is(a’) _ {aj,,aks — Q5O %f s> 0,
0 if s =0.
If g; is defined by g7 = g;, then

i _JO0  ifs>0,
h,.(a) = {ajr ifs=0.

Theorem 4.2. Let I' be a group in N, , given by a
power commutator presentation as above. Let g;,,
.--»9i,; be certain weight-one generators of I'. For
each weight-one generator g; not in {gi,,...,9i,}
select a;, € {0, ..., p—1} and z; € T'T?, and let

f
— Qir -1
Ui = Hgi,, %i9; -
r=1

Fors=1,...,f, definea;,, to bel ifr =35 and 0
otherwise.
Let N = (u;)*. Then T'/N is free of rank f in

Ny, if and only if

(i) the vectors (Nmy+1y---sMm,+m,) Of integers as-
sociated with the elements w,, (as defined in
Lemma 4.1) are linearly independent mod p, and

(ii) the integers a;. satisfy

mi+mz .
X _ a'jraks - ajsakr ’Lfs > 07
Z nzhrs(a’)_{o ifs=0
i=mi+1
mi+ma
for each nondefining relation [g;, gx] = [ 9",
and i=mitl
mi+mo .
i 0 ifs>0,
. Z nih, (a) = {ale ifs=0

mit+ma  n;

for each nondefining relation g% = [[,Z "7 gi*'.

Proof. This follows directly from the lemma. The
equations come from rewriting the left- and right-
hand side of each of the relations as a product of
powers of the elements w,,, after expressing each
weight-one generator g; as a product of the form

f
Qir
[ [t
r=1

The two sides of a defining equation clearly rewrite
to give the same expressions: For a nondefining
relation, the two sides rewrite to the same word
if and only if the relevant equation holds. Note
that the choice of the elements z; does not affect
whether or not conditions (i) and (ii) hold. O

Observing that any word in weight-one generators
Girs- -+, 9i; of I'is equal in I" to a word of the form
Hle g;i"2;, it is not hard to see that if I'/NV is
any free quotient then N can be generated as in
Theorem 4.2. Therefore:

Corollary 4.3. A group in N, , has a quotient that
is free in Ny, if and only if a set of weight-one
generators can be selected for which the equations
of Theorem 4.2 have a solution.

5. THE PICARD GROUP COMPUTATIONS

The results above give theoretical justification to
our strategy. We finish by describing how in prac-
tice we found free quotients of the groups GE(5),
GE(6) and GE(7), described in Section 2. Recall
that, in the latter case, we did not work with GE(7)
itself, but with an overgroup H/E(7). Our aim was
merely to find free quotients of rank at least two,
not to find such quotients of the highest rank pos-
sible.

For GE(5) and GE(6) we first simplified the pre-
sentation for the group by adjoining relations x; =
1 for generators x; that appeared in short relators
of exponent sum 0. We did this until the class-two
5-quotient (as computed by the ANU p-quotient al-
gorithm) had a relatively straightforward presenta-
tion. At that stage, we did not attempt to solve the
full system of equations of degree two derived from



Theorem 4.2. Instead we selected two rank-one
generators g;, and g;, in the class-two 5-quotient
for which condition (i) was valid, and eliminated
the remaining rank-one generators one at a time,
in such a way that condition (i) continued to hold.
We were able to perform the necessary calcula-
tions for this by hand; in fact almost all of the
additional relations that we imposed were of form
z; = 1lorx = :cjil (where z;,z; were genera-
tors for the original presentation), which mapped
to relations between weight-one generators of the
5-quotient. Following this strategy, we successfully
obtained a quotient that was free on two genera-
tors in Ny 5. For GE(6) those relations were not
enough to make the full quotient of GE(6) free, so
we added more relations until the class-six expo-
nent 5-quotient was also free, and then one fur-
ther relation. Thus we were following the method
outlined above, though in a somewhat experimen-
tal fashion, which did not involve explicit deriva-
tion and solution of the equations described (in the
class-two case) by the theorem.

For GE(5) we had a presentation on 24 genera-
tors xi,..., T2y, with 115 relators. First we added
relations of the form z; = 1 for 14 of those genera-
tors x;, namely those that appeared in relators of
length at most 14 with exponent sum zero. Then
we calculated the class-two 5-quotient using the
ANTU p-quotient algorithm, and added four more
relations of the form z; = 1, for those z; whose
images were central of weight one in that quotient.
Adding three more relations z; = 1 and one of the
form z; = z; finally gave us the free quotient we
sought in N, 5 and a free quotient on two genera-
tors of GE(5).

For GE(6) we had a presentation on 209 gen-
erators xy, ..., X9, with 585 relators, and started
by adding 60 relations z; = 1 for those x; appear-
ing in relators of length at most 10 with exponent
sum zero. Adding three more relations z; = 1 and
one of the form z; = x; made the class-two ex-
ponent 5-quotient free on two generators in Ny,
but the full quotient of GE(6) was not free. Next
we added relations that set equal to the identity
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various short words (almost all of length two) that
mapped to the identity of the class two 5-quotient.
Now the class-six 5-quotient was free in Ng 5. Ti-
etze transformations simplified the presentation for
the quotient now defined to one with three rela-
tions of length three (amongst others). Setting the
generators in three of those relators equal to the
identity finally gave a free quotient of GE(6) on
two generators.

The case of GE(7) was the easiest, once we had
found a good overgroup H/E(7) to work with. The
presentation of this group simplified to one having
length 29002, with 53 relators and 17 generators,
of which seven visibly had order two. We put these
equal to 1 immediately, and the presentation sim-
plified to one with eight generators and five short
relators, from which it was easy to find a free quo-
tient of rank two, using the class-two 5-quotients
as above, simply by setting some generators equal
to the identity.
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