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Let M be a quadruply-punctured sphere with boundary compo-

nents A, B, C, D. The SL(2, C)-character variety of M consists of

equivalence classes of homomorphisms � of �1(M) �! SL(2, C)

and can be identified with a quartic hypersurface in C7. For

fixed a, b, c, d 2 C, the subset Va,b,c,d corresponding to repre-

sentations � with tr(�(A)) = a, tr(�(B)) = b, tr(�(C)) = c, tr(�(D)) =

d is a cubic surface in C3. We determine the singular points

of Va,b,c,d and classify its set Va,b,c,d(IR) of IR-points into six topo-

logical types, at least when this set is nonsingular. Va,b,c,d(IR)

contains a compact component if and only if�2 < a, b, c, d < 2.

For certain values of (a, b, c, d), this component corresponds to

representations in SL(2, IR).

1. INTRODUCTIONModuli spaces of representations of fundamentalgroups of surfaces arise in many natural algebraic,geometric, and analytic problems. In particular,the classi�cation of geometric structures on mani-folds and solutions of the Yang-Mills equations fromgauge theory lead to moduli spaces closely relatedto representations of surface groups. Furthermorethese moduli spaces enjoy a rich symmetry due tothe large topological symmetry groups of surfaces.The present paper describes in detail the topology ofsome of these moduli spaces, in the case of surfaceshomeomorphic to a quadruply-punctured sphere.Decompositions of surfaces into subsurfaces pro-vide a technique for analyzing the moduli spaces interms of moduli spaces for simpler surfaces. For ex-ample, every compact connected surfaceM of genusg with b boundary components decomposes along3g+ b� 3 simple closed curves into 2g+ b� 2 pants,provided that0 > �(M) = 2� 2g � b:A pants is a triply-punctured sphere: a surface ofgenus 0 with three boundary components. In gen-eral, we shall refer to a connected surface of genus g
c
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86 Experimental Mathematics, Vol. 8 (1999), No. 1with b boundary components as a b-punctured sur-face of genus g, although, strictly speaking the endsof a \punctured surface" are noncompact and donot have boundary. Similarly, a b-punctured torusis a surface of genus 1 with b boundary components.Surfaces of small negative Euler characteristic arethe building blocks for all surfaces of negative Eulercharacteristic and their moduli spaces are the build-ing blocks for moduli spaces of more complicatedsurfaces. This decomposition technique has beenused in [Goldman 1997] to study the automorphismgroup of surfaces and in [Goldman 1988a] to analyzemoduli spaces of geometric structures on surfaces.In this paper we are concerned with the modulispace of representations of a quadruply-puncturedsphere into SL(2; C ). This moduli space is natu-rally parametrized by the moduli of the images ofthe boundary components, which are described byfour scalar parameters (a; b; c; d). For �xed values of(a; b; c; d), the moduli space is a surface Va;b;c;d. Wedetermine for which (a; b; c; d) is Va;b;c;d nonsingular.
Theorem 1.1. For �xed a; b; c; d 2 C , the surfaceVa;b;c;d is singular if and only if either at least one ofa; b; c; d equals �2 or there is a reducible represen-tation � with boundary traces a; b; c; d. The lattercase occurs when �(a; b; c; d) = 0 where �(a; b; c; d)is the polynomial�(a; b; c; d) = �2(a2 + b2 + c2 + d2)� abcd� 16�2�(4� a2)(4� b2)(4� c2)(4� d2):Thus Va;b;c;d(C ) is a cubic surface in C 3. Its pro-jective completion �Va;b;c;d(C ) is smooth at in�nity.Furthermore �Va;b;c;d(C )nVa;b;c;d consists of three linesin general position. Using the classi�cation of cubicsurfaces over C , the set of C -points of Va;b;c;d defor-mation retracts to a bouquet of �ve 2-spheres.Theorem 1.1 should be compared to Weil's orig-inal su�cient criterion [Weil 1964] for the smooth-ness of the representation variety. (Some of Weil'sresults are also expounded in [Raghunathan 1972,xVI].) For the analogous case of representations offundamental groups of closed surfaces, an SL(2; C )-representation is a smooth point of R if and only if itis irreducible. In the present context there are irre-ducible characters (namely when one of the bound-ary traces equals �2) which de�ne singular pointsof the relative character variety.By contrast, the topologies of the real varietiesare much more varied. For (a; b; c; d) 2 R , the set

Va;b;c;d(R ) of R -points of Va;b;c;d|at least when non-singular|belongs to one of the six topological typesdepicted in Figure 1, depending on the boundaryparameters a; b; c; d. Let n denote the number ofboundary traces a; b; c; d which lie in the interval(�2; 2):
Theorem 1.2. Let a; b; c; d 2 R be such that Va;b;c;d isnonsingular . Then the set Va;b;c;d(R ) of R -points ishomeomorphic to one of the following :
1. A quadruply-punctured sphere if n=0 and abcd<0;
2. A disjoint union of a triply-punctured torus anda disc if n = 0 and abcd > 0;
3. A disjoint union of a triply-punctured sphere anda disc if n = 1;
4. A disjoint union of an annulus and two discs ifn = 2;
5. A disjoint union of four discs if n = 3;
6. A disjoint union of four discs and a sphere if n=4.
Corollary 1.3. For a; b; c; d and n as above, the Eulercharacteristic of Va;b;c;d(R ) is equal to 2n� 2.The points of Va;b;c;d(R ) correspond to representa-tions into either SU(2) or SL(2; R ). Components ofspaces of representations into SU(2) are always com-pact, and in the analogous case where M is a once-punctured torus, the only compact components ofrelative real character varieties of M correspond toSU(2)-representations. When �2 < a; b; c; d < 2,the variety Va;b;c;d(R ) contains a compact compo-nent, and we determine conditions when this com-pact component corresponds to representations inSU(2) or SL(2; R ).
Proposition 1.4. Suppose a; b; c; d 2 (�2; 2) and Va;b;c;dis smooth. Then Va;b;c;d(R ) contains a compact com-ponent , which consists of characters of SL(2; R )-representations if and only if �(a; b; c; d) > 0 and16� abcd� 2(a2 + b2 + c2 + d2) > 0:Otherwise, each element in the component is thecharacter of an SU(2)-representation.The component of Va;b;c;d(R ) homeomorphic to adisc in case 2 of Theorem 1.2 corresponds to the \Te-ichm�uller space" of M and consists of characters ofholonomy representations of hyperbolic structuresonM with geodesic boundary. In all of the last fourcases of Theorem 1.2, the components which arehomeomorphic to a disc admit similar interpreta-tions as deformation spaces of hyperbolic structureswith conical singularities; see [Goldman 1988a].



Benedetto and Goldman: The Topology of the Relative Character Varieties of a Quadruply-Punctured Sphere 87

Case 1: n = 0; abcd < 0 Case 2: n = 0; abcd > 0

Case 3: n = 1 Case 4: n = 2

Case 5: n = 3 Case 6: n = 4
FIGURE 1. Possible topological types of Va;b;c;d(R ) (see Theorem 1.2). The type is determined by the number nof boundary traces a; b; c; d that lie in the interval (�2; 2) and (if n = 0) by the sign of abcd.
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2. CHARACTER VARIETIES FOR SURFACESLet | denote a �eld (usually either R or C ) and letG = SL(2;|). For the moment let � denote an arbi-trary �nitely generated group. We denote the set ofhomomorphisms � �! G by Hom(�;G); since G isan a�ne algebraic group de�ned over |, Hom(�;G)naturally enjoys the structure of the set of |-pointsof an a�ne algebraic set de�ned over Z . (Compare[Lubotzky and Magid 1985, x 1].) A central problemis to determine the global topology and geometricstructure on the space Hom(�;G).We would like to consider the space of equiva-lence classes of such representations under the nat-ural action of SL(2; C ) by conjugation, but the quo-tient space is generally not well-behaved. By enlarg-ing the equivalence relation slightly, one can de�nea categorical quotient Hom(�;G)==G (in the senseof algebraic geometry) which does have the struc-ture of an a�ne algebraic set. For brevity denoteHom(�;G) by R. The guiding principle is that theregular functions on the quotient R==G should bethe G-invariant regular functions on R, and thusthe quotient R==G is de�ned as Spec(|[R]G). Thepoints of R==G correspond to equivalence classes,where two orbits are considered equivalent if theycannot by distinguished by G-invariant regular func-tions on R. In general there is a G-invariant Zariski-dense subset R� such that the restriction of the quo-tient map R �! R==G to R� de�nes a bijection ofthe orbit space R�=G to R==G. In practice, we cantake (assuming | is algebraically closed) R� to bethe set of completely reducible (or semisimple) rep-resentations � �! G. We denote the quotient R==Gby X. For a careful treatment of this material, see[Lubotzky and Magid 1985, x 1].
2A. Cyclic GroupsWhen � is a cyclic group, then a homomorphism� �! G is completely determined by the image of agenerator of �. Therefore the representation varietyR is isomorphic to G. Every regular function on Ginvariant under conjugation is a polynomial in thetrace function G �! |A 7�! tr(A):ThusX �= | under the trace mapping. Note that thetrace function has critical values �2, with criticalpoints at the center �I.

More generally, suppose that � is a free groupfreely generated by x1; : : : ; xn. Then Hom(�;G) isidenti�ed with the Cartesian product Gn. Procesi[1976] proved that every G-invariant function on Gnis a polynomial in �nitely many functions of the formGn �! |(A1; : : : ; An) 7�! trw(A1; : : : ; An);where w(x1; : : : ; xn) is a word in x1; : : : ; xn, that is,an element of �.For example, for n = 2 and | = C , classical workdating at least as far back as Fricke and Klein [1897,Section II.2, page 285] implies the following funda-mental result:
Theorem 2.1. The invariant function� : Hom(�;G) �! C 3

� 7�! 24 tr(�(x1))tr(�(x2))tr(�(x1x2))
35

de�nes an isomorphism X �! C 3. That is, everyfunction of pairs (A1; A2) 2 SL(2; C )� SL(2; C ) in-variant under simultaneous conjugation(A1; A2) 7! (TA1T�1; TA2T�1)can be expressed is a function of tr(A1), tr(A2), andtr(A1A2). Furthermore, if A1; A2 generate an irre-ducible representation on C 2, then for any other pairA01; A02 with tr(A1) = tr(A01);tr(A2) = tr(A02);tr(A1A2) = tr(A01A02);there exists T 2 SL(2; C ) with A01 = TA1T�1, A02 =TA2T�1.We call the triple �(�) the character of �, since fromit one can deduce the trace tr(�(A)) for any A 2 �.Compare [Magnus 1980].The criterion for reducible representations is some-what more complicated. If � is reducible, then it isconjugate to a representation by upper-triangularmatrices �(
) = � a(
) b(
)0 a(
)�1 � :It and its semisimpli�cation�s(
) = � a(
) 00 a(
)�1 �have the same character, but in general will not beconjugate. Indeed, �s lies in the closure of the orbit



Benedetto and Goldman: The Topology of the Relative Character Varieties of a Quadruply-Punctured Sphere 89of �. Two reducible representations have the samecharacter if and only if their semisimpli�cations areconjugate, or equivalently, if their orbit closures areequal.For example, the G-invariant function on G � Gde�ned byf : (A1; A2) 7! tr(A1A2A�11 A�12 )is given by the expressionf(A1; A2) = ��tr(A1); tr(A2); tr(A1A2)�;where � 2 C [x; y; z] is the cubic polynomial de�nedby �(x; y; z) = x2 + y2 + z2 � xyz � 2: (2–1)A slight variant of this polynomial will be usefullater on. Let a; b 2 |. Then �a;b(x) 2 |[x] is thequadratic polynomial de�ned by�a;b(x) = �(a; b; x)� 2 = x2 � abx+ (a2 + b2 � 4):The reducible representations occur for characters(x; y; z) with �(x; y; z) = 2;where � : C 3 �! C is de�ned by (2{1). We callsuch a character reducible. See [Goldman 1988b] fordetails.The set of R -points in X equals X(R ) = R 3. By[Morgan and Shalen 1984, Prop. III.1.1, p. 458],real characters correspond to representations tak-ing values in the real forms SU(2) and SL(2; R ) ofSL(2; C ). A point (x; y; z) 2 R 3 corresponds to anSU(2)-representation if and only if�2 � x; y; z � 2 and �(x; y; z) � 2:Otherwise (x; y; z) 2 R 3 corresponds to an SL(2; R )-representation. A character (x; y; z) 2 R 3 corre-sponds both to an SU(2)-representation and to anSL(2; R )-representation if and only if it correspondsto a representation inSO(2) = SU(2) \ SL(2; R );such a representation is necessarily reducible. See[Goldman 1988b] for details.
2B. The Triply-Punctured SphereWe interpret Theorem 2.1 in terms of the the triply-punctured sphere. For any compact manifold, setX(M) =Yi Hom(�1(Mi); G)==G;

FIGURE 2. A triply-punctured sphere and its threeboundary components.where M =ai Miis the decomposition of M into connected compo-nents. WhenM is a compact surface with boundary@M = mai=1 @iMeach component @iM has fundamental group�1(@iM) �= Z :Thus each X(@iM) �= C and X(@M) �= C m. Thehomomorphism of fundamental groups�1(@iM) �! �1(M)induces a restriction mapX(M) �! X(@iM) �= C :Taking the product, we obtain@� : X(M) �! C m:LetM denote a triply-punctured sphere. The fun-damental group ofM admits the redundant geomet-ric presentation� = hX;Y;Z j XY Z = Ii;where X;Y;Z are simple loops corresponding to thethree boundary components. In this case the bound-ary map @� de�nes an isomorphism X(M) � C 3,where@�([�]) = �tr(�(X)); tr(�(Y )); tr(�(Z))�:
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2C. Properties of �(x, y, z)The polynomial � and its variant �a;b satisfy manyremarkable properties related to their natural occur-rence as invariants of elements of SL(2; C ).We use the following lemma concerning �a;b andR -points extensively in later sections. Its proof isstraightforward.
Lemma 2.2. Fix a; b 2 R . Then �a;b has:� one real double root if either of a or b is �2;� no real roots if jaj > 2 and jbj < 2 or vice versa;� two real roots, both greater than or equal to 2, ifjaj; jbj > 2 and ab > 0;� two real roots, both less than or equal to �2, ifjaj; jbj > 2 and ab < 0;� two real roots, both in [�2; 2], if jaj; jbj < 2.This lemma illustrates the properties of reduciblecharacters, since x is a root of �a;b if and only if(a; b; x) is a reducible character. Indeed, we mayassume that (a; b; x) is the character of a represen-tation with abelian image. For example, the secondcase occurs when a is the trace of a hyperbolic ele-ment and b is the trace of an elliptic element, and inSL(2; R ) hyperbolic elements and elliptic elementscannot commute. The other cases can be discussedsimilarly.An important property of � is that its restric-tion to every coordinate plane and coordinate lineis quadratic. In particular its values at �2 are veryspecial.
Lemma 2.3. �a;b(�2) = (a� b)2.The discriminant of the quadratic polynomial �a;b(x)equals (a2 � 4)(b2 � 4):Furthermore the critical points of � : C 3 �! C arethe four points(2; 2; 2); (2;�2;�2); (�2; 2;�2); (�2;�2; 2)with critical value +2 and the point (0; 0; 0) withcritical value �2.
3. THE QUADRUPLY-PUNCTURED SPHERELetM be a quadruply-punctured sphere, and let itsboundary components be A;B;C;D. Denoting thecorresponding elements of � = �1(M) by the same

names, the fundamental group � = �1(M) has theredundant geometric presentation� = hA;B;C;D j ABCD = Ii;compare Figure 3. However, in the present con-text there is an even more concrete description. Arepresentation � : � �! SL(2; C ) corresponds to aquadruple � = �(A);
 = �(C); � = �(B);� = �(D)in SL(2; C )4, where ��
� = I:Using this equation to eliminate �, such a quadru-ple merely refers to an arbitrary triple (�; �; 
) 2SL(2; C )3. A B
X = AB

D C
FIGURE 3. A quadruply-punctured sphere.

3A. Amalgamating RepresentationsLet � denote the simple loop on M which separatesboundary components A;B from C;D. The corre-sponding element of the fundamental group satis�es:X = AB = (CD)�1:Denote by M j� the compact surface obtained bysplitting M along �: each of the two componentsM1 and M2 of M j� are homeomorphic to a triply-punctured sphere. We express the character varietyX(M) in terms of the character variety X(M j�).The fundamental group of M1 has presentation�1(M1) = hA;B; �X j AB �X = Iiand the fundamental group of M2 has presentation�1(M2) = hX;C;D j XCD = Ii:The fundamental group of M is the amalgamatedfree product�1(M) = �1(M1)qZ �1(M2)



Benedetto and Goldman: The Topology of the Relative Character Varieties of a Quadruply-Punctured Sphere 91amalgamated by the monomorphisms taking a gen-erator of Z to �X�1 2 �1(M1) and X 2 �1(M2). Arepresentation� : �1(M) �! SL(2; C )restricts to two representations�i : �1(Mi) �! SL(2; C )satisfying �1( �X)�2(X) = I: (3–1)Conversely, two representations �1; �2 that satisfy(3{1) de�ne a unique representation �. Compare[Goldman 1988a].
3B. Defining EquationsThe boundary map @� : X(M) �! C 4 is de�ned byfour functionsa([�]) = tr(�(A)); b([�]) = tr(�(B));c([�]) = tr(�(C)); d([�]) = tr(�(D)):The elements X = AB, Y = BC and Z = CA of �are represented by simple loops on M . The corre-sponding traces x; y; z, together with the boundarytraces a; b; c; d, de�ne coordinates on X(M) that aresubject to the relationx2 + y2 + z2 + xyz= (ab+ cd)x+ (ad+ bc)y + (ac+ bd)z+(4� a2 � b2 � c2 � d2 � abcd): (3–2)Compare [Magnus 1980]. Unlike the case in which �is free of rank two, X(M) is not an a�ne space, butrather the hypersurface V � C 7 consisting of pointswhose coordinates (a;b; c;d;x;y;z) satisfy (3{2). Foreach (a; b; c; d) 2 C 4, the set@�1� (a; b; c; d) = Va;b;c;dconsists of all (x; y; z) 2 C 3 satisfying (3{2). Rewritethe basic de�ning equation (3{2) in terms of x as2+x4 �(y+z)� (a+b)(d+c)2+x �2

+2�x4 �(y�z)� (a�b)(d�c)2�x �2
= (x2�abx+a2+b2�4)(x2�cdx+c2+d2�4)4�x2 : (3–3)

We may write (3{3) as follows. For �xed a; b; c; d; x,the expressionQ(a;b;c;d)x (y; z) = 2 + x4 �(y + z)� (a+ b)(d+ c)2 + x �2
+ 2� x4 �(y � z)� (a� b)(d� c)2� x �2

is an inhomogeneous quadratic function of (y; z).Equation (3{3) is equivalent toQ(a;b;c;d)x (y; z) = �a;b(x)�c;d(x)4� x2 ;which describes a conic Va;b;c;d(x) of center (y0; z0),where y0 + z0 = (a+ b)(d+ c)2 + x ;
y0 � z0 = (a� b)(d� c)2� x :

3C. SymmetriesA group of 192 symmetries of the family X(M) actsby simple linear transformations on the parameters(a; b; c; d). This action is generated by an action ofthe central characters, which multiply an even num-ber of the generators by �I, and the permutationsof the four generators A;B;C;D.The symmetric group S4 consisting of permuta-tions of fA;B;C;Dg acts on the family X(M) of rel-ative character varieties Va;b;c;d. The symmetries areapparent from the de�ning equation (3{2). For ex-ample, the three products of disjoint transpositionsact trivially on the (x; y; z) coordinates, while non-trivially permuting (a; b; c; d). However, the trans-positions A$ B, B $ C, C $ D, act respectivelyas follows:266666664
abcdxyz

377777775 7!
266666664
bacdxzy

377777775 ;
266666664
abcdxyz

377777775 7!
266666664
acbdzyx

377777775 ;
266666664
abcdxyz

377777775 7!
266666664
abdcxzy

377777775
Furthermore every character variety admits an ac-tion by central characters, as described in [Lubotzkyand Magid 1985, x 5] (where this operation is calledtwisting by a character). If Z � G is central, thenHom(�;Z) is a group, which acts on Hom(�;G) bypointwise multiplication. Since the center of G =SL(2; C ) equals f�Ig �= Z =2 and the fundamental



92 Experimental Mathematics, Vol. 8 (1999), No. 1group � of a quadruply-punctured sphere is free ofrank 3, the groupHom(�; f�Ig) �= Z=2� Z=2� Z =2acts on Va;b;c;d as follows. Such a central charactermaps the images of an even number of the generatorsA;B;C;D to their negatives: for example,2664��
�
3775 7!

2664����
�
3775

is the action on generators corresponding to(1; 1; 0) 2 Z=2� Z =2� Z=2and whose action on the trace coordinates is givenby 2666666664
abcdxyz

3777777775 7!
2666666664
�a�bcdx�y�z

3777777775 :
S4 normalizes this Hom(�; f�Ig)-action. Since theinduced S4-action on Hom(�;f�Ig) is transitive, theaction of every central character is obtained by con-jugating the example above by a permutation. Theseconsiderations of symmetry immediately imply thecorresponding relative character varieties are iso-morphic:
Lemma 3.1. Let (a; b; c; d) 2 R 4. Let � : R 4 ! R 4 beany permutation of coordinates, and let � : R 4 ! R 4be any map which acts by reversing signs of two ofthe coordinates and leaving the other two coordinatesunchanged . Then V�(a;b;c;d) and V�(a;b;c;d) are eachdi�eomorphic to Va;b;c;d.
4. SINGULAR POINTS AND REDUCIBLE CHARACTERS

4A. A Criterion for Singularity

Theorem 4.1. Va;b;c;d is singular if and only if at leastone of these conditions holds:� One of a; b; c; d equals �2.� Some reducible representation has boundary traces(a; b; c; d).The latter case occurs if and only if there exists x 2C such that �a;b(x) = �c;d(x) = 0.

4B. Solutions of Quadratic EquationsWe will need the following technical lemmas on dis-criminant loci for the proof of Theorem 4.1 and forlater results.
Lemma 4.2. Let n � 1 be an integer , and let | be a�eld of characteristic not equal to 2. Pick B(x) andC(x) in |[x1; : : : ; xn]. LetY = �(x1; : : : ; xn; z) 2 |n+1 j z2+B(x)z+C(x) = 0	andZ = �(x1; : : : ; xn) 2 |n j B(x)2 � 4C(x) = 0	:If Y is singular at (x1; : : : ; xn; z), then Z is singu-lar at (x1; : : : ; xn). If Z is singular at (x1; : : : ; xn),then there exists z 2 | such that Y is singular at(x1; : : : ; xn; z).(If n = 1, then Z is singular at x if x is a multipleroot of B(x)2 � 4C(x).)
Proof. Denote by dB(x) the di�erential of B(x) withrespect to the xi-variables only, and similarly fordC(x). Let (x1; : : : ; xn) 2 |n. Now Z is singular at(x1; : : : ; xn) if and only ifB(x)2 � 4C(x) = 0;2B(x) dB(x)� 4 dC(x) = 0;) (4–1)and Y is singular at (x1; : : : ; xn; z) if and only ifz2 +B(x)z + C(x) = 0;2z +B(x) = 0;z dB(x) + dC(x) = 0:

9>=>; (4–2)

We must show that (4{1) is equivalent to the exis-tence of z 2 | satisfying (4{2). Note thatB(x)2 � 4C(x) = 0if and only if z2 +B(x)z + C(x)has a double root z 2 |; this root must bez = � 12B(x):Substituting z = � 12B(x) into the �nal equationof (4{2) and multiplying by �4 yields the secondequation of (4{1). �
Lemma 4.3. Let | be an algebraically closed �eld ofcharacteristic not equal to 2. Suppose that A1(x),B1(x), C1(x) are elements of |[x] such that A1(x)has no multiple roots. LetY = �(x; y) 2 |2 j A1(x)y2 +B1(x)y + C1(x) = 0	



Benedetto and Goldman: The Topology of the Relative Character Varieties of a Quadruply-Punctured Sphere 93and Z = �x 2 | j B1(x)2 � 4A1(x)C1(x) = 0	:If Y is singular at (x; y), then Z is singular at x. IfZ is singular at x, then there exists y 2 k such thatY is singular at (x; y).
Proof. The proof follows that of Lemma 4.2, modi�edin the case that A1(x) = 0. Suppose that A1(x) = 0.Then Z is singular at x if and only ifB1(x)2 = 0;2B1(x)B01(x)� 4C1(x)A01(x) = 0;) (4–3)

and Y is singular at (x; y) if and only if there existsy 2 | such that yB1(x) + C1(x) = 0;B1(x) = 0;y2A01(x) + yB01(x) + C 01(x) = 0:
9>=>; (4–4)

Clearly (4{3) is equivalent to B1(x) = C1(x) = 0,which (4{4) implies. Since A01(x) 6= 0 (by hypothe-sis), and | is algebraically closed, some y 2 | satis-�es the last equation in (4{4), concluding the proofof Lemma 4.3. �
Lemma 4.4. Let | = R . Suppose that A1(x), B1(x),C1(x) are elements of R [x] such that A1(x) has nomultiple roots. SetY = �(x; y) 2 R 2 j A1(x)y2 +B1(x)y + C1(x) = 0	;Z = �x 2 R j B1(x)2 � 4A1(x)C1(x) = 0	;and let �(x) = B01(x)2 � 4A01(x)C 01(x): (4–5)If Y is singular at (x; y), then Z is singular at x.Suppose for some x 2 R thatA1(x) = B1(x) = C1(x) = 0and �(x) � 0:If Z is singular at x, then there exists y 2 R suchthat Y is singular at (x; y).
Proof. The only point where the proof of Lemma 4.3fails for | = R is the �nal step, where the last equa-tion in (4{4) may not have a solution y 2 R . Sincethe discriminant of this quadratic equation equals�(x), our assumption �(x) � 0 guarantees the exis-tence of a solution y 2 R . �

4C. Singularities of Va,b,c,d

Proof of Theorem 4.1. Fix (a; b; c; d) 2 C 4, and rewrite(3{2) as z2 +B(x; y)z + C(x; y) = 0;whereB(x; y) = xy � (ac+ bd);C(x; y) = x2 + y2 � (ab+ cd)x� (ad+ bc)y� (4� a2 � b2 � c2 � d2 � abcd):By Lemma 4.2, Va;b;c;d is singular if and only if thecurve C in the xy-plane de�ned by the discriminantf(x; y) = B(x; y)2 � 4C(x; y) = 0is singular. Now write f(x; y) as a quadratic func-tion in y:f(x; y) = A1(x)y2 +B1(x)y + C1(x);whereA1(x) = (x2 � 4);B1(x) = 4(ad+ bc)� 2(ac+ bd)x;C1(x) = �4x2+4(ab+cd)x+a2c2+b2d2�2abcd�4a2�4b2�4c2�4d2+16 = 0:
(4–6)Since A1(x) = (x � 2)(x + 2) has simple zeroes,Lemma 4.3 implies that Va;b;c;d is singular if andonly if the discriminant g(x) of f(x; y) as a quad-ratic function of y vanishes. This discriminant iseasily computed to beg(x) = B1(x)2 � 4A1(x)C1(x)= 16(x2�abx+a2+b2�4)(x2�cdx+c2+d2�4)= 16(�a;b(x))(�c;d(x)):Thus Va;b;c;d is singular if and only if there exists x 2| satisfying one of the following three conditions:

1. x is a double zero of �a;b;
2. x is a double zero of �c;d;
3. �a;b(x) = �c;d(x) = 0.Now the �rst case occurs if and only if the discrim-inant of �a;b is zero, that is, if and only if(a2 � 4)(b2 � 4) = 0;that is, if and only if a = �2 or b = �2. Similarly,the second case occurs if and only if c = �2 or d =�2.Consider the remaining case,�a;b(x) = �c;d(x) = 0: (4–7)



94 Experimental Mathematics, Vol. 8 (1999), No. 1We have to �nd a reducible representation havingtraces (a; b; c; d;x).Decompose M along � as above into two triply-punctured spheres M1 and M2. (Compare Section3A.) Then there exist representations�i : �1(Mi) �! SL(2; C )having characters (a; b; x) and (x; c; d) respectively.By (4{7), both �1 and �2 are reducible.We distinguish two cases, depending on whetherx = �2 or not. If x = �2, choose representations�1; �2 so that�1( �X) 6= �I and �2(X) 6= �I:Then �1( �X) and �2(X) necessarily have unique �xedpoints, say p1 and p2, in C P1 . There exists g 2 Gsuch thatg(p1) = p2; g�1( �X�1)g�1 = �2(X): (4–8)De�ne � by�(A) = �1(A);�(C) = g�2(C)g�1; �(B) = �1(B);�(D) = g�1(D)g�1: (4–9)

Since the image of � �xes p1, it is reducible andits character lies in Va;b;c;d. (Alternatively, one canchoose �( �X) = �Iand �(C); �(D) to be diagonal matrices.)Now suppose x 6= �2. Then �1( �X�1) and �2(X)are elements of G having trace x and are thus conju-gate. Indeed, they are diagonalizable with distincteigenvalues �; ��1 where x = �+��1. Let p1 2 C P1be the �xed point of �1( �X�1) corresponding to the�-eigenspace of �1( �X�1) and p2 2 C P1 be the �xedpoint of �2(X�1)) corresponding to the �-eigenspaceof �2(X�1)). Then as above there exists g satisfying(4{8). The representation � de�ned by (4{9) �xesp1 and its character lies in Va;b;c;d. �
4D. A Discriminant PolynomialGiven (a; b; c; d) 2 C 4, the existence of an x 2 Csatisfying condition (4{7) is equivalent to the van-ishing of the resultant �(a; b; c; d) of the polynomi-als �a;b and �c;d, which (remarkably) is a symmetric

polynomial in a; b; c; d. This resultant is the sexticpolynomial
�(a; b; c; d) = ��������

1 �ab a2 + b2 � 4 00 1 �ab a2 + b2 � 41 �cd c2 + d2 � 4 00 1 �cd c2 + d2 � 4
��������= �2(a2 + b2 + c2 + d2)� abcd� 16�2� (4� a2)(4� b2)(4� c2)(4� d2):The vanishing of �(a; b; c; d) implies only that atleast one character in Va;b;c;d is reducible. In general,a character (a; b; c; d; x; y; z) 2 Va;b;c;dis reducible if and only if�a;b(x) = �c;d(x) =�a;d(y) = �b;c(y) =�a;c(z) = �b;d(z) = 0:

5. TOPOLOGY OF THE SET OF IR-POINTS

5A. Singular PointsFor (a; b; c; d) 2 R 4, the variety Va;b;c;d is de�nedover R ; from now on we will only consider its setVa;b;c;d(R ) of R -points. By [Morgan and Shalen 1984,Prop. III.1.1, p. 458], Va;b;c;d(R ) consists of charac-ters corresponding to representations in either SU(2)or SL(2; R ). Since the leading term of the cubicpolynomial de�ning Va;b;c;d is xyz, its closure in R P3meets the plane at in�nity in three lines in generalposition (the singular cubic de�ned by xyz = 0 inR P2). Thus for any values of (a; b; c; d) 2 R 4, thesurface Va;b;c;d(R ) has four ends. (See Figure 4.)

FIGURE 4. What Va;b;c;d(R ) looks like near in�nity.
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Theorem 5.1. Let (a; b; c; d) 2 R 4. Then Va;b;c;d(R )contains a singular point if and only if one of thefollowing conditions holds:
1. One of a; b; c; d equals �2.
2. There is a reducible SU(2)-representation havingboundary traces (a; b; c; d), and a; b; c; d 2 [�2; 2].
3. There is a reducible SL(2; R )-representation hav-ing boundary traces (a; b; c; d), and a; b; c; d 2 R n(�2; 2).The second condition is equivalent to�(a; b; c; d) = 0 and a; b; c; d 2 [�2; 2];the third condition is equivalent to�(a; b; c; d) = 0 and a; b; c; d 2 R n (�2; 2):We �rst verify the �nal statements. Suppose x 2 Rsatis�es �a;b(x) = �c;d(x) = 0and a; b; c; d 2 [�2; 2]. By Section 4D, we have�(a; b; c; d) = 0. Conversely, given �(a; b; c; d) =0 with a; b; c; d 2 [�2; 2], there exists a reducibleSL(2; C )-representation � with the given boundarytraces. Furthermore,x = tr(�(X)) 2 [�2; 2]by Lemma 2.2. By the results of Section 2B, thetriples (a; b; x) and (c; d; x) correspond to SU(2)-representations. Amalgamating the representationsas in the proof of Theorem 4.1 produces a SU(2)-representation � of �1(M). The equivalence of thethird condition is proved similarly.The proof of the rest of Theorem 5.1 is analogousto the proof of Theorem 4.1. The only di�erence isthat we must use Lemma 4.4 instead of Lemma 4.3.Thus, it su�ces to show:
Lemma 5.2. Let x; a; b; c; d 2 R and de�ne A1(x),B1(x), C1(x) by (4{6). Then �(x) � 0, where �(x)is de�ned in (4{5).
Proof. By (4{6), we haveA01(x) = 2x;B01(x) = �2(ac+ bd);C 01(x) = �8x+ 4(ab+ cd);and �(x) = B01(x)2 � 4A01(x)C 01(x)= 4(ac+ bd)2 + 64x2 � 32x(ab+ cd)= 4 (4x� (ac+ bd))2 � 0: �

5B. Topological Classification of the Smooth Real

VarietiesAssume that Va;b;c;d(R ) is nonsingular. We now clas-sify the possible topologies for Va;b;c;d(R ). The sixtopological types are depicted in Figure 1.
Theorem 5.3. If (a; b; c; d) 2 R 4 and Va;b;c;d(R ) is non-singular , then Va;b;c;d(R ) is di�eomorphic to one ofthe following :
1. a quadruply-punctured sphere, if a; b; c; d 2 R n[�2; 2] with abcd < 0;
2. the disjoint union of a triply-punctured torus anda disk , if a; b; c; d 2 R n [�2; 2] with abcd > 0;
3. the disjoint union of a triply-punctured sphereand a disk , if one of a; b; c; d is in (�2; 2) andthe rest are in R n [�2; 2];
4. the disjoint union of an annulus and two disks,if two of a; b; c; d are in (�2; 2) and two are inR n [�2; 2];
5. the disjoint union of four disks, if three amonga; b; c; d are in (�2; 2) and one is in R n [�2; 2];
6. the disjoint union of four disks and a sphere, ifa; b; c; d 2 (�2; 2).In case 2, the component of Va;b;c;d homeomorphicto a disc is the \Teichm�uller space" ofM , consistingof hyperbolic structures with geodesic boundary onM . Compare [Goldman 1988a; 1988b].
5C. Reduction to a Plane Quartic CurveTo prove Theorem 5.3, reduce the dimension by tak-ing discriminants, as in the determination of thesingularities. Again, di�culties arise because thediscriminant f(x; y) is not monic in y. The setVa;b;c;d(R ) contains two points for every (x; y) 2 R 2with f(x; y) > 0, one point for f(x; y) = 0, and nonefor f(x; y) < 0. De�neS = f(x; y) 2 R 2 : f(x; y) > 0gand C = f(x; y) 2 R 2 : f(x; y) = 0g = @S:The projection(x; y) : Va;b;c;d(R ) �! R 2expresses Va;b;c;d(R ) as a union of two copies of Sidenti�ed along their boundary C. This descriptionas a \double branched cover" determines Va;b;c;d(R )up to homeomorphism (and hence di�eomorphism).Fixing x 2 R with x 6= �2, for jyj large, we havef(x; y) � (x2 � 4)y2;



96 Experimental Mathematics, Vol. 8 (1999), No. 1so f(x; y) is positive if jxj > 2 and negative if jxj < 2.More precisely:
1. For any x with jxj < 2, there exists M > 0 suchthat for jyj > M , (x; y) 62 S.
2. For any x with jxj > 2, there exists M > 0 suchthat for jyj > M , (x; y) 2 S.To study C, we reduce dimensions once more viadiscriminants. For �xed x 6= �2, the tangent of Cat (x; y) for some y 2 R is vertical if and only if thediscriminantg(x) = 16�a;b(x)�c;d(x) = 0:
Lemma 5.4. Let x 2 R n f�2g. Then the set of y 2 Rsuch that (x; y) 2 C consists of :
1. exactly two points if g(x) > 0;
2. exactly one point if g(x) = 0;
3. no points if g(x) < 0.(Recall the de�nition of A1(x); B1(x); C1(x) from(4{6).)
Lemma 5.5. Suppose x = �2 and g(x) 6= 0. ThenB1(x) 6= 0, and there exists exactly one y 2 R suchthat (x; y) 2 C.
Lemma 5.6. Suppose that x = �2 and g(x) = 0. ThenB1(x) = 0, and the set of y 2 R such that (x; y) 2 Cis empty , if C1(x) 6= 0 or R , if C1(x) = 0.
Proof of the Lemmas. We write f(x; y) asf(x; y) = A1(x)y2 +B1(x)y + C1(x):Lemma 5.4 follows because f(x; y) is a quadraticpolynomial in y with discriminant g(x). Lemma 5.5follows because A1(x) = 0 andg(x) = B1(x)2 � 4A1(x)C1(x):Finally, Lemma 5.6 follows because its hypothesesimply f(x; y) = C1(x). �
Lemma 5.7. Suppose that a; b; c; d 2 R n f2;�2g.
1. If B1(2) = C1(2) = 0, then a = b and c = d.
2. If B1(�2) = C1(�2) = 0, then a = �b and c =�d.Furthermore, in either of these cases, Va;b;c;d(R ) issingular if and only if a, b, c, and d are either all in(�2; 2) or all in R n [�2; 2].
Proof. B1(�2) = 0 factors as (b � a)(c � d) = 0,so without loss, a = �b. Substituting, C1(�2) = 0becomes (b2�4)(c�d)2 = 0. Since b 6= �2, we have

c = �d. One calculates �(�b; b;�d; d) = 0. Nowapply Theorem 5.1. �
Lemma 5.8. Suppose Va;b;c;d(R ) contains no singularpoints but g(x) has a real double root . Then thisroot is �2, and a = �b and c = �d. One of thesetwo possibilities must occur :
1. a 2 (�2; 2) and c 2 R n [�2; 2];
2. c 2 (�2; 2) and a 2 R n [�2; 2].Furthermore C contains the line x = �2.
Proof. By Theorem 5.1, this situation can only ariseif g has a double root and yet some of a; b; c; d arein (�2; 2) and some are in R n [�2; 2]. Note that for�a;b(x) to have a double root, one of a or b must be�2, but this does not happen since Va;b;c;d(R ) is non-singular. Thus, �a;b(x) and �c;d(x) have a commonroot. If this root lies in (�2; 2), then Lemma 2.2implies that all of a; b; c; d lie in (�2; 2). Similarly,if this root lies in R n [�2; 2], then all of a; b; c; dlie in R n [�2; 2]. In either case, Theorem 5.1 im-plies that Va;b;c;d(R ) is singular. Therefore, the rootis �2, implying a = �b and c = �d. In addition,B1(�2) = C1(�2) = 0, and so Lemma 5.6 impliesthat C contains the line x = �2. �We continue the analysis of C. The solution of thequadratic equation f(x; y) = 0 for y when x 6= �2is y = '�(x) where'�(x) = �B1(x)�pg(x)2(x2 � 4) :Note that B1(x) is linear in x and g(x) � 16x4; soas jxj ! 1, '�(x)! �2:Similarly, �x y 6= �2 and de�ne x =  �(y) by solv-ing f(x; y) = 0. Then, as jyj ! 1, �(y)! �2:Thus, for any " > 0, there is M > 2+ " for whichjxj > M ==) �j'+(x)�2j < " and j'�(x)+2j < "; �and for whichjyj > M ==) �j +(y)�2j < " and j �(y)+2j < ":�Fix 0 < " < 1, and let Q be the square (�M;M)2.Then C \ (R 2 n Q) is homeomorphic to a disjointunion of eight copies of [M;1). For example, oneof the eight homeomorphisms would map t 2 [M;1)to (�t; '+(�t)). Note that C intersects @Q at theimages ofM under the eight homeomorphisms. C is



Benedetto and Goldman: The Topology of the Relative Character Varieties of a Quadruply-Punctured Sphere 97smooth and hence a 1-manifold, so Q \ C is a com-pact 1-manifold with boundary @Q\C consisting ofeight points.
Lemma 5.9. Assume Va;b;c;d(R ) is nonsingular . WithQ as above, Q\C has �nitely many connected com-ponents. Each component is homeomorphic to ei-ther a closed interval [�1; 1], if at least one (andhence exactly two) points of the component lie in@Q, or S1 otherwise. Furthermore, there must beexactly four components homeomorphic to an inter-val .

Q 1 2
3
4

56
7
8

FIGURE 5. How the curve C meets the square Q.
C must look something like Figure 5. Outside Q, allpoints of C are close to the eight asymptotes. Bychoosing Q su�ciently large, C will be transverse tothe four sides of @Q and C \ @Q is a set of eightpoints, P = fp1; p2; p3; p4; p5; p6; p7; p8g;numbered as in Figure 5. To determine the topolo-gies of C and S, it su�ces to decide how these eightpoints of C \ @Q are joined pairwise inside Q, andto �nd the number and positions of any boundedcomponents.In each of the following lemmas, the set of R -points is assumed nonsingular.
Lemma 5.10. If pn is joined by C to pm, then n +mis odd .
Proof. Suppose n + m is even. Then on @Q, thepoints pn and pm separate the remaining points piinto two sets P1 and P2 of odd cardinality. Since an

arc � of C \ Q joins pn and pm, this arc separatesP1 from P2 in �Q. Furthermore the points ofP � fpm; png = P1aP2are pairwise joined by arcs of C \ Q which (sinceC is smooth) do not meet �. Thus the points ofP1 join to points of P1, and similarly for P2. Thispartitions P1 into disjoint pairs, contradicting theodd cardinality of P1. �
Lemma 5.11. 1. p3 joins to p4 if and only if g(x) hasa root in (2;1).
2. p7 joins to p8 if and only if g(x) has a root in(�1;�2).
Proof. We'll show the �rst statement; the secondis similar. Suppose �rst that p3 joins to p4. Thecomponent joining p3 and p4 must have a verticaltangent|corresponding to a root of g(x)|at somepoint x0. If x0 < 2, then the component crosses theline x = 2 twice, contradicting Lemma 5.5. (If thecomponent crossed the line at the same point eachtime, there would be a singularity. Alternatively, ifg(2) = 0, then by Lemma 5.6, C must contain thewhole line x = 2, and we would have singularitieswhere the component crosses.) If x0 = 2, then, byLemma 5.6, either C doesn't intersect the line x = 2,or else C contains it. But a vertical tangent at x = 2would force at least one point in C on that line;and if C contained the line, a component from theright touching the line at a point would result in asingularity. Thus x0 > 2. Since C has a verticaltangent there, g(x0) = 0.Conversely, let x0 > 2 be the root in question.Without loss, x0 is the largest root of g. Thus g(s) <0 for some s 2 (2; x), since g(x) > 0 for x > x0, andx0 is not a double root. If p3 were to join to p1,p6, p7, or p8, then clearly C would cross the linex = s, contradicting Lemma 5.4. It also can't jointo p2 or p5, since in that case, C would cross x = ssomewhere along the approach to the asymptote atx = 2. Thus p3 must join to p4. �
Lemma 5.12. 1. p1 joins to p6 if and only if g has tworoots in (�1;�2] and two roots in [�2; 2].
2. p2 joins to p5 if and only if g has two roots in[2;1) and two roots in [�2; 2].
Proof. We'll show the �rst statement; the second issimilar. To prove the forward direction, suppose p1and p6 are joined by a component. If this componentis the line x = �2, then Lemmas 5.6 and 5.7 imply



98 Experimental Mathematics, Vol. 8 (1999), No. 1that a = �b and c = �d. Thus g has a double rootat �2. By Lemma 5.8, we can assume without lossthat a; b 2 (�2; 2) and c; d 2 R n [�2; 2]. Therefore,by Lemma 2.2, g has a root in (�1;�2], a doubleroot at �2, and a root in (�2; 2], and we are done.Now assume C does not contain the line x = �2.Consider the whole component of C that joins p1 top6, and not just the part lying inside Q; let � be adi�eomorphism mapping R onto this component. If�2 is a root of g, Lemma 5.6 implies that C doesnot intersect the line x = �2. If the x-value of �(t)increases from �2 as t increases from �1, then atsome point it must decrease back to�2 as t increasesto +1. Thus, there must be a vertical tangent|and hence a root of g|at some x-value greater than�2. This root must be less than 2, for the samereasons as in Lemma 5.11. Meanwhile, p7 and p8must join to each other, since they have nowhereelse to go. Lemma 5.11 implies that g has a root in(�1;�2). We now know that g has at least threereal roots; it therefore has a fourth. By Lemma 2.2,this fourth root is somewhere in (�1; 2], and wehave the desired conclusion. The argument is similarif the x-value of � decreases and then increases.On the other hand, if �2 is not a root of g, Lemma5.4 implies that C must cross the line x = �2 atexactly one point. If any component other than theone in question were to cross this line, then it mustcross it at least twice (once to get across, and onceto get back) or at a singularity or vertical tangent.Thus, the component in question must cross x = �2exactly once. The x-value of � must increase from�2, decrease back down to �2 and below, and thenincrease back up to �2; as a result, we get at leasttwo vertical tangents, one on each side of �2. Bythe same argument as above, both roots must beless than 2. Lemma 2.2 implies g must also havetwo other roots, one on each side of �2, and neitherlarger than 2.For the converse, suppose that �2 is a simple rootof g, and x1 2 (�1;�2) and x2; x3 2 (�2; 2] arealso roots. Lemma 5.11 implies that p7 and p8 join.Furthermore, g is negative on (x2; x3), and so thereare no points of C above that interval. Thus p1 andp6 are cut o� from the other points, and must join toeach other. The argument is similar if �2 is a root,with two roots less than �2 and one greater, or ifthere are two roots less than �2 and two greater.Finally, if �2 is a multiple root of g, then Lemma 5.8implies a = �b and c = �d. As a result, B1(�2) =

C1(�2) = 0. Lemma 5.6 implies that C contains theline x = �2, and so p1 and p6 join. �(Note that in the above lemma, the case of a doubleroot at �2 is considered as a deformation of the caseof one root just above and one just below.)
Lemma 5.13. If C has a compact component , theng has four distinct real roots x1 < x2 < x3 < x4,and the projection of the compact component ontothe x-axis is [x2; x3].
Proof. The projection of the component onto the x-axis must be [xi; xj], where xi and xj are distinctroots of g. Furthermore, g must be strictly positiveon (xi; xj), and negative for some x < xi and forsome x > xj. Thus, g must have four real roots,and xi and xj must be the middle two. �
Corollary 5.14. There is at most one compact compo-nent of C.
Lemma 5.15. If g has four real roots x1 < x2 < x3 <x4 and 2;�2 62 [x2; x3], then C has a compact com-ponent projecting onto [x2; x3].
Proof. Since the leading coe�cient of f is nonzerothroughout [x2; x3], and the discriminant g is zeroat x2 and x3 and positive in between, the part of Cthat lies above the [x2; x3] must consist of two linesegments glued at the endpoints. As g is negativejust below x2 and just above x3, it follows C has acompact component. �
5D. The Six CasesWe now analyze individual cases to �nd the resultingtopologies.In the �rst case, we are given a; b; c; d 2 R n [�2; 2]and abcd < 0. By applying Lemma 3.1, we canassume that a; b; c > 2 and d < �2. Thus, byLemma 2.2, g has two roots in [2;+1) and two in(�1; 2]. Note that by Lemma 5.8, the roots of gare all distinct; in particular, there must be at leastone root greater than 2. Now by Lemma 5.11, p3and p4 join, and p7 and p8 join. p1 and p5 do notjoin, by Lemma 5.10. If p1 and p6 were to join, thenby Lemma 5.12, all four roots would be in (�1; 2],contradicting the existence of a root greater than2. Thus, p1 and p2 join; �nally, p5 and p6 mustjoin. Furthermore, there cannot be a compact com-ponent, since by Lemma 5.13 such a componentwould have to project onto [x2; x3], with x2 � �2and x3 � 2; but such a component would cross the



Benedetto and Goldman: The Topology of the Relative Character Varieties of a Quadruply-Punctured Sphere 99lines x = �2 twice, contradicting Lemma 5.5 andLemma 5.6. Thus, C \ Q consists of just the fourcomponents mentioned above.Since f is negative for x = 0 and y large, we seethat S is homeomorphic to a closed disk minus fourpoints of the boundary. (See Figure 6.) Doublingalong the boundary, we see that Va;b;c;d(R ) is homeo-morphic, and hence di�eomorphic, to a quadruply-punctured sphere. (See Case 1 in Figure 1.)In the second case, all a; b; c; d 2 R n [�2; 2] andabcd > 0. Applying Lemma 3.1, we may assumethat a; b; c; d > 2. Lemma 2.2 implies that g(x) hasfour roots in [2;+1). Lemma 5.11 implies thatp3 and p4 must join, and p7 and p8 cannot join.Lemma 5.12 implies that p1 and p6 cannot join, norcan p2 and p5. Thus p1 joins either p2 or p8, byLemma 5.10. If p1 joins p2, then p7 must join p6 andso p8 joins p5; or, if p1 joins p8, then p5 joins p6 andp2 joins p7. Meanwhile, Lemma 5.15 implies that Chas a compact component somewhere between thecomponent joining p3 to p4 and the line x = 2. ThusC consists of a circle, together with one of the twopossible sets of four noncompact components; bothsetups result in the same topology for S.Since f is negative for x = 0 and y large, Sis homeomorphic to a closed annulus minus threepoints of the outer boundary, along with a closeddisk minus one point of the boundary. (See Fig-ure 7.) Doubling again, Va;b;c;d(R ) is homeomorphic,and hence di�eomorphic, to a triply-punctured torusand a disk. (See Case 2 in Figure 1.)In the third case, three of a; b; c; d 2 R n [�2; 2]and the fourth in (�2; 2). By applying Lemma 3.1,we can assume that d 2 (�2; 2) and a; b; c > 2. ByLemma 2.2, g has two roots in [2;+1) and no otherreal roots. Thus, by Lemma 5.13, there cannot bea compact component. Furthermore, Lemma 5.11and Lemma 5.12 imply that p3 and p4 must join,but p7 and p8 cannot join, p1 and p6 cannot join,and p2 and p5 cannot join. Thus, we end up withthe same arrangement of noncompact componentsas in Case 2, but no compact component.In the fourth case, two of a; b; c; d 2 R n [�2; 2]and two in (�2; 2). Applying Lemma 3.1, we canassume that a; b 2 (�2; 2) and c; d > 2. There aretwo possibilities.Suppose �rst that g(x) has a double root. Lemma5.8 implies that this double root must be 2; thereis also one root in [�2; 2) and one in (2;1). ByLemma 5.13, there is no compact component and
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FIGURE 6. Case 1, with (a; b; c; d) = (2:1; 2:1; 2:1;�2:1).
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FIGURE 7. Case 2, with (a; b; c; d) = (2:5; 2:5; 3; 4).
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FIGURE 8. Case 3, with (a; b; c; d) = (2:4; 2:2; 2:3; 1).
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FIGURE 9. Case 4, with (a; b; c; d) = (2:1; 2:1; 1:7;�1:3).
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FIGURE 10. Case 5, with (a; b; c; d) = (2:1; 0:2; 0:3; 0:4).
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FIGURE 11. Case 6, with (a; b; c; d) = (1; 0:2; 0:3; 0:4).

Lemma 5.8 implies that p2 and p5 join by a verticalline. Lemma 5.11 implies that p3 and p4 join, but p7and p8 do not. Thus p1 and p8 must join, as mustp6 and p7.The second possibility is that all of the roots ofg are distinct; thus, two distinct roots lie in [�2; 2]and two distinct roots lie in [2;+1), and 2 is not adouble root. Once again, Lemma 5.13 precludes acompact component, and Lemma 5.11 implies thatp3 and p4 join. In addition, Lemma 5.12 implies thatp2 and p5 join, while p1 and p6 do not. Thus, p1 andp8 join, as do p6 and p7.Both possibilities give the same result, namely, Sis homeomorphic to a closed disk minus two pointsof the boundary, along with two closed disks missingone boundary point each. (See Figure 9.) Doublingagain, Va;b;c;d(R ) is homeomorphic, and hence dif-feomorphic, to a disjoint union of an annulus andtwo disks. (See Case 4 in Figure 1.)In the �fth case, one of a; b; c; d lie in R n [�2; 2]and the other three in (�2; 2). Applying Lemma 3.1,we can assume that a; b; c 2 (�2; 2) and d > 2.Lemma 2.2 implies g has two roots in [�2; 2] andno other real roots. Lemma 5.13 precludes a com-pact component. Furthermore, Lemmas 5.11 and5.12 imply that p3 can't join to p4, p7 can't join top8, p1 can't join to p6, and p2 can't join to p5. Since gis negative for some x0 2 (�2; 2), none of the pointson the left can join to any of the points on the right,by Lemma 5.4. Therefore p1 joins to p8, p2 joins top3, p4 joins to p5, and p6 joins to p7.From the sign of f , we see that S is homeomorphicto a union of four disjoint closed disks missing oneboundary point each. (See Figure 10.) Doubling,we see that Va;b;c;d(R ) is homeomorphic, and hencedi�eomorphic, to a union of four disjoint disks. (SeeCase 5 in Figure 1.)In the sixth case, all of a; b; c; d lie in (�2; 2).Lemma 2.2 implies that g has four roots in [�2; 2].Lemma 5.15 implies that C has a compact compo-nent between the lines x = �2 and x = 2. The restof the analysis is exactly as in Case 5; the result isthat p1 joins to p8, p2 joins to p3, p4 joins to p5, andp6 joins to p7.From the sign of f , we see that S is homeomor-phic to a closed disk, along with four closed disksmissing one boundary point each. (See Figure 11.)Doubling, we see that Va;b;c;d(R ) is homeomorphic,and hence di�eomorphic, to four disks and a sphere.(See Case 6 in Figure 1.)
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6. A COMPACT COMPONENT

OF SL(2, IR)-REPRESENTATIONSWhen (a; b; c; d) 2 R and Va;b;c;d(R ) is smooth, theneach connected component of Va;b;c;d(R ) consists ofcharacters of representations in either SL(2; R ) orSU(2). Components of spaces of representations inSU(2) are compact. Conversely, when M is a once-punctured torus, the only compact components ofX(M)(R )(t) are characters of SU(2)-representations.(See [Goldman 1988b] for a description of the topol-ogy of the relative character varieties for a punc-tured torus.) However, for the quadruply puncturedsphere, there are compact components of Va;b;c;d(R )for certain values of (a; b; c; d) which do not corre-spond to SU(2)-representations.If Va;b;c;d(R ) contains a compact component, The-orem 5.3 implies that�2 < a; b; c; d < 2;and conversely, every such (a; b; c; d) 2 (�2; 2)4 forwhich Va;b;c;d(R ) is smooth contains a compact com-ponent. (Compare the analysis of Case 6.) Here is acriterion for when this compact component consistsof SL(2; R )-characters or SU(2)-characters, in termsof the function �(a; b; c; d) de�ned in Section 4D.
Proposition 6.1. Suppose a; b; c; d 2 (�2; 2) and Va;b;c;dis smooth. Then the compact component of Va;b;c;d(R )consists of characters of SL(2; R )-representations ifand only if �(a; b; c; d) > 0;16� abcd� 2(a2 + b2 + c2 + d2) > 0:) (6–1)Otherwise, each element in the component is thecharacter of an SU(2)-representation.As pointed out by a referee, SU(2)-representationsin Va;b;c;d(R ) correspond to quadrilaterals in S3whoseside lengths are determined by the parameters a; b;c; d. (Compare [Kirk and Klassen 1991].) Neces-sary and su�cient conditions for the existence ofsuch polygons are triangle inequalities in SU(2), asdiscussed in [Galitzer 1997; Kapovich and Millson1995]. Thus conditions (6{1) are just the triangleinequalities in disguise.
Proof. Decompose the quadruply-punctured sphereM along �, as in Section 3A, as a union of two

triply-punctured spheres. A given representation�1(M) �! SL(2; C ) has image in SU(2) only if itsrestriction to the fundamental group of each com-ponent of M j� has image in SU(2). Furthermorethere is an SU(2) character on M with boundarytraces (a; b; c; d) if and only if there is an x suchthat (a; b; x) and (c; d; x) are SU(2) characters ontriply-punctured spheres. To construct this charac-ter, amalgamate the two representations along thecommon boundary X as in Section 3A; since twoelements of SU(2) have the same trace if and onlyif they are conjugate, we can ensure that the tworepresentations agree on this boundary.Recall from Section 2B that (a; b; x) is an SU(2)-character for the triply-punctured sphere if and onlyif a; b; x 2 [�2; 2] and �a;b(x) � 0. For a; b 2 R ,de�ne the interval Ia;b � R by:Ia;b = �x 2 R j �a;b(x) � 0	 = [i�a;b; i+a;b];where i�a;b = ab�p(a2 � 4)(b2 � 4)2 ;
i+a;b = ab+p(a2 � 4)(b2 � 4)2 :Since �a;b(�2) � 0, we haveIa;b � [�2; 2]:For given (a; b; c; d) with �2 < a; b; c; d < 2, thevalues of x 2 R such that (a; b; c; d; x) extends to acharacter of an SU(2)-representation comprise theintersection Ia;b \ Ic;d � [�2; 2]:Furthermore the possible (y; z) 2 R 2 comprise aconic, which by (3{3), is an ellipse. Thus charac-ters of SU(2)-representations with boundary traces(a; b; c; d) form a pencil of ellipses over the intervalIa;b \ Ic;d.However, if Ia;b \ Ic;d = ?, there will be a com-pact component of Va;b;c;d(R ) not corresponding toSU(2)-representations. By applying a permutationif necessary, assume thati+a;b < i�c;d:Then a component of Va;b;c;d(R ) will map underx : Va;b;c;d(R ) �! R



102 Experimental Mathematics, Vol. 8 (1999), No. 1to the interval [i+a;b; i�c;d]. By (3{3), the restriction ofx to x�1([�2; 2]) is proper. If x0 2 Ia;b [ Ic;d, then�a;b(x0)�c;d(x0)4� x20 < 0and by (3{3), the preimage x�1(x0) is empty. Thusx�1([i+a;b; i�c;d])is a compact component of Va;b;c;d(R ) not containingcharacters of SU(2)-representations. Since real char-acters are characters of either SU(2)-representationsor SL(2; R )-representations, this compact compo-nent must consist of SL(2; R )-representations.Thus, the compact component of Va;b;c;d(R ) con-sists of SU(2)-representations if and only ifIa;b \ Ic;d 6= ?and otherwise consists of SL(2; R )-representations.The latter case occurs wheni+a;b < i�c;dor i+c;d < i�a;b:These conditions are equivalent to conditions (6{1)by the following argument:The condition i+a;b < i�c;d is equivalent top(a2 � 4)(b2 � 4) +p(c2 � 4)(d2 � 4) < cd� ab;and i+c;d < i�a;b is equivalent top(a2 � 4)(b2 � 4) +p(c2 � 4)(d2 � 4) < ab� cd:The following lemma, whose straightforward proofis omitted, then applies:
Lemma 6.2. Let p; q; r be nonnegative real numbers.Then pp+pq < rif and only ifr4 � 2r2(p+ q) + (p� q)2 > 0;r2 � p� q > 0:Taking p = (a2 � 4)(b2 � 4);q = (c2 � 4)(d2 � 4);r = jab� cdj;and calculating thatr4 � 2r2(p+ q) + (p� q)2 = 16�(a; b; c; d);r2 � p� q = 2(16� abcd� 2(a2 + b2 + c2 + d2));

the compact component corresponds to SL(2; R )-representations if and only if conditions (6{1) hold.�Here is an explicit example. Let a; b; c = 32 andd = � 32 . For example,� = � 1 1� 12 12 � ; � = � 1 12�1 12 � ; 
 = � 1 1� 12 12 �generates an SL(2; R )-representation with the de-sired character. Furthermore, its (x; y; z) traces are(0; 0; 14). Now the equation for the relative charactervariety at these boundary traces isx2 + y2 + z2 + xyz � 116 = 0:Its locus does not intersect the planes x = �2, y =�2, or z = �2 at real points.The noncompact components are discs and corre-spond to hyperbolic structures on S2 with singularpoints with prescribed cone angles (determined bya; b; c; d). These hyperbolic structures have \funda-mental polygons" which are embedded quadrilater-als. Elements of the compact component correspondto nonembedded quadrilaterals, such as the one de-picted in Figure 12. The compactness of the con-�guration space of such polygons re
ects geometricbounds on these polygons with �xed vertex angles.
A
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FIGURE 12. A nonembedded quadrilateral in H2.
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