Computing Immersed Normal Surfaces
in the Figure-Eight Knot Complement

Richard Rannard

CONTENTS

. Introduction
. Embedded Normal Surface Theory
. Immersed Normal Surface Theory

W N -

. Embedded Normal Surface Theory
for the Figure-Eight Knot Complement
5. Strategies for Enumeration of Regular Surfaces
6. Results for Some Solution Vectors
7. An Unusual Surface
Acknowledgments
References

Keywords: 3-manifolds, immersed normal surfaces, normal surface
theory, algorithms

1991 Mathematics Subject Classification: 57N35, 57M50

The theory of (embedded) normal surfaces is a powerful tech-
nique in 3-manifold topology. There has been much recent in-
terest in extending the theory to immersed surfaces, in partic-
ular to attack the word problem for 3-manifolds. Progress in
this area has been hindered by the lack of nontrivial examples.
This paper and the related work [Matsumoto and Rannard 1997]
cover a particular example in depth, using methods which may
be generalized. We give detailed information on the existence
of immersed surfaces in the figure-eight knot complement us-
ing nontrivial computational techniques. After an introduction
to the theory, introducing some new concepts, we discuss some
strategies for enumerating surfaces of low genus, which have
been implemented in software written by the author. The results
are tabulated and an unusual example discussed.

1. INTRODUCTION

In this paper we apply computational methods to
determine data on the existence of immersed normal
surfaces in the figure-eight knot complement. The
difficulties of these computations are such that only
two examples have previously appeared in the liter-
ature; see [Aitchison et al. 1997]. By investigating a
single example in detail, we aim to furnish examples
(and counter-examples) to aid in the development
of the theory. The computational methods used are
also of interest; we show how the problem of enu-
merating surfaces can be reduced to enumerating
the elements of a permutation group which have cer-
tain properties. This problem may be transformed
into the question of searching a certain graph, for
which various existing strategies are compared. All
the algorithms mentioned have been implemented in
software by the author.

The data obtained in this paper are used in [Mat-
sumoto and Rannard 1997]; those applications mo-
tivate some of the methods used here.

This paper is structured as follows. Section 2
gives a short introduction to the “classical” theory
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of (embedded) normal surfaces. Section 3 describes
an extension of normal surface theory to cover im-
mersed surfaces. Section 4 describes an extension
of normal describes the application of this theory to
the figure-eight knot complement. Section 5 con-
tains a description of the algorithms used in the
enumeration of surfaces, and their implementation
in software. Section 6 describes and interprets the
results obtained by these methods. The conclud-
ing section takes up one particularly interesting im-
mersed normal surface.

2. EMBEDDED NORMAL SURFACE THEORY

The theory of embedded normal surfaces was first
developed by Haken [1961] and used by him to prove
several important results in the theory of 3-mani-
folds; see also [Jaco and Oertel 1984]. We use a
different but equivalent approach for which good
references are [Hemion 1992; Tollefson 1998; Jaco
and Rubinstein 1989]. None of the material in this
section is original.

The basis of normal surface theory is the following
sequence of ideas. Let M be a compact 3-manifold
with or without boundary, and suppose A is a fixed
triangulation of M. We allow A to be a proper tri-
angulation or a pseudotriangulation, and the tetra-
hedra in A may or may not be ideal. Given a surface
F embedded in M, try to isotope F' so that it meets
each 3-simplex of the triangulation A in a set of
standard pieces, called normal disks. Such a sur-
face is called a normal surface; many “interesting”
surfaces can be made normal. A normal surface gen-
erates a sequence of numbers which are the number
of times each possible normal disk occurs. We think
of this sequence as a point in a vector space over
R. The set of points which may come from surfaces
lie in a cone in the vector space called the solution
space.

We denote a 3-manifold M with triangulation A
by (M,A). This paper deals with one such M and
A, the ideal triangulation of the figure-eight knot
complement given in [Thurston 1997].

Let 7 be a tetrahedron forming part of A.

Definition 2.1. A normal arc in 7 is an embedded arc
on some face of 7 which has endpoints on different
edges of the face. A normal disk in 7 is a disk prop-
erly embedded in 7 which intersects each face of 7
in at most one normal arc. Thus a normal disk is
either

1. a triangle cutting off a vertex, or
2. a quadrilateral separating a pair of vertices,

whose edges have endpoints on different edges of the
tetrahedron.

Two normal disks are of the same type if one can be
isotoped into another while preserving these condi-
tions and without an edge of a disk passing over
a vertex of a tetrahedron. Thus there are exactly
seven types of normal disks for each tetrahedron in
A, as shown in Figure 1. Normal disks may have
only three or four sides; those with three sides are
called T-disks, while those with four sides are called
@Q-disks. This terminology is due to Tollefson [1998].

e O

FIGURE 1. The seven combinatorial types of normal
disks in a tetrahedron.

Definition 2.2. A surface F' properly embedded in M
is a normal surface if F' meets each tetrahedron of
A in a collection of normal disks.

Whether or not a surface is normal thus depends on
the triangulation used.

A surface may be perturbed slightly by an isotopy
and still intersect the triangulation in the same set
of normal disks. A normal isotopy is an ambient
isotopy of F' which doesn’t change the type of any
of the normal disks of F'. We shall not distinguish
between normal surfaces which are equivalent under
normal isotopy.

We shall consider only closed normal surfaces in
this paper, corresponding to surfaces in S® which do
not meet the figure-eight knot.
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If there are t tetrahedra in a triangulation A,
there will be 7t different normal disks in A. Let
W (Ms, A) be a copy of R*, and associate with each
normal disk type a different coordinate of W (Mg, A)
(in Section 4 we will give a numbering of the disks in
our example). We interpret the normal surface hav-
ing w; normal disks of type ¢ as corresponding to
the point (wy,...,wy,) in W (Mg, A), where w; > 0,
fore=1,...,14.

We may determine the set of possible vectors cor-
responding to surfaces in the following way. Choose
a face of A common to two tetrahedra 7; and 7. For
any normal surface F' in M, each normal disk in 7
which meets the face is joined to a normal disk in 7,
along an edge (see Figure 2), and these two normal
disks meet the face in the same normal arc type.
Hence each normal arc type gives a linear equation
of the form w; + w; = wy, + w;, where the terms are
the numbers of normal disks of fixed type. The set
of all such equations from all normal arc types of A
is called the set of normal matching equations.

FIGURE 2. A set of normal disks satisfying the nor-
mal matching equation for one normal arc type. The
disks join along arcs of that normal arc type.

Since the normal matching equations are linear,
the set of points which satisfy them is a linear sub-
space of W (Mg, A). We are not interested in points
which have negative or noninteger coordinates, since
these cannot correspond to surfaces. The normal
solution space is the set of vectors in this subspace
which have all coordinates nonnegative. A solution
vector is a vector in the solution space with integer
coordinates. Each normal surface corresponds to a
single solution vector.

We can think of the matching equations as being
a set of linear Diophantine equations with solutions
the solution vectors. Then the theory of Diophan-
tine equations implies that there is a finite set of
solution vectors which generate all solution vectors

by addition; see [Hemion 1992]. We call the solu-
tion vectors in the generating set fundamental solu-
tion vectors; every solution vector can be written as
a sum of nonnegative multiples of the fundamental
solution vectors.

We may ask whether all solution vectors corre-
spond to normal surfaces. This is not the case if
any tetrahedron of A contains two Q-disks of differ-
ent types, since any two such disks must intersect
(Figure 3).

FIGURE 3. Two Q-disks of different types in the same
tetrahedron must intersect.

Any solution vector which doesn’t have this prop-
erty corresponds to unique embedded normal sur-
face; see [Hemion 1992].

This criterion does not apply in the case of im-
mersed normal surfaces.

The projective solution space is the intersection
of the normal solution space with the hyperplane of
codimension 1 defined by the equation

i+ +txy =1

It is a convex polytope of dimension one less than
the solution space. The projective solution space
carries a surprisingly large amount of information
about the topology of the manifold; see [Jaco and
Oertel 1984; Jaco and Tollefson 1995].

3. IMMERSED NORMAL SURFACE THEORY

In this section we study an extension of the above
theory to immersed surfaces. We begin with a defi-
nition of an immersed normal surface.

Definition 3.1. A closed surface F' properly immersed
in (M, A) is an immersed normal surface if it meets
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the 2-skeleton of A transversally and meets each
tetrahedron of A in a set of normal disks.

Clearly we can associate to each immersed normal
surface a vector as for embedded normal surfaces.
Then we can utilize all the apparatus from classi-
cal normal surface theory, in particular the normal
matching equations and solution space.

We relax the last condition in Section 2, that we
cannot have two Q-disks of different type in the same
tetrahedron, since this is clearly no longer necessary
for immersed surfaces. We now consider every vec-
tor in the normal solution space as possibly giving
an immersed normal surface. To derive a surface
from a vector, we take the normal disks correspond-
ing to the vector and try to join them together along
their edges.

3A. The Gluing Group

The different ways of joining normal disks are in 1-1
correspondence with a certain permutation group.

Fix one particular position for the normal disks.
A normal disk can only be joined to another normal
disk where they meet a face of the triangulation in
a common normal arc. The possible ways of gluing
disks along a given normal arc type are in 1-1 cor-
respondence with a permutation group. If there are
n normal arcs of a given type, then there are n nor-
mal disks in one tetrahedron which have an edge of
that normal arc type, glued to n normal disks in the
adjacent tetrahedron. The possible ways of joining
them are parametrized by the symmetric group on
n letters.

For each normal arc type, the disks can be glued
in any manner, since we are ignoring for the moment
the question of whether the resulting 2-complex has
singularities. Hence, the set of all possible ways of
sticking the disks together corresponds to a direct
product of permutation groups, one for each normal
arc type.

Definition 3.2. The gluing group Gy for a solution
vector H is the direct product of the symmetric
groups corresponding to each normal arc type in
the triangulation, together with a numbering of the
normal disks. A gluing is an element of the gluing
group (i.e., a permutation), corresponding to a spe-
cific joining of the normal disks along their edges.

A gluing is in a sense the fundamental object in im-
mersed normal surface theory. We shall call a gluing

and its associated 2-complex by the same symbol,
and rely on context to distinguish them.

Note that the gluing group is defined entirely by a
normal vector, since it depends only on the number
of each type of normal arc, which in turn depend
only on the numbers of each type of normal disk. A
presentation for it can easily be written down.

A useful way to visualize immersed normal sur-
faces in this context is to imagine isotoping all the
normal disks so that their vertices lie on the mid-
points of the edges of the tetrahedra (with respect
to some well-behaved continuous polyhedral metric,
such as used in [Jaco and Rubinstein 1989]). The
surface is then not in general position, in fact nor-
mal disks of the same type will be superimposed.
All the normal disks which have a common arc type
will meet in a single arc of that type. The idea is to
hold the double arcs more firmly by pushing them
into the 2-skeleton of the manifold; otherwise nor-
mal isotopies of the surface can push a double arc
from one tetrahedron into another, making two nor-
mally isotopic surfaces appear different. We call this
positioning of the normal disks the standard position
of the gluing.

There is a “canonical” element in every gluing
group, as we now show. We can modify any gluing
g by removing all intersections of the normal disks
which take place along normal arcs (thinking of ¢
being in standard position). The result is a gluing
where the only normal disks which cross are Q-disks
of different types. This gluing is clearly unique, and
from now on we shall number the normal disks so
that this gluing corresponds to the identity element
of the gluing group.

We shall see below that normal surfaces and glu-
ings are not equivalent concepts. In general there
may be gluings which do not correspond to nonsin-
gular immersions of surfaces, and multiple gluings
may represent the same surface.

3B. Regular Gluings

We are really only interested in gluings which are
topologically 2-manifolds, that is images of nonsin-
gular immersions of surfaces.

Definition 3.3. A regular vector is a solution vector
which corresponds to a set of normal disks which
may be joined to give a nonsingular immersed sur-
face. Such a way of joining the normal disks is called
a reqular gluing.
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A central problem in immersed normal surface the-
ory is to find conditions on a solution vector which
imply it must be regular. This is a very difficult
problem; for partial results see [Letscher 1997; Mat-
sumoto and Rannard 1997; Rannard 1997]. Note
that several nonisotopic regular gluings may exist
for a single regular vector.

For brevity we use the term “regular surface” to
mean “regular immersed normal surface”.

The possible singularities of a gluing are of a par-
ticular type. Let p be a point where the gluing meets
the 1-skeleton of the triangulation, and consider how
the normal disks in the gluing with p as a vertex
meet. If the gluing represents a nonsingular immer-
sion of a surface, then these normal disks will form
a disk around p. However, in forming the gluing by
joining normal disks together, there is no guaran-
tee that this will happen. It may be that the nor-
mal disks will “go around p several times”, or more
formally, that the link of p will have winding num-
ber about the edge greater than 1. Let the winding
number be n; we call this a branch point of order n.
Figure 4 shows a branch point of order 2. If n = 1,
then the gluing is locally the immersion of a mani-
fold at p, while if n # 1 then the immersion has an
isolated singularity at the point p. Clearly a gluing
is regular if and only if it contains no branch points.

FIGURE 4. A branch point of order 2.

A regular gluing has a natural decomposition into
quadrilaterals and triangles, given by the normal
disks. The dual subdivision divides the gluing into
a set of polygons, centered on the points of intersec-
tion of the gluing with the 1-skeleton of A. We call
these polygons edge disks. A typical example of an
edge disk is shown in Figure 5. A gluing is regular
if and only if it meets the 1-skeleton of A always in

FIGURE 5. An edge disk. The vertical dashed line
represents an edge of A.

edge disks. Edge disks will be used extensively in
[Matsumoto and Rannard 1997].

Embedded normal surfaces may also be under-
stood in terms of regular gluings; each regular vec-
tor represents at most one embedded regular gluing.
In the numbering of the normal disks given above,
each embedded normal surface corresponds to the
identity of the corresponding gluing group. Such a
class may have immersed regular gluings in addition
to the embedded one.

3C. Normal Surfaces are Really Equivalence Classes of
Gluings

Let H be a solution vector with some coordinate
greater than 1. Then H represents a set of normal
disks, and two of these normal disks will be of the
same type; call them §; and 6. Let g be a gluing
in the gluing group Gy, and form the gluing ¢’ by
deleting §; and 6§, from g (to give a gluing with two
boundary components) then replacing d in place of
01 and vice versa. We have swapped ¢; and 9, in the
gluing g, as shown in Figure 6. Clearly g and ¢’
represent normally isotopic immersions of the same
surface, however they are different elements of the
gluing group. We have shown:

Proposition 3.4. Up to normal isotopy, a normal sur-
face corresponds to an equivalence class of gluings
under the following equivalence relation: two gluings
are equivalent if and only if one can be obtained from
the other by exchanging normal disks of the same

type.

We denote the normal surface containing the gluing
g by [g].



78 Experimental Mathematics, Vol. 8 (1999), No. 1

FIGURE 6. Swapping two normal disks of the same
type gives an identical normal surface up to normal
isotopy.

The set of regular normal surfaces has a natural
algebraic description. Swapping d; and §, in g as
described above corresponds to multiplying g by an
element of the gluing group (as an arbitrary conven-
tion we assume multiplication on the right). More-
over, the group element so defined is independent
of g. For a given vector H, there is a subset of the
gluing group Gy counsisting of all elements which
swap the edges of a pair of normal disks of the same
type; let Ag be the subgroup of Gy generated by
this set. An element of Ay is a product of group
elements corresponding to swapping normal disks of
the same type, so multiplying any gluing by such an
element is equivalent to performing a series of such
swaps. We call Ay the anonymity subgroup of Gp.
The normal surfaces of H correspond to the (right)
cosets {Agg| g€ G}

Since swapping normal disks of the same type pre-
serves the regularity of a gluing, the regular normal
surfaces of H form a partition of the regular gluings
of Gy. FEach coset is composed of gluings which are
either all regular or all irregular. For more details
see [Rannard 1997].

4. EMBEDDED NORMAL SURFACE THEORY FOR THE
FIGURE-EIGHT KNOT COMPLEMENT

The complement of the figure-eight knot in the 3-
sphere is a hyperbolic manifold Mg of finite volume
with a single cusp [Thurston 1997]. It can be tri-
angulated using two ideal tetrahedra, as illustrated
in Figure 7, where the faces of the tetrahedra are
identified so that the marked arrows agree. Let A
denote this triangulation; A has two edges and four

FIGURE 7. The canonical ideal triangulation A of the
figure-eight knot complement.

faces, and is a pseudotriangulation of Mg. We write
the figure-eight knot complement with this triangu-
lation as the pair (Mg, A).

The normal disks for (Mg, A) are shown in Fig-
ure 8. There are 7 normal disks in each tetrahedron,
making 14 in total. To each normal surface we as-
sociate the vector

(t17t27t37 t4:Q1:Q2:Q37 tllatéatéa tipqllvqg:qg) € ZM

where t; and ¢; are the numbers of normal disks
of type T; and @Q;, respectively. The normal solu-
tion space is the set of vectors with nonnegative in-
teger coordinates in the 4-dimensional subspace of
W (Mg, A) =~ R" spanned by the vectors

A =(1,1,1,1, 0,0,0, 1,1,1,1, 0,0,0),
B =(0,0,0,0, 1,1,1, 0,0,0,0, 1,1,1),
C =(0,0,1,1, 1,0,2, 0,0,1,1, 1,0,2),
C'=(1,1,0,0, 1,2,0, 1,1,0,0, 1,2,0),
D =(1,1,1,1, 0,0,0, 0,0,0,0, 1,1,1),
D' =(0,0,0,0, 1,1,1, 1,1,1,1, 0,0,0)

The vectors A, B,C,C", D, D’ are the fundamen-
tal normal solution vectors for (Mg, A). The normal
solution space is a 4-dimensional cone spanned by

FIGURE 8. Normal disks in the ideal triangulation A.
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these vectors. Note that the fundamental solution
vectors are not linearly independent; for example,
C+C'=A+2Band D+D' =A+ B.

The fundamental solutions may be interpreted ge-
ometrically as follows:

e A consists of one each of all the T-disks. These
join together in a unique way to give a link of the
vertex, which is a torus. Hence [A] is regular.

e B consists of one each of all the Q-disks. These
also join together in a unique way to give a reg-
ular gluing, so [B] is regular.

e ( and (" are related to the links of the two edges
of A. They are interchanged by an involution of
M which respects A. We shall show later that
both [C] and [C'] contain regular gluings (see Ta-
ble 1).

e D consists of one each of the T-disks in the first
tetrahedron together with one each of the Q-
disks in the second tetrahedron. D and D’ are
related by a second involution of M which re-
spects A. Neither [D] nor [D’], nor any multi-
ple of these classes, is regular. Each vector nD,
forn =1,2,..., has only T-disks in one tetrahe-
dron and only Q-disks in the other. These normal
disks can never be joined together to give an edge
disk.

The projective solution space, which we denote P,
is the intersection of the normal solution space with
the codimension 1 hyperplane with equation

$1+"'+x14=1.

Since the solution space has dimension 4, the pro-
jective solution space has dimension 3 and is a solid
polyhedron (Figure 9). It is easily seen to be an oc-
tahedron; this was first demonstrated in [Jaco 1988].
Since the sum of two points in the projective solution
space lies on the line segment joining those points,
we see that the line segments joining the pairs A, B
and D, D' intersect, as do the line segments joining
the pairs A, B and C', C". Its six vertices are the
projective images of the six fundamental solutions.
The paper [Matsumoto and Rannard 1997] is con-
cerned with identifying what parts of the projective
solution space contain regular surfaces.

The symmetry group of P is isomorphic to Zs @
Z,, with one generator flipping C and C’, the other
flipping D and D’. These isometries come from
isometries of the figure-eight knot which preserve
the triangulation; see [Rolfsen 1976]. There is an-

[A]

[B]
FIGURE 9. The projective solution space of (Mg, A).

other symmetry of the knot which maps each so-
lution vector onto itself. These symmetries imply
that we need only determine the regularity of vec-
tors which are sums of A, B, C and D, the regularity
of the other vectors being apparent by these symme-
tries. We may also use the fact that the fundamental
normal solution vectors are not linearly independent
to determine the regularity of other solutions. For
instance, C'+ C" is equal to A + 2B 4+ C and hence
is regular.

5. STRATEGIES FOR ENUMERATION OF REGULAR
SURFACES

Given a solution vector V', we would like to know:

1. Is V regular? That is, does V represent normal
disks which can be joined to give an immersed
surface?

2. If V is regular, how many regular surfaces are in
[V]? Of these surfaces, how many are connected?
How many are orientable?

3. If V is regular, does [V] contain surfaces with a
given combinatorial property?

We now present various computational methods for
answering these questions. The size of the gluing
group rises exponentially with the number of normal
disks, making the problem nontrivial. We present
various different strategies aimed to answer the dif-
ferent questions above.

All the strategies rest on a procedure to determine
if a given gluing is regular. This was achieved in our
implementation by checking there was an edge disk
at each point where the gluing meets the 1-skeleton.



80 Experimental Mathematics, Vol. 8 (1999), No. 1

The method is to “rotate” a normal arc about the 1-
skeleton at that point, imagining one endpoint fixed
and the other sliding across the normal disks, and
check that it returns to its original position after
passing through the same number of tetrahedra as
the order of the edge (in this particular case the
order was always 6). This is done for all normal
arcs. If a branch point is found at any stage, then
the gluing is known to be irregular and checking is
terminated.

The strategies below have been encoded in a pro-
gram written in Magma [Bosma et al. 1997]. This
computational algebra system has its own internal
programming language, which supports groups and
other mathematical objects. The program has been
run mainly on a DEC AlphaServer 2100 4/275, hav-
ing 640MB of memory and 3 CPUs running in par-
allel at 275MHz, and also on an IBM RISC plat-
form which runs at about half the speed. A good
late-model desktop PC can achieve comparable per-
formance.

The program runs in two stages. In the first stage
the program uses a particular strategy to search
for regular gluings. In the second stage, the pro-
gram processes the regular gluings in the follow-
ing ways. First, the set of regular surfaces is ex-
tracted from the set of regular gluings by calcu-
lating coset representatives of the anonymity sub-
group. The orientability and connected components
of these representatives are calculated using the ob-
vious procedure, implemented recursively — essen-
tially the same as [Jaco and Tollefson 1995, Algo-
rithm 9.4]. The set of normal disks corresponding
to a gluing is traversed, with each being assigned
an orientation, and the program checks that this as-
signment can be made consistently.

5A. First Strategy: Check Every Gluing for Regularity

The simplest and most naive approach to finding
regular surfaces corresponding to a given solution
vector is simply to test each gluing in the gluing
group in turn for regularity. This gives an exact an-
swer with no uncertainty. This strategy is the only
one in the set which is a true algorithm, since it is
certain to terminate after a finite time. Moreover, it
is the only strategy in the set capable of determining
whether a vector is not regular.

The practicality of this strategy is limited to very
small classes, since the number of gluings rises as
the product of the factorial of the number of nor-

mal disks of each type. The limit with the comput-
ing power available to us is classes containing less
than about 10° gluings; see Table 1. This strategy
is faster the fewer regular gluings are present, since
we do not have to fully check irregular gluings.

Optimization is possible in some special cases by
factoring the gluing group by the anonymity sub-
group before starting the first stage. However, this
operation takes nontrivial time, and the number of
cosets is still exponential in the norm of the solution
vector.

5B. Second Strategy: Opinion Polling

The second strategy is to use a polling method to
estimate the number of regular gluings in a given
class. The idea is to choose a number of elements
at random from the gluing group, and see what pro-
portion of them are regular; we assume roughly the
same proportion of the whole group is regular.

The estimate is calculated in the following way.
The program samples G gluings at random, finding
R of them to be regular. Knowing Gy, the to-
tal number of gluings in the class, and A, the size
of the anonymity subgroup (the number of gluings
which represent each surface), the estimated number
of surfaces S is given by

RGtot
AG
A 95% confidence interval for the true number

of regular surfaces is (S — C, S + C), where C is
calculated using the formula

DV
\/@ Y

~ 1.960(Gyor/A) |
DR

S =

C =

with
D

see [Noether 1990].

The formula for D is evaluated separately to re-
duce roundoff error. The constant 1.960 is deter-
mined by our choice of 95% as the confidence level.

The numbers of connected and orientable surfaces
are calculated using the same formulas as regular
surfaces. Due to the smaller values for R involved,
the relative error C/S is usually larger for these
numbers.

The polling strategy effectively makes use of the
redundancy induced by the way many gluings corre-
sponded to a single surface. It is most efficient when
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applied to a gluing group with a large anonymity
subgroup compared to the size of the gluing group.
Examples are the groups corresponding to 34, 4A
and 2C'. The first strategy is not practical for these
classes, but accurate results can be obtained effi-
ciently using the opinion-poll strategy. However,
for large classes the determination of accurate re-
sults takes a prohibitively long time. In addition
this strategy is not suitable for checking whether a
vector is regular.

5C. Graph-Based Search Strategies

In some situations one needs only to determine if
a given class is regular. An important example is
given in [Matsumoto and Rannard 1997]. In this
case we are searching the set of gluings for one with
the desired property of regularity. The graph-based
search strategies do this by constructing a weighted
graph from the gluing group, and searching it using
some known algorithms.

The graph-based search strategies are based on
a graph derived from the gluing group in a similar
way to the Cayley graph. The vertices of the graph
are in one-to-one correspondence with the elements
of the gluing group (the gluings for that solution
vector). A pair of vertices are joined by an edge if
and only if the two gluings differ by a transposition
in the gluing group, corresponding to interchanging
two parallel normal arcs. Each vertex is given a
weight, called its score, which measures how far it
is from being regular. We choose the score to have
the following properties:

e Two vertices connected by an edge have scores
differing by at most a fixed small amount;

e The minimum score is zero;

e A gluing is regular if and only if its score is zero.

We now have the task of searching for vertices with
minimum weight in a weighted graph, a well-studied
problem. We use two related nondeterministic strat-
egies.

We use as the score of a gluing the following non-
negative integer. For each edge of the triangulation
A, we calculate the number of arc swaps necessary
to convert each branch point about that edge to a set
of edge disks. The score is the sum of these values
over each edge of A. This is roughly proportional
to the sum of the orders of all the branch points.

Note that when searching all the gluings for a
given vector, the time taken is determined by how

fast the score of a gluing can be calculated. We want
to minimize the number of gluings which we have to
examine.

All these strategies are helped by the fact that one
surface is represented by many different gluings.

5D. Third Strategy: Hill Climbing

In this strategy we search the graph with a simple
nondeterministic depth-first search, keeping track of
a “current” vertex of the graph. The process is as

follows:

1. Choose a vertex at random to be the initial cur-
rent vertex.

2. Calculate the scores of all the neighbors of the
current vertex.

3. If all these scores are no less than the score of the
current vertex, go to Step 1.

4. Otherwise, change the current vertex to be the
neighbor with the least score. Stop if this gluing
is regular, otherwise go to Step 2.

The process will stop either when a score of 0 is
found (meaning the corresponding gluing is regular)
or when every neighbor of the current vertex has at
least as high a score. In the latter case the routine
aborts and begins again from another randomly-
selected point; this is the usual result. Note that
this strategy is not guaranteed to find a regular glu-
ing should one exist.

This strategy is much faster than the previous
two for finding a regular gluing where these exist.
Its performance depended on the class, possibly be-
cause the proportion of false minima in the graph
varied between classes.

The hill-climbing strategy appeared to be effec-
tive for the vector [2B +4D], but not for [2C' +4D)].
For the latter, 537 invocations of this search rou-
tine (taking up a whole weekend of computer time)
failed to uncover a regular surface, although the
class was found to be regular using the strategy be-
low. This may be because of “plateau” effects in the
graph [Cormen et al. 1990]; there may be regions in
the graph where the score is close to constant (the
“plateau”), dropping to zero only in small regions
about the regular gluings (narrow “gorges”). Un-
less the (randomly-chosen) starting point is on the
side of a gorge, this strategy will be unable to locate
the regular gluings.
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5E. Fourth Strategy: Bounded Nonincreasing Random
Walk

To overcome the problems cause by plateau effects
noted in the previous section, we modify our search
procedure for the gluing graph. The difference is
that we do not necessarily change the current ver-
tex to be the neighbor with the least score at each
step. Instead, the procedure sends out a “feeler”,
exploring a sequence of vertices obtained from the
current one by a random walk, and moves to the
vertex in this sequence of the lowest score if this is
less than the score of the current vertex. The length
of the sequence is allowed to grow with the number
of tests for regularity since a relocation took place,
up to a maximum value. The process is:

1. Choose an vertex at random to be the initial cur-
rent vertex.

2. Let a variable called the feeler-tip be the current
vertex, and a variable called the feeler length be
Z€ro.

3. Move the feeler-tip to a neighbouring gluing cho-
sen at random, and increment the feeler length
by 1.

4. If the score of the feeler-tip is:

e zero, then we have found a regular gluing, so
abort the search.

e no greater than the score of the current vertex,
let the current vertex be the feeler-tip.

e greater than the score of the current vertex,
do nothing.

5. If the feeler length is greater than a preset value,
go to Step 1, else go to Step 2.

The idea behind this strategy is that the feelers will
be able to wander over the plateau region of the
graph to detect gorges containing regular gluings,
even if the current vertex is caught in a local mini-
mum.

Note that no gluing with score greater than that
of the initial vertex will ever be reached using this
strategy, hence only a restricted set of gluings need
be checked for regularity.

6. RESULTS FOR SOME SOLUTION VECTORS

Table 1 summarizes the results obtained from the
implementation of the strategies above. Results for
other vectors can be obtained from these by apply-
ing the symmetries noted in Section 4. The data

is invariant under these symmetries, as they give a
bijection between the gluing groups associated with
the vectors. For example, the number of regular
surfaces in [A + C'] is the same as the number in
[A+C].

We have an example of a regular class which ap-
pears to contain no connected immersed surfaces.
The class [2A + 2D] was searched a total of 4 times.
In each case, the regular surface found was discon-
nected. We conjecture that there is no connected
regular surface in this class.

Consider the gluing group Gy associated with a
vector

H=aA+bB+cC+dD.

The vector D is irregular while A, B and C' are
all regular, so we would expect, very roughly, the
proportion of regular gluings in the gluing group of
H to decrease as the ratio

d:a+b+c

The data in Table 1 is consistent with
this conjecture, but only when the values of a, b, ¢, d
are “sufficiently large”. So, for instance, the gluing
group corresponding to A+A+D contains no regular
gluings, while A + A+ A and A+ D + D do; yet
doubling these vectors, we can write 44 + 2D as
(A + 2D) + 3A hence this vector is regular. The
moral is that small vectors are atypical; we see a
more ordered behaviour when we consider multiples
of these vectors. Note that a multiple of a vector
projects to the same point of the projective solution
space as the original vector.

We have found several examples of solution vec-
tors that are not regular themselves, but some mul-
tiple of them is regular, as shown in Table 1.

increases.

Definition 6.1. A solution vector is virtually regular if
some multiple of it is regular. The regular projective
solution space is the subset of the projective solu-
tion space corresponding to all regular and virtually
regular solution vectors.

Considering the regular projective solution space in-
stead of the projective solution space “smooths” the
data, hiding the anomalies arising from vectors of
small norm to reveal the broader distribution of im-
mersed normal surfaces. In [Matsumoto and Ran-
nard 1997] we determine exactly the regular projec-
tive solution space for (Mg, A), and show that twice
any virtually regular vector is regular.
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Class log,, of number of # of regular # of connected # of orientable
surfaces  gluings surfaces regular surfaces regular surfaces
[4] 0 0 1 1 1
[B] 0 0 1 1 0
[C] 2.8 2.2 13 13 4
[D] 0 0 0 0 0
[A+ A] 3.6 1.2 4 3 3
[A+ B] 3.6 3.6 29 28 8
[A+C] 7.1 5.3 59 46 22
[A+ D] 3.6 2.4 0 0 0
[B + B 3.6 1.8 16 15 1
[B + C] 7.1 4.9 54 41 1
[B + D] 3.6 2.7 2 2 0
[C+ (] 12.4 7.9 683 (597-770) 586 (505-666) 138 (99-177)
[C + D] 7.1 5.1 12 12 0
[A+ A+ A] 9.3 3.1 3 (2.8-3.2) 1 (1.2-1.4) 3 (2.8-3.2)
[A+ A+ B] 9.3 6.9 141 109 48
[A+ A+ D] 9.3 5.0 0 0 0
[A+ B+ B 9.3 7.5 486 273 62
[A+ B+ D] 9.3 7.2 40 38 0
[A+ D+ D] 9.3 5.3 1 1 0
[B+ B+ D] 9.3 6.1 12 10 0
[B+ D+ D] 9.3 5.8 0 0 0
[D+ D+ D] 9.3 3.9 0 0 0
[44] 16.6 5.5 5 (4.3-5.5) 2 (1.3-2.0) 5 (4.3-5.5)
[4B] 16.6 8.3 1427 (1294-1559) 1324 (1197-1452) 16 (2.0-30.1)
[2B + 4D] 34.3 19.3 some found
[2C + 4D] 45.7 26.1 some found

TABLE 1. Numbers of regular surfaces in various classes. Ranges in parentheses were obtained using the opin-
ion-poll strategy, the range indicating the 95% confidence interval. The other numbers were obtained using the
first strategy. On the last two (incomplete) rows, we have found regular surfaces using the third and fourth

strategies, but cannot estimate their total number.

7. AN UNUSUAL SURFACE

We conclude by considering one particularly inter-
esting immersed normal surface. A search using the
first strategy revealed that there is only one im-
mersed normal surface corresponding to the vector
A+2D, out of nearly two billion possibilities. A sim-
ple Euler characteristic argument shows that this is
an orientable surface of genus 2. Moreover, exami-
nation of the data revealed that this surface has an
interesting combinatorial property: each edge disk
of this surface is of the same type. At every point
where the surface crosses an edge of A, exactly two
Q-disks meet, with a single T-disk between them
on one side and three T-disks between them on the
other; this allows one to continue the development
pattern shown in Figure 10.

This surface has been known to a select few for
some years, although it has not yet appeared in the
literature. I was told about it by J. H. Rubinstein

FIGURE 10. Thurston’s surface.

and I. Aitchison, who credited W. Thurston with its
discovery, and who later showed it to be incompress-
ible [Rubinstein 1998].
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In [Matsumoto and Rannard 1997] the authors
show that this exceptional surface is a vertex of the
regular projective solution space.
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