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We use Brakke’s Surface Evolver to deform a triply periodic
minimal surface, the gyroid, into a continuous family of con-
stant mean curvature surfaces with the same symmetry. We
discuss stability and bifurcation problems for these surfaces.

Minimal surfaces can be rigid if their symme-
tries are imposed. Without symmetries, however,
it is not at all obvious which minimal surfaces are
isolated and which are deformable. In the triply
periodic case Meeks [1990] proved such a result:
the Schwarz P and D surfaces are contained in the
same 5-parameter family. In the present paper, we
consider a different deformation of a minimal sur-
face: we embed it into a continuous family of con-
stant mean curvature (CMC) surfaces. This one-
parameter family is maximal and unique when the
(orientation-preserving) symmetries of the minimal
surface are imposed.

In numerical work Anderson, Davis, Nitsche, and
Scriven [Anderson et al. 1990] embedded five triply
periodic minimal surfaces into one-parameter fami-
lies of cMC surfaces with the same symmetry: these
are the Schwarz P and D, Schoen [ — WP, F —
RD, and Neovius C(P) surfaces, where we use
Schoen’s notation. Mathematically Lawson’s con-
jugate surface method [Lawson 1970] with its ex-
tensions [Karcher 1989; Grofle-Brauckmann 1993]
provides a tool to prove the existence of these and
many other families. Both approaches require the
minimal surfaces to have sufficiently many reflec-
tional symmetries. There is one prominent embed-
ded triply periodic minimal surface which does not
have any reflections: the gyroid. It is associated to
the Schwarz P or D surface, and was discovered by
the crystallographer A. Schoen [1970]. A mathe-
matical proof of Schoen’s claims was only recently
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given [Grofle-Brauckmann and Wohlgemuth 1996].
In a sense made precise by its skeletal graph (see
Section 1A) the gyroid consists of triple junctions,
whereas the Schwarz P surface has sixfold and the
D surface fourfold junctions. Since twofold junc-
tions cannot generate triply periodic cMC surfaces,
the gyroid is special in that it is the only known
triply periodic surface with triple junctions. This
explains why we found the cMC gyroid family ex-
treme in a quantitative comparison with the P and
D family [Grofle-Brauckmann 1997].

The gyroid has been mentioned in the context
of various microstructure phenomena [Dubois Vio-
lette and Pansu 1990]; a general reference for such
interfaces is [Nitsche 1989, p. 240]. Recent interest
in the gyroid has been stimulated by the fact that
interfaces with gyroid symmetries were found in di-
block copolymers [Hajduk et al. 1994; Forster et al.
1994]; see also [Thomas et al. 1988] for a survey.
Presumably two disconnected interfaces form the
polymer interface; in fact the observed symmetry
group distinguishes single and double interface.

A model considered for the polymer problem are
cMmcC surfaces. An experimentally observed poly-
mer double interface with gyroid symmetries and
a volume fraction of 37.5% raises the mathemati-
cal existence question for a cMcC gyroid of volume
fraction 18.75%. This problem was posed by the
polymer scientist E. Thomas to M. Wohlgemuth
and the author, and was not covered by any pre-
vious existence results on CMC surfaces. A first
piece of affirmative evidence is given in [Grofe-
Brauckmann and Wohlgemuth 1996]: the minimal
gyroid can be deformed to surfaces with small con-
stant mean curvature, and gyroids of large constant
mean curvature exist as well. We conjectured in
that paper that the large gap in between these
surfaces is in fact bridged by a continuous one-
parameter family, containing a surface with the
observed volume fraction. The present paper con-
firms this conjecture numerically, using Brakke’s
Surface Evolver [Brakke 1992; 1994]. We find gy-
roids with a volume fraction as low as 5.6%, as
described in Section 4.

Surfaces of constant mean curvature are critical
points for area under a volume constraint. A com-
plete nonspherical surface is never a minimum to
this problem, but if a surface is sufficiently sym-
metric then its fundamental domain may be small
enough to be a stable minimum. At the time our
experiments were carried out the Evolver could not
invoke rotational symmetries (or work in an orb-
ifold setting); now this feature is available. The
Evolver has long been able to work modulo trans-
lations, that is, in a 3-torus. Fortunately, by a
result of Ross [1992], the gyroid divided by its
translation is still stable, and hence, by a result
from [Grosse-Brauckmann 1996], it is a minimum
of area under volume preserving deformations. The
same applies to cMC gyroids close by and this way
we obtain the family down to 25% volume fraction
(Section 2). There a bifurcation occurs leading to
less symmetric surfaces, which still have the same
translations. We observed a similar bifurcation of
the cMc P family. It would be interesting to con-
duct further experiments to understand the bifur-
cation systematically.

To obtain the remaining part of the family we
followed Kusner’s suggestion to use a discrete ver-
sion of the energy

E=/(H(m)—H0)2dx20,

defined on arbitrary surfaces with mean curvature
H(z). A surface of constant mean curvature H,
has vanishing energy and is hence a minimum of
E, no matter if it is stable or unstable for area.
On the other hand a minimum of F is a surface
with constant mean curvature H, provided its en-
ergy level is 0. Critical points with nonzero energy
levels do also occur and are a complication for our
method. They are known e.g. for compact surfaces
under the energy with Hy = 0; Hsu, Kusner, and
Sullivan [Hsu et al. 1992] studied such Willmore
surfaces with the Evolver.

We believe that many other cMC surfaces can be
represented using the Evolver, and a more general
goal of this paper is to describe how this can be
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FIGURE 1. A cMcC gyroid with volume fraction of 18.
triple junctions are apparent.

done. A different program specialized to this pur-
pose gives a discrete version of Lawson’s conjugate
surface construction; it was written by Oberknapp
and is included in the package GRAPE [Oberknapp
and Polthier 1997]. We used it to study compact
and other cMC surfaces in work joint with Polth-
ier [Grofe-Brauckmann and Polthier 1996; 1997a;
1997b]. For surfaces with sufficiently many reflec-
tional symmetries GRAPE seems to be the more effi-
cient choice, but for surfaces such as the gyroid, or
for energies different from surface area, the Evolver
can still be used.

SN
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75%. At this volume the gyroid is rather tubular and the

1. THE MINIMAL GYROID AND ITS KNOWN CMC
COMPANIONS

We want to define the symmetry groups and then
summarize the results on minimal and cMC gy-
roids. For details and proofs we refer to [Grofe-
Brauckmann and Wohlgemuth 1996].

1A. Symmetry Groups and Skeletal Graph

The translational symmetries of minimal and cMcC
gyroids are given by the body centred cubic (BCC)
lattice Ay. A symmetric set of generators for this
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lattice consists of the four space diagonals of a
Cube, (d7 d7 d)7 (d7 _d7 d)7 (_d7 d7 d)7 (_d7 _d7 d)7 for
fixed d > 0. A translational fundamental domain is
the three-dimensional torus T; = R*/A,. In our fig-
ures we represent the torus by a rectangular box By
of edge lengths 2d,2d,d, and with identifications
(24,0,0), (0,2d,0), (d, d, d).

To describe the symmetry groups we first define
a set of four points in the torus, which we represent
by points in the box By:

The box By decomposes into four little cubes of
edge length d, and for each cube there is a space
diagonal which contains one point of V, and one
of V_, dividing it as 1 to 3. The umbilics of the
minimal and ¢MC gyroids will be contained in these
space diagonals.

Definition 1.1. The cMC gyroid symmetries are the
group of isometries of the torus T leaving V, (or
V_) invariant, and the minimal gyroid symmetries
are the group leaving V, U V_ fixed.

These groups do not contain reflections, but they
contain rotations of order 2 and 3, and skew rota-
tions of order 4. The skew rotations result in spiral
shapes (Figure 2, right) and, presumably, led to the
name gyroid. In crystallographic notation the cMmcC
gyroid symmetries form the group 14,32 while Ia3d
denotes the minimal gyroid symmetries. Each min-
imal gyroid symmetry which is not a cMcC gyroid
symmetry can be seen to be orientation-reversing.
Such a map has the same effect up to cMcC gyroid
symmetries; that is it induces a unique involution
t on CMC gyroid symmetric sets. In particular ¢
exchanges the sets V, and V_.

A skeletal graph can be defined for many sym-
metric minimal or CMC surfaces and encodes their

symmetries and topology [Kusner 1991]. There are
two such graphs, one to each side of an embedded
surface M. They consist of vertices connected by
straight lines (edges). Each of the two connected
bodies in R®* — M can be retracted to the respective
skeletal graph while keeping the symmetry group
of M. The skeletal graph S, of the gyroid is the
set of four vertices V, plus the six shortest straight
lines connecting all pairs of points in V. Likewise
the dual skeletal graph S_ = ((S,) connects the
points in V_. The lines point in face diagonal di-
rections and have length d\/§/4; three lines meet
with 120° angles in each point of V., see Figure 2,
left. Definition 1.1 does not change if we replace
Vi by Si-

A nice way to generate the cMC gyroid symme-
tries is to take the set of rotations by 180° about
the edges of the skeletal graph S, which can be
seen to agree with the set of the 180° rotations
about the dual skeletal graph S . Such a rota-
tion acts as a transposition on the four points in
Vi (and V_). Indeed, it fixes the two endpoints of
the edge, and transposes the remaining two points.
Thus any permutation of V. is generated by a set of
three such rotations. Since an isometry of the torus
which fixes V. is the identity we see that three such
rotations generate the group of cMC symmetries.

1B. The Minimal Gyroid

The minimal gyroid G is associated to the D and
P surface, and has hence the same rotational sym-
metries about the normals of associated points.
These axes of rotation are parallel (normals of as-
sociated surfaces agree) but their spacing is differ-
ent. Therefore they generate different symmetry
groups. In particular, for P and D the rotations
generate reflections, but for the gyroid they do not.

Theorem 1.2. The minimal gyroid is an embedded
triply periodic minimal surface with lattice Ay hav-
ing the minimal gyroid symmetries. It has genus 3
in the torus Ty = R3/Ay. The gyroid divides space
into two connected components that are related by
a reflection and translation represented by v. The
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FIGURE 2. Left: The two skeletal graphs Sy for the gyroid. Each graph has the four nodes V4 in the body-centred
cubic Ty outlined by the four little cubes. Each of the six edges of either graph crosses a face of a little cube.
Right: A translational fundamental domain of the minimal gyroid. While for the standard P-cell there are four
horizontal handles at the same height, for the gyroid the horizontal handles gyrate upwards. Indeed, a screw
motion of a 90° rotation about the vertical axis of the rectangular box followed by a vertical shift of a fourth
of its height is a symmetry of the surface. Unlike the P-cell no face of the box is a plane of reflection. An
octagonal helix of one skeletal graph of the gyroid is exhibited outside the surface. Every other edge of the helix
is horizontal and contained in a face of the box; together with vertical translations, the 180° rotations about
these edges generate the complete surface. The quadrilateral helix to the interior side of the surface belongs to
the dual skeletal graph. The vertical faces of the box in this figure make 45° angles with those of the figure on

the left, while the horizontal faces are parallel.

gyroid G is associated to the Schwarz P and D sur-
face; that is, it can be represented

G =cospD +sinp P, (1.1

with ¢ =~ 38.015°; here we add points of P and
D that are conjugate to each other, and positioned
accordingly in space.

Formula (1.1) can be viewed as the Weierstrass rep-
resentation formula; it gives the real part of Weier-
strass data rotated with e®.

Remark 1.3. In this presentation we considered the
minimal gyroid as a set. If instead we view it as an
oriented surface (with normal) then its symmetry
group is given by the cMcC gyroid symmetries. This
is a common choice, for instance when the surfaces
are represented with the Weierstrass formulas. For
P and D, but not the gyroid, the choice of sym-
metry group affects the lattice: the involution ¢ for
these surfaces can be represented by a translation.
The genus-3 minimal surfaces with such an orienta-
tion-reversing translation form Meeks’ 5-parameter
family mentioned in the introduction.
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1C. Constant Mean Curvature Gyroids

In [Grofle-Brauckmann and Wohlgemuth 1996] we
prove there are gyroids with small mean curva-
ture close to the minimal surface. We also discuss
CMC gyroids of large mean curvature, that look like
spheres connected with small necks; the existence
of these spheroidal gyroids follows from the work
of Kapouleas [1990].

Theorem 1.4. There exist €,0 > 0 such that there
is o family of embedded triply periodic surfaces Gy
with lattice Ay and CMC gyroid symmetries. For
0 < +H < ¢ the family is continuous in H, and
contains the minimal gyroid Go. There exist fur-
ther gyroids with mean curvature

2v2/d < +H < § + 2V2/d.

When H — £2/2/d these spheroidal gyroids con-
verge in Hausdorff distance to a union of four cMC
symmetric spheres of radius dv/2/4 in the torus,
which we call gyroid close-packed spheres. These
spheres have midpoints at V. and touch each other
in the midpoints of the edges of Sy.

In the present paper we find a one-parameter fam-
ily which contains the gyroids of the theorem: the
small mean curvature gyroids are in the middle,
and the spheroidal gyroids of Kapouleas at the
ends. In particular our family also degenerates in
gyroid close-packed spheres; at that point, the fam-
ily cannot be extended any further since handles
pinch off and the Gaufl curvature blows up. The
gyroids of mean curvature H and —H in this fam-
ily as well as those of Theorem 1.4 are related as
follows:

Proposition 1.5. The involution ¢ changes the sign of
the mean curvature, «(Gg) = G_g, but leaves the
area invariant. The minimal gyroid Gy is a fized
point of ¢.

We will often refer to the volume of a continuous
family Gy with gyroid symmetries. By this we
mean the volume of one component of Ty — Gg

which is selected in a continuous way. Since ¢ in-
terchanges the two components we have

VOI(G,H) = VOl(Td) - VOI(GH) (1.2)

We call the quotient vol(Gy)/ vol(T,) the volume
fraction of Gg. From (1.2) it follows that the vol-
ume fraction of the minimal gyroid is a half.

2. EVOLUTION BY AREA UNDER A VOLUME
CONSTRAINT

A variational characterization of a (compact and
boundaryless) cMC surface M (0) in a 3-manifold
is that

d J—

pr [area(M(t))} o 0
for any smooth family of surfaces M (t) which en-
closes the same volume as M (0). For the evolution
we need minima rather than critical points, and
for this reason we consider the second variation. A
cMmc surface M is called volume preserving stable,

or v.p. stable, if for all smooth functions u with
Jyyu=0o0nM

/ —ulAu — |A|2u2 > 0. (2.1
M

It is called strictly volume preserving stable if the
left hand side is larger than )\fM u? for a A > 0.
Here |A| is the norm of the second fundamental
form, and A the Laplace—Beltrami operator on M.
We recall a result of Ross [1992].

Theorem 2.1. A translational fundamental domain
of the minimal gyroid, G /A, is volume preserving
stable.

This result can be sharpened to strict stability if
the gyroid is fixed with respect to translations; see
the proof of Lemma 17 in [Grofle-Brauckmann and
Wohlgemuth 1996]. In [Grosse-Brauckmann 1996]
we prove that strict v.p. stability of M (0) implies
that the area of M(0) is smaller than that of any



other close-by surface which encloses the same vol-
ume. This makes the minimal gyroid G C T, a
strict area minimizer among surfaces enclosing the
same volume. By continuity of (2.1) we obtain:

Theorem 2.2. The minimal gyroid and sufficiently
close deformations to constant mean curvature are
strict local minima of area for their respective vol-
ume fraction.

Note that the volume constraint is also necessary
for a minimal surface: only a planar surface is a
minimum of area, but any other minimal surface
has larger area than parallel surfaces close by.

Thus we can find cMC gyroids with the Evolver
by minimizing area under a volume constraint in
the torus 7;. We found them down to a volume
fraction of 25%. In Table 1 we give the data ob-
tained for a triangulation with 1052 vertices, 3168
edges, and 2112 faces. In this and all following ta-
bles we choose d = 4~'/% such that the torus T}
has volume 1. To control the evolution we calcu-
lated eigenvalues using the ritz command of the
Evolver’s hessian method. Clearly the gyroid can
be translated in the torus, and thus there is a three-
dimensional eigenspace with eigenvalue zero. Nu-
merically, this eigenvalue had modulus always less
than 0.3. Thus the lowest nonzero eigenvalue is
the fourth one which has multiplicity 2. The sixth
eigenvalue, although at the minimal surface much
larger than the fourth and fifth eigenvalue, comes
also close to 0 when these tend to 0. This could
indicate that a bifurcation to further asymmetric
solutions occurs close by.

Reducing the volume further resulted in gyroids
with fewer symmetries: necks of different sizes ap-
pear. Eventually they pinched off. Likewise we
observed that the cMc P-surfaces bifurcate to less
symmetry at a volume fraction of 34%.

Remarks 2.3. 1. Karcher pointed out that these
bifurcations could be related to the existence of a
known less symmetric P-surface with cubic lattice:
the stable square catenoids on P [Grofle-Brauck-
mann and Wohlgemuth 1996] have a boundary that
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mean least nonzero
area volume .
curvature eigenvalue

2.459 0.5 0.00 8.07
2.442 0.437 0.27 7.62
2.391 0.375 0.56 6.38
2.300 0.312 0.89 4.10
2.239 0.281 1.08 2.61
2.172 0.253 1.26 -0.04

TABLE 1. Evolution of the gyroid by area under a
volume constraint in a torus of volume 1.

also bounds an unstable square catenoid. Out of
the three handles of P, two are still the same under
the symmetries of this surface; we do not know if a
P surface exists in a cubic cell with all three han-
dles different. In any case we believe that such less
symmetric minimal P-surfaces can also be embed-
ded into a cMmcC family; it is unclear if this family
bifurcates away from the symmetric family. We
can imagine similar desymmetrizations for the gy-
roid handles.

2. Ross’s result gives an analytic reason why the
translational symmetries automatically enforce the
full symmetry group. We also have a geometric
explanation. We expect that a change in diameter
of a handle results in a change of its length. This
principle is true for the Delaunay surfaces [Grofe-
Brauckmann and Polthier 1997a] and seems to be
generically true for other cMcC surfaces. Thus if
not all handles are changed the same way then the
lattice must change.

3. CRITICALITY AND STABILITY FOR AREA IN
CMC FAMILIES

Regarding area and volume of a compact CMC fam-
ily the following simple fact is important.

Lemma 3.1. Suppose M (t) is a smooth family of sur-
faces such that M(0) has constant mean curvature
H # 0. Then the area of M(0) is critical if and
only if the volume is critical.
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Proof. The first variation formula for cMC surfaces
states that
d

pr [area(M(t)) — 2H vol(M(t)) T 0. (3.1

We want to apply this lemma to the special case
that M (t) is the family of cMcC gyroids.

Proposition 3.2. Suppose that the small mean cur-
vature gyroids and the spheroidal gyroids are con-
tained in one smooth family with nonzero mean
curvature except at the minimal surface. Then area
and volume must be critical for at least one surface
and the mean curvature is also critical for at least
one surface.

Proof. 1t follows from Kapouleas’ work that we can
consider the spheroidal gyroids in highest order as
spheres of radius v/2d/4 — r (for sufficiently small
r > 0) joined with necks. These necks have both
radius and length of order O(r) so that their area
is of order O(r?), and the volume is of order O(r?).
But both area and volume of the spheres decrease
to first order in r. This means that in highest order
the behaviour of area, volume, and mean curvature
is given by the respective quantities for the family
of spheres. In particular the cMC family contains
surfaces with area and volume fraction less than
the close-packed spheres, but larger mean curva-
ture.

The close-packed spheres have a volume fraction
of 4(v/2/4)? ~ 0.185 in the torus which is less than
the volume fraction 0.5 of the minimal gyroid Gy C
T;. Thus if these two subfamilies are bridged by
a smooth one-parameter family there must be a
surface with critical volume in between, which, by
the previous lemma, has critical area or vanishing
mean curvature. A similar continuity argument
applies to the mean curvature. O

We believe, but do not know, that the minimal gy-
roid is unique in the class of cMC surfaces of genus 3
with cMC gyroid symmetries. In that case the non-
vanishing assumption on the mean curvature in the

proposition could be replaced by a symmetry as-
sumption.

We want to relate the existence of a surface with
critical area and volume to stability properties of
the family. Weaker than stability in the torus is to
require stability on a smaller domain:

Definition 3.3. We call a cMcC surface r-stable if it
is v.p. stable with respect to variations respecting
the (full) symmetry group of the surface.

When R? is divided by such a symmetry group, in
general an orbifold results, and r-stability is the
stability of the surface in this orbifold. Note that
for the gyroid the orbifold does not allow transla-
tions any more, and thus a gyroid can be strictly
r-stable. Since the Evolver does not (yet) allow us
to invoke rotational symmetries we could not test
on r-stability numerically. In any case we have the
following mathematical facts.

Theorem 3.4. (i) The cMC gyroids are strictly r-
stable in a neighbourhood of the minimal gyroid.
(ii) Close to the gyroid close-packed spheres the
spheroidal CMC gyroids are r-unstable.

(iii) A cMcC gyroid which is critical for both area
and volume (in the CMC symmetric class) is not
strictly r-stable.

A similar theorem holds for the P and D surface.
Presumably, it applies to many more CMC surface
families obtained from minimal surfaces.

Proof. The first statement is a special case of Ross’s
Theorem 2.1.

To prove the second statement we consider a
blow up of the spheroidal gyroids as follows. Each
handle has a shortest closed geodesic. We rescale
the surfaces such that the length of this geodesic is
one. If we position the cMC gyroids such that the
geodesics are always contained in a unit ball, then
by the work of Kapouleas a subsequence smoothly
converges to a catenoid with waist circumference
one.

As we shall see in Lemma 3.5 below, the catenoid
is not stable for area under a volume constraint.



The instability arises from a rotationally symmet-
ric eigenfunction with a negative eigenvalue. This
eigenfunction respects all the cMC gyroid symme-
tries. Thus the gyroid neck with symmetries is
asymptotically unstable. By the smooth conver-
gence, CMC gyroids close to the gyroid sphere limit
are unstable.

The third statement follows from the fact that
the one-parameter family at this surface gives rise
to a nontrivial variation which preserves the vol-
ume. Hence the surface cannot be strictly stable.

O

Lemma 3.5. The catenoid is not volume preserv-
ing stable among (compactly supported) variations
which respect all its symmetries.

Proof. This follows from the instability of the De-
launay surfaces proved by Athanassenas [1987]. We
sketch a more explicit proof. The catenoid is a sur-
face of revolution, obtained by rotating a graph
r(z) about the z-axis. A variation r(¢,z) with
r(0,z) = r(z) which is symmetric in £z obviously
respects the catenoid symmetries. It is well-known
that the catenoid is unstable for area alone, and
thus there is a (symmetric) variation that decreases
area in first order. This variation changes the en-
closed volume, but we can compensate for it with
an arbitrary small change of area when we move
out far enough to infinity. To see this, note that
the area of a surface of revolution is 27 [ rv/1 4 7"
whereas the volume is m [r? (integration over a
compact z-interval). This variation can be taken
with compact support disjoint to the area decreas-
ing variation. |

It follows from the lemma that none of Kapouleas’
surfaces is stable for its symmetry group.

4. EVOLUTION OF THE GYROID USING
THE ENERGY [(H — Hy)?

We obtained a maximal continuous family of con-
stant mean curvature gyroids using the energy

[ -y
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where we prescribed H, suitably. In this section we
describe the geometry of the cMcC gyroid family, in
the next our Evolver settings, and thereafter we
give a more technical description of the evolution.

Our main result is that the simplest situation
allowed by Proposition 3.2 occurs: up to ¢ there
is only one surface critical for area and volume,
and also only one with critical mean curvature. A
similar statement holds for the five surfaces studied
by Anderson [1990].

Experimental Result 4.1. There is a maximal contin-
uous one-parameter family § = +(G) of embedded
triply periodic surfaces, called cMC gyroids, with
lattice A; and the cMC gyroid symmetry group.
The family includes the gyroids of Theorem 1.4.
It contains two c-related least-area surfaces which
also have extremal volume, and two ¢-related sur-
faces with maximal |H|. The family is not closed,
and has two degenerate endpoints given by the two
t-related gyroid close-packed spheres.

In Table 2 we give data obtained for a triangula-
tion with 764 vertices, 2304 edges, and 1536 faces;
for the last three rows we had to refine this tri-
angulation. We add in italics values for two exact
surfaces: these are the minimal surface (using that
the P surface contained in a unit cube has area
2.3451 [Anderson et al. 1990, p. 361]) and the gy-
roid close-packed spheres.

Like Anderson [1990] we did not study the family
in between the maximal mean curvature surface
and the gyroid close-packed spheres too well; see
Section 6F. In Figure 3 we give plots of our data
in a format similar to the plots in [Anderson et al.
1990]. In the plots we extended the half-family we
computed to the entire family by the involution ¢ of
Proposition 1.5. Note that the slope of the area to
volume graph is exactly twice the mean curvature.
Indeed, on closed intervals we can parameterize the
family by its volume as vol(M(t)) = t + counst. If
H(t) is the mean curvature of M (¢) then the first
variation formula (3.1) implies the claim

d%[area(M(s))]t = 2H(t).
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area reiz;;gre volume cur;i;irlire

2.4537 1 0.5 0 exact minimal gyroid

2.461 1.002 0.497 0 see Figure 2 and Figure 4, top left
2.378 0.969 0.362 0.63

2.186 0.891 0.256 1.27

1.979 0.807 0.188 1.84 see Figure 1 and Figure 4, top right
1.742 0.710 0.134 2.54

1.415 0.577 0.080 3.81

1.298 0.529 0.066 4.44

1.200 0.489 0.056 5.29 least area and volume: see Figure 4, bottom left
1.350 0.550 0.069 9.52 maximal mean curvature

1.453 0.592 0.079 5.40 see Figure 4, bottom right

2.494 1.016 0.185 4.48 gyroid close-packed spheres

TABLE 2. The one-parameter family of cMC gyroids in a torus of volume 1.

Geometrically it seems that the minimal gyroid
shrinks to cMC gyroids which look much like tubes
about the skeletal graph S, around a volume frac-
tion of a fifth. After that, necks shrink into the
tube at the middle of the edges of S;. When the
minimum in area and volume is reached the sur-
faces look like a union of thickened equilateral tri-

angles (lying in the tangent plane of S, at V).
These triangles thicken further to spheres on the
way to the gyroid close-packed spheres while the
connecting necks shrink. In Figure 4 we display
cMmc gyroids for four different volume fractions.
We return to the stability discussion of the pre-
vious section. Theorem 3.4 implies that the arc

. ) MEAN
gyroid AREA gyroid CURVATURE
close- close-
packed . packed gyroid
spheres minimal spheres close-
2.5 | surface packed
4
spheres
2
minimal
1.5 surface
least area L least area
0.5 gyroid
—4 close-
VOLUME FRACTION VOLUME FRACTION packed
spheres
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

FIGURE 3. Area, volume, and mean curvature of the

cMmc gyroid family, in a torus of volume 1. The mean

curvature is normalized to equal 1 for the unit sphere. Bumpy spots reflect insufficient data; see Section 6F.



43

Grolde-Brauckmann: Gyroids of Constant Mean Curvature

A

5008
gt
v

a 7aS
X »ﬁﬁﬂvﬂw

>
ROCISA 4
oot

N

- NP

STAVAWARY
\Vb‘h’#ﬂﬂn

£ & A SIVAVAVAVA

&ma v g

Ay AT AYAYAA

s

VA
v’ |

v

A
B\

%4

Top left: The minimal gyroid
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5.6% in our cMC family. Bottom right: A spheroidal cMc gyroid with volume fraction 7.9%.

FIGURE 4. Fundamental domains for gyroids with different volume fractions.

(volume fraction 50%).
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of the cMcC gyroids containing the minimal gyroid
can at most be r-stable up to the least-area sur-
face. We believe that r-stability is lost exactly at
this surface.

Conjecture 4.2. The cMC gyroid family is strictly r-
stable for area under a volume constraint from the
minimal surface up to the least-area surface.

A similar conjecture can be made for all surfaces to
which Theorem 3.4 applies, in particular P and D.
For those two surfaces further evidence to the con-
jecture is given by the fact that no bifurcation to
surfaces with the same symmetry can occur in be-
tween the minimal and the extremal surface; this
result follows with the methods of [Grofe-Brauck-
mann 1993]. This evidence is not conclusive, how-
ever, since a possible zero eigenvalue in between
the minimal and the least-area surface could cor-
respond to a nonintegrable Jacobi field.

Remark 4.3. Physically it is interesting to study
families of minimizers with gyroid symmetries for
other energies, such as the squared mean curvature
integral W(M) = [,, H*(z) under a volume con-
straint; compare [Hsu et al. 1992]. Among the De-
launay surfaces the cylinder is likely to be favoured
by W (for given volume per period, say). The
tube-like surfaces in our cMC gyroid family are the
best analogue to the cylinder since apparently their
Gauss curvature is distributed in the most uniform
way among the family. Thus it is reasonable to ex-
pect these surfaces to be close to minimizers of W.
Indeed, evolution under W of the cMmcC gyroid with
18.75% volume fraction resulted in an almost un-
changed surface with area 1.975 and energy 6.62
(in a triangulation with 6624 faces). Further ex-
periments would be interesting and could lead to a
more precise conjecture for the Delaunay surfaces.

5. EXPERIMENTAL SETUP FOR f(H — Ho)?

The evolution with [(H — Hy)? gives cMC surfaces
which need not be stable for area under a volume
constraint. We have to pay for this gain with slower
convergence and problems with degeneracies. Thus

the energy [(H — H,)? should be only used when
the evolution by area under a volume constraint
fails. Note that the area is computed by integrating
first derivatives, whereas for the mean curvature H
second order derivatives must be calculated.

We hope that the following remarks together
with the Evolver manual [Brakke 1994] make it
possible to reproduce our results.

We started the Evolver in its “quantities” ver-
sion with evolver -q. The discrete form of the
energy [(H — Hy)? is calculated in the Evolver as
follows. A vertex v has a star of triangles around
it with area A,. The gradient with respect to the
position of the vertex in space gives a force F, =
—VA,. The gradient N, of the volume spanned
by the star at v is a quantity similar to area times
the normal at the vertex. For reasons explained in
[Brakke 1994, §7.3.9] a numerically well-behaved
definition of the mean curvature at v is

3 R
""" 2N,-F,’
where N, is the volume gradient of the star. This
mean curvature is effected with normal curvature

on. Thus the discrete energy is the sum of the ver-
tex energies weighted with their area contribution,

3 |F, * A,
E= = —Hy| =
2 <2Nv -F, °> 3

vertices v
quantity star_nh2 energy global_method
star_normal_sq_mean_curvature

It is active with

in the input file header. The offset H, in mean
curvature, which is our free parameter for the cmc
gyroid family, is specified by the parameter h_zero
declared in the input file, and changed interactively
using the Evolver’s A command.

In order to have the area displayed, we set

default_area_modulus := 1

but avoided having it contribute to the energy func-
tional with set facet tension 0. We also de-
sired the Evolver to display the volume using the



v command. Since the volume calculation of the
Evolver via the divergence theorem is ambiguous
in a 3-torus by integer multiples of a sixth of the
torus volume it is necessary to state the actual vol-
ume in the input data file up to a sufficiently small
error. The volume is included in the data file after
the body; in order to have the Evolver not con-
sider this a constraint, unset body target (or
the b command with parameter 0) must be de-
clared. Note that by the same token an iteration
step should never change the volume by more than
a sixth of the torus volume.

Brakke wrote a hessian routine for the starnh?2
energy in the course of our experiments. At present
it can only be used for surfaces without bound-
ary. We invoked the toggle hessian normal on
to restrict the hessian to normal motions. The
hessian works for sufficiently small energies (order
0(1077)) reliably, and quickly reduces the energy
further. Having check_increase on it is worth
trying the hessian for larger energy levels too, as
it moves the surface in one step as much as per-
haps only thousands of standard gradient steps do.
This results very often in a considerable geometri-
cal change of the surface, even if the energy does
not drop much. Note that in a gradient step in-
formation does not spread further than one trian-
gle, whereas the second order methods solve the
equation all at once. The same applies to the
saddle command which we also used occasionally.
Problems of the hessian with large data files were
avoided by ysmp off.

Evolution by the star nh2 energy is rather sen-
sitive to the quality of the triangulation. An even
triangulation is easily produced by the Evolver’s
w, u, 1, t commands, followed by a smoothing V.
This worked well from the minimal to the least-
area CMC gyroid. For the surfaces with small necks,
however, the triangulation needs to be refined at
regions of high Gauss curvature (compare Figure 4,
lower right). Too coarse triangulations seem to de-
teriorate. To refine the necks we carefully iterated
the commands n, u, X, followed by some V’s; if nec-
essary we invoked the t command to make sure the
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edge lengths would not vary by more than a factor
of 10.

6. TECHNICALITIES OF THE EVOLUTION

6A. Initial Surfaces and Gyroid Foam

The vertices V. of one skeletal graph form a sub-
set of the face centred cubic (FccC) lattice which
has order 4 in the body-centred cubic (Bcc) lat-
tice Ay of the gyroid. To see this, it is convenient
to translate V. by (d/4,d/4,d/4). All translated
vertices sit on the midpoints of the edges and in the
centres of the smaller cubes; that is, they form a
subset of an FCC lattice with respect to the smaller
cubes. A consequence is that the Voronoi cells of
the FCC lattice, rhombic dodecahedra, can be used
as an initial surface for evolution: rhombic dodec-
ahedra placed at the vertices of one skeletal graph
touch three other rhombic dodecahedra, and pop-
ping the faces in common results in a polyhedral
surface with cMC gyroid symmetries.

A more convenient way to obtain an initial sur-
face is Voronoi Cell Solver (vcs) written by J. Sul-
livan [1992]. The eight Voronoi cells of V., UV_ are
17-faced polyhedra, with 2 hexagons, 12 quadrilat-
erals, and 3 decagons; see [Schoen 1970, Fig. I1-2a].
With the vcs program faces can be popped. When
we pop the twelve decagons an initial surface with
minimal gyroid symietries results. We would like
to mention that the relaxed Voronoi cells form a
gyroid foam that is far from optimal in regard to
cell area: the gyroid cell (normalized to unit vol-
ume) has area 5.665, whereas Kelvin has 5.306 and
Weaire—Phelan 5.288 (data courtesy of J. Sullivan,
personal communication).

6B. Bifurcation Points

In Section 2 we mentioned the existence of a bi-
furcation at about a volume fraction of 25%. For
an evolution using [(H — H,y)? this bifurcation
also appeared and led to the undesired arc of sur-
faces with less rotational symmetry. Although the
Evolver does not allow us to enforce the full sym-
metry group directly, the following achieves the
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mean
area volume
curvature
1.199589 0.056435 5.283
1.199568 0.056433 5.289
1.199566 0.056432 5.292
1.199570 0.056433 5.296

TABLE 3. The third row gives data for the least-area
gyroid, and the remaining rows for gyroids nearby.

same effect. With a coarse triangulation we ad-
justed H, step by step to pass the bifurcation point.
Since our initial surface has the cMc gyroid sym-
metries its evolution is also symmetric. Hence only
added numerical inaccuracies lead from a symmet-
ric initial surface to an asymmetric evolution. Once
past the bifurcation point, refinement did not cause
any problems. In particular we did not encounter
any further bifurcations.

We remark that with a too coarse evolution the
discrete surfaces evolve into a family with mono-
tone area and volume, so that there is no spheroidal
arc. Thus some refinement is necessary to produce
the qualitative behaviour of the smooth case.

6C. The Least-Area Gyroid

The Evolver’s hessian provides a fast method to
trace a minimizer upon variations of a functional.
Here we are interested in determining minimizers
of the energy £ = Ey, upon variations of the con-
stant H,. Suppose that a surface M (H,) mini-
mizes Ey, for some value Hy, in the sense that
Epy, < 1077, Then there is an € > 0 such that the
same surface still has energy Fy, . < 1077. Thus
the hessian can be invoked for the energy Ey, ..
It will quickly reduce energy further and produce
a new minimizer M (Hy + €). This procedure can

be iterated as long as the triangulation does not
deteriorate. Even though one needs to work with
small steps in Hy, this is much more efficient than
to work with standard gradient steps.

We used this method to determine the least-
area gyroid, which is illustrated in Figure 4, lower
left. Table 3 indicates that as in the smooth case
(Proposition 3.2) the same polyhedral cmcC gyroid
attains least area and extremal volume provided
the combinatorial type is left unchanged.

6D. Size of Error

The hessian steps described in the last subsec-
tion allow one to determine the discrete cMC gy-
roid with least area precisely. However, the result
depends on the triangulation chosen. To judge how
significant our data are for the smooth case we need
to estimate the error arising from discretisation.
As an example we studied the effect of refinement
for the least-area gyroid, Table 4 gives the result.

The first row of the table represents a triangula-
tion of the fineness of Table 2, the last row the fine-
ness used for Table 3. Another test for our results
is the minimal surface: Area and volume of our
evolved minimal surface with prescribed mean cur-
vature 0 deviate from the “exact” figures by 0.3%
(see Table 2).

Although we cannot give precise error estimates,
we think that the data for area and volume in the
Table 2 are no more than 1% apart from the val-
ues for smooth surfaces. Certainly the Evolver can
handle a triangulation as fine as Anderson’s tri-
angulation of 38000 faces, but to trace an entire
one-parameter family becomes time-consuming.

In Table 4 we show two figures that we consider
significant for the quality of a triangulation: the

area volume #vertices #edges #taces dgfglzal qlfgégﬁ ¢
1.207  0.05642 764 2304 1536 43 1.7
1.203  0.05664 2530 7602 5068 23 2.3
1.200  0.05643 4955 14919 9946 15 2.1

TABLE 4. The effect of refinement for a fixed mean curvature H = 5.289.




maximal dihedral angle between two adjacent tri-
angles, and the maximum quotient of edge lengths
occurring in a triangle. The latter figure indicates
how much the worst triangle in the triangulation
deviates from being equilateral.

6E. Maximal Mean Curvature

Since we used the mean curvature as a parameter
the determination of the maximum in mean cur-
vature needs to be explained. On increasing H
we eventually reached a value for which the en-
ergy did not approach 0 any more. We interpreted
this to be the maximal mean curvature in the fam-
ily. To follow the family further we prescribed a
slightly larger volume with b for a few iteration
steps. Then we resumed the standard mode with a
somewhat smaller prescribed mean curvature. The
result were surfaces with larger area and volume
than before, so that we would follow the family
on the arc towards the spheroidal gyroids. This
determination of the maximum of mean curvature
in the family seems to be more dependent on the
triangulation (and hence less precise) than the de-
termination of least area and volume.

FIGURE 5. A cmc gyroid with one extra bubble.
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6F. The Spheroidal Gyroids

Following the family to the gyroid close-packed
spheres is complicated for two reasons: small necks
require very small triangles and cause numerical
problems, and the energy does not vary much be-
tween surfaces of very different areas and volumes.
This made convergence rather slow. Also, we could
not prescribe large changes in H, as it seemed
the evolution did not find a close-by ¢McC surface
any more. This problem appeared in surfaces with
nonzero stationary energy levels. We believe it is
possible to follow the spheroidal gyroids further;
since the sphere limit is well-understood theoreti-
cally we accepted the gap between our last surface
in Table 2 and the gyroid close-packed spheres.

7. ALL CMC GYROIDS

As Figure 5 shows there are more CMC gyroids than
just those described in our Experimental Result
4.1. The depicted surface has area 0.69, a volume
fraction of only 1.56%, and mean curvature 12.7
(in a triangulation with 11528 faces). This surface
could be called a gyroid with one extra bubble (on
the edges of the skeletal graph); we want describe
in this section that we similarly expect cMC gyroids
with any number n € N of bubbles on the edges.
By a cMC gyroid we mean a triply periodic sur-
face with lattice A4, genus 3 in the torus R3/A,,
and invariant under the CMC gyroid symmetries.
We also assume embeddedness in the slightly gen-
eralized form of almost embeddedness (see [Grofe-
Brauckmann and Kusner 1996] for a definition).
All such cMmc gyroids obtained with the method of
[Kapouleas 1990] can be described as follows.

Theorem 7.1. For each integer n € Ny there exist
CMC gyroids with mean curvature in the interval
V2(2n +2)/d < £H < v2(2n + 2)/d + € for
some g€(n) > 0. The degenerate limit for H —
+v/2 (2n+2)/d are Kapouleas spheres: a union of
6n + 4 spheres of radius 1v/2d/(2n + 2) such that
there are n+2 centres of spheres equally spaced on
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each edge of the skeletal graph Si, with the outer-
most centres contained in V.

According to Kapouleas (personal communication)
a proof of continuity for these families could be
worked out. At the Kapouleas spheres the families
stop naturally, but we think they can be extended
over the other end up to another degenerate sur-
face, which is again a union of spheres. More pre-
cisely, from similar cases [Grofie-Brauckmann 1993]
we expect the following maximal continuous fami-
lies (which include Kapouleas’ surfaces).

Conjecture 7.2. All cMC gyroids are given by a count-
able union of continuous one-parameter families
Gt n €N, as well as the family G from our Ez-
perimental Result 4.1. The families with different
superscript + differ by the involution v, so that
1(GE) = GF. The two degenerate endpoints of each
family S are given by a union of spheres: one
are the 6n + 4 Kapouleas spheres of the previous
theorem, and the other the 6n noidal spheres of ra-
dius %\/ﬁd/2n, with n centres on each edge of the

skeletal graph Si.

For the noidal spheres the outermost spheres on
the edges touch exactly in the vertices of V.. The
term noidal refers to the character of the triple
junction: a suitable blow-up at V.. of the surfaces
close to the spheres converges to minimal trinoids
(minimal surfaces with three catenoid ends in di-
hedral symmetry).

Note that if a Kapouleas gyroid with mean cur-
vature H is contained in G then its involutive im-
age with mean curvature —H is in a different con-
nected component of the moduli space, namely in
G,,. Only the family G of our Experimental Re-
sult 4.1 is invariant under the involution ¢; the
geometric reason for this difference is that start-
ing with gyroid close-packed spheres (Kapouleas
spheres for n = 0), there are no spheres left for it to
end in noidal spheres. Instead G contains the min-
imal gyroid, and continuous with the (-symmetric
arc to reach the other gyroid close-packed spheres.

How do we expect volume and area to behave on
the families?

Conjecture 7.3. Each family G contains one sur-
face with least area and least enclosed volume, it
also contains one surface with mazimal |H|. Fur-
thermore, for n — oo each sequence M,, € Gt con-
verges in Hausdorff distance to the skeletal graph
Si. In particular area(M,) and vol(M,) converge
to 0.

The evidence for this conjecture is a reasoning sim-
ilar to the proof of Proposition 3.2: area and en-
closed volume at the spherical endpoints of the
family are larger than that of cMcC surfaces close
by. A critical point for the area must occur, which
by Lemma 3.1 is expected to be critical for the
volume too. Similarly for the mean curvature. On
the assumption that the minimum in mean curva-
ture of each family G converges to infinity with
n — oo the statement for the sequence M,, follows
from the tubular enclosure theorem and the area
bounds given in [Korevaar and Kusner 1993].

We would like to conclude our paper with some
suggestions for experimental work. It would be in-
teresting to understand the bifurcation mentioned
in Section 2. Moreover it can be asked if further
bifurcations exist and what they lead to. It might
also be possible to get some understanding of the
class of all cMcC surfaces of genus 3 in T;. We
expect this class to be rather large since Meeks
[1990] constructs a sequence of embedded minimal
surfaces with genus 3 in some fixed torus with un-
bounded area. To make the geometry of Meeks’
surfaces more concrete would be another worth-
while project; not to mention their possible cMmcC
deformations.

Remark 7.4. Currently we study deformations of
oMC surfaces with triple junctions [Grofie-Brauck-
mann and Kusner 1996; Grofle-Brauckmann and
Polthier 1997b]. The surprising result of that work
is that bubbles can be generated or deleted on the
edges of the skeletal graph if we allow their angles
at the triple junctions to vary. Fixing H =1 this



means that the length of the edges is at our disposi-
tion if the lattice (or the torus) is not fixed in such
a deformation. Thus it seems that there is great
freedom for deformation in the class of triply peri-
odic cMC surfaces; it may be that all cMC surfaces
of genus 3 are contained in one connected compo-
nent of the respective moduli space. To summarize
let us distinguish two cases: when symmetries are
imposed, there are different connected components
of the moduli space, characterized by the number
of bubbles on the edges (Conjecture 7.2); however,
without any symmetry assumptions there might be
just one such component. The in-between case of
only translational symmetries seems especially in-
teresting; we expect a discrete set of set of surfaces
for prescribed H.
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