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Motivated by problems from computer graphics and robotics—

namely, ray tracing and assembly planning—we investigate the

combinatorial structure of arrangements of segments on a line

and of arcs on a circle. We show that there are, respectively,

1�3�5�� � ��(2n�1) and (2n)!/n! such arrangements; that the

probability for the i-th endpoint of a random arrangement to

be an initial endpoint is (2n�i)/(2n�1) or 1
2
, respectively; and

that the average number of segments or arcs the i-th endpoint is

contained in are (i�1)(2n�i)/(2n�1) or (n�1)/2, respectively.

The constructions used to prove these results provide sampling

schemes for generating random inputs that can be used to test

programs manipulating arrangements.

We also point out how arrangements are classically related to

Catalan numbers and the ballot problem.

1. INTRODUCTION AND MOTIVATIONConsider a set of n intervals in the real line, andassume that all 2n endpoints are distinct. Wewill be interested in the combinatorial propertiesof such arrangements, that is, the properties thatdepend solely on the order in which the endpointsoccur, rather than their precise position. Speci�-cally, we will count the number of possible arrange-ments and determine two statistics (averaged overall possible arrangements) for the i-th endpoint inthe sequence: the average number of intervals thatthis point belongs to, and the probability that it isan initial, rather than terminal, endpoint. We alsoconsider the analogous problem for arcs in a circle.The overview of the paper is the following. Sec-tion 1 briey discusses the applications that led tothis investigation. Sections 2 and 3 deal with thelinear and circular cases, respectively. Section 4lists some interesting open problems.c A K Peters, Ltd.1058-6458/97 $0.50 per page
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Assembly Sequencing and ArrangementsAssembly sequencing is a domain of robotics whosepurpose is, given a collection of mechanical partsthat �t together in a certain way and a class ofmotions that these parts can be subjected to, tocompute a way, if one exists, to get the single partsfrom the whole assembly. For example, in the sim-ple assembly in Figure 1, if we restrict ourselves totranslations in the plane, it is clear that P1 and P2can only be taken apart by a horizontal motion,whereas P3 and P4 can be taken apart by motionswithin an interval of directions.
P1 P2P3 P4

FIGURE 1. A simple assembly.Analyzing assembly sequences can be of greatuse in many ways: for example, to check that theproduct can be disassembled, to ensure that theparts that may be serviced often are easily acces-sible, or to facilitate recycling by clustering partsmade of the same material. Of major practicalinterest, assembly sequencing is also a di�cult al-gorithmic problem since it is intractable in its gen-eral form; see [Natarajan 1988], for example. Re-stricted, yet interesting, versions of the problemhave been shown to have polynomial-time algo-rithms.For example, consider the case of planar polyg-onal assemblies where the only class of motions al-lowed is in�nite translations and where each splitresults in two subassemblies [Wilson and Latombe1994; Latombe et al. 1996]. The space of motions is

described by the unit circle S1, since a translationcorresponds to a unit vector in the plane. Giventwo parts, the set of directions along which onecan be translated without colliding with the otheris described by an arc on S1, determined by a coneon the Minkowski di�erence [Latombe 1991]; seeFigure 2.
S1Cij Pi Pj Pj Pi

FIGURE 2. The arc of directions of movement of Pithat lead to collision with Pj is given by the coneon the Minkowski di�erence set Pj 	 Pi.The blocking relations for all the pairs of partsare thus described by n(n�1) arcs in S1. Together,they constitute an arrangement of arcs that di-vides S1 into endpoints and intervals, as shownon Figure 3. This arrangement is called the non-directional blocking graph, or NDBG, since it givesthe blocking relations for any pair of parts and anydirection. To each endpoint of the arrangementcorresponds a directed graph, called the directionalblocking graph, having a vertex for each part andan edge between vertices i and j if part i collideswith part j when translated along this direction. Atopological sorting of the strongly connected com-ponents of this directed graph gives the remov-able subassemblies along this direction. Startingwith the full assembly, the disassembly algorithmconsists in recursively removing translatable sub-assemblies with the previous scheme.
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FIGURE 3. Arrangement of arcs on S1.Performing a worst-case analysis of this algo-rithm is pretty easy. Indeed, the NDBG has O(n2)vertices and each DBG has size O(n2), which givesa space requirement of O(n4). The time complex-ity of the recursive disassembly is O(n5) since thereare at most n levels of recursion, and each levelrequires examining O(n2) DBGs for which the re-duced graph (graph of the strongly connected com-ponents) and a topological sorting have to be com-puted.The average-case analysis is much more challeng-ing. Firstly, a precise understanding of the combi-natorics of arc arrangements is required. Secondly,some random graph structure is needed for the di-rectional blocking graphs. The latter question isdi�cult since the number of edges of a DBG de-pends on the geometric information encoded in therelative position of the pairs of parts, which re-quires some de�nition of random assemblies. Thisgoes beyond the scope of this paper. By contrast,the �rst problem is better de�ned and raises pre-cise questions such as the generation of a randomarrangement (see also [Zimmermann 1994]), theprobability of a given endpoint to be an initial orterminal endpoint, the average number of arcs agiven endpoint of an arrangement is contained in,and so on. These questions will be addressed inSection 3.
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FIGURE 4. A ray-traced scene.
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FIGURE 5. Clusters found in the scene. Bottom: detail.
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Ray Tracing and ClusteringRay tracing is a technique from computer graphicsthat consists in computing views of scenes de�nedby geometric primitives. Very often these primi-tives are polygons de�ned by their geometry andcolor, a given object of the scene being de�ned by aset of such polygons. As an example, consider Fig-ure 4, where the kitchen model consists of about25,000 polygons, and objects such as the bowl onthe table or the teapot are made of about 1000polygons. To sketch the ray-tracing algorithm (see[Foley et al. 1990] for details), let a ray be de-�ned by a point and a direction in three dimen-sions. Rays are used to simulate the light receivedby the observer's eye, so that the key operationof the whole algorithm consists in �nding, for agiven ray, the closest object hit in order to plot thecorresponding color on the screen of the computerwhere the algorithm is run.Reducing the number of ray-polygon intersectiontests has ever been a challenging issue. The mainparadigm consists in partitioning the volume con-taining the scene into small boxes, in order to testfor intersection only those polygons stored in theboxes of the partition crossed by the ray of inter-est. An example of such partitioning, the uniformgrid, is based on a regular grid aligned with thethree coordinate axes. (See [Cazals et al. 1995] fora discussion of grid-like data structures.)

b1 b2 b3 e1 e3 b4 e2 e4
FIGURE 6. Arrangement of line segments.

The problem with this approach is that when-ever too many polygons fall into the same box thespatial partitioning does not result in data parti-tioning, so the number of ray-polygon intersectiontests is not reduced signi�cantly. To remedy thisproblem, it was observed in [Cazals et al. 1995]that using uniform grids for densely populated ar-eas of the scene called clusters could partially solvethe problem. Examples of clusters are the neigh-borhoods of the bowl, teapot, or door knobs, andare depicted on Figure 5. More precisely, a clusteris de�ned as a subset of objects whose projectionalong the three axis x; y and z is almost-connected.And, since the projection of a polygon on a lineis a line segment, the clustering algorithm analy-sis turns out to be closely related to the combina-torics of arrangement line segments, as in Figure 6.Thus, the results presented in Section 2 of this pa-per were recently used in [Cazals and Sbert 1997] inconjunction with integral geometry techniques tode�ne statistics aiming at characterizing standardscenes types such as natural models, architecturalscenes, etc.
2. THE LINEAR CASE

Notations and Previous WorkConsider an set of n segments on the line. Let the2n endpoints, which are assumed distinct, be in-dexed in order by (1 : : 2n) = f1; 2; 3; : : : ; 2ng � Z,an orientation having been �xed in advance. Fromthe combinatorial point of view, the arrangementof segments is speci�ed completely by an involutiona of (1: :2n) without �xed points. More precisely, asegment joining endpoints i and j is denoted [i; j],if i < j; the endpoint-pairing involution maps i toj and j to i, and we call i and j the initial and ter-minal endpoints of the pair. For instance, the threepossible arrangements of two segments are shownin Figure 7: they are f[1; 2]; [3; 4]g, f[1; 3]; [2; 4]g,1 2 3 4 1 2 3 4 1 2 3 4
FIGURE 7. The possible arrangements of two segments.



Cazals: Combinatorial Properties of One-Dimensional Arrangements 91and f[1; 4]; [2; 3]g. The arrangement f[1; 2]; [3; 4]gis also thought of as the pairing 1$ 2, 3$ 4.Let Sn be the set of all arrangements of n seg-ments, and let sn = jSnj, where the bars denotecardinality; thus s2 = 3 (compare Figure 7). Ingeneral, we havesn = 1� 3� � � � � (2n�1);as can easily be seen: the pairing can take 1 toany of the 2n�1 remaining indices; it can take thelowest of the remaining 2n � 2 indices into any ofthe remaining 2n� 3; and so on.For a particular arrangement a 2 Sn and fori 2 (1 : : 2n), we de�ne a[i] to be B or E accordingto whether endpoint i begins or ends the respectivesegment, that is, according to whether a(i) > i ora(i) < i. For �xed i, the statistics we are interestedin are the probability that a[i] = B (or a[i] = E),as a ranges over all of Sn, and the overlap numberof i, that is, the average number of arcs or linesegments in whose interior endpoint i is contained.Formally, we de�ne�(n)i = jfa 2 Sn : a[i] = Bgj;"(n)i = jfa 2 Sn : a[i] = Egj;� (n)i = Xa2Snjf(b; e) 2 a : b < i < egj:The corresponding vectors as i ranges over (1 : :2n)are denoted ~"(n), ~�(n), and ~� (n). Thus for n = 2we have ~�(2) = [3; 2; 1; 0], ~"(2) = [0; 1; 2; 3], ~� (2) =[0; 2; 2; 0] (Figure 7).The numbers sn have appeared in the literaturein several forms, in particular in [Touchard 1950;Riordan 1975], which deal with the stamp-foldingproblems. The value of sn is given by Touchard.Riordan mentions that the number of pairings of2n points on a circle is also sn, since such pair-ings, too, can be seen as involutions of (1 : : 2n).(More geometrically, one can open up the circleat an arbitrary point; then a pair of points on S1corresponds to a segment in the resulting interval,and vice versa.) Finally, a look at the very nicebook [Sloane and Plou�e 1995, M3002] shows that

the sequence sn has long been known in connectionwith the expression of Wallis integrals.Riordan [1975] also points out the interestingrelation between the number of pairings on a circleand the Catalan numbers: pairings where chordsare not allowed to intersect give rise to the Cata-lan numbers Cn = �2nn �=(n+1), while pairings thatallow crossings between the chords lead to sn. Ri-ordan cites a correspondence between the Catalannumbers and the ballot problem, also known as thesubdiagonal random walks problem [Comtet 1974;Yaglom and Yaglom 1964; Knuth 1973].
Initial and Terminal Endpoints

Theorem 2.1. For any i = (1 : : 2n) we have�(n)i = 2n� i2n� 1 sn = (2n� i)sn�1 = sn� (i�1)sn�1:Therefore the probability that the i-th endpoint isinitial is (2n�i)=(2n�1), and the probability thatit is �nal is (i�1)=(2n�1).
Proof. We use the recursion�(n+1)i = (i�1)�(n)i�1 + sn + (2n+1�i)�(n)i ; (2.1)for i = (1 : : 2n+1), with initial condition �(n+1)2n+2 =0. This recursion can be veri�ed as follows. Givenan element of Sn+1, let i 2 (1 : :2n+1) be the initialpoint of the segment whose terminal endpoint is2n+2. If we remove the pair [i; 2n+2] and renum-ber, we get a well-de�ned element of Sn. Con-versely, a choice of a 2 Sn and i 2 (1 : : 2n+1)yields a unique element a0 2 Sn+1, by the additionof a segment that starts between position i�1 andi of a and ends at the far right. (Incidentally, thisis another way to derive the value of sn, since itshows that jSn+1j = (2n+1)jSnj.) Because of therenumbering, we havea0[j] = � a[j] if j < i,a[j�1] if i < j < 2n+ 2i;



92 Experimental Mathematics, Vol. 6 (1997), No. 1moreover a0[i] = B and a0[2n+ 2] = E. Analyzingthe contribution to each �(n+1)j from each value ofi, we can write:[ �(n+1)1 �(n+1)2 �(n+1)3 : : : �(n+1)2n+1 �(n+1)2n+2 ]= [ sn �(n)1 �(n)2 : : : �(n)2n 0 ] (i=1)+ [ �(n)1 sn �(n)2 : : : �(n)2n 0 ] (i=2)...+ [ �(n)1 �(n)2 �(n)3 : : : sn 0 ] (i=2n+1)Summation by columns gives the desired recur-rence relation (2.1). (Note that in this relationthe unde�ned quantities �(n)i�1 when i = 0 and �(n)iwhen i = 2n + 1 are multiplied by zero, so theequation still makes sense.)We now prove the closed-form expression for �(n)i .We certainly have �(n)1 = 1; assume by inductionthat �(n)i = sn�1(2n � i) for i 2 (1 : : 2n). We get,for any i 2 (2 : : 2n+1):�(n+1)i = (i�1)sn�1(2n�i+1) + sn+(2n�i+1)sn�1(2n�i)= sn + sn�1(2n�1)(2n�i+1):But sn = sn�1(2n�1), which completes the prooffor i 2 (1 : : 2n+1). The case i = 2n+ 2 is trivial.The probability that endpoint i is initial in ann-point arrangement is of course �(n)i =sn, and theprobability that it is terminal is the complement.This proves the theorem. �
The Overlap Number

Theorem 2.2. For any i = (1 : : 2n) we have � (n)i =(i�1)(2n�i)sn�1. Thus, the average overlap num-ber of the i-th endpoint in an n-segment arrange-ment is (i�1)(2n�i)=(2n�1).It is possible to prove this using recursion, muchlike Theorem 2.1; but here a nicer direct proof:
Proof. Endpoint i is covered by segments of the form[j; k] for j 2 (1 : : i�1) and k 2 (i+1 : : n), and thereare (i � 1)(2n � i) such segments. Each of themappears exactly sn�1 times in the sn arrangements,

since once we have �xed segment [j; k] we are leftwith an arrangement of n� 1 segments. �
3. THE CIRCULAR CASEWe now turn to arrangements of arcs in the circle,and answer the same questions that were posedin Section 2 for linear segments. Because all end-points are equivalent on S1, the situation is easier.We start with the number of arrangements:
Theorem 3.1. The number rn of arrangements of narcs on a circle is equal to (2n)!=n!.
Proof. An arrangement of n arcs is speci�ed by apairing of the 2n points, together with n indepen-dent binary choice, one for each of pair of end-points (either arc determined by the pair may ap-pear in the arrangement; see Figure 8). Thereforern = 2n � sn = 2n((2n�1)� (2n�3)� � � � � 3� 1) =(2n)!=n!. �2 1 2 1

FIGURE 8. Two arcs are determined with equalprobability by a choice of two endpoints.The classi�cation of the arrangements into pairingsalso yields the probability that a given endpointis initial. Because, for a given pair of endpoints,each of the two choices of a segment with thoseendpoints occurs in half the arrangements that in-clude this pair of endpoints, the probability that a�xed endpoint is initial is 12 .The same reasoning shows that the average over-lap number of any endpoint in an arrangement ofn arcs is (n � 1)=2: if endpoint i is chosen andwe consider the relation of i with any pair (r; s)with r; s 6= i, we see that i lies in the interior ofthe arc with endpoints (r; s) for exactly half thearrangements that include this pair.
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4. CONCLUSIONSThe analysis in Section 2 is of interest for computergraphics algorithms dealing with objects' projec-tions along lines. The results in Section 3 may bethe �rst step toward an average case analysis ofthe NDBG-based algorithm for computing assem-bly sequences in the simple case of polygons in theplane moved with in�nite translations. Althoughthis particular assembly sequencing problem mightappear quite restrictive, it is actually one of the fewfor which it is reasonable to come up with an imple-mentation for, so that any precise analysis wouldbe of interest.We remark that, from the study of the combina-torial structure of arrangements presented in thispaper, it is easy to randomly generate such ar-rangements in order to test and validate geometricsoftware. An algorithm to do this might go as fol-lows.Assume we have an array t of integers, of length2n, and two functions: swap(t; i; j), which swapsthe contents of slots i and j in t, and random(k),which returns an integer in the range 1 : : k. Thealgorithm returns the endpoint bi and ei, for i 2(1 : : k), of the arrangement being generated.for i 2 (1: :2n) dot[i] i;for i 2 (1: :n) dop t[random(2n+2�2i)];swap(t; 2n+2�2i; p);q  t[random(2n+1�2i)];swap(t; 2n+1�2i; q);bi  inf(p; q);ei  sup(p; q);Many interesting issues remain open, in particu-lar the calculation of higher moments for the statis-tics presented here. It would be interesting to �ndtwo-dimensional analogs for the results presentedhere; the work done so far in this direction dealswith arrangements of lines in the plane, but notline segments [Edelsbrunner 1986].
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