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Let M be a quadruply-punctured sphere with boundary compo-
nents A, B, C, D. The SL(2, €)-character variety of M consists of
equivalence classes of homomorphisms p of (M) — SL(2, C)
and can be identified with a quartic hypersurface in €”. For
fixed a,b,c,d € C, the subset V,,cq corresponding to repre-
sentations p with tr(p(A)) = a, tr(p(B)) = b, tr(p(C)) = ¢, tr(p(D)) =
d is a cubic surface in €. We determine the singular points
of V,p,cd and classify its set V, j, c 4(R) of IR-points into six topo-
logical types, at least when this set is nonsingular. V, c4(R)
contains a compact component if and only if —2 < a, b, c,d < 2.
For certain values of (a, b, ¢, d), this component corresponds to
representations in SL(2, IR).

1. INTRODUCTION

Moduli spaces of representations of fundamental
groups of surfaces arise in many natural algebraic,
geometric, and analytic problems. In particular,
the classification of geometric structures on mani-
folds and solutions of the Yang-Mills equations from
gauge theory lead to moduli spaces closely related
to representations of surface groups. Furthermore
these moduli spaces enjoy a rich symmetry due to
the large topological symmetry groups of surfaces.
The present paper describes in detail the topology of
some of these moduli spaces, in the case of surfaces
homeomorphic to a quadruply-punctured sphere.

Decompositions of surfaces into subsurfaces pro-
vide a technique for analyzing the moduli spaces in
terms of moduli spaces for simpler surfaces. For ex-
ample, every compact connected surface M of genus
g with b boundary components decomposes along
3g+ b— 3 simple closed curves into 2g + b — 2 pants,
provided that

0>x(M)=2-2g—0b.

A pants is a triply-punctured sphere: a surface of
genus 0 with three boundary components. In gen-
eral, we shall refer to a connected surface of genus g
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with b boundary components as a b-punctured sur-
face of genus g, although, strictly speaking the ends
of a “punctured surface” are noncompact and do
not have boundary. Similarly, a b-punctured torus
is a surface of genus 1 with b boundary components.
Surfaces of small negative Euler characteristic are
the building blocks for all surfaces of negative Euler
characteristic and their moduli spaces are the build-
ing blocks for moduli spaces of more complicated
surfaces. This decomposition technique has been
used in [Goldman 1997] to study the automorphism
group of surfaces and in [Goldman 1988a] to analyze
moduli spaces of geometric structures on surfaces.
In this paper we are concerned with the moduli
space of representations of a quadruply-punctured
sphere into SL(2,C). This moduli space is natu-
rally parametrized by the moduli of the images of
the boundary components, which are described by
four scalar parameters (a, b, ¢, d). For fixed values of
(a,b,c,d), the moduli space is a surface V, ;... We
determine for which (a, b, ¢, d) is V, ;.4 nonsingular.

Theorem 1.1. For fized a,b,c,d € C, the surface
Vab,e.a 15 singular if and only if either at least one of
a,b,c,d equals 2 or there is a reducible represen-
tation p with boundary traces a,b,c,d. The latter
case occurs when A(a,b,c,d) =0 where A(a,b,c,d)
1s the polynomial

Ala,b,c,d) = (2(a® + b* + ¢ + d*) — abed — 16)2
—(4-a*)(4-b)(4-c*)(4—d*).

Thus V,4.4(C) is a cubic surface in C*. Tts pro-
jective completion V,;.4(C) is smooth at infinity.
Furthermore V,, 4 . 4(C)\V, 4 .4 consists of three lines
in general position. Using the classification of cubic
surfaces over C, the set of C-points of V ;. 4 defor-
mation retracts to a bouquet of five 2-spheres.

Theorem 1.1 should be compared to Weil’s orig-
inal sufficient criterion [Weil 1964] for the smooth-
ness of the representation variety. (Some of Weil’s
results are also expounded in [Raghunathan 1972,
§ VI].) For the analogous case of representations of
fundamental groups of closed surfaces, an SL(2,C)-
representation is a smooth point of R if and only if it
is irreducible. In the present context there are irre-
ducible characters (namely when one of the bound-
ary traces equals +2) which define singular points
of the relative character variety.

By contrast, the topologies of the real varieties
are much more varied. For (a,b,c,d) € R, the set

Vab.c.a(R) of R-points of V, 5, . 4 — at least when non-
singular — belongs to one of the six topological types
depicted in Figure 1, depending on the boundary
parameters a,b,c,d. Let n denote the number of
boundary traces a,b,c,d which lie in the interval
(—2,2):

Theorem 1.2. Let a,b,c,d € R be such that V, ;4 s
nonsingular. Then the set V, ;. 4(R) of R-points is
homeomorphic to one of the following:

1. A quadruply-punctured sphere if n=0 and abcd <0;

2. A disjoint union of a triply-punctured torus and
a disc if n =0 and abed > 0;

3. A disjoint union of a triply-punctured sphere and
a disc if n = 1;

4. A disjoint union of an annulus and two discs if
n = 2;

5. A disjoint union of four discs if n = 3;

6. A disjoint union of four discs and a sphere if n=4.

Corollary 1.3. For a,b,c,d and n as above, the Fuler
characteristic of Vo, ..a(R) is equal to 2n — 2.

The points of V, ;.q4(R) correspond to representa-
tions into either SU(2) or SL(2,R). Components of
spaces of representations into SU(2) are always com-
pact, and in the analogous case where M is a once-
punctured torus, the only compact components of
relative real character varieties of M correspond to
SU(2)-representations. When —2 < a,b,c,d < 2,
the variety V,,.q4(R) contains a compact compo-
nent, and we determine conditions when this com-
pact component corresponds to representations in
SU(2) or SL(2,R).

Proposition 1.4. Suppose a,b,c,d € (—2,2) and V, 4 cq
is smooth. Then V, ;. 4(R) contains a compact com-
ponent, which consists of characters of SL(2,R)-
representations if and only if A(a,b,c,d) >0 and

16 — abed — 2(a® + b* + ¢* + d?) > 0.

Otherwise, each element in the component is the
character of an SU(2)-representation.

The component of V,,..(R) homeomorphic to a
disc in case 2 of Theorem 1.2 corresponds to the “Te-
ichmiiller space” of M and consists of characters of
holonomy representations of hyperbolic structures
on M with geodesic boundary. In all of the last four
cases of Theorem 1.2, the components which are
homeomorphic to a disc admit similar interpreta-
tions as deformation spaces of hyperbolic structures
with conical singularities; see [Goldman 1988a].



Benedetto and Goldman: The Topology of the Relative Character Varieties of a Quadruply-Punctured Sphere 87

Case 1: n =10, abed < 0 Case 2: n =0, abcd > 0

A SEeRRARais T
i i
HH H
Case3: n=1 Case 4: n=2
T FREFERTT
sEEdEREsantas i !
E S
3 T \‘ T A‘ T77 A‘ A‘ T
@
S|
i
R EHE R
Case 5 Case 6: n =4

FIGURE 1. Possible topological types of Vg 4 ¢ 4(R) (see Theorem 1.2). The type is determined by the number n
of boundary traces a, b, ¢, d that lie in the interval (—2,2) and (if n = 0) by the sign of abed.
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2. CHARACTER VARIETIES FOR SURFACES

Let k denote a field (usually either R or C) and let
G = SL(2,k). For the moment let m denote an arbi-
trary finitely generated group. We denote the set of
homomorphisms 7 — G by Hom(7, G); since G is
an affine algebraic group defined over k, Hom(m, G)
naturally enjoys the structure of the set of k-points
of an affine algebraic set defined over Z. (Compare
[Lubotzky and Magid 1985, § 1].) A central problem
is to determine the global topology and geometric
structure on the space Hom(w, G).

We would like to consider the space of equiva-
lence classes of such representations under the nat-
ural action of SL(2,C) by conjugation, but the quo-
tient space is generally not well-behaved. By enlarg-
ing the equivalence relation slightly, one can define
a categorical quotient Hom(w,G)//G (in the sense
of algebraic geometry) which does have the struc-
ture of an affine algebraic set. For brevity denote
Hom(w, G) by R. The guiding principle is that the
regular functions on the quotient R//G should be
the G-invariant regular functions on R, and thus
the quotient R//G is defined as Spec(k[R]“). The
points of R//G correspond to equivalence classes,
where two orbits are considered equivalent if they
cannot by distinguished by G-invariant regular func-
tions on R. In general there is a G-invariant Zariski-
dense subset R~ such that the restriction of the quo-
tient map R — R//G to R~ defines a bijection of
the orbit space R7/G to R//G. In practice, we can
take (assuming k is algebraically closed) R~ to be
the set of completely reducible (or semisimple) rep-
resentations 1 — G. We denote the quotient R//G
by X. For a careful treatment of this material, see
[Lubotzky and Magid 1985, §1].

2A. Cyclic Groups

When 7 is a cyclic group, then a homomorphism
m — G is completely determined by the image of a
generator of . Therefore the representation variety
R is isomorphic to G. Every regular function on G
invariant under conjugation is a polynomial in the
trace function

G—k
A— tr(A).

Thus X = k under the trace mapping. Note that the
trace function has critical values £2, with critical
points at the center £1.

More generally, suppose that 7 is a free group
freely generated by zi,...,z,. Then Hom(mr,G) is
identified with the Cartesian product G™. Procesi
[1976] proved that every G-invariant function on G"
is a polynomial in finitely many functions of the form

G" —k

(A, ..., A,) — trw(Ay, ..., Ay),

where w(zy,...,z,) is a word in zy, ...
an element of 7.

For example, for n = 2 and k = C, classical work
dating at least as far back as Fricke and Klein [1897,
Section I1.2, page 285] implies the following funda-
mental result:

, T, that is,

Theorem 2.1. The invariant function
x : Hom(7, G) — C?
tr(p(z1))
pr— | tr(p(x2))

r(p(z172))
defines an isomorphism X —» C*. That is, every
function of pairs (Ay, As) € SL(2,C) x SL(2,C) in-
variant under simultaneous conjugation

(Ay, Ag) = (TAT!, TAT™Y)
can be expressed is a function of tr(A;), tr(Asz), and

tr(A;As). Furthermore, if Ay, A generate an irre-
ducible representation on C?, then for any other pair

AL Al with
tr(A;) = tr(A4y),
tr(Ay) = tr(43),
tr(A; As) = tr(ALA)),
there exists T € SL(2,C) with A} = TA,T™*, A, =
TA, T

We call the triple x(p) the character of p, since from
it one can deduce the trace tr(p(A)) for any A € .
Compare [Magnus 1980].

The criterion for reducible representations is some-
what more complicated. If p is reducible, then it is
conjugate to a representation by upper-triangular
matrices

It and its semisimpliﬁcation
s a 0
pi(y) = |: (0’7) a(,y)—1:|

have the same character, but in general will not be
conjugate. Indeed, p°® lies in the closure of the orbit
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of p. Two reducible representations have the same
character if and only if their semisimplifications are
conjugate, or equivalently, if their orbit closures are
equal.

For example, the G-invariant function on G x G

defined by
fi(Ay Ay) = tr(A A ATMATY)
is given by the expression
F(Ar, Az) = k(tr(Ar), tr(As), tr(AiAs)),

where k € Clz,y, 2] is the cubic polynomial defined
by

H(%?J,Z)ZIEQ—I-yQ—l-zQ—a:yz—Z (2-1)

A slight variant of this polynomial will be useful
later on. Let a,b € k. Then k,;(z) € k[z] is the
quadratic polynomial defined by

Kap(2) = K(a,b,x) —2 = z? — abx + (a2 + b — 4).

The reducible representations occur for characters
(z,y, z) with
K(z,y,2) = 2,

where x : C* — C is defined by (2-1). We call
such a character reducible. See [Goldman 1988b] for
details.

The set of R-points in X equals X (R) = R®. By
[Morgan and Shalen 1984, Prop. III.1.1, p. 458],
real characters correspond to representations tak-
ing values in the real forms SU(2) and SL(2,RR) of
SL(2,C). A point (z,y,2) € R® corresponds to an
SU(2)-representation if and only if

-2<7,y,2<2 and k(z,y,2) < 2.

Otherwise (2,7, z) € R® corresponds to an SL(2, R)-
representation. A character (z,y,2z) € R* corre-
sponds both to an SU(2)-representation and to an
SL(2, R)-representation if and only if it corresponds
to a representation in

SO(2) = SU(2) N SL(2, R);

such a representation is necessarily reducible. See

[Goldman 1988b] for details.

2B. The Triply-Punctured Sphere
We interpret Theorem 2.1 in terms of the the triply-
punctured sphere. For any compact manifold, set

X(M) = H Hom(m(M;),G)//G,

FIGURE 2. A triply-punctured sphere and its three
boundary components.

where
M=]]M,

is the decomposition of M into connected compo-
nents. When M is a compact surface with boundary

oM = [ oM
i=1
each component 0; M has fundamental group
T (8ZM) = 7.
Thus each X(0;M) = C and X(0M) = C™. The

homomorphism of fundamental groups
w1 (0; M) — 7 (M)
induces a restriction map
X(M) — X(0;M) = C.
Taking the product, we obtain
0. : X(M) — C™.

Let M denote a triply-punctured sphere. The fun-
damental group of M admits the redundant geomet-
ric presentation

T=(XY,Z|XYZ=1I),

where X, Y, Z are simple loops corresponding to the
three boundary components. In this case the bound-
ary map 0, defines an isomorphism X(M) ~ C?,
where

0:([p]) = (tr(p(X)), tr(p(Y)), tr(p(2))).
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2C. Properties of x(x, y, z)

The polynomial k£ and its variant k., satisfy many
remarkable properties related to their natural occur-
rence as invariants of elements of SL(2,C).

We use the following lemma concerning &, ;, and
R-points extensively in later sections. Its proof is
straightforward.

Lemma 2.2. Fiiz a,b € R. Then K, has:

one real double root if either of a or b is £2;

e no real roots if |a] > 2 and |b| < 2 or vice versa;

e two real roots, both greater than or equal to 2, if
lal,|b] > 2 and ab > 0;

e two real roots, both less than or equal to —2, if
lal,|b] > 2 and ab < 0;

e two real Toots, both in [—2,2], if |al,|b| < 2.

This lemma illustrates the properties of reducible
characters, since z is a root of k., if and only if
(a,b,z) is a reducible character. Indeed, we may
assume that (a,b, ) is the character of a represen-
tation with abelian image. For example, the second
case occurs when a is the trace of a hyperbolic ele-
ment and b is the trace of an elliptic element, and in
SL(2,R) hyperbolic elements and elliptic elements
cannot commute. The other cases can be discussed
similarly.

An important property of k is that its restric-
tion to every coordinate plane and coordinate line
is quadratic. In particular its values at +2 are very
special.

Lemma 2.3. r,,(+2) = (a £ b)%

The discriminant of the quadratic polynomial &, ;(x)
equals

(a% — 4)(b* — 4).

Furthermore the critical points of & : C* — C are
the four points

(2,2,2), (2,-2,-2), (-2,2,-2), (-2,-2,2)
with critical value +2 and the point (0,0,0) with

critical value —2.

3. THE QUADRUPLY-PUNCTURED SPHERE

Let M be a quadruply-punctured sphere, and let its
boundary components be A, B,C, D. Denoting the
corresponding elements of m = 71(M) by the same

names, the fundamental group = = m;(M) has the
redundant geometric presentation

m=(A,B,C,D| ABCD = I),

compare Figure 3. However, in the present con-
text there is an even more concrete description. A
representation p : m1 — SL(2,C) corresponds to a
quadruple

a=p(4), B=p(B),
v=p(C), d=p(D)
in SL(2,C)*, where
afvyé = 1.

Using this equation to eliminate ¢, such a quadru-
ple merely refers to an arbitrary triple («,3,7) €
SL(2,C)3.

FIGURE 3. A quadruply-punctured sphere.

3A. Amalgamating Representations

Let £ denote the simple loop on M which separates
boundary components A, B from C,D. The corre-
sponding element of the fundamental group satisfies:

X =AB=(CD) "

Denote by M|{ the compact surface obtained by
splitting M along &: each of the two components
M; and M, of M|{ are homeomorphic to a triply-
punctured sphere. We express the character variety
X(M) in terms of the character variety X(M|£).
The fundamental group of M; has presentation

and the fundamental group of M, has presentation
m (M) =(X,C,D | XCD =1I).

The fundamental group of M is the amalgamated
free product

w1 (M) = 71 (My) Uz 7 (Ma)
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amalgamated by the monomorphisms taking a gen-
erator of Z to X' € m(M;) and X € m(My). A
representation

p:m (M) — SL(2,C)
restricts to two representations
pPi - 7T1<Mi) — SL(2, C)

satisfying

p1(X) pa(X) = I. (3-1

Conversely, two representations p;, po that satisfy
(3-1) define a unique representation p. Compare
[Goldman 1988a].

3B. Defining Equations

The boundary map 9, : X(M) — C* is defined by
four functions

a([p]) = tr(p(A)), b([p]) = tr(p(B)),
c([p]) = tr(p(C)), d([p]) = tr(p(D))-

The elements X = AB, Y = BC and Z =CA of
are represented by simple loops on M. The corre-
sponding traces x, ¥, z, together with the boundary
traces a, b, ¢, d, define coordinates on X(M) that are
subject to the relation

x2+y2+22+xyz
= (ab+ cd)x + (ad + be)y + (ac + bd)z

+(4 - a? - - —d* - abed).  (3-2)

Compare [Magnus 1980]. Unlike the case in which 7
is free of rank two, X(M) is not an affine space, but
rather the hypersurface V' C C” consisting of points
whose coordinates (a,b, c,d, x,y, z) satisfy (3-2). For
each (a,b,c,d) € C*, the set

07 (a,b,e,d) = Vi e

consists of all (z,y, z) € C? satisfying (3-2). Rewrite
the basic defining equation (3-2) in terms of x as

22 () - ALY

2—x (a—b)(d—c)\?
+= <(y—z)— 5.
(x*—abzr+a®+b*—4)(x* —cdz+c*+d*—4)

= 1_.2 . (3-3)

We may write (3-3) as follows. For fixed a,b,¢,d, z,
the expression

QUabed) (4 ) = 2%95 <(y +2) — %)

+2—x<(y_z)_ (a,—b)(d—c)>2

4 2—x

is an inhomogeneous quadratic function of (y,z).
Equation (3-3) is equivalent to

Kab(Z)Kea(T)

4 —gx2
which describes a conic V, ;. q(x) of center (yo, 20),
where

an,b,c,d) (y, Z) —

_(a+Db)(d+c)
Yo + 20 = 21 2 )
a—>b)(d—
yo— 2o = 2= 0d=0)
2—x

3C. Symmetries

A group of 192 symmetries of the family X (M) acts
by simple linear transformations on the parameters
(a,b,c,d). This action is generated by an action of
the central characters, which multiply an even num-
ber of the generators by —I, and the permutations
of the four generators A, B,C, D.

The symmetric group S, consisting of permuta-
tions of { A, B, C, D} acts on the family X (M) of rel-
ative character varieties V, ;. 4. The symmetries are
apparent from the defining equation (3-2). For ex-
ample, the three products of disjoint transpositions
act trivially on the (z,y, z) coordinates, while non-
trivially permuting (a,b,c,d). However, the trans-
positions A «+» B, B +> C, C < D, act respectively
as follows:

a b a a a a
b a b c b b
c c c b c d
d|lw— |d]|, dl—|d|, d|l—|c
T T T z T T
Y z y Y Y z
Lz LY L2 | T | 2 LY

Furthermore every character variety admits an ac-
tion by central characters, as described in [Lubotzky
and Magid 1985, § 5] (where this operation is called
twisting by a character). If Z C G is central, then
Hom(w, Z) is a group, which acts on Hom(w, G) by
pointwise multiplication. Since the center of G =
SL(2,C) equals {+/} = Z/2 and the fundamental
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group 7 of a quadruply-punctured sphere is free of
rank 3, the group

Hom(m, {£I}) 2 Z/2® Z/2 & Z/2

acts on V, ;.4 as follows. Such a central character
maps the images of an even number of the generators
A, B,C, D to their negatives: for example,

« —Q
8., |-8
Y Y
0 o

is the action on generators corresponding to
(L1,0)eZ/2®Z/207Z)2

and whose action on the trace coordinates is given
by

_a_

—b

8 QU0 e
1
ISH

z —Zz

S4 normalizes this Hom(7, {£/})-action. Since the
induced S;-action on Hom(, {+1}) is transitive, the
action of every central character is obtained by con-
jugating the example above by a permutation. These
considerations of symmetry immediately imply the
corresponding relative character varieties are iso-
morphic:

Lemma 3.1. Let (a,b,c,d) € R*. Let o : R* — R* be
any permutation of coordinates, and let T : R* — R*
be any map which acts by reversing signs of two of
the coordinates and leaving the other two coordinates
unchanged. Then Vi peaq and Viapea are each
diffeomorphic to Vi, p c.q.

4. SINGULAR POINTS AND REDUCIBLE CHARACTERS

4A. A Criterion for Singularity
Theorem 4.1. V, ;, . 4 is singular if and only if at least
one of these conditions holds:

e One of a,b,c,d equals £2.
e Some reducible representation has boundary traces
(a,b,c,d).

The latter case occurs if and only if there exists x €
C such that k. p(x) = Kea(x) = 0.

4B. Solutions of Quadratic Equations

We will need the following technical lemmas on dis-
criminant loci for the proof of Theorem 4.1 and for
later results.

Lemma 4.2. Let n > 1 be an integer, and let k be a
field of characteristic not equal to 2. Pick B(x) and
C(z) in k[zy,...,x,]. Let

Y ={(z1,...,24,2) € K" | 22+ B(2)2+C(z) = 0}
and

Z ={(z1,...,2,) €K" | B(z)* — 4C(z) = 0}.
If Y is singular at (z1,...,z,,2), then Z is singu-
lar at (x1,...,2,). If Z is singular at (zq,...,z,),

then there exists z € k such that Y is singular at
(T1y. .oy Tpy 2).

(If n = 1, then Z is singular at z if = is a multiple
root of B(z)? —4C(x).)

Proof. Denote by dB(z) the differential of B(z) with
respect to the x;-variables only, and similarly for
dC(x). Let (z4,...,x,) € k™. Now Z is singular at
(z1,...,z,) if and only if
B(z)? —4C(z) =0, )
2B(z)dB(z) —4dC(z) =0,

and Y is singular at (zi,...,z,, 2) if and only if
2>+ B(x)z + C(z) = 0,
2z+ B(z) =0,
zdB(xz) +dC(x) = 0.
We must show that (4-1) is equivalent to the exis-

tence of z € k satisfying (4-2). Note that

B(z)?> —4C(x) =0

(4-2)

if and only if
2>+ B(z)z+ C(x)

has a double root z € k; this root must be

z=—3B(z).
Substituting z = —1B(z) into the final equation
of (4-2) and multiplying by —4 yields the second
equation of (4-1). O

Lemma 4.3. Let k be an algebraically closed field of
characteristic not equal to 2. Suppose that A;(z),
Bi(z), Ci(z) are elements of k[z] such that A;(x)
has no multiple roots. Let

Y = {(z,y) € k| A (2)y® + Bi(x)y + Ci(z) = 0}
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and

Z={zek|B(z)* —44(

_0}

If Y is singular at (x,y), then Z is singular at z. If
Z s singular at x, then there exists y € k such that
Y is singular at (z,y).

Proof. The proof follows that of Lemma 4.2, modified
in the case that A;(xz) = 0. Suppose that A;(z) = 0.
Then Z is singular at x if and only if

By(z)? =0,
() } (4-3)

2B, (z)Bj(z) — 4C,(z) A} (z) = 0,

and Y is singular at (z,y) if and only if there exists
y € k such that

yBi(z) + Ci(z) =0

Bl (:E) = 0,

y*Ai(z) +yBi(z) + Ci(z) =0
Clearly (4-3) is equivalent to By(z) = Cyi(z) = 0,
which (4-4) implies. Since Aj(z) # 0 (by hypothe-
sis), and k is algebraically closed, some y € k satis-

fies the last equation in (4-4), concluding the proof
of Lemma 4.3. O

(4-4)

Lemma 4.4. Let k = R. Suppose that A,(z), Bi(x),
Ci(x) are elements of Rlx] such that A,(x) has no
multiple roots. Set

Y = {(x,y) c RZ | Al( )y2 + Bl( )y + Cl
Z={z R | B(z)* — 44;( z) =0},

and let

_0}

d(z) = By (x)”

If Y is singular at (x,y), then Z is singular at x.
Suppose for some © € R that

Ai(z) = By(z) =

—4A](z)C1(x). (4-5)

Cl (l’) =0
and

d(z) > 0.

If Z is singular at x, then there exists y € R such
that Y is singular at (z,y).

Proof. The only point where the proof of Lemma 4.3
fails for k = IR is the final step, where the last equa-
tion in (4-4) may not have a solution y € R. Since
the discriminant of this quadratic equation equals
d(z), our assumption §(z) > 0 guarantees the exis-
tence of a solution y € R. O

4C. Singularities of V,}, .4
Proof of Theorem 4.1. Fix (a,b,c,d) € C*, and rewrite
(3-2) as
2>+ B(z,y)z + C(z,y) = 0,

where

B(z,y) = zy — (ac + bd),

C(z,y) = 2° +y* — (ab+ cd)z — (ad + be)y

—(4—a®*—b* - —d* — abed).

By Lemma 4.2, V, ;.4 is singular if and only if the
curve C in the xy-plane defined by the discriminant

f(l’,y) = B(l‘,y)Z - 40(‘7:73/) =0

is singular. Now write f(z,y) as a quadratic func-
tion in y:

f(z,y) = Ai(@)y* + Bi(z)y + Ci(2),
where
Ai(z) = (z° — 4),
By (x) = 4(ad + bc) — 2(ac + bd)z,
C,(z) = —42*+4(ab+cd)z+a* P +b*d?
—2abed—4a®—4b* —4c* —4d*+16 = 0.
(4-6)

Since A;(z) = (z — 2)(z + 2) has simple zeroes,
Lemma 4.3 implies that V,, ., is singular if and
only if the discriminant g(z) of f(z,y) as a quad-
ratic function of y vanishes. This discriminant is
easily computed to be

g(z) = Bi(2)* — 44, (2)C1(2)
= 16(z* —abr+a®+b>—4)(2° —cdr+c*+d* —4)
= 16(ka(7))(Fc,a()).

Thus V, .4 is singular if and only if there exists = €

k satisfying one of the following three conditions:

1. z is a double zero of K, ;;
2. z is a double zero of k. 4;
3. Kap(T) = Kea(z) = 0.

Now the first case occurs if and only if the discrim-
inant of K, is zero, that is, if and only if

(a* —4)(b* —4) =0,
that is, if and only if @ = £2 or b = £2. Similarly,
the second case occurs if and only if c =42 or d =
+2.
Consider the remaining case,

Kap(T) = Kea(z) = 0. (4-7)
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We have to find a reducible representation having
traces (a, b, ¢, d; x).

Decompose M along & as above into two triply-
punctured spheres M; and M,. (Compare Section
3A.) Then there exist representations

pPi - 7T1(Mi) e SL(2,C)

having characters (a,b, x) and (z, ¢, d) respectively.
By (4-7), both p; and p, are reducible.

We distinguish two cases, depending on whether
r = %2 or not. If x+ = %2, choose representations
p1, p2 so that

p(X) # L and pa(X) # %1,

Then p;(X) and py(X) necessarily have unique fixed
points, say p; and po, in CP'. There exists g € G
such that

g(p1) =p2,  gm(X Vgt =pa(X).  (4-8)
Define p by
p(A) = p1(A), p(B) = p1(B), o)
p(C) =gp(C)g™",  p(D)=gpi(D)g™".

Since the image of p fixes p;, it is reducible and
its character lies in V, ;. 4. (Alternatively, one can
choose

p(X) = %I

and p(C), p(D) to be diagonal matrices.)

Now suppose = # 42. Then p;(X 1) and py(X)
are elements of G having trace x and are thus conju-
gate. Indeed, they are diagonalizable with distinct
eigenvalues A\, \"! where z = A+ \"!. Let p, € CP!
be the fixed point of p;(X~!) corresponding to the
M-eigenspace of p; (X 1) and p, € CP! be the fixed
point of p2(X 1)) corresponding to the \-eigenspace
of p2(X~1)). Then as above there exists g satisfying
(4-8). The representation p defined by (4-9) fixes

p1 and its character lies in V, . 4. [l

4D. A Discriminant Polynomial

Given (a,b,c,d) € C*, the existence of an z € C
satisfying condition (4-7) is equivalent to the van-
ishing of the resultant A(a,b,c,d) of the polynomi-
als k., and k. 4, which (remarkably) is a symmetric

polynomial in a, b, c,d. This resultant is the sextic
polynomial

1 —ab a®>+0b*2—-14 0

0 1 —ab a?+b%—4
A(aabucvd): 1 —cd C2+d2_4 0

0 1 —cd AE+d?>—4

= (2(a® + V* + & + &%) — abed — 16)”
—(4—-a)(4-b")(4-c*)4-d%.
The vanishing of A(a,b, ¢, d) implies only that at

least one character in V, 4 . 4 is reducible. In general,
a character

(a,b,c,d,x,y,2) € Vapea
is reducible if and only if
Kap(T) = Fea(x) =
Ka.a(y) = kne(y) =

Ka,c(2) = Rpa(z) = 0.

5. TOPOLOGY OF THE SET OF R-POINTS

5A. Singular Points

For (a,b,c,d) € R*, the variety V,,.q is defined
over R; from now on we will only consider its set
Vabe,a(R) of R-points. By [Morgan and Shalen 1984,
Prop. III.1.1, p. 458], V,;cq(R) consists of charac-
ters corresponding to representations in either SU(2)
or SL(2,R). Since the leading term of the cubic
polynomial defining V, ;, . 4 is zyz, its closure in RP?
meets the plane at infinity in three lines in general
position (the singular cubic defined by zyz = 0 in
RP?). Thus for any values of (a,b,c,d) € R*, the
surface V, .. 4(R) has four ends. (See Figure 4.)

VR

FIGURE 4. What V, 3 . 4(R) looks like near infinity.
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Theorem 5.1. Let (a,b,c,d) € R*. Then V,p.q(R)
contains a singular point if and only if one of the
following conditions holds:

1. One of a,b,c,d equals £2.
2. There is a reducible SU(2)-representation having

boundary traces (a,b,c,d), and a,b,c,d € [-2,2].
3. There is a reducible SL(2,R)-representation hav-

ing boundary traces (a,b,c,d), and a,b,c,d € R\

(—2,2).
The second condition is equivalent to

A(a,b,c,d) =0 and a,b,c,d € [-2,2];
the third condition is equivalent to
A(a,b,c,d) =0 and a,b,c,d e R\ (-2,2).
We first verify the final statements. Suppose z € R
satisfies
Kap(T) = Kea(r) =0
and a,b,c,d € [—2,2]. By Section 4D, we have
A(a,b,c,d) = 0. Conversely, given A(a,b,c,d) =
0 with a,b,c,d € [-2,2], there exists a reducible
SL(2, C)-representation p with the given boundary
traces. Furthermore,
v = tr(p(X)) € [2,]

by Lemma 2.2. By the results of Section 2B, the
triples (a,b,z) and (c,d,z) correspond to SU(2)-
representations. Amalgamating the representations
as in the proof of Theorem 4.1 produces a SU(2)-
representation p of m;(M). The equivalence of the
third condition is proved similarly.

The proof of the rest of Theorem 5.1 is analogous
to the proof of Theorem 4.1. The only difference is

that we must use Lemma 4.4 instead of Lemma 4.3.
Thus, it suffices to show:

Lemma 5.2. Let z,a,b,c,d € R and define A;(x),
Bi(z), Ci(z) by (4-6). Then §(x) > 0, where 6(x)
is defined in (4-5).
Proof. By (4-6), we have
() = 2,
Bi(z) = —2(ac + bd),
Ci(xz) = —8x 4+ 4(ab + cd),
and
d(z) = By(2)* — 441 (2)C1(w)
= 4(ac + bd)? + 642> — 32z (ab + cd)
= 4 (4z — (ac + bd))* > 0. O

5B. Topological Classification of the Smooth Real
Varieties

Assume that V, ;, . 4(R) is nonsingular. We now clas-
sify the possible topologies for V,, .4(R). The six
topological types are depicted in Figure 1.

Theorem 5.3. If (a,b, c,d) € R* and V, 4 ..4(R) is non-
singular, then Vg, . a(R) is diffeomorphic to one of
the following:

1. a quadruply-punctured sphere, if a,b,c,d € R\
[—2,2] with abed < 0;

2. the disjoint union of a triply-punctured torus and
a disk, if a,b,c,d € R\ [—2,2] with abcd > 0;

3. the disjoint union of a triply-punctured sphere
and a disk, if one of a,b,c,d is in (—2,2) and
the rest are in R\ [—2,2];

4. the disjoint union of an annulus and two disks,
if two of a,b,c,d are in (—2,2) and two are in
R \ [_27 2];

5. the disjoint union of four disks, if three among
a,b,c,d are in (—2,2) and one is in R\ [—2, 2];

6. the disjoint union of four disks and a sphere, if
a,b,c,d € (-2,2).

In case 2, the component of V,; ., homeomorphic
to a disc is the “Teichmiiller space” of M, consisting
of hyperbolic structures with geodesic boundary on
M. Compare [Goldman 1988a; 1988b)].

5C. Reduction to a Plane Quartic Curve

To prove Theorem 5.3, reduce the dimension by tak-
ing discriminants, as in the determination of the
singularities. Again, difficulties arise because the
discriminant f(z,y) is not monic in y. The set
Vasea(R) contains two points for every (z,y) € R”
with f(z,y) > 0, one point for f(z,y) = 0, and none
for f(x,y) < 0. Define

S={(z,y) €R*: f(z,y) > 0}
and
C={(z,y) e R*: f(x,y) =0} = 8.
The projection
(7,y) : Vapca(R) — R?

expresses V,p.4(R) as a union of two copies of S
identified along their boundary C. This description
as a “double branched cover” determines V, ;. 4(R)

up to homeomorphism (and hence diffeomorphism).
Fixing x € R with = # £2, for |y| large, we have

f(xvy) ~ (Iz - 4)y27
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so f(z,y) is positive if |z| > 2 and negative if |z| < 2.
More precisely:

1. For any x with |z| < 2, there exists M > 0 such
that for |y| > M, (z,y) € S.

2. For any x with |z| > 2, there exists M > 0 such
that for |y| > M, (z,y) € S.

To study C, we reduce dimensions once more via
discriminants. For fixed x # 42, the tangent of C
at (z,y) for some y € R is vertical if and only if the
discriminant

g9(x) = 16K, (x)Kea(z) = 0.

Lemma 5.4. Let © € R\ {£2}. Then the set of y € R
such that (z,y) € C consists of :

1. exactly two points if g(x) > 0;

2. ezxactly one point if g(x) = 0;

3. no points if g(z) < 0.

(Recall the definition of A;(x), Bi(x),Ci(z) from
(4-6).)

Lemma 5.5. Suppose x = £2 and g(x) # 0. Then

By (z) # 0, and there exists exactly one y € R such
that (z,y) € C.

Lemma 5.6. Suppose that x = £2 and g(z) = 0. Then
By (z) =0, and the set of y € R such that (z,y) € C
is empty, if Ci(x) #0 or R, if Cy(z) = 0.

Proof of the Lemmas. We write f(z,y) as

f(@,y) = Ai(z)y* + Bi(z)y + Ci(x).

Lemma 5.4 follows because f(z,y) is a quadratic
polynomial in y with discriminant g(z). Lemma 5.5
follows because A;(x) = 0 and

g(z) = Bi(z)? — 4A,(2)Cy (z).

Finally, Lemma 5.6 follows because its hypotheses
imply f(z,y) = Ci(z). O
Lemma 5.7. Suppose that a,b,c,d € R\ {2, —2}.

1. If B1(2) = C1(2) =0, then a=b and ¢ = d.

2. If Bi(—2) = C1(—2) =0, then a = —=b and ¢ =

—d.

Furthermore, in either of these cases, Vg, p..a(R) is
singular if and only if a, b, ¢, and d are either all in
(—=2,2) or all in R\ [-2,2].

Proof. Bi(£2) = 0 factors as (b Fa)(cFd) = 0,

so without loss, a = £b. Substituting, C;(£2) = 0
becomes (b* —4)(cFd)? = 0. Since b # +2, we have

¢ = £d. One calculates A(+b,b, £d,d) = 0. Now
apply Theorem 5.1. O

Lemma 5.8. Suppose V,; .a(R) contains no singular
points but g(z) has a real double root. Then this
root is £2, and a = £b and ¢ = +d. One of these
two possibilities must occur:

1. a€(-2,2) and ce R\ [-2,2];
2. ce(-2,2) anda € R\ [-2,2].

Furthermore C contains the line x = £2.

Proof. By Theorem 5.1, this situation can only arise
if g has a double root and yet some of a,b,c,d are
in (—2,2) and some are in R\ [-2,2]. Note that for
Kap(x) to have a double root, one of a or b must be
+2, but this does not happen since V,, . 4(R) is non-
singular. Thus, k,(z) and k. 4(z) have a common
root. If this root lies in (—2,2), then Lemma 2.2
implies that all of a,b,c,d lie in (—2,2). Similarly,
if this root lies in R \ [-2,2], then all of a,b,c,d
lie in R \ [-2,2]. In either case, Theorem 5.1 im-
plies that V,;.4(R) is singular. Therefore, the root
is 2, implying ¢ = £b and ¢ = +d. In addition,
By (£2) = C1(£2) = 0, and so Lemma 5.6 implies
that C contains the line z = +2. 0

We continue the analysis of C. The solution of the
quadratic equation f(z,y) = 0 for y when x # £2
is y = w4 () where

—Bi(2) + vg(2)

2(22 —4)
Note that B;(xz) is linear in z and g(z) ~ 162*; so
as |z| — oo,

px(z) =

oi(z) — £2.
Similarly, fix y # £2 and define x = ¥, (y) by solv-
ing f(z,y) = 0. Then, as |y| — oo,

Pi(y) — £2.

Thus, for any € > 0, there is M > 2 4 ¢ for which
2] > M = (o4 (2)—2| < e and |p_(z)+2]| <¢,)
and for which
lyl > M = (|94 (y) —2| < e and [ (y) +2| <e.)

Fix 0 < £ < 1, and let @ be the square (—M, M)
Then C N (R*\ Q) is homeomorphic to a disjoint
union of eight copies of [M,00). For example, one
of the eight homeomorphisms would map ¢ € [M, co0)
to (—t,p4+(—t)). Note that C intersects 0Q at the
images of M under the eight homeomorphisms. C is
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smooth and hence a 1-manifold, so Q@ N C is a com-
pact 1-manifold with boundary 9@ N C consisting of
eight points.

Lemma 5.9. Assume V, ;. q4(R) is nonsingular. With
Q as above, QN C has finitely many connected com-
ponents. Fach component is homeomorphic to ei-
ther a closed interval [—1,1], if at least one (and
hence ezactly two) points of the component lie in
0Q, or S* otherwise. Furthermore, there must be
exactly four components homeomorphic to an inter-
val.

FIGURE 5. How the curve C meets the square Q.

C must look something like Figure 5. Outside @), all
points of C are close to the eight asymptotes. By
choosing @ sufficiently large, C will be transverse to
the four sides of dQ and C N 0Q is a set of eight
points,

P = {p17p27p37p47p57p67p77p8}7

numbered as in Figure 5. To determine the topolo-
gies of C and S, it suffices to decide how these eight
points of C N JQ are joined pairwise inside ¢, and
to find the number and positions of any bounded
components.

In each of the following lemmas, the set of R-
points is assumed nonsingular.

Lemma 5.10. If p, is joined by C to p,,, then n +m
s odd.

Proof. Suppose n + m is even. Then on 9@, the
points p, and p,, separate the remaining points p;
into two sets P; and P, of odd cardinality. Since an

arc a of CN @ joins p, and p,,, this arc separates
P, from P, in . Furthermore the points of

P_{pmapn}:PIHP2

are pairwise joined by arcs of C N @ which (since
C is smooth) do not meet a. Thus the points of
P, join to points of Py, and similarly for P,. This
partitions P; into disjoint pairs, contradicting the
odd cardinality of P;. O

Lemma 5.11. 1. p3 joins to py if and only if g(x) has
a root in (2,00).

2. py joins to ps if and only if g(x) has a root in
(—o0,—2).

Proof. We’ll show the first statement; the second
is similar. Suppose first that ps3 joins to ps;. The
component joining p; and ps; must have a vertical
tangent — corresponding to a root of g(z) —at some
point zq. If ¢y < 2, then the component crosses the
line x = 2 twice, contradicting Lemma 5.5. (If the
component crossed the line at the same point each
time, there would be a singularity. Alternatively, if
g(2) = 0, then by Lemma 5.6, C must contain the
whole line z = 2, and we would have singularities
where the component crosses.) If zy = 2, then, by
Lemma 5.6, either C doesn’t intersect the line z = 2,
or else C contains it. But a vertical tangent at x = 2
would force at least one point in C on that line;
and if C contained the line, a component from the
right touching the line at a point would result in a
singularity. Thus o > 2. Since C has a vertical
tangent there, g(zo) = 0.

Conversely, let £y > 2 be the root in question.
Without loss, x is the largest root of g. Thus g(s) <
0 for some s € (2,x), since g(z) > 0 for x > z,, and
Ty is not a double root. If p; were to join to py,
Pg, P7, or pg, then clearly C would cross the line
x = s, contradicting Lemma 5.4. It also can’t join
to py or ps, since in that case, C would cross z = s
somewhere along the approach to the asymptote at
x = 2. Thus p3 must join to p4. O

Lemma 5.12. 1. p; joins to pg if and only if g has two
roots in (—oo, —2] and two roots in [—2,2].

2. py joins to ps if and only if g has two roots in
[2,00) and two roots in [—2,2].

Proof. We’ll show the first statement; the second is
similar. To prove the forward direction, suppose p;
and pg are joined by a component. If this component
is the line x = —2, then Lemmas 5.6 and 5.7 imply
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that ¢ = —b and ¢ = —d. Thus g has a double root
at —2. By Lemma 5.8, we can assume without loss
that a,b € (—=2,2) and ¢,d € R\ [-2,2]. Therefore,
by Lemma 2.2, g has a root in (—oo, —2], a double
root at —2, and a root in (—2,2], and we are done.

Now assume C does not contain the line z = —2.
Consider the whole component of C that joins p; to
ps, and not just the part lying inside @; let a be a
diffeomorphism mapping R onto this component. If
—2 is a root of g, Lemma 5.6 implies that C does
not intersect the line x = —2. If the z-value of a(t)
increases from —2 as ¢ increases from —oo, then at
some point it must decrease back to —2 as ¢ increases
to +0o0. Thus, there must be a vertical tangent —
and hence a root of g— at some z-value greater than
—2. This root must be less than 2, for the same
reasons as in Lemma 5.11. Meanwhile, p; and pg
must join to each other, since they have nowhere
else to go. Lemma 5.11 implies that g has a root in
(—o00,—2). We now know that g has at least three
real roots; it therefore has a fourth. By Lemma 2.2,
this fourth root is somewhere in (—o0,2], and we
have the desired conclusion. The argument is similar
if the x-value of o decreases and then increases.

On the other hand, if —2 is not a root of g, Lemma
5.4 implies that C must cross the line x = —2 at
exactly one point. If any component other than the
one in question were to cross this line, then it must
cross it at least twice (once to get across, and once
to get back) or at a singularity or vertical tangent.
Thus, the component in question must cross © = —2
exactly once. The z-value of @ must increase from
—2, decrease back down to —2 and below, and then
increase back up to —2; as a result, we get at least
two vertical tangents, one on each side of —2. By
the same argument as above, both roots must be
less than 2. Lemma 2.2 implies ¢ must also have
two other roots, one on each side of —2, and neither
larger than 2.

For the converse, suppose that —2 is a simple root
of g, and z; € (—00,—2) and zq,x3 € (—2,2] are
also roots. Lemma 5.11 implies that p; and ps join.
Furthermore, g is negative on (z3,x3), and so there
are no points of C above that interval. Thus p; and
pg are cut off from the other points, and must join to
each other. The argument is similar if —2 is a root,
with two roots less than —2 and one greater, or if
there are two roots less than —2 and two greater.
Finally, if —2 is a multiple root of ¢, then Lemma 5.8
implies a = —b and ¢ = —d. As a result, B;(—2) =

C1(—2) = 0. Lemma 5.6 implies that C contains the
line z = —2, and so p; and pg join. O

(Note that in the above lemma, the case of a double
root at +2 is considered as a deformation of the case
of one root just above and one just below.)

Lemma 5.13. If C has a compact component, then
g has four distinct real roots x1 < Ty < x3 < Ty,
and the projection of the compact component onto
the x-axis is [xq, T3).

Proof. The projection of the component onto the x-
axis must be [z;,x;], where x; and z; are distinct
roots of g. Furthermore, g must be strictly positive
on (z;,z;), and negative for some z < z; and for
some x > x;. Thus, g must have four real roots,
and z; and z; must be the middle two. O

Corollary 5.14. There is at most one compact compo-
nent of C.

Lemma 5.15. If g has four real roots r; < x3 < x3 <
x4 and 2,—2 & [x2,x3], then C has a compact com-
ponent projecting onto [z, x3).

Proof. Since the leading coefficient of f is nonzero
throughout [z, 3], and the discriminant g is zero
at o and z3 and positive in between, the part of C
that lies above the [zq,x3] must consist of two line
segments glued at the endpoints. As g is negative
just below x5 and just above z3, it follows C has a
compact component. [l

5D. The Six Cases

We now analyze individual cases to find the resulting
topologies.

In the first case, we are given a,b,c,d € R\ [-2,2]
and abcd < 0. By applying Lemma 3.1, we can
assume that a,b,c > 2 and d < —2. Thus, by
Lemma 2.2, g has two roots in [2,400) and two in
(—00,2]. Note that by Lemma 5.8, the roots of g
are all distinct; in particular, there must be at least
one root greater than 2. Now by Lemma 5.11, p;
and p4 join, and p; and pg join. p; and ps do not
join, by Lemma 5.10. If p; and pg were to join, then
by Lemma 5.12; all four roots would be in (—o0, 2],
contradicting the existence of a root greater than
2. Thus, p; and p, join; finally, ps and ps must
join. Furthermore, there cannot be a compact com-
ponent, since by Lemma 5.13 such a component
would have to project onto [xs, 3], with z; < —2
and z3 > 2; but such a component would cross the
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lines © = 2 twice, contradicting Lemma 5.5 and
Lemma 5.6. Thus, C N @ consists of just the four
components mentioned above.

Since f is negative for x = 0 and y large, we see
that S is homeomorphic to a closed disk minus four
points of the boundary. (See Figure 6.) Doubling
along the boundary, we see that V, ;. 4(R) is homeo-
morphic, and hence diffeomorphic, to a quadruply-
punctured sphere. (See Case 1 in Figure 1.)

In the second case, all a,b,¢c,d € R\ [-2,2] and
abcd > 0. Applying Lemma 3.1, we may assume
that a,b,c,d > 2. Lemma 2.2 implies that g(z) has
four roots in [2,400). Lemma 5.11 implies that
ps and ps must join, and p; and pg cannot join.
Lemma 5.12 implies that p; and pg cannot join, nor
can p, and ps. Thus p; joins either p, or pg, by
Lemma 5.10. If p; joins p,, then p; must join pg and
SO pg joins ps; or, if p; joins pg, then ps joins pg and
P2 joins p;. Meanwhile, Lemma 5.15 implies that C
has a compact component somewhere between the
component joining ps to ps and the line x = 2. Thus
C counsists of a circle, together with one of the two
possible sets of four noncompact components; both
setups result in the same topology for S.

Since f is negative for x = 0 and y large, S
is homeomorphic to a closed annulus minus three
points of the outer boundary, along with a closed
disk minus one point of the boundary. (See Fig-
ure 7.) Doubling again, V, ; ..4(R) is homeomorphic,
and hence diffeomorphic, to a triply-punctured torus
and a disk. (See Case 2 in Figure 1.)

In the third case, three of a,b,c,d € R\ [-2,2]
and the fourth in (—2,2). By applying Lemma 3.1,
we can assume that d € (—2,2) and a,b,c > 2. By
Lemma 2.2, g has two roots in [2, +00) and no other
real roots. Thus, by Lemma 5.13, there cannot be
a compact component. Furthermore, Lemma 5.11
and Lemma 5.12 imply that p; and p, must join,
but p; and pg cannot join, p; and pg cannot join,
and py and ps cannot join. Thus, we end up with
the same arrangement of noncompact components
as in Case 2, but no compact component.

In the fourth case, two of a,b,¢,d € R\ [-2,2]
and two in (—2,2). Applying Lemma 3.1, we can
assume that a,b € (—2,2) and ¢,d > 2. There are
two possibilities.

Suppose first that g(x) has a double root. Lemma
5.8 implies that this double root must be 2; there
is also one root in [—2,2) and one in (2,00). By
Lemma 5.13, there is no compact component and
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—20 —10 0 10 20
FIGURE 6. Case 1, with (a,b,c,d) = (2.1,2.1,2.1, -2.1).
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FIGURE 7. Case 2, with (a,b,c,d) = (2.5,2.5,3, 4).
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FIGURE 8. Case 3, with (a,b,¢,d) = (2.4,2.2,2.3,1).
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FIGURE 9. Case 4, with (a,b,c,d) = (2.1,2.1,1.7, -1.3).
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FIGURE 10. Case 5, with (a,b,c,d) = (2.1,0.2,0.3,0.4).
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FIGURE 11. Case 6, with (a,b,c,d) = (1,0.2,0.3,0.4).

Lemma 5.8 implies that p, and ps join by a vertical
line. Lemma 5.11 implies that ps and p4 join, but pr
and pg do not. Thus p; and pg must join, as must
pe and pr.

The second possibility is that all of the roots of
g are distinct; thus, two distinct roots lie in [—2, 2]
and two distinct roots lie in [2, +00), and 2 is not a
double root. Once again, Lemma 5.13 precludes a
compact component, and Lemma 5.11 implies that
ps3 and py4 join. In addition, Lemma 5.12 implies that
p2 and ps join, while p; and pg do not. Thus, p; and
pg join, as do pg and py.

Both possibilities give the same result, namely, S
is homeomorphic to a closed disk minus two points
of the boundary, along with two closed disks missing
one boundary point each. (See Figure 9.) Doubling
again, V. q(R) is homeomorphic, and hence dif-
feomorphic, to a disjoint union of an annulus and
two disks. (See Case 4 in Figure 1.)

In the fifth case, one of a,b,c,d lie in R \ [-2,2]
and the other three in (—2,2). Applying Lemma 3.1,
we can assume that a,b,c € (—2,2) and d > 2.
Lemma 2.2 implies ¢ has two roots in [—2,2] and
no other real roots. Lemma 5.13 precludes a com-
pact component. Furthermore, Lemmas 5.11 and
5.12 imply that p; can’t join to p4, pr can’t join to
pg, p1 can’t join to pg, and p, can’t join to ps. Since g
is negative for some zg € (—2,2), none of the points
on the left can join to any of the points on the right,
by Lemma 5.4. Therefore p; joins to ps, ps joins to
P3, Pa joins to ps, and pg joins to pr.

From the sign of f, we see that S is homeomorphic
to a union of four disjoint closed disks missing one
boundary point each. (See Figure 10.) Doubling,
we see that V, ;. 4(R) is homeomorphic, and hence
diffeomorphic, to a union of four disjoint disks. (See
Case 5 in Figure 1.)

In the sixth case, all of a,b,c,d lie in (—2,2).
Lemma 2.2 implies that ¢ has four roots in [-2,2].
Lemma, 5.15 implies that C has a compact compo-
nent between the lines x = —2 and x = 2. The rest
of the analysis is exactly as in Case 5; the result is
that p; joins to ps, p2 joins to ps3, ps joins to ps, and
Pe joins to pr.

From the sign of f, we see that S is homeomor-
phic to a closed disk, along with four closed disks
missing one boundary point each. (See Figure 11.)
Doubling, we see that V, ;. 4(R) is homeomorphic,
and hence diffeomorphic, to four disks and a sphere.
(See Case 6 in Figure 1.)
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This concludes our case-by-case analysis and the
proof of Theorem 5.3.

6. A COMPACT COMPONENT
OF SL(2, R)-REPRESENTATIONS

When (a,b,c,d) € R and V, ;. 4(R) is smooth, then
each connected component of V, ;. 4(R) consists of
characters of representations in either SL(2,R) or
SU(2). Components of spaces of representations in
SU(2) are compact. Conversely, when M is a once-
punctured torus, the only compact components of
X(M)(R)(t) are characters of SU(2)-representations.
(See [Goldman 1988b] for a description of the topol-
ogy of the relative character varieties for a punc-
tured torus.) However, for the quadruply punctured
sphere, there are compact components of V, ;. 4(R)
for certain values of (a,b,c,d) which do not corre-
spond to SU(2)-representations.

If Vo p.ca(R) contains a compact component, The-
orem 5.3 implies that

-2<a,bc,d <2,

and conversely, every such (a,b,c,d) € (=2,2)* for
which V, 4 .4(R) is smooth contains a compact com-
ponent. (Compare the analysis of Case 6.) Here is a
criterion for when this compact component consists
of SL(2, R)-characters or SU(2)-characters, in terms
of the function A(a,b,c,d) defined in Section 4D.

Proposition 6.1. Suppose a,b,c,d € (—2,2) and V,p.cq
is smooth. Then the compact component of V, p, . a(R)
consists of characters of SL(2,R)-representations if
and only if

A(a,b,c,d) >0, 61)
16 — abed — 2(a* + b* + ¢* + d?) > 0. -

Otherwise, each element in the component is the
character of an SU(2)-representation.

As pointed out by a referee, SU(2)-representations
in V, ; ..a(R) correspond to quadrilaterals in S® whose
side lengths are determined by the parameters a, b,
¢,d. (Compare [Kirk and Klassen 1991].) Neces-
sary and sufficient conditions for the existence of
such polygons are triangle inequalities in SU(2), as
discussed in [Galitzer 1997; Kapovich and Millson
1995]. Thus conditions (6-1) are just the triangle
inequalities in disguise.

Proof. Decompose the quadruply-punctured sphere
M along &, as in Section 3A, as a union of two

triply-punctured spheres. A given representation
w1 (M) — SL(2,C) has image in SU(2) only if its
restriction to the fundamental group of each com-
ponent of M|¢ has image in SU(2). Furthermore
there is an SU(2) character on M with boundary
traces (a,b,c,d) if and only if there is an z such
that (a,b,z) and (c,d,z) are SU(2) characters on
triply-punctured spheres. To construct this charac-
ter, amalgamate the two representations along the
common boundary X as in Section 3A; since two
elements of SU(2) have the same trace if and only
if they are conjugate, we can ensure that the two
representations agree on this boundary.

Recall from Section 2B that (a,b, x) is an SU(2)-
character for the triply-punctured sphere if and only
if a,b,x € [-2,2] and K,,(z) < 0. For a,b € R,
define the interval I,, C R by:

I, = {l’ ER | Kap(z) < O} = [i;bai;b]a

where

_a— @ )F 9

7’a,b - 2 ’

L ab+/(a® —4)(b* - 4)
Zab: -
' 2

Since Kqp(£2) > 0, we have
I, C [—2,2].

For given (a,b,c,d) with —2 < a,b,c,d < 2, the
values of € R such that (a,b,c,d, z) extends to a
character of an SU(2)-representation comprise the
intersection

Ia,b N Ic,d C [—2, 2]

Furthermore the possible (y,2z) € R? comprise a
conic, which by (3-3), is an ellipse. Thus charac-
ters of SU(2)-representations with boundary traces
(a,b,c,d) form a pencil of ellipses over the interval
I,yN1I.q.

However, if I,, N I.4 = @, there will be a com-
pact component of V, ;. 4(R) not corresponding to
SU(2)-representations. By applying a permutation
if necessary, assume that

Gy <lgge
Then a component of V, ;. 4(R) will map under

x ‘/a,b,c,d(R) — R
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to the interval [i},,i_,]. By (3-3), the restriction of

a,

x to x71([~2,2]) is proper. If zg € I, U I. 4, then

H/a,b (JIO)K/C‘d(‘TO)
4 — xt

<0

and by (3-3), the preimage z7'(z) is empty. Thus
x_l([i;bu ic.al)

is a compact component of V, ; . 4(R) not containing

characters of SU(2)-representations. Since real char-

acters are characters of either SU(2)-representations

or SL(2,RR)-representations, this compact compo-

nent must consist of SL(2, R)-representations.

Thus, the compact component of V, ;. 4(R) con-
sists of SU(2)-representations if and only if

Ia,b N Ic‘d 7é %]

and otherwise consists of SL(2,R)-representations.
The latter case occurs when

.+ pp—

7’u,b < Zc,d
or

.+ p—

Zc,d < 7’u,b'

These conditions are equivalent to conditions (6-1)
by the following argument:
The condition i;b <., Is equivalent to

V(a2 —4)(02 — 4) + /(c2 — 4)(d? — 4) < cd — ab,
and i:d < i, is equivalent to

V(a2 —4)(b2 —4) + /(¢ — 4)(d? — 4) < ab — cd.

The following lemma, whose straightforward proof
is omitted, then applies:

Lemma 6.2. Let p,q,r be nonnegative real numbers.
Then

Vp+ya<r
if and only if

=2 (p+q)+ (p—q)* >0,

r*—p—q>0.
Taking
p=(a® —4)(b" — 4),
q=(c* —4)(d” - 4),
r = |ab— cd|,

and calculating that

rt = 2r%(p+q) + (p — q)* = 16A(a, b, ¢, d),
r? —p—q=2(16 — abed — 2(a® + b + & + d%)),

the compact component corresponds to SL(2,R)-
representations if and only if conditions (6-1) hold.

O
Here is an explicit example. Let a,b,c = % and
_ _3
d = —3. For example,
11 1 2 11
S B e e R
2 2 2 2 2

generates an SL(2,R)-representation with the de-

sired character. Furthermore, its (z,y, z) traces are

(0,0, %). Now the equation for the relative character

variety at these boundary traces is
?+yP+ 2 +ayz— 15 =0.

Its locus does not intersect the planes © = +2, y =

42, or z = +2 at real points.

The noncompact components are discs and corre-
spond to hyperbolic structures on S? with singular
points with prescribed cone angles (determined by
a,b,c,d). These hyperbolic structures have “funda-
mental polygons” which are embedded quadrilater-
als. Elements of the compact component correspond
to nonembedded quadrilaterals, such as the one de-
picted in Figure 12. The compactness of the con-
figuration space of such polygons reflects geometric
bounds on these polygons with fixed vertex angles.

FIGURE 12. A nonembedded quadrilateral in H?.
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