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In this paper we study growth functions of automatic and hy-

perbolic groups. In addition to standard growth functions, we

also want to count the number of finite graphs isomorphic to

a given finite graph in the ball of radius n around the identity

element in the Cayley graph. This topic was introduced to us

by K. Saito [1991]. We report on fast methods to compute the

growth function once we know the automatic structure. We

prove that for a geodesic automatic structure, the growth func-

tion for any fixed finite connected graph is a rational function.

For a word-hyperbolic group, we show that one can choose

the denominator of the rational function independently of the

finite graph.

1. GROWTH FUNCTIONS OF GROUPSLet G be a group with a �nite set of generators.Then there is a �nite set � of generators such that,if x 2 �, then x�1 is also in �. More formally, �is not necessarily a subset of G; instead there isa map � : � ! G and an involution � : � ! �such that ��(x) = (�(x))�1. Moreover, we do notassume that � : �! G is injective. Let �� be theset of strings over �|this can also be thought ofas the free monoid generated by �, with multipli-cation given by concatenation. We use the symbol� : �� ! G to denote the homomorphism alreadygiven on � � ��. Another convenient notation for�(w), where w 2 ��, is w. Where we think therewill be no confusion, we sometimes ignore thesespecial notations and denote an element of G byan element of �� that represents it.Let bn = bn(G;�) be the number of elements ofG that can be expressed in terms of words of lengthat most n in the generating set �. Then we canform the formal power series B(z) = B(G;�)(z) =P bnzn. We call B the growth series of (G;�).It is well-known that, for any pair (G;�), this isc A K Peters, Ltd.1058-6458/96 $0.50 per page



298 Experimental Mathematics, Vol. 5 (1996), No. 4the power series of a holomorphic function in someneighbourhood of z = 0 (see Lemma 1.2), and forthis reason B is also known as the growth func-tion of (G;�). For many interesting examples, thegrowth function turns out to be a rational functionof z with integral coe�cients. See [Cannon andWagreich 1992], where additional references to theorigins of this subject can be found.We will use another, closely related, version ofthe growth series. Let cn = cn(G;�) be the numberof elements of G whose shortest representative in�� has exactly length n. Then we form the formalpower seriesC(z) = C(G;�)(z) =X cnzn:We clearly have B(z)(1 � z) = C(z). So studyingone of these functions is equivalent to studying theother.It is often useful to have a geometric view of agroup. If G is �nitely generated, we can get a ge-ometric view via the Cayley graph. The verticesof this graph are the elements of G, and there is adirected edge (g1; x; g2) from the vertex g1 2 G tothe vertex g2 2 G if and only if x 2 � and g1x = g2in G. We refer to x as the label on the edge. We de-note the Cayley graph by �(G;�). Notice that theCayley graph has an action by G on the left thatleaves the label x on a directed edge unchanged.We metrize �(G;�) in the obvious way, makingthe length of each edge equal to one.The convention is often observed that if a gener-ator x has order two, then the corresponding edgeis not directed. Note that this convention is notfollowed in our work, as it would lead to a lessuniform treatment.Notice that bn is the number of vertices in theball of radius n in the Cayley graph centred atthe identity element. (Because of the left actionof G, a ball of radius n centred at any vertex of� is isomorphic to the ball centred at any othervertex.) Also cn is the number of vertices whosedistance from the identity vertex is exactly n.

X yY x
FIGURE 1. Part of the Cayley graph of the freegroup on two group generators x and y, with in-verses X and Y .

Example 1.1 (free group). Let Fn be the free groupon n generators. Then �, the generating set, has2n elements. We have c0 = 1, c1 = 2n and ci =(2n � 1)ci�1 if i � 2 (see Figure 1). It is easy todeduce from this recurrence relation thatC(z) = 1 + z1� (2n� 1)z :
Lemma 1.2 (holomorphic growth). Every �nitely gen-erated group with n generators has a growth serieswhose radius of convergence is at least 1=(2n� 1).
Proof. Let G be our group, and let �+ be the givenset of generators. Let �� denote the set of formalinverses of the elements of �+ and let � = �+[��.Then � has an obvious involution interchangingthe elements of �+ and ��. Let Fn be the freegroup generated by �+.There is an obvious map �! Fn and a surjectivehomomorphism Fn ! G. Any element of G oflength i over � is the image of an element of Fn oflength i. It follows that 0 � ci(G;�) � ci(Fn;�)for each i � 0. Therefore the radius of convergenceof the growth series for G is no less than that of



Epstein, Iano-Fletcher, and Zwick: Growth Functions and Automatic Groups 299the growth series for the free group computed inExample 1.1. �The next result is also well-known.
Theorem 1.3. Let G be a group with a �nite set �of generators and a �nite (or recursively enumer-able) set of relators. The function n 7! cn(G;�)is computable (by a Turing machine) if and only ifG has a solvable word problem.
Proof. If G has a solvable word problem, then onecan test each word w of length n, to check whetheranother word v whose length is at most n repre-sents the same element of G as w. Therefore cn isa computable function of n.Conversely, if cn is computable and one is given aword w of length n, one can check whether or not wrepresents the trivial element of G as follows. Onesystematically checks all products of conjugates ofrelators until one has found all identities betweenwords of length at most n. If one carries on longenough, all of these will be found. Moreover, sincewe know c0; c1; : : : cn, we know when we can stopthe computation. �
2. GROWTH FUNCTION OF AN AUTOMATONAs already remarked, many groups have rationalgrowth functions. Many of these groups can bedescribed in terms of �nite state automata; we willsee in this section how �nite state automata al-ways have rational growth functions. This is a well-known result, included here for the convenience ofthe reader.First we recall the de�nition of a �nite state au-tomaton. A �nite state automaton is a quintuple(S;�; s0; Y; �), where S is a �nite set called thestate set , � is a �nite set called the alphabet , s0 2 Sis called the initial state, Y � S is called the setof accept states, and � : S � � ! S is a functioncalled the transition function. We denote the �nitestate automaton by M .M can be regarded as a labelled directed graphwith an edge labelled x from s 2 S to t 2 S if�(s; x) = t. We de�ne the language accepted by M ,

denoted by L(M), as a certain set of strings over�. A string w 2 �� is in L(M) (we say that w isaccepted by M) if, when we follow edges accordingto their labels so as to trace out w starting at s0,we end at some element of Y .Let n be the number of states inM . We numberthe states from 1 to n, starting with s0. Let Abe the transition matrix of M , that is, the n� n-matrix such that aij , the entry of A in the i-th rowand j-th column, is the number of directed edgesfrom the j-th state to the i-th state. Then Ar isthe matrix whose (i; j)-entry is the number of edge-paths of length exactly r from the j-th state to thei-th state.Let u 2 Zn be the column vector with ut =(1; 0; : : : ; 0), that is, the characteristic function ofs0, and let v 2 Zn be the characteristic function ofY . Then ci(M) = vtAiu is the number of stringsof length i accepted by M , andC(M; z) =Xi cizi = vtXi (zA)iu= vt(I�zA)�1u:It follows from the formula for the inverse of a ma-trix that C(M; z) is a rational function of z. Wehave proved the following well-known result.
Theorem 2.1 (automaton growth). Let M be a �nitestate automaton, with transition matrix A. ThenL(M) has a growth function of the formP (z)det(I � zA) ;where P is a polynomial with integer coe�cients.
3. COMPUTING GROWTH FUNCTIONSIn this section we show how to compute growthfunctions e�ciently. In the previous section wewere considering a �nite state automaton. How-ever, it is clear that the labels on the arrows wereirrelevant; we therefore ignore the labels in thissection.Let �(V;E) be a directed graph, where V =f1; : : : ; ng. Let X � V be the set of initial ver-tices and let Y � V be the set of terminal vertices.



300 Experimental Mathematics, Vol. 5 (1996), No. 4Let A be the adjacency matrix of �, that is A isan n�n matrix whose element in the i-th row andj-th column is the number of directed edges fromvertex j to vertex i in �. Let x; y 2 f0; 1gn be thecharacteristic vectors of X and Y ; thus xi = 1 ifand only if i 2 X.We are interested in counting the number of di-rected paths in � of length exactly k that beginat some vertex of X and end at some vertex of Y .We denote this number by ck. It is easy to see thatck = ytAkx. As we saw in the previous section, thegenerating function of the sequence fckg, called thegrowth function of �, isC(z) =Xk�0 ckzk = yt�Xk�0 (zA)k�x= yt(I � zA)�1x = P (z)Q(z) ;where Q(z) = det(I � zA) and P (z) is some poly-nomial with deg(P ) < n, as follows from Cramer'srule. Notice thatdet(I � zA) = (�z)n det(A� z�1I);so Q(z) can be obtained from the characteristicpolynomial of the matrix A by reversing the orderof the coe�cients and possibly negating them. Insome cases P (z) and Q(z) will have common fac-tors, which could then be cancelled out. In fact,we will see in Lemma 3.1 that the reduced Q(z)divides the reversed minimum polynomial of A.We now describe computationally e�cient waysfor explicitly obtaining the growth function of a di-rected graph � with associated matrix A and char-acteristic vectors x and y. We are interested in theexact (integral) coe�cients of P (z) and Q(z), notin mere approximations for them.If the matrix A is dense we can begin by comput-ing the characteristic polynomial of A. This can bedone using O(n3) arithmetical operations using aclassical method attributed to Danilevski in [Fad-deev and Faddeeva 1963]. Keller{Gehrig [1985] hasshown that it can also be done using only O(M(n))arithmetical operations, whereM(n) is the number

of arithmetical operations required for multiplyingtwo n�nmatrices. The best upper bound onM(n)is currently O(n2:376) [Coppersmith and Winograd1990].We are especially interested in cases in which thematrix A is sparse. We now describe a method forobtaining the reduced P (z) and Q(z) polynomialsusing only O(jEj jV j) � O(dn2) operations where dis the maximal out-degree in �. The method usedis similar to the method used, over �nite �elds, byWiedemann [1986].The key observation is that the sequence fckgsatis�es the linear recurrence relation speci�ed bythe coe�cients of Q(z). If P (z) = Pm�1i=0 pizi andQ(z) = Pmi=0 qizi, where m � n, then by extract-ing the coe�cient of zk in the relation Q(z)C(z) =P (z) we �ndminfk;mgXi=0 qick�i = n pk if k < m,0 otherwise.As a consequence we haveck = � 1q0 mXi=1 qick�i for k � m: (3.1)In our case Q(z) is equal to (a factor of) det(I �zA), so q0 = 1.Conversely, if we are given the sequence fckg andthe coe�cients q0; : : : ; qm of the recurrence relation3.1, then we can rapidly compute p0; : : : ; pm�1. Ifwe then let P (z) =Pm�1i=0 pizi andQ(z) =Pmi=0 qiziwe immediately get C(z) = P (z)=Q(z).As an aside, we note that, after cancelling com-mon factors with P (z), Q(z) divides the reversedminimum polynomial.
Lemma 3.1 (minimum polynomial). Let S(z) = sp +� � � + s1zp�1 + s0zp be the minimum polynomial ofA (so that s0 = 1). Then the reduced Q(z) dividesthe reversed minimum polynomial R(z) = s0+� � �+spzp.
Proof. We have S(A)Ak = 0 for each k � 0. HenceytS(A)Akx = 0 and so Ppi=0 sicr�i = 0 for r � p.We de�ne P1(z) = C(z)R(z) and note that P1 has



Epstein, Iano-Fletcher, and Zwick: Growth Functions and Automatic Groups 301degree less than p. We have P1Q = CQR = PR.Since P and Q have no common factors, Q mustdivide R as claimed. �Our problem can therefore be solved by �nding arecurrence relation of length at most n satis�edby the sequence fckg. In fact, �nding the short-est such recurrence will give us the reduced de-nominator of the growth function. But, how dowe �nd such a recurrence satis�ed by the (in�nite)sequence fcng? Since we already know that thesequence fckg satis�es at least one recurrence re-lation of length at most n, the following simplelemma says that it will be enough to �nd a recur-rence relation satis�ed by the �rst 2n elements ofthe sequence. The recurrence relation is then guar-anteed to be satis�ed by all subsequent values.
Lemma 3.2. Let n > 0 and let P and P 0 be polyno-mials of degree at most n � 1 and Q and Q0 poly-nomials of degree at most n. Suppose that , whenexpanded as power series, we haveP (z)Q(z) � P 0(z)Q0(z) (mod x2n)then P (z)Q(z) = P 0(z)Q0(z) :
Proof. SinceP (z)Q0(z)� P 0(z)Q(z) � 0 (mod x2n);the claim follows from the bounds on the degrees.�We are now able to present our algorithm. Theinput is the n�nmatrix A and the vectors x and y.Each column of A has at most d non-zero entries.The algorithm is composed of three stages:
1. Compute c0; c1; : : : ; c2n�1, the �rst 2n elementsin the growth sequence.
2. Find the minimal-length recurrencemXi=0 qick�i = 0

satis�ed by the sequencec0; c1; : : : ; c2n�1 and construct Q(z).
3. Compute p0; : : : ; pm�1 and construct the poly-nomial P (z).Stage 1 can be implemented naively as follows:v0  x;vk  Avk�1; c0  ytx;ck  ytvk for k = 1; : : : ; 2n� 1.The time complexity of computing Av is O(jEj) �O(dn), so the overall complexity of this stage isO(jEj jV j) � O(dn2). This naive approach shouldbe used when d is relatively small compared ton. If d is of the order of n then the complex-ity of this stage will be O(n3). This can be re-duced (see [Keller-Gehrig 1985], for example) toO(M(n) log n) using fast matrix multiplications.Although stage 1 seems to be more straightforwardthan the following stage 2, it turns out to be thedominant stage in terms of the computational com-plexity of the problem.The problem we have to solve in stage 2 couldbe solved using the Berlekamp{Massey algorithm[Massey 1969]. This algorithm was initially pro-posed by Berlekamp as a decoding algorithm forBCH codes. It was later observed by Massey thatBerlekamp's algorithm solves the general shift reg-ister synthesis problem, which is identical to theproblem of �nding linear recurrences of minimallength. The Berlekamp{Massey algorithm was de-signed primarily to work over �nite �elds, but itcan be used over any �eld. We will use the ratio-nals as the underlying �eld. In fact, as we maychoose q0 = 1, no divisions will be required andall the intermediate results will be integral. Thecomplexity of the Berlekamp{Massey algorithm isO(n2) and it is fairly simple and easy to program.Stage 2 can be performed even more e�cientlyalthough this does not change the overall O(dn2)complexity of our algorithm. It is fairly easy to seethat the qi's can be found by �nding a non-trivialsolution to a homogeneous Toeplitz system of lin-ear equations with the Toeplitz coe�cient matrixbeing simply composed of the elements c0, c1, : : : ,



302 Experimental Mathematics, Vol. 5 (1996), No. 4c2n�1. This can be solved in time O(n log2 n) usingan algorithm by Brent, Gustavson and Yun [Brentet al. 1980]. This algorithm uses a version of theExtended Euclidean Algorithm.Stage 3 can now be naively performed in O(n2)operations. The overall complexity is thereforeO(jEjjV j)�O(dn2) integer operations, as promised.So far we have considered arithmetic operationsas basic operations. Note however that in some ofthe computations huge numbers may be obtained,even if all the coe�cients of the polynomials P (z)and Q(z) turn out to be quite small.As an example, consider the following (randomlychosen) matrixA = 0BB@ 5 7 5 52 8 8 08 5 3 81 2 4 11CCAtogether with the start and stop vectors x = y =(1; 1; 1; 1). The growth function in this case isC(z) = 4� 4z � 20z21� 19z + 2z2 + 78z3= 4 + 72 z + 1340 z2 + 25004 z3 + 466780 z4+ 8714292 z5 + 162687676 z6+ 3037228420 z7 + � � �We see that the coe�cients of C can get large. Ingeneral these coe�cients grow exponentially, andcan easily become too large to �t into a computerword in practical problems. On the other hand, inthe above case, the characteristic polynomial of Ais 156+82 z�36 z2�17 z3+z4, with all coe�cientssmall.The usual solution to the blow up of the inter-mediate results is to work out the solution moduloseveral, moderate-size, prime numbers, and thencombine the solutions obtained to the desired so-lution over the integers. In practice, each of primenumbers used would �t into one computer wordand no multi-precision calculations will be needed(assuming that the �nal coe�cients �t into singlecomputer words).

For each prime number p chosen, the �rst 2nelements in the sequence fcn mod pg will be com-puted, and then two reduced polynomials Pp(z)and Qp(z) satisfyingPp(z)=Qp(z) �P2n�1i=0 ckzk (mod p)will be found. Unless p is an unlucky prime, wewould have Pp(z) � P (z) (mod p) and Qp(z) �Q(z) (mod p). Recall that P (z) and Q(z) are rel-atively prime over the integers. A prime p is un-lucky if and only if P (z) and Q(z) are not rel-atively prime modulo p. A similar concept of un-lucky primes occurs in homomorphic algorithms forthe computation of the greatest common divisor oftwo polynomials over the integers. For more de-tails, see [Lauer 1983]. We just note here that ineach speci�c case the number of unlucky primes is�nite (and usually quite small) and that the prob-ability of a prime chosen from a suitably large in-terval being unlucky is very small. Unlucky primescan be spotted by noticing that the degrees of thepolynomials obtained modulo them is smaller thanthe degrees obtained modulo other (lucky) primes.If we do the computations therefore modulo dis-tinct primes p1; : : : ; pk, and if they all turn out tobe lucky, we can then construct P (z) and Q(z)modulo the product p1 � � � pk, using the ChineseRemainder Theorem. If we have a bound M onthe largest coe�cient (in absolute value) in P (z)and Q(z) then, using a set of primes whose prod-uct is greater than say, 2M +1, we can reconstructP (z) and Q(z). A bound M on the coe�cients ofP (z) and Q(z) may be obtained using Hadamard'sinequality [Mignotte 1983]. Alternatively, we maytake M to be an upper bound on the absolute val-ues of c0; : : : ; c2n�1. In general, M may be expo-nentially large. Even so, only the �rst cn primes,where c is roughly proportional to the logarithm ofthe largest coe�cient in A, have to be used. Notethat an upper bound for this largest coe�cient canbe computed using oating point arithmetic (un-less A is too large to handle in any case), since itdoes not need to be known accurately.



Epstein, Iano-Fletcher, and Zwick: Growth Functions and Automatic Groups 303Usually, the coe�cients of P (z) and Q(z) willturn out to be much smaller than the coarse boundM obtained for them. This can be exploited usingthe following randomized version of the precedingalgorithm. The algorithm picks primes at random(from some interval). After performing the compu-tations modulo the k-th prime, we calculate the co-e�cients of P (z) and Q(z) modulo the product ofthe k primes. If these coe�cients are much smallerin absolute value than the product of the primesused, then with large probability the coe�cientsfound are the correct ones. In practice, the use ofonly a constant number of primes (chosen from asuitable precomputed table) will yield the correctresult with overwhelming probability.The algorithms described here were programmedand used to compute growth functions that helpedin the development of this article.
4. COUNTING THE NUMBER OF COPIES OF A FINITE

SUBGRAPHK. Saito [1991] has drawn attention to a modi-�ed collection of growth functions related to �nitegraphs. Saito's work arose from attempts to gen-eralize the Ising model in quantum mechanics tocover more general geometries, such as the univer-sal cover of a surface of higher genus tesselated byfundamental domains. The results in this sectionare due to Saito. We publish proofs here of thespecial cases that interest us, in order to give thereader a self-contained account.Let S and T be two directed graphs with edgeslabelled by elements of �. A morphism f : S ! Tis de�ned to be a function that maps each vertexto a vertex and each labelled directed edge to a di-rected edge with the same label. Moreover the ini-tial and �nal endpoints of a directed edge in S arerequired to map to the initial and �nal endpointsrespectively of the image directed edge in T .As in Section 1, let � denote a �nite set of gen-erators for a group G and let � = �(G;�) be thecorresponding Cayley graph. Let �n be the ball ofradius n and centre the identity element of G (or,

equivalently, any other choice of centre). We addto �n any edges that connect vertices both of whichare already in �n, that is, we turn �n into a fullsubgraph (sometimes called an induced subgraph)of �.Let S be a �nite, connected, directed labelledgraph, with labels from �. We de�ne bn(S;G;�) =bn(S) to be the number of morphisms f : S ! �n.Correspondingly we have the formal power seriesB(S; z) = B(G;�)(S; z) = 1Xi=0 bi(S)zi:It is of course easy to construct an S so that thereare no morphisms from S to �. In that case B(S; z)is identically zero. Note that if S has only onevertex, then B(S; z) = B(z), the standard growthfunction of a group.
Theorem 4.1 (Saito). Let G be a group and let � bea �nite set of generators with an involution corre-sponding to taking the inverse in G. Let S be a �-nite connected directed graph with edges labelled bythe elements of � and suppose there is a morphismof S to the Cayley graph �(G;�). Then B(S; z) isholomorphic in a neighbourhood of 0, and the ra-dius of convergence r is the same as that of B(z). Ifboth B(z) and B(S; z) are meromorphic in a neigh-bourhood of r, then the order of the pole or zero isthe same for the two functions.
Proof. Let d be an integer greater than the diame-ter of S. (The diameter of S can be a half unit orone unit greater than the diameter of its 0-skeleton.Consider for example the Cayley graph of the triv-ial group with either one or two generators.) Fix avertex s0 2 S to serve as a basepoint. Then a mor-phism S ! � is determined by the image of s0.It follows that bn�d � bn(S) � bn, and thereforeB(z) and B(S; z) have the same radius of conver-gence r. By Lemma 1.2, we have r > 0. AlsozdB(z) � B(S; z) � B(z) for z 2 [0; r). Takinglogarithms, this gives usd log z + logB(z) � logB(S; z) � logB(z)



304 Experimental Mathematics, Vol. 5 (1996), No. 4for z 2 (0; r). The description when both func-tions are meromorphic near z = r easily follows bychoosing k 2 Z so that B(z)=(z�r)k is regular andnon-zero near z = r, and similarly for B(S; z). �Saito's theorem clearly implies the following corol-lary.
Corollary 4.2. If B(z) is a rational function suchthat r is the nearest pole to the origin and if B(S; z)is also a rational function, then r is also the nearestpole to the origin for B(S; z), and the order of thepoles is the same in the two cases.If there is an injective morphism of S into the Cay-ley graph, then all morphisms are injective, be-cause the Cayley graph is homogeneous. In thiscase, the function B(S; z) can be considered ascounting the number of ways of embedding S inthe Cayley graph. There is an alternative methodof counting, where all morphisms with the sameimage are identi�ed with each other. This intro-duces no essential di�erence in the theory, as wenow see.Let en(S) be the number of subgraphs of �n thatare isomorphic to S (but the isomorphism is notspeci�ed). Since �n is a full (induced) subgraph of�, en(S) is unchanged if we restrict our attentionto the case where S is a full subgraph. That is,given an embedding of S in �, we add to S all pos-sible edges between existing vertices of S. We de-�ne E(S; z) =P1n=0 en(S)zn. Note that �en(S) =bn(S), where � is the number of automorphismsof S. It follows that �E(S; z) = B(S; z), and soresults about B can be transferred to E.
5. EXAMPLESThe main result of this paper (Theorem 8.1) wasoriginally conjectured by Saito for the case of aFuchsian group with geometric generators. Wetested Saito's conjecture for various groups, usingprograms like those described in Section 3. Theseexperiments led us to other results proved in thispaper.

Let G be a group with a �xed set of genera-tors, and let (g1, g2, : : : , gn) be an ordered listof generators, possibly with repetition. The graph�g1;g2;:::;gk is de�ned to be a labelling of the graphstructure on the interval [0; n], with a vertex ateach integer point. The directed edge [i � 1; i] islabelled with gi. Denote the corresponding growthfunction of morphisms of this graph to the Cayleygraph by Bg1;g2;:::;gn(z), where z is the indetermi-nate of the power series.
Example 5.1. Consider the 2; 3; 7 Coxeter groupha; b; c : a2; b2; c2; (ab)2; (bc)3; (ca)7i:This is the group generated by reections in thesides of a hyperbolic triangle with angles �=2, �=3and �=7.The growth function of this group and the sub-graphs �g for g = a; b; c areB(z)=(z6+z5+z4+z3+z2+z+1)(z2+z+1)(z+1)2(1�z)(z10+z9�z7�z6�z5�z4�z3+z+1)=1+4z+9z2+16z3+25z4+37z5+53z6+� � � ;Bg(z)=2z(z+1)(z6+z5+z4+z3+z2+z+1)(z2+z+1)(1�z)(z10+z9�z7�z6�z5�z4�z3+z+1)=2z+6z2+12z3+20z4+30z5+44z6+62z7+� � � :Notice that the denominators of these functionsare all identical and that the ratio of B(z) to Bg(z)is (z + 1) : 2z (see Proposition 7.4). The factor(1 � z) in the denominator occurs because we arecounting everything in a ball of radius n. It woulddisappear if we were to count only things in theball of radius n that are not contained in the ballof radius n� 1.
Example 5.2. A related group is the 2; 3; 7 trianglegroup ha; b; c : a2; b3; c7; abci:This is the subgroup of the previous group of in-dex two, consisting only of orientation preservingisometries. Its Cayley graph is shown in Figure 2.The growth functions of this group and of thesubgraphs �g for g = a; b; c and �a;b are given at



Epstein, Iano-Fletcher, and Zwick: Growth Functions and Automatic Groups 305the top of the next page. Again, notice that all thedenominators are identical.
Example 5.3. Consider the free abelian group onthree generators a, b and c. The growth functionsfor this group, and the subgraphs �g for g = a; b; c,�a;b and �a;b;c areB(z) = (z + 1)3(z � 1)4= 1 + 7z + 25z2 + 63z3 + 129z4+ 231z5 + 377z6 + 575z7 + : : : ;Bg(z) = 2zz + 1B(z) for g = a; b; c;Ba;b(z) = z(z + 1)(3z + 1)(1� z)4= z + 8z2 + 29z3 + 72z4+ 145z5 + 256z6 + 413z7 + � � � ;Ba;b;c(z) = 4z2(1 + z)(1� z)4= 4z2 + 20z3 + 56z4+ 120z5 + 220z6 + 364z7 + � � � :
6. AUTOMATIC GROUPSLet G be a group, and let � be a �nite set of gener-ators with an involution, as described in Section 1.G is said to be automatic if there is a �nite stateautomaton W , called the word acceptor , and, foreach x 2 �, a �nite state automaton Mx, calledthe multiplier for x, with the following properties.
1. W is an automaton over �.
2. The composite L(W ) � �� ! G is a bijection.
3. Each Mx is an automaton over the two variablealphabet (�;�). That is, Mx accepts pairs ofwords (w1; w2) with w1; w2 2 ��.
4. The pair of strings (w1; w2) is accepted by Mxif and only if w1 and w2 are accepted by W andw1x = w2 2 G.We have seen in Theorem 2.1 that the growth func-tion of L(W ) is a rational function. However this

does not necessarily imply that (G;�) has a ra-tional growth function, despite the fact that eachelement of G has a unique representative in �� ac-cepted by W . This is because the growth functionfor (G;�) is de�ned using shortest representativesfor elements of G and the representatives acceptedby W do not need to be shortest. In order tomake the two growth functions coincide, we needto assume that L(W ) consists entirely of shortestrepresentatives. In fact, the programs written byEpstein, Holt and Rees [Epstein et al. 1991] tryto compute an automatic structure of a specialtype that does satisfy this condition; it follows thatthese programs can be used to help compute thegrowth functions of many groups.
Definition 6.1 (geodesic automatic structure). We saythat an automatic structure (W;�) on a group Gis geodesic, if, for each element w 2 L(W ), w is ashortest representative of w in ��.
Theorem 6.2 (rational graph growth). Let G be a groupwith geodesic automatic structure (W;�) and let Sbe a �nite directed labelled graph. Then the growthfunction C(S;z) counting the number of morphismsof S into � is a rational function of z. The sameis true if we restrict to injective morphisms.
Proof. Suppose that S has n vertices. We will con-struct a �nite state automaton MS that accepts n-tuples of strings over � such that there is a one-to-one correspondence between the set of n-variablestrings accepted by MS and the set of morphismsof S to �.Let the vertices of S be (s1; : : : ; sn). We con-sider the set of n-tuples (w1; : : : ; wn) of elementsof L(W ). If there is an edge in S labelled x from sito sj , then we insist that (wi; wj) be accepted byMx. According to [Epstein et al. 1992, Theorem1.4.6], there is a �nite state automaton MS thataccepts exactly the set of all such n-tuples. It isobvious that there is a one-to-one correspondencebetween the set of such n-tuples 
 of strings andmorphisms F : S ! �. Moreover the length of anelement of 
, as a associated string over (�; : : : ;�)



306 Experimental Mathematics, Vol. 5 (1996), No. 4B(z) = (z8 + 4z7 + 3z6 + 2z5 + z4 + 2z3 + 3z2 + 4z + 1)(z2 + 1)(1� z)(z10 � z9 � z7 + z6 � z5 + z4 � z3 � z + 1)= 1 + 6z + 15z2 + 31z3 + 55z4 + 88z5 + 136z6 + 203z7 + � � �Ba(z) = 2z(z9 + 2z8 + 2z7 + 3z6 + 2z5 + 2z4 + 2z3 + 3z2 + 2z + 2)(1� z)(z10 � z9 � z7 + z6 � z5 + z4 � z3 � z + 1)= 4z + 12z2 + 26z3 + 48z4 + 78z5 + 122z6 + 184z7 + � � �Bb(z) = z(2z9 + 4z8 + 5z7 + 6z6 + 3z5 + 4z4 + 5z3 + 6z2 + 3z + 4)(1� z)(z10 � z9 � z7 + z6 � z5 + z4 � z3 � z + 1)= 4z + 11z2 + 24z3 + 46z4 + 75z5 + 117z6 + 177z7 + � � �Bc(z) = z(2z9 + 5z8 + 4z7 + 6z6 + 4z5 + 4z4 + 4z3 + 6z2 + 4z + 3)(1� z)(z10 � z9 � z7 + z6 � z5 + z4 � z3 � z + 1)= 3z + 10z2 + 23z3 + 43z4 + 71z5 + 112z6 + 170z7 + � � �Ba;b(z) = z(z + 1)(3z8 + z7 + 4z6 + z5 + 3z4 + z3 + 4z2 + z + 3)(1� z)(z10 � z9 � z7 + z6 � z5 + z4 � z3 � z + 1)= 3z + 10z2 + 22z3 + 42z4 + 70z5 + 110z6 + 167z7 + � � �Growth functions for Example 5.2.accepted by MS, is equal to the minimum radiusof a ball in � centred at the identity vertex andcontaining the vertices of the image of F .In order to restrict to injective morphisms, wecan change the automaton to ensure that, for i 6= j,�wi 6= �wj . In an automatic group, this condition canbe recognized by a �nite state automaton. �
7. IDENTITIES FOR MULTIPLIERSThis section is based on suggestions made by M. S.Paterson, to whom we are most grateful.Let G be a group and let � be a �nite set of gen-erators with an involution � that gives the formalinverse of a generator. A directed edge of the Cay-ley graph �(G;�) from a vertex v1 to a vertex v2is called outward , inward or tangential , accordingto whether d�(v2; e) is greater than, less than, orequal to d�(v1; e), where e is the identity vertex.Let x 2 �. We denote by in(x) the number ofedges labelled x pointing from a vertex at distancen from the identity to a vertex at distance n � 1from the identity. These are incoming edges. We

denote by on(x) the number of edges labelled xpointing from a vertex at distance n� 1 from theidentity to a vertex at distance n from the identity.These are outgoing edges. We denote by tn(x) thenumber of edges labelled x pointing from a ver-tex at distance n from the identity to a vertex atdistance n from the identity. These are tangentialedges. Note that i0(x) = o0(x) = 0. Also t0(x) = 0unless x is a trivial element of G. It is clear thatfor each n, in(x) = on(�x) and tn(x) = tn(�x).We de�ne the following functions:I(x; z) =Xn in(x)zn;T (x; z) =Xn tn(x)zn;O(x; z) =Xn on(x)zn:Each power series I(x; z) and O(x; z) is divisibleby z.
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Example 7.1. Here are three easy examples to illus-trate the de�nitions of I, O and T . For the freegroup on one generator x we have T (x; z) = 0,I(x; z) = O(x; z) = z1� z = z + z2 + z3 + z4 + � � � :For the free group on two generators x and y wehave T (x; z) = 0,I(x; z) =O(x; z) = z1�3z = z+3z2+9z3+27z4+� � � :For the free Abelian group on two generators x andy we have T (x; z) = 0,I(x; z)=O(x; z)= z2+z(1�z)2 =z+3z2+5z3+7z4+� � � :
Example 7.2. Consider the 2,3,7 Coxeter groupha; b; c : a2; b2; c2; (ab)2; (bc)3; (ca)7iof Example 5.1.

We have T (g; z) = 0 andI(g; z)= O(g; z)= z(1+z)(1+z+z2)(1+z+z2+z3+z4+z5+z6)(1+z�z3�z4�z5�z6�z7+z9+z10)= z + 2z2 + 3z3 + 4z4 + 5z5 + 7z6 + 9z7 + � � �for each generator g 2 fa; b; cg.Consider the 2,3,7 triangle groupha; b; c : a2; b3; c7; abciof Example 5.2. The expressions for I, T , andO are shown below. The Cayley graph is shownin Figure 2, from which one can check by handthe correctness of the �rst few coe�cients in theseexpressions.T (a; z) = 2z(1 + z + 2z2 + z3 + z4 + z5 + 2z6 + z7 + z8)1� z � z3 + z4 � z5 + z6 � z7 � z9 + z10= 2z + 4z2 + 8z3 + 12z4 + 16z5 + 24z6 + 34z7 + � � �I(a; z) = O(a; z) = z(1 + z)(1� z + z2 � z3 + z4)(1 + z + z2 + z3 + z4)1� z � z3 + z4 � z5 + z6 � z7 � z9 + z10= z + 2z2 + 3z3 + 5z4 + 7z5 + 10z6 + 14z7 + � � �T (b; z) = z(2 + z + 2z2 + z3 + 2z4 + z5 + 2z6 + z7 + 2z8)1� z � z3 + z4 � z5 + z6 � z7 � z9 + z10= 2z + 3z2 + 5z3 + 8z4 + 11z5 + 16z6 + 22z7 + � � �I(b; z) = O(b; z) = z(1 + z)(1 + 2z2 + z4 + 2z6 + z8)1� z � z3 + z4 � z5 + z6 � z7 � z9 + z10= z + 2z2 + 4z3 + 7z4 + 9z5 + 13z6 + 19z7 + � � �T (c; z) = z(1 + 2z2 + 2z6 + z8)(1� z � z3 + z4 � z5 + z6 � z7 � z9 + z10)= z + z2 + 3z3 + 4z4 + 4z5 + 7z6 + 10z7 + � � �I(c; z) = O(c; z) = z(1 + z)(1 + z + z2)(1 + z3 + z6)1� z � z3 + z4 � z5 + z6 � z7 � z9 + z10= z + 3 z2 + 5 z3 + 8 z4 + 12 z5 + 17 z6 + 24 z7 + � � �More growth functions for the group ha; b; c : a2; b3; c7; abci of Example 5.2.
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FIGURE 2. This is (part of) the Cayley graph of the orientation preserving (2; 3; 7) triangle group. The blackarrows have label c, the grey arrows have label b and the edges without arrows have label a. The identityelement is at the vertex marked 0. All other vertices are marked with their distance from the origin. A picturelike this is helpful for doing calculations by hand, and the reader may wish to verify the accuracy of some of thecomputer calculations by using the picture to determine the coe�cients of zn for small values of n in variousgrowth series. This picture was drawn with the help of the Mathematica package Hyperbolic.m [Goodman andLevy 1993].



Epstein, Iano-Fletcher, and Zwick: Growth Functions and Automatic Groups 309Let G and � be as above. Let C(z) be the growthfunction for (G;�). Let Sx be the directed la-belled graph with a single edge labelled x and letC(Sx; z) be the growth function counting the num-ber of copies of Sx contained in the ball of radiusn about the identity element, but not in the ballof radius n� 1.
Lemma 7.3. We have the following equations foreach x 2 �:T (x; z) = T (�x; z);C(z) = T (x; z) + (z + 1)I(x; z)z ;I(x; z) = I(�x; z) = O(x; z) = O(�x; z);C(Sx; z) = 2I(x; z) + T (x; z):
Proof. The �rst equation follows because each tan-gential edge labelled x corresponds to a tangentialedge labelled �x in the reverse direction.For each vertex v of the Cayley graph, there isa single edge labelled x starting at v. Therefore, ifcn is the number of vertices at distance n from e,we have, for each x 2 �,cn = in(x) + on+1(x) + tn(x)= in(x) + in+1(�x) + tn(x):Replacing x by �x, we see that for each n, in(x) +in+1(�x) = in(�x)+ in+1(x). It follows by inductionon n that in(x) = in(�x). The second equalityfollows from this.The third equality now follows from the fact(noted above) that I(x; z) = O(�x; z).To prove the fourth equality, note that an edgelabelled x that lies in the ball of radius n, but notin the ball of radius n � 1, is inward or outwardor tangential and these \or's" are exclusive. SoC(Sx; z) = I(x; z) + O(x; z) + T (x; z). The fourthequality follows. �The next result is an explanation of results �rst ob-served experimentally in tables of growth functionsof appropriate automata.

Proposition 7.4 (edge ratio). If x 2 �, let Sx be de�nedas above. If each relator of the de�ning relators forG has even length then, for each x 2 �,C(z)C(Sx; z) = 1 + z2z :
Proof. Since each relator has even length, there is ahomomorphism onto the group with two elements,sending each element of � to the non-trivial ele-ment. It follows that T (x; z) is identically zero foreach x 2 �. It also follows that I(x; z) = O(x; z)is not identically zero. �
Proposition 7.5. In the case of a geodesic automaticgroup, I(x; z) and T (x; z) are rational functions ofz. In fact , if we specify any �nite directed graph S,with labels from �, and , for each edge of S whetherit is to map to an inward pointing , outward point-ing , or tangential edge of �(G;�), then the associ-ated growth function is a rational function.
Proof. There is a �nite state automaton over (�;�)that can detect whether, given two strings, the �rstis exactly one longer than the second. The same istrue for the detection of equal length. We combinethese �nite state automata with the multipliers forthe automatic structure to achieve the desired ef-fect. As in the case of Theorem 6.2, we can use[Epstein et al. 1992, Theorem 1.4.6] in order tocomplete the proof. �
8. GROWTH IN WORD-HYPERBOLIC GROUPSLet G be a group with a �nite set of generators �.We assume that � has an involution correspondingto taking the inverse. First we recall Gromov's def-inition [Ghys and de la Harpe 1989] that G is saidto be word-hyperbolic if there is a positive integerk such that, for any choice of three vertices A, Band C in the Cayley graph � = �(G;�), any choiceof geodesic paths AB, BC and CA in the Cayleygraph of �, and any choice of x 2 AB, we haved�(x;BC [CA) � k (see Figure 3). If G is hyper-bolic with respect to one �nite set of generators, itis also hyperbolic with respect to any other set, but



310 Experimental Mathematics, Vol. 5 (1996), No. 4the constant k, called the constant of hyperbolicityof the pair (G;�), may change.A
B C

x
FIGURE 3. The point x is an arbitrary point onAB, and its distance to BC [ CA is bounded.For the remainder of this section, we �x � andk > 0.This is the main theorem of this paper:

Theorem 8.1. Let G be a word-hyperbolic group andlet � be any set of generators with an involution� : � ! � such that �x = x�1 for each x 2 �.Then there is a polynomial Q(z) with integral coef-�cients (depending on G and �) with the followingproperty . Let S be any non-empty �nite connectedlabelled directed graph with labels in �. Then thegrowth function C(S; z) is a rational function withdenominator Q(z).
Proof. The idea is to construct a single automa-ton from which each of the in�nite set of growthfunctions obtained as S varies can be deduced.We order the elements of �, and de�ne L to bethe set of strings w over �, with the property that,among all representatives in �� for w, w is short-est and least lexicographically among the shortestrepresentatives. Theorem 3.4.5 and Corollary 2.5.2of [Epstein et al. 1992] show that (�; L) is an auto-matic structure. Let W be the minimal �nite stateautomaton over � such that L(W ) = L. Since Lis pre�x-closed, all states of W are accept statesexcept for a single fail state.Let � = �(G;�) be the Cayley graph. Each ver-tex v of � is labelled by a state ofW in the obvious

way|we take the unique geodesic path acceptedby W from the identity vertex e to v. This tracesout a path of arrows in W from the start state tothe state of W that labels v.e Tv�
FIGURE 4. An accepted geodesic path from theidentity element e to a vertex v 2 G. The pathmarked � is the associated 2k-history, and T is ak-neighbourhood of �.We use the labelling to de�ne the states of a largeautomaton H. First we de�ne an r-history (r > 0an integer) to be a �nal segment of an acceptedpath in � starting at the identity vertex e. We de-�ne the initial point and �nal point of an r-historyin the obvious way. The segment must have lengthexactly r, unless it begins at e, in which case thesegment is allowed to have length less than r. Fixfor the moment some 2k-history � (where k is de-�ned at the beginning of this section); and let Tbe the full subgraph of vertices within a distancek of �. Each of the vertices of T carries its labelfrom the states of W .Let v be the �nal point of �. We label each ver-tex u 2 T with the integer p = d�(e; u) � d�(e; v),so that each vertex of T is labelled by a pair (s; p),where s is a state of W and �3k � p � k.e v v0 uu1 v1 T T 0

FIGURE 5. Why H is an automaton.An isomorphism between (T; �) and (T 0; �0) is anisomorphism that makes vertices and edges corre-spond, sends � to �0 and preserves labels (s; p) onvertices and labels in � on directed edges. A stateof H is an isomorphism class [T; �] of such pairs.H also has a fail state. The initial state of H cor-responds to taking for � the path of length zeroat e.



Epstein, Iano-Fletcher, and Zwick: Growth Functions and Automatic Groups 311We now de�ne the image sHx of x 2 � actingon a state sH of H. If sH is the fail state, then ofcourse sHx = sH . Otherwise let sH be representedby (T; �). Let v be the �nal point of � and let s bethe state of W labelling v. If applying x to s in Wleads to the fail state of W , we de�ne the action ofsHx to be equal to the fail state of H.Otherwise we must de�ne (T 0; �0) = (T; �)x andshow that [T 0; �0] depends only on the isomorphismclass [T; �] and on x. Applying x to v gives a vertexv0 2 � with label s0, where s0 is the image of s un-der x. This gives us the (2k)-history �0 by addingv0 at the �nal end of � and possibly dropping theinitial vertex of �. We de�ne T 0 to be the full sub-graph of � on the vertices in a k-neighbourhoodof �0. Since � is a homogeneous graph, T 0 (with-out the labelling of vertices) is determined up toisomorphism by x and the isomorphism class of(T; �).Let u be a vertex of T 0. We need to show howto determine the label of u. We already know thislabel unless d�(u; v) = k + 1 and d�(u; v0) = k.Let [e; u] and [e; v0] denote the accepted geodesicsin � from the identity element e, and let [u; v0] beany geodesic. Then [e; v0] contains � and �0 and[u; v0] has length k. Let v1 be the vertex on [e; v0]a distance 2k from v0. (If d�(e; v0) < 2k, we setv1 = e.) Then v1 2 �0 \ �. We now use the factthat G is a hyperbolic group. The de�nition of kat the beginning of this section shows that thereis a vertex u1 2 [e; u] such that d�(u1; v1) � k.Therefore u1 2 T and we know the label on u1. Thereason we used the 2k-history of v was precisely toensure that we could �nd such a pair (u1; v1) withina region that we know about.We now take the (8k)-neighbourhood of v, forexample, and trace out in it the portion [u1; u] �[e; u] of the accepted geodesic, using W to accom-plish this task. This enables us to assign the cor-rect state of W to u. Using the fact that a �xedsize neighbourhood of a vertex is isomorphic tothe same size neighbourhood of any other vertex(apart from the labelling of vertices), it is clearthat the construction is independent of the isomor-

phism class of (T; �). This completes the de�nitionof the �nite state automaton H over �.Let cn(S) be the number of morphisms S ! �nthat do not factor through �n�1, and let C(S; z) =P1n=0 cn(S)zn. From Theorem 6.2 we know thatC(S; z) is a rational function, so we only need to�nd a common denominator for the C(S; z) as Svaries over all �nite subgraphs of �.
Lemma 8.2. Let A be the transition matrix for the�nite state automaton H. Then, for each �niteconnected subgraph S of �, det(I� zA)C(S; z) is apolynomial function of z.
Proof. The denominator of a rational function is un-a�ected by omitting the �rst �nite number of termsin the formal power series, as this changes the ra-tional function by adding a polynomial. We maytherefore restrict ourselves to computing cn(S; z)for large values of n. We �x a basepoint s1 2 Sand let d be the diameter of S. We �x a morphismf : S ! �n that does not factor through �n�1. Letd�(fs1; e) = n� r. Then 0 � r � d. ufs1vTe fS

FIGURE 6. Here we see how the structure and po-sition of a gigantic subgraph fS of the Cayleygraph can be determined by using the relativelymuch smaller subset of the Cayley graph corre-sponding to a state of the �nite state automatonH .Let v be the vertex on the accepted geodesic[e; fs1] at a distance d+ k from fs1, so thatd�(v; e) = n� r � d� k:There is a unique state [T; �] of H such that v isthe �nal point of �. If u is any vertex of fS, thenthe accepted geodesic [e; u] passes within a distancek of v, and therefore passes through T . Starting



312 Experimental Mathematics, Vol. 5 (1996), No. 4with (T; �), we build up the forward paths fromvertices of T for a �xed distance (2d + 2k is bigenough), which is independent of n. Such forwardpaths reach all points of fS.Let (T; �) represent a state of H and let 0 �r � d. We stress here that we are using a particu-lar representative of the state, and not its isomor-phism class. There are a �nite number of possiblemorphisms of f : S ! � such that fs1 is relatedto the �nal point v of � in the manner describedin the previous paragraph. Each such morphismgives rise to a particular value of the integer calledr above. We de�ne m(T; �; r) be the number ofmorphisms of S into � giving rise to the pair (T; �)and this particular value of r. Clearly m(T; �; r)depends only on r and the isomorphism class [T; �].Let H[T;�] be the �nite state automaton with thesame states, arrows and initial state as H and withonly one accept state, namely [T; �]. For n � d+kwe havecn(S) = X[T;�];r cn�r�d�k(H[T;�])m(T; �; r):Let p(T; �; z) be the polynomial in z such that thegrowth function of H[T;�] is given by C(H[T;�]; z) =p(T; �; z)=det(I � zA) (see Section 2).Then p(T; �; z) depends only on the isomorphismclass [T; �]. We haveC(S; z)= 1Xn=0 cn(S)zn=d+k�1Xn=0 cn(S)zn+ P[T;�]; 0�r�d zr+d+km(T; �; r)p(T; �; r)det(I�zA) :This completes the proof of the lemma. �The theorem follows on putting Q(z) = det(I�zA)in the notation of Lemma 8.2. �
Corollary 8.3. Theorem 8.1 holds for morphisms ofdisconnected graphs S as well , provided we allow

the denominator to depend on the number of com-ponents of S.
Proof. One approach is to point out that the factthat the Hadamard product of two rational func-tions is rational [Stanley 1986].Alternatively, we can extend the proof of The-orem 8.1 as follows. First let L be any regularlanguage over an alphabet � and let E = f$g�be the regular language that consists of any stringof padding symbols. Then the concatenation L:Eis a regular language over � [ f$g. This enablesus to count strings of length at most n, instead ofstrings of length exactly n. (Conversely, we maystrike out padding symbols from any regular lan-guage and still have a regular language.)If we have several components for S, we form oneautomaton for each component, as in Theorem 8.1.We then change these automata to allow paddingat the end. We can use the product of these au-tomata to obtain the number of morphisms in gen-eral.To be completely watertight, we still need tocheck what happens when one or more of the com-ponents of S is mapped too near to the identity tobe controlled by the automaton H de�ned in theproof of Theorem 8.1. For each component of S,we have to consider a �nite number of additionalcases. The necessary adjustment to the countingfunction for all components is to add a �nite num-ber of rational functions. Details are left to thereader. �The dependence in the preceding corollary of thedenominator on the number of components is nec-essary. For example, let G be the cyclic in�nitegroup on a single generator, with Cayley graph �.Let Sk be the disjoint union of k vertices. Then thenumber of morphisms of Sk into the n-ball in � is(2n+1)k. It can easily be shown by induction on kthat the associated rational functionP(2n+1)kznhas denominator (1 � z)k+1. If we wish to restrictto the morphisms that have image in the n-ball,but not in the (n � 1)-ball, then the denominatoris (1� z)k.
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9. COUNTING FINITE SUBGRAPHS THAT ARE NOT
LABELLED, DIRECTED AND CONNECTEDLet � be the Cayley graph of a group G with gen-erators �. In � each directed edge labelled withan element x 2 � has a corresponding edge joiningthe same two vertices, but with the opposite direc-tion and the inverse label x�1. Let S be a �nitegraph. For each edge we may specify a label, or wemay leave the edge unlabelled. For each edge wemay specify a direction, or we may leave the edgeundirected. If the edge is labelled, we require thatit be directed, but an edge of S may be directedwithout being labelled. We de�ne the notion of amorphism of S into � in the obvious way, so thatthis generalizes the concept of a morphism whenS is directed and labelled. If there is no label ordirection on an edge e of S, then one is permittedto map e to any edge of �, provided the ends ofthe edge are mapped to the ends of the image of e.

Theorem 9.1. Let S be as just described . Let an(S)be the number of morphisms of S into � such thatall vertices of S are mapped into the ball of ra-dius n centred at the identity element of �. Letbn(S) be the number of distinct images of injec-tive morphisms of S in � with vertices in the samen-ball . If , for each connected , labelled , directed ,�nite graph S0, the growth series for morphisms ofS0 into � is rational , then so are P an(S)zn andP bn(S)zn.There are variants on these two types of count-ing, for example just counting distinct images ofany morphism, rather than of injective morphisms.These variants can be shown to be rational by sim-ilar reasoning.
Proof. The most important case is when S is con-nected, and we will assume this until otherwisestated. We can complete S to a connected, di-rected, labelled graph S0, by inserting labels anddirections on all edges of S where these are miss-ing. For each such completion S0, there may ormay not exist a morphism into �. The set of pairsconsisting of a completion S0 plus a morphism into

� is in one-to-one correspondence with the set ofmorphisms of S into �. It follows that the growthseries P an(S)zn is the sum of the correspondinggrowth series for the various possible S0, and istherefore rational.Now we work with the bn's. This paragraphworks for S connected or not. Let H be the groupof morphisms of S onto itself. Each completionof S to a labelled, directed graph is acted on byh 2 H, possibly changing the labels and directionson some edges. We take one representative S0 ineach orbit underH, and we discard representativeswhich do not have an injective morphism into �.Note that if a morphism of S0 into � is injective,then all its translates under H are also injective.Suppose the stabilizer of S0 in H has s0 elements.Then the number of morphisms of S0 into the ballof radius n about the identity is a multiple of s0,and so is the corresponding growth series.If S is connected, then so is S0, and the growthseries is rational. We divide this rational functionby s0. We then sum over all the representatives S0,obtaining the rational function P bn(S)zn. Thiscompletes the proof when S is connected.Now let us consider the case where S is notconnected. Recall that the Hadamard product ofP�nzn and P�nzn is de�ned as P�n�nzn. It isproved in [Stanley 1986] that if two power series areeach rational, then their Hadamard product alsois. This shows that the rationality of P an(S)znfor every connected S implies the rationality of thesame series when S is not necessarily connected.We now prove the rationality of P bnzn when Sis not connected. By the argument given above,we may assume that S is directed and labelled.The argument above also proves that we need onlyprove the rationality of the growth series for injec-tive morphisms of S into �, where S is directedand labelled. Let S be the disjoint union of S1 andS2, where S1 is connected. By induction on thenumber of components, we may assume that thegrowth series for S1 and S2 are rational. Using thetheorem about Hadamard products, it follows thatthe morphisms from S to � which are injective on



314 Experimental Mathematics, Vol. 5 (1996), No. 4each of S1 and S2 gives a rational growth series.From this we have to subtract the growth functionfor morphisms where the image of S1 intersects theimage of S2. Each of the �nite number of con�gu-rations in which they meet gives rise to a labelledconnected graph S3 which has fewer componentsthan S. By induction, the growth series for injec-tive morphisms of S3 into � is rational. So thiscompletes the proof of the theorem. �
10. HISTORICAL NOTEThe �rst code to determine automatic structureson groups was written by Epstein, Derek Holt, andSarah Rees during the period 1986{90. An impor-tant step was the realization by Holt that the pro-cess could be made feasible for many groups by us-ing the Knuth{Bendix process [Knuth and Bendix1970]. Around 1988, Saito visited Warwick andtold our group of his computations of the growthfunctions for graphs. Saito was interested in thisproblem because of the connection with compu-tations he was making of quantum phenomena inhyperbolic geometry. He had worked out by handsome examples of some of the theorems reportedhere for particular groups, using generators withgeometric signi�cance. (In our work, generatorsdo not have to have geometric signi�cance.)Using automatic group theory, Epstein was im-mediately able to throw light on some of Saito'sconjectures, but solving them completely was muchharder. (It is interesting to think how intractablethis problem seemed before the introduction of au-tomatic group theory and the associated computerprograms.) Iano-Fletcher then undertook a sys-tematic study of a number of groups, using com-puter algebra packages together with the Warwickautomatic groups software, to compute rationalfunctions arising for particular groups and partic-ular �nite graphs. Iano-Fletcher's work displayedcertain regularities, such as those shown in Lemma7.3. We managed to prove these regularities with-out too much di�culty. In 1989, Zwick joined ourgroup and developed highly e�cient code based on

the algorithms presented in Section 3 of this paper.With this code, it became possible to investigatelarge numbers of examples very rapidly.Saito's main conjecture, that a common denom-inator could be found for growth functions of any�nite graph in a hyperbolic group, was investigated�rst using Iano-Fletcher's code and then Zwick's.So many examples satis�ed Saito's conjecture thatwe soon became convinced that it was true; armedwith that conviction, Epstein found the proof givenin Section 8.Whether the conjecture is true for other classesof automatic groups remains an open problem. Itwould seem to be true, and is probably not hardto prove, for an abelian group with any set of gen-erators.
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