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The theory of (embedded) normal surfaces is a powerful tech-

nique in 3-manifold topology. There has been much recent in-

terest in extending the theory to immersed surfaces, in partic-

ular to attack the word problem for 3-manifolds. Progress in

this area has been hindered by the lack of nontrivial examples.

This paper and the related work [Matsumoto and Rannard 1997]

cover a particular example in depth, using methods which may

be generalized. We give detailed information on the existence

of immersed surfaces in the figure-eight knot complement us-

ing nontrivial computational techniques. After an introduction

to the theory, introducing some new concepts, we discuss some

strategies for enumerating surfaces of low genus, which have

been implemented in software written by the author. The results

are tabulated and an unusual example discussed.

1. INTRODUCTIONIn this paper we apply computational methods todetermine data on the existence of immersed normalsurfaces in the �gure-eight knot complement. Thedi�culties of these computations are such that onlytwo examples have previously appeared in the liter-ature; see [Aitchison et al. 1997]. By investigating asingle example in detail, we aim to furnish examples(and counter-examples) to aid in the developmentof the theory. The computational methods used arealso of interest; we show how the problem of enu-merating surfaces can be reduced to enumeratingthe elements of a permutation group which have cer-tain properties. This problem may be transformedinto the question of searching a certain graph, forwhich various existing strategies are compared. Allthe algorithms mentioned have been implemented insoftware by the author.The data obtained in this paper are used in [Mat-sumoto and Rannard 1997]; those applications mo-tivate some of the methods used here.This paper is structured as follows. Section 2gives a short introduction to the \classical" theory
c
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74 Experimental Mathematics, Vol. 8 (1999), No. 1of (embedded) normal surfaces. Section 3 describesan extension of normal surface theory to cover im-mersed surfaces. Section 4 describes an extensionof normal describes the application of this theory tothe �gure-eight knot complement. Section 5 con-tains a description of the algorithms used in theenumeration of surfaces, and their implementationin software. Section 6 describes and interprets theresults obtained by these methods. The conclud-ing section takes up one particularly interesting im-mersed normal surface.
2. EMBEDDED NORMAL SURFACE THEORYThe theory of embedded normal surfaces was �rstdeveloped by Haken [1961] and used by him to proveseveral important results in the theory of 3-mani-folds; see also [Jaco and Oertel 1984]. We use adi�erent but equivalent approach for which goodreferences are [Hemion 1992; Tollefson 1998; Jacoand Rubinstein 1989]. None of the material in thissection is original.The basis of normal surface theory is the followingsequence of ideas. Let M be a compact 3-manifoldwith or without boundary, and suppose � is a �xedtriangulation of M . We allow � to be a proper tri-angulation or a pseudotriangulation, and the tetra-hedra in � may or may not be ideal. Given a surfaceF embedded inM , try to isotope F so that it meetseach 3-simplex of the triangulation � in a set ofstandard pieces, called normal disks. Such a sur-face is called a normal surface; many \interesting"surfaces can be made normal. A normal surface gen-erates a sequence of numbers which are the numberof times each possible normal disk occurs. We thinkof this sequence as a point in a vector space overR . The set of points which may come from surfaceslie in a cone in the vector space called the solutionspace.We denote a 3-manifold M with triangulation �by (M;�). This paper deals with one such M and�, the ideal triangulation of the �gure-eight knotcomplement given in [Thurston 1997].Let � be a tetrahedron forming part of �.
Definition 2.1. A normal arc in � is an embedded arcon some face of @� which has endpoints on di�erentedges of the face. A normal disk in � is a disk prop-erly embedded in � which intersects each face of �in at most one normal arc. Thus a normal disk iseither

1. a triangle cutting o� a vertex, or
2. a quadrilateral separating a pair of vertices,whose edges have endpoints on di�erent edges of thetetrahedron.Two normal disks are of the same type if one can beisotoped into another while preserving these condi-tions and without an edge of a disk passing overa vertex of a tetrahedron. Thus there are exactlyseven types of normal disks for each tetrahedron in�, as shown in Figure 1. Normal disks may haveonly three or four sides; those with three sides arecalled T-disks, while those with four sides are calledQ-disks. This terminology is due to Tollefson [1998].

FIGURE 1. The seven combinatorial types of normaldisks in a tetrahedron.
Definition 2.2. A surface F properly embedded in Mis a normal surface if F meets each tetrahedron of� in a collection of normal disks.Whether or not a surface is normal thus depends onthe triangulation used.A surface may be perturbed slightly by an isotopyand still intersect the triangulation in the same setof normal disks. A normal isotopy is an ambientisotopy of F which doesn't change the type of anyof the normal disks of F . We shall not distinguishbetween normal surfaces which are equivalent undernormal isotopy.We shall consider only closed normal surfaces inthis paper, corresponding to surfaces in S3 which donot meet the �gure-eight knot.



Rannard: Computing Immersed Normal Surfaces in the Figure-Eight Knot Complement 75If there are t tetrahedra in a triangulation �,there will be 7t di�erent normal disks in �. LetW (M8;�) be a copy of R 14, and associate with eachnormal disk type a di�erent coordinate ofW (M8;�)(in Section 4 we will give a numbering of the disks inour example). We interpret the normal surface hav-ing wi normal disks of type i as corresponding tothe point (w1; : : : ; w14) in W (M8;�), where wi � 0,for i = 1; : : : ; 14.We may determine the set of possible vectors cor-responding to surfaces in the following way. Choosea face of � common to two tetrahedra �1 and �2. Forany normal surface F in M , each normal disk in �1which meets the face is joined to a normal disk in �2along an edge (see Figure 2), and these two normaldisks meet the face in the same normal arc type.Hence each normal arc type gives a linear equationof the form wi +wj = wk +wl, where the terms arethe numbers of normal disks of �xed type. The setof all such equations from all normal arc types of �is called the set of normal matching equations.

FIGURE 2. A set of normal disks satisfying the nor-mal matching equation for one normal arc type. Thedisks join along arcs of that normal arc type.Since the normal matching equations are linear,the set of points which satisfy them is a linear sub-space of W (M8;�). We are not interested in pointswhich have negative or noninteger coordinates, sincethese cannot correspond to surfaces. The normalsolution space is the set of vectors in this subspacewhich have all coordinates nonnegative. A solutionvector is a vector in the solution space with integercoordinates. Each normal surface corresponds to asingle solution vector.We can think of the matching equations as beinga set of linear Diophantine equations with solutionsthe solution vectors. Then the theory of Diophan-tine equations implies that there is a �nite set ofsolution vectors which generate all solution vectors

by addition; see [Hemion 1992]. We call the solu-tion vectors in the generating set fundamental solu-tion vectors; every solution vector can be written asa sum of nonnegative multiples of the fundamentalsolution vectors.We may ask whether all solution vectors corre-spond to normal surfaces. This is not the case ifany tetrahedron of � contains two Q-disks of di�er-ent types, since any two such disks must intersect(Figure 3).

FIGURE 3. Two Q-disks of di�erent types in the sametetrahedron must intersect.Any solution vector which doesn't have this prop-erty corresponds to unique embedded normal sur-face; see [Hemion 1992].This criterion does not apply in the case of im-mersed normal surfaces.The projective solution space is the intersectionof the normal solution space with the hyperplane ofcodimension 1 de�ned by the equationx1 + � � �+ x14 = 1:It is a convex polytope of dimension one less thanthe solution space. The projective solution spacecarries a surprisingly large amount of informationabout the topology of the manifold; see [Jaco andOertel 1984; Jaco and Tollefson 1995].
3. IMMERSED NORMAL SURFACE THEORYIn this section we study an extension of the abovetheory to immersed surfaces. We begin with a de�-nition of an immersed normal surface.
Definition 3.1. A closed surface F properly immersedin (M;�) is an immersed normal surface if it meets



76 Experimental Mathematics, Vol. 8 (1999), No. 1the 2-skeleton of � transversally and meets eachtetrahedron of � in a set of normal disks.Clearly we can associate to each immersed normalsurface a vector as for embedded normal surfaces.Then we can utilize all the apparatus from classi-cal normal surface theory, in particular the normalmatching equations and solution space.We relax the last condition in Section 2, that wecannot have two Q-disks of di�erent type in the sametetrahedron, since this is clearly no longer necessaryfor immersed surfaces. We now consider every vec-tor in the normal solution space as possibly givingan immersed normal surface. To derive a surfacefrom a vector, we take the normal disks correspond-ing to the vector and try to join them together alongtheir edges.
3A. The Gluing GroupThe di�erent ways of joining normal disks are in 1-1correspondence with a certain permutation group.Fix one particular position for the normal disks.A normal disk can only be joined to another normaldisk where they meet a face of the triangulation ina common normal arc. The possible ways of gluingdisks along a given normal arc type are in 1-1 cor-respondence with a permutation group. If there aren normal arcs of a given type, then there are n nor-mal disks in one tetrahedron which have an edge ofthat normal arc type, glued to n normal disks in theadjacent tetrahedron. The possible ways of joiningthem are parametrized by the symmetric group onn letters.For each normal arc type, the disks can be gluedin any manner, since we are ignoring for the momentthe question of whether the resulting 2-complex hassingularities. Hence, the set of all possible ways ofsticking the disks together corresponds to a directproduct of permutation groups, one for each normalarc type.
Definition 3.2. The gluing group GH for a solutionvector H is the direct product of the symmetricgroups corresponding to each normal arc type inthe triangulation, together with a numbering of thenormal disks. A gluing is an element of the gluinggroup (i.e., a permutation), corresponding to a spe-ci�c joining of the normal disks along their edges.A gluing is in a sense the fundamental object in im-mersed normal surface theory. We shall call a gluing

and its associated 2-complex by the same symbol,and rely on context to distinguish them.Note that the gluing group is de�ned entirely by anormal vector, since it depends only on the numberof each type of normal arc, which in turn dependonly on the numbers of each type of normal disk. Apresentation for it can easily be written down.A useful way to visualize immersed normal sur-faces in this context is to imagine isotoping all thenormal disks so that their vertices lie on the mid-points of the edges of the tetrahedra (with respectto some well-behaved continuous polyhedral metric,such as used in [Jaco and Rubinstein 1989]). Thesurface is then not in general position, in fact nor-mal disks of the same type will be superimposed.All the normal disks which have a common arc typewill meet in a single arc of that type. The idea is tohold the double arcs more �rmly by pushing theminto the 2-skeleton of the manifold; otherwise nor-mal isotopies of the surface can push a double arcfrom one tetrahedron into another, making two nor-mally isotopic surfaces appear di�erent. We call thispositioning of the normal disks the standard positionof the gluing.There is a \canonical" element in every gluinggroup, as we now show. We can modify any gluingg by removing all intersections of the normal diskswhich take place along normal arcs (thinking of gbeing in standard position). The result is a gluingwhere the only normal disks which cross are Q-disksof di�erent types. This gluing is clearly unique, andfrom now on we shall number the normal disks sothat this gluing corresponds to the identity elementof the gluing group.We shall see below that normal surfaces and glu-ings are not equivalent concepts. In general theremay be gluings which do not correspond to nonsin-gular immersions of surfaces, and multiple gluingsmay represent the same surface.
3B. Regular GluingsWe are really only interested in gluings which aretopologically 2-manifolds, that is images of nonsin-gular immersions of surfaces.
Definition 3.3. A regular vector is a solution vectorwhich corresponds to a set of normal disks whichmay be joined to give a nonsingular immersed sur-face. Such a way of joining the normal disks is calleda regular gluing.



Rannard: Computing Immersed Normal Surfaces in the Figure-Eight Knot Complement 77A central problem in immersed normal surface the-ory is to �nd conditions on a solution vector whichimply it must be regular. This is a very di�cultproblem; for partial results see [Letscher 1997; Mat-sumoto and Rannard 1997; Rannard 1997]. Notethat several nonisotopic regular gluings may existfor a single regular vector.For brevity we use the term \regular surface" tomean \regular immersed normal surface".The possible singularities of a gluing are of a par-ticular type. Let p be a point where the gluing meetsthe 1-skeleton of the triangulation, and consider howthe normal disks in the gluing with p as a vertexmeet. If the gluing represents a nonsingular immer-sion of a surface, then these normal disks will forma disk around p. However, in forming the gluing byjoining normal disks together, there is no guaran-tee that this will happen. It may be that the nor-mal disks will \go around p several times", or moreformally, that the link of p will have winding num-ber about the edge greater than 1. Let the windingnumber be n; we call this a branch point of order n.Figure 4 shows a branch point of order 2. If n = 1,then the gluing is locally the immersion of a mani-fold at p, while if n 6= 1 then the immersion has anisolated singularity at the point p. Clearly a gluingis regular if and only if it contains no branch points.

FIGURE 4. A branch point of order 2.A regular gluing has a natural decomposition intoquadrilaterals and triangles, given by the normaldisks. The dual subdivision divides the gluing intoa set of polygons, centered on the points of intersec-tion of the gluing with the 1-skeleton of �. We callthese polygons edge disks. A typical example of anedge disk is shown in Figure 5. A gluing is regularif and only if it meets the 1-skeleton of � always in

Qa QbTc

Td Te Tfedge disk

FIGURE 5. An edge disk. The vertical dashed linerepresents an edge of �.edge disks. Edge disks will be used extensively in[Matsumoto and Rannard 1997].Embedded normal surfaces may also be under-stood in terms of regular gluings; each regular vec-tor represents at most one embedded regular gluing.In the numbering of the normal disks given above,each embedded normal surface corresponds to theidentity of the corresponding gluing group. Such aclass may have immersed regular gluings in additionto the embedded one.
3C. Normal Surfaces are Really Equivalence Classes of

GluingsLet H be a solution vector with some coordinategreater than 1. Then H represents a set of normaldisks, and two of these normal disks will be of thesame type; call them �1 and �2. Let g be a gluingin the gluing group GH , and form the gluing g0 bydeleting �1 and �2 from g (to give a gluing with twoboundary components) then replacing �2 in place of�1 and vice versa. We have swapped �1 and �2 in thegluing g, as shown in Figure 6. Clearly g and g0represent normally isotopic immersions of the samesurface, however they are di�erent elements of thegluing group. We have shown:
Proposition 3.4. Up to normal isotopy , a normal sur-face corresponds to an equivalence class of gluingsunder the following equivalence relation: two gluingsare equivalent if and only if one can be obtained fromthe other by exchanging normal disks of the sametype.We denote the normal surface containing the gluingg by [g].
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swap

FIGURE 6. Swapping two normal disks of the sametype gives an identical normal surface up to normalisotopy.The set of regular normal surfaces has a naturalalgebraic description. Swapping �1 and �2 in g asdescribed above corresponds to multiplying g by anelement of the gluing group (as an arbitrary conven-tion we assume multiplication on the right). More-over, the group element so de�ned is independentof g. For a given vector H, there is a subset of thegluing group GH consisting of all elements whichswap the edges of a pair of normal disks of the sametype; let AH be the subgroup of GH generated bythis set. An element of AH is a product of groupelements corresponding to swapping normal disks ofthe same type, so multiplying any gluing by such anelement is equivalent to performing a series of suchswaps. We call AH the anonymity subgroup of GH .The normal surfaces of H correspond to the (right)cosets fAHg j g 2 GHg.Since swapping normal disks of the same type pre-serves the regularity of a gluing, the regular normalsurfaces of H form a partition of the regular gluingsof GH . Each coset is composed of gluings which areeither all regular or all irregular. For more detailssee [Rannard 1997].
4. EMBEDDED NORMAL SURFACE THEORY FOR THE

FIGURE-EIGHT KNOT COMPLEMENTThe complement of the �gure-eight knot in the 3-sphere is a hyperbolic manifold M8 of �nite volumewith a single cusp [Thurston 1997]. It can be tri-angulated using two ideal tetrahedra, as illustratedin Figure 7, where the faces of the tetrahedra areidenti�ed so that the marked arrows agree. Let �denote this triangulation; � has two edges and four

FIGURE 7. The canonical ideal triangulation � of the�gure-eight knot complement.faces, and is a pseudotriangulation of M8. We writethe �gure-eight knot complement with this triangu-lation as the pair (M8, �).The normal disks for (M8;�) are shown in Fig-ure 8. There are 7 normal disks in each tetrahedron,making 14 in total. To each normal surface we as-sociate the vector(t1; t2; t3; t4; q1; q2; q3; t01; t02; t03; t04; q01; q02; q03) 2 Z 14where ti and qi are the numbers of normal disksof type Ti and Qi, respectively. The normal solu-tion space is the set of vectors with nonnegative in-teger coordinates in the 4-dimensional subspace ofW (M8;�) � R 14 spanned by the vectorsA = (1; 1; 1; 1; 0; 0; 0; 1; 1; 1; 1; 0; 0; 0);B = (0; 0; 0; 0; 1; 1; 1; 0; 0; 0; 0; 1; 1; 1);C = (0; 0; 1; 1; 1; 0; 2; 0; 0; 1; 1; 1; 0; 2);C 0 = (1; 1; 0; 0; 1; 2; 0; 1; 1; 0; 0; 1; 2; 0);D = (1; 1; 1; 1; 0; 0; 0; 0; 0; 0; 0; 1; 1; 1);D0 = (0; 0; 0; 0; 1; 1; 1; 1; 1; 1; 1; 0; 0; 0):The vectors A;B;C;C 0;D;D0 are the fundamen-tal normal solution vectors for (M8;�). The normalsolution space is a 4-dimensional cone spanned by
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FIGURE 8. Normal disks in the ideal triangulation �.



Rannard: Computing Immersed Normal Surfaces in the Figure-Eight Knot Complement 79these vectors. Note that the fundamental solutionvectors are not linearly independent; for example,C + C 0 = A+ 2B and D +D0 = A+B.The fundamental solutions may be interpreted ge-ometrically as follows:� A consists of one each of all the T-disks. Thesejoin together in a unique way to give a link of thevertex, which is a torus. Hence [A] is regular.� B consists of one each of all the Q-disks. Thesealso join together in a unique way to give a reg-ular gluing, so [B] is regular.� C and C 0 are related to the links of the two edgesof �. They are interchanged by an involution ofM which respects �. We shall show later thatboth [C] and [C 0] contain regular gluings (see Ta-ble 1).� D consists of one each of the T-disks in the �rsttetrahedron together with one each of the Q-disks in the second tetrahedron. D and D0 arerelated by a second involution of M which re-spects �. Neither [D] nor [D0], nor any multi-ple of these classes, is regular. Each vector nD,for n = 1; 2; : : :, has only T-disks in one tetrahe-dron and only Q-disks in the other. These normaldisks can never be joined together to give an edgedisk.The projective solution space, which we denote P,is the intersection of the normal solution space withthe codimension 1 hyperplane with equationx1 + � � �+ x14 = 1:Since the solution space has dimension 4, the pro-jective solution space has dimension 3 and is a solidpolyhedron (Figure 9). It is easily seen to be an oc-tahedron; this was �rst demonstrated in [Jaco 1988].Since the sum of two points in the projective solutionspace lies on the line segment joining those points,we see that the line segments joining the pairs A, Band D, D0 intersect, as do the line segments joiningthe pairs A, B and C, C 0. Its six vertices are theprojective images of the six fundamental solutions.The paper [Matsumoto and Rannard 1997] is con-cerned with identifying what parts of the projectivesolution space contain regular surfaces.The symmetry group of P is isomorphic to Z 2 �Z 2, with one generator 
ipping C and C 0, the other
ipping D and D0. These isometries come fromisometries of the �gure-eight knot which preservethe triangulation; see [Rolfsen 1976]. There is an-

[A]

[B]
[C]

[C 0][D] [D0]

FIGURE 9. The projective solution space of (M8;�).other symmetry of the knot which maps each so-lution vector onto itself. These symmetries implythat we need only determine the regularity of vec-tors which are sums of A, B, C andD, the regularityof the other vectors being apparent by these symme-tries. We may also use the fact that the fundamentalnormal solution vectors are not linearly independentto determine the regularity of other solutions. Forinstance, C + C 0 is equal to A+ 2B + C and henceis regular.
5. STRATEGIES FOR ENUMERATION OF REGULAR

SURFACESGiven a solution vector V , we would like to know:
1. Is V regular? That is, does V represent normaldisks which can be joined to give an immersedsurface?
2. If V is regular, how many regular surfaces are in[V ]? Of these surfaces, how many are connected?How many are orientable?
3. If V is regular, does [V ] contain surfaces with agiven combinatorial property?We now present various computational methods foranswering these questions. The size of the gluinggroup rises exponentially with the number of normaldisks, making the problem nontrivial. We presentvarious di�erent strategies aimed to answer the dif-ferent questions above.All the strategies rest on a procedure to determineif a given gluing is regular. This was achieved in ourimplementation by checking there was an edge diskat each point where the gluing meets the 1-skeleton.



80 Experimental Mathematics, Vol. 8 (1999), No. 1The method is to \rotate" a normal arc about the 1-skeleton at that point, imagining one endpoint �xedand the other sliding across the normal disks, andcheck that it returns to its original position afterpassing through the same number of tetrahedra asthe order of the edge (in this particular case theorder was always 6). This is done for all normalarcs. If a branch point is found at any stage, thenthe gluing is known to be irregular and checking isterminated.The strategies below have been encoded in a pro-gram written in Magma [Bosma et al. 1997]. Thiscomputational algebra system has its own internalprogramming language, which supports groups andother mathematical objects. The program has beenrun mainly on a DEC AlphaServer 2100 4/275, hav-ing 640MB of memory and 3 CPUs running in par-allel at 275MHz, and also on an IBM RISC plat-form which runs at about half the speed. A goodlate-model desktop PC can achieve comparable per-formance.The program runs in two stages. In the �rst stagethe program uses a particular strategy to searchfor regular gluings. In the second stage, the pro-gram processes the regular gluings in the follow-ing ways. First, the set of regular surfaces is ex-tracted from the set of regular gluings by calcu-lating coset representatives of the anonymity sub-group. The orientability and connected componentsof these representatives are calculated using the ob-vious procedure, implemented recursively|essen-tially the same as [Jaco and Tollefson 1995, Algo-rithm 9.4]. The set of normal disks correspondingto a gluing is traversed, with each being assignedan orientation, and the program checks that this as-signment can be made consistently.
5A. First Strategy: Check Every Gluing for RegularityThe simplest and most na��ve approach to �ndingregular surfaces corresponding to a given solutionvector is simply to test each gluing in the gluinggroup in turn for regularity. This gives an exact an-swer with no uncertainty. This strategy is the onlyone in the set which is a true algorithm, since it iscertain to terminate after a �nite time. Moreover, itis the only strategy in the set capable of determiningwhether a vector is not regular.The practicality of this strategy is limited to verysmall classes, since the number of gluings rises asthe product of the factorial of the number of nor-

mal disks of each type. The limit with the comput-ing power available to us is classes containing lessthan about 109 gluings; see Table 1. This strategyis faster the fewer regular gluings are present, sincewe do not have to fully check irregular gluings.Optimization is possible in some special cases byfactoring the gluing group by the anonymity sub-group before starting the �rst stage. However, thisoperation takes nontrivial time, and the number ofcosets is still exponential in the norm of the solutionvector.
5B. Second Strategy: Opinion PollingThe second strategy is to use a polling method toestimate the number of regular gluings in a givenclass. The idea is to choose a number of elementsat random from the gluing group, and see what pro-portion of them are regular; we assume roughly thesame proportion of the whole group is regular.The estimate is calculated in the following way.The program samples G gluings at random, �ndingR of them to be regular. Knowing Gtot, the to-tal number of gluings in the class, and A, the sizeof the anonymity subgroup (the number of gluingswhich represent each surface), the estimated numberof surfaces S is given byS = RGtotAG :A 95% con�dence interval for the true numberof regular surfaces is (S � C; S + C), where C iscalculated using the formulaC = DpRpG ;with D = 1:960(Gtot=A)pG ;see [Noether 1990].The formula for D is evaluated separately to re-duce roundo� error. The constant 1:960 is deter-mined by our choice of 95% as the con�dence level.The numbers of connected and orientable surfacesare calculated using the same formulas as regularsurfaces. Due to the smaller values for R involved,the relative error C=S is usually larger for thesenumbers.The polling strategy e�ectively makes use of theredundancy induced by the way many gluings corre-sponded to a single surface. It is most e�cient when



Rannard: Computing Immersed Normal Surfaces in the Figure-Eight Knot Complement 81applied to a gluing group with a large anonymitysubgroup compared to the size of the gluing group.Examples are the groups corresponding to 3A, 4Aand 2C. The �rst strategy is not practical for theseclasses, but accurate results can be obtained e�-ciently using the opinion-poll strategy. However,for large classes the determination of accurate re-sults takes a prohibitively long time. In additionthis strategy is not suitable for checking whether avector is regular.
5C. Graph-Based Search StrategiesIn some situations one needs only to determine ifa given class is regular. An important example isgiven in [Matsumoto and Rannard 1997]. In thiscase we are searching the set of gluings for one withthe desired property of regularity. The graph-basedsearch strategies do this by constructing a weightedgraph from the gluing group, and searching it usingsome known algorithms.The graph-based search strategies are based ona graph derived from the gluing group in a similarway to the Cayley graph. The vertices of the graphare in one-to-one correspondence with the elementsof the gluing group (the gluings for that solutionvector). A pair of vertices are joined by an edge ifand only if the two gluings di�er by a transpositionin the gluing group, corresponding to interchangingtwo parallel normal arcs. Each vertex is given aweight, called its score, which measures how far itis from being regular. We choose the score to havethe following properties:� Two vertices connected by an edge have scoresdi�ering by at most a �xed small amount;� The minimum score is zero;� A gluing is regular if and only if its score is zero.We now have the task of searching for vertices withminimum weight in a weighted graph, a well-studiedproblem. We use two related nondeterministic strat-egies.We use as the score of a gluing the following non-negative integer. For each edge of the triangulation�, we calculate the number of arc swaps necessaryto convert each branch point about that edge to a setof edge disks. The score is the sum of these valuesover each edge of �. This is roughly proportionalto the sum of the orders of all the branch points.Note that when searching all the gluings for agiven vector, the time taken is determined by how

fast the score of a gluing can be calculated. We wantto minimize the number of gluings which we have toexamine.All these strategies are helped by the fact that onesurface is represented by many di�erent gluings.
5D. Third Strategy: Hill ClimbingIn this strategy we search the graph with a simplenondeterministic depth-�rst search, keeping track ofa \current" vertex of the graph. The process is asfollows:
1. Choose a vertex at random to be the initial cur-rent vertex.
2. Calculate the scores of all the neighbors of thecurrent vertex.
3. If all these scores are no less than the score of thecurrent vertex, go to Step 1.
4. Otherwise, change the current vertex to be theneighbor with the least score. Stop if this gluingis regular, otherwise go to Step 2.The process will stop either when a score of 0 isfound (meaning the corresponding gluing is regular)or when every neighbor of the current vertex has atleast as high a score. In the latter case the routineaborts and begins again from another randomly-selected point; this is the usual result. Note thatthis strategy is not guaranteed to �nd a regular glu-ing should one exist.This strategy is much faster than the previoustwo for �nding a regular gluing where these exist.Its performance depended on the class, possibly be-cause the proportion of false minima in the graphvaried between classes.The hill-climbing strategy appeared to be e�ec-tive for the vector [2B+4D], but not for [2C+4D].For the latter, 537 invocations of this search rou-tine (taking up a whole weekend of computer time)failed to uncover a regular surface, although theclass was found to be regular using the strategy be-low. This may be because of \plateau" e�ects in thegraph [Cormen et al. 1990]; there may be regions inthe graph where the score is close to constant (the\plateau"), dropping to zero only in small regionsabout the regular gluings (narrow \gorges"). Un-less the (randomly-chosen) starting point is on theside of a gorge, this strategy will be unable to locatethe regular gluings.
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5E. Fourth Strategy: Bounded Nonincreasing Random

WalkTo overcome the problems cause by plateau e�ectsnoted in the previous section, we modify our searchprocedure for the gluing graph. The di�erence isthat we do not necessarily change the current ver-tex to be the neighbor with the least score at eachstep. Instead, the procedure sends out a \feeler",exploring a sequence of vertices obtained from thecurrent one by a random walk, and moves to thevertex in this sequence of the lowest score if this isless than the score of the current vertex. The lengthof the sequence is allowed to grow with the numberof tests for regularity since a relocation took place,up to a maximum value. The process is:
1. Choose an vertex at random to be the initial cur-rent vertex.
2. Let a variable called the feeler-tip be the currentvertex, and a variable called the feeler length bezero.
3. Move the feeler-tip to a neighbouring gluing cho-sen at random, and increment the feeler lengthby 1.
4. If the score of the feeler-tip is:� zero, then we have found a regular gluing, soabort the search.� no greater than the score of the current vertex,let the current vertex be the feeler-tip.� greater than the score of the current vertex,do nothing.
5. If the feeler length is greater than a preset value,go to Step 1, else go to Step 2.The idea behind this strategy is that the feelers willbe able to wander over the plateau region of thegraph to detect gorges containing regular gluings,even if the current vertex is caught in a local mini-mum.Note that no gluing with score greater than thatof the initial vertex will ever be reached using thisstrategy, hence only a restricted set of gluings needbe checked for regularity.
6. RESULTS FOR SOME SOLUTION VECTORSTable 1 summarizes the results obtained from theimplementation of the strategies above. Results forother vectors can be obtained from these by apply-ing the symmetries noted in Section 4. The data

is invariant under these symmetries, as they give abijection between the gluing groups associated withthe vectors. For example, the number of regularsurfaces in [A + C 0] is the same as the number in[A+ C].We have an example of a regular class which ap-pears to contain no connected immersed surfaces.The class [2A+2D] was searched a total of 4 times.In each case, the regular surface found was discon-nected. We conjecture that there is no connectedregular surface in this class.Consider the gluing group GH associated with avector H = aA+ bB + cC + dD:The vector D is irregular while A, B and C areall regular, so we would expect, very roughly, theproportion of regular gluings in the gluing group ofH to decrease as the ratiod : a+ b+ cincreases. The data in Table 1 is consistent withthis conjecture, but only when the values of a; b; c; dare \su�ciently large". So, for instance, the gluinggroup corresponding toA+A+D contains no regulargluings, while A + A + A and A + D + D do; yetdoubling these vectors, we can write 4A + 2D as(A + 2D) + 3A hence this vector is regular. Themoral is that small vectors are atypical; we see amore ordered behaviour when we consider multiplesof these vectors. Note that a multiple of a vectorprojects to the same point of the projective solutionspace as the original vector.We have found several examples of solution vec-tors that are not regular themselves, but some mul-tiple of them is regular, as shown in Table 1.
Definition 6.1. A solution vector is virtually regular ifsome multiple of it is regular. The regular projectivesolution space is the subset of the projective solu-tion space corresponding to all regular and virtuallyregular solution vectors.Considering the regular projective solution space in-stead of the projective solution space \smooths" thedata, hiding the anomalies arising from vectors ofsmall norm to reveal the broader distribution of im-mersed normal surfaces. In [Matsumoto and Ran-nard 1997] we determine exactly the regular projec-tive solution space for (M8;�), and show that twiceany virtually regular vector is regular.
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Class log10 of number of # of regular # of connected # of orientablesurfaces gluings surfaces regular surfaces regular surfaces[A] 0 0 1 1 1[B] 0 0 1 1 0[C] 2:8 2:2 13 13 4[D] 0 0 0 0 0[A+A] 3:6 1:2 4 3 3[A+B] 3:6 3:6 29 28 8[A+ C] 7:1 5:3 59 46 22[A+D] 3:6 2:4 0 0 0[B +B] 3:6 1:8 16 15 1[B + C] 7:1 4:9 54 41 1[B +D] 3:6 2:7 2 2 0[C + C] 12:4 7:9 683 (597{770) 586 (505{666) 138 (99{177)[C +D] 7:1 5:1 12 12 0[A+A+A] 9:3 3:1 3 (2.8{3.2) 1 (1.2{1.4) 3 (2.8{3.2)[A+A+B] 9:3 6:9 141 109 48[A+A+D] 9:3 5:0 0 0 0[A+ B +B] 9:3 7:5 486 273 62[A+B +D] 9:3 7:2 40 38 0[A+D +D] 9:3 5:3 1 1 0[B +B +D] 9:3 6:1 12 10 0[B +D +D] 9:3 5:8 0 0 0[D +D +D] 9:3 3:9 0 0 0[4A] 16:6 5:5 5 (4.3{5.5) 2 (1.3{2.0) 5 (4.3{5.5)[4B] 16:6 8:3 1427 (1294{1559) 1324 (1197{1452) 16 (2.0{30.1)[2B + 4D] 34:3 19:3 some found[2C + 4D] 45:7 26:1 some found
TABLE 1. Numbers of regular surfaces in various classes. Ranges in parentheses were obtained using the opin-ion-poll strategy, the range indicating the 95% con�dence interval. The other numbers were obtained using the�rst strategy. On the last two (incomplete) rows, we have found regular surfaces using the third and fourthstrategies, but cannot estimate their total number.

7. AN UNUSUAL SURFACEWe conclude by considering one particularly inter-esting immersed normal surface. A search using the�rst strategy revealed that there is only one im-mersed normal surface corresponding to the vectorA+2D, out of nearly two billion possibilities. A sim-ple Euler characteristic argument shows that this isan orientable surface of genus 2. Moreover, exami-nation of the data revealed that this surface has aninteresting combinatorial property: each edge diskof this surface is of the same type. At every pointwhere the surface crosses an edge of �, exactly twoQ-disks meet, with a single T-disk between themon one side and three T-disks between them on theother; this allows one to continue the developmentpattern shown in Figure 10.This surface has been known to a select few forsome years, although it has not yet appeared in theliterature. I was told about it by J. H. Rubinstein

2
3

FIGURE 10. Thurston's surface.
and I. Aitchison, who credited W. Thurston with itsdiscovery, and who later showed it to be incompress-ible [Rubinstein 1998].



84 Experimental Mathematics, Vol. 8 (1999), No. 1In [Matsumoto and Rannard 1997] the authorsshow that this exceptional surface is a vertex of theregular projective solution space.
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