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We have identified explicitly the dual of the hypersurface I5 de-

fined as the unique quintic hypersurface in P5C invariant under

the natural action of the Weyl group W(E6) of the lattice E6.

Let V be a �nite-dimensional complex vector spaceand X � P (V ) a (reduced and irreducible) closedprojective subvariety. Set V ? = HomC (V; C ) asusual; points of P (V ?) correspond to hyperplanesin P (V ). The dual X? of X is the closure in P (V ?)of the set of hyperplanes of P (V ) that are tangentto X at some smooth point.Generally, givenX as the zero-set of a polynomial,say, an explicit identi�cation of X? is di�cult, ex-cept in very special cases. This article studies thecase where X is a remarkable hypersurface of degree�ve (quintic), I5 � P 5C , the unique quintic thatis invariant under the natural action of the Weylgroup W (E6) of the lattice E6. This quintic was in-vestigated in [Hunt 1996, Chapter 6], and a certainamount of information about its dual was obtained.However, an explicit determination of this dual|and even of its degree|seemed to be an unsolvableproblem.In [Freitag and Hermann 1998] a certain hypersur-face I32 � P 5C of degree 32, also invariant underW (E6), was discovered in connection with the in-vestigation of certain modular varieties. Computercalculations in Macaulay led Hunt to conjecture thatI32 is the dual of I5. Using Maple Freitag was ableto verify this conjecture up to a linear transforma-tion that intertwines the representation of W (E6)with its contragredient.Section 1 contains some more facts about dual va-rieties in general. Section 2 introduces I5 and Sec-tion 3 describes the calculation of the dual.
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1. DUALITYWe refer the reader to [Kleiman 1981] for a goodcomprehensive introduction to the concept of thedual variety. Here we mention only a few essen-tial facts. Given X as above, the biduality theoremstates that (X?)? = X. In general the dimensionsof X and X? are di�erent. But if X � P (V ) isa hypersurface, except for some exceptional cases(ruled hypersurfaces), the dual varietyX? � P (V ?)is also a hypersurface and hence of the same dimen-sion as X. The biduality theorem then implies thatthe Gauss map X ! X? (which attaches to everysmooth point of X its tangent hyperplane) is bira-tional.We now assume that V = C n and identify V ?with C n in the usual manner. The hypersurfacesX;X? are given as zero sets of irreducible polyno-mials P;P? 2 C [X0; : : : ;Xn], say of degrees d; d?.These polynomials of course are determined only upto constant factors. We say that P and P? are dualpolynomials. The duality relation is simplyP?(GradP ) � 0 mod P;where GradP = � @P@X0 ; : : : ; @P@Xn�is the gradient of P . It is di�cult to determine P?explicitly from this equation because this involvescomplicated elimination; even using computer alge-bra systems such as Macaulay one has a chance onlyin special cases of low dimension and degree. More-over, with Macaulay what is calculated is a poly-nomial in some �nite characteristic, whereas we areinterested in the actual equation of the dual. Forthis other methods are needed. It helps if one hasa guess about what P? might be, but even then itmay be di�cult to decide whether P?(GradP ) isdivisible by P . Our success in �nding a big dualpolynomial is due to unusually lucky circumstances.
2. THE LATTICE E6 AND THE INVARIANT QUINTICFor background on this section see [Helgason 1978].Let t = R 6 be a Cartan algebra of a compact form ofthe Lie algebra E6 over R . We denote by Y1; : : : ; Y6the standard basis of the dual space of t, so thatYi(x1; : : : ; x6) = xi. All we have to know about E6

is that the roots are �(Yi � Yj) for 2 � i < j � 6and � 12(Y1 � Y2 � Y3 � Y4 � Y5 � Y6);where there is an even number of minus signs insidethe parentheses. A system of simple roots isW1 = � 12(�Y1 + Y2 + Y3 + Y4 + Y5 + Y6);W2 = Y2 � Y3;W3 = � 12(Y1 + Y2 + Y3 � Y4 � Y5 � Y6);W4 = Y3 � Y4;W5 = Y4 � Y5;W6 = Y5 � Y6:The root lattice is the lattice � � t� generated bythe roots. There exists a unique symmetric bilinearform such that all root vectors have norm 2. TheGram matrix of � with respect to the simple roots is0BBBBBBB@
2 0 �1 0 0 00 2 0 �1 0 0�1 0 2 �1 0 00 �1 �1 2 �1 00 0 0 �1 2 �10 0 0 0 �1 2

1CCCCCCCA :
The Weyl groupW (E6) is a subgroup of index two inthe full group of automorphisms of (�; h ; i), charac-terized by the fact that it does not contain a 7! �a.The intersection of W (E6) with the special lineargroup is a simple subgroup of index 2 and order25,920. The dual lattice �� of � is also considered asublattice of t� using h ; i. This lattice has 27 pairsof minimal vectors �a, each having norm 43 .
Proposition 1. The following 27 fundamental weightsare permuted under the Weyl group of E6. Dividingthem by 6 one obtains a system of representatives ofthe pairs of minimal vectors of ��.U0 = Y1 + 3Y2 + 3Y3 + 3Y4 + 3Y5 + 3Y6U1 = Y1 � 3Y2 � 3Y3 + 3Y4 + 3Y5 + 3Y6U2 = Y1 � 3Y2 + 3Y3 � 3Y4 + 3Y5 + 3Y6U3 = Y1 � 3Y2 + 3Y3 + 3Y4 � 3Y5 + 3Y6U4 = Y1 � 3Y2 + 3Y3 + 3Y4 + 3Y5 � 3Y6U5 = Y1 + 3Y2 � 3Y3 � 3Y4 + 3Y5 + 3Y6U6 = Y1 + 3Y2 � 3Y3 + 3Y4 � 3Y5 + 3Y6U7 = Y1 + 3Y2 � 3Y3 + 3Y4 + 3Y5 � 3Y6U8 = Y1 + 3Y2 + 3Y3 � 3Y4 � 3Y5 + 3Y6U9 = Y1 + 3Y2 + 3Y3 � 3Y4 + 3Y5 � 3Y6U10 = Y1 + 3Y2 + 3Y3 + 3Y4 � 3Y5 � 3Y6



Freitag and Hunt: The Dual of the Invariant Quintic 153U11 = Y1 + 3Y2 � 3Y3 � 3Y4 � 3Y5 � 3Y6U12 = Y1 � 3Y2 + 3Y3 � 3Y4 � 3Y5 � 3Y6U13 = Y1 � 3Y2 � 3Y3 + 3Y4 � 3Y5 � 3Y6U14 = Y1 � 3Y2 � 3Y3 � 3Y4 + 3Y5 � 3Y6U15 = Y1 � 3Y2 � 3Y3 � 3Y4 � 3Y5 + 3Y6U16 = 4Y1U17 = �2Y1 + 6Y2 U18 = �2Y1 � 6Y2U19 = �2Y1 + 6Y3 U20 = �2Y1 � 6Y3U21 = �2Y1 + 6Y4 U22 = �2Y1 � 6Y4U23 = �2Y1 + 6Y5 U24 = �2Y1 � 6Y5U25 = �2Y1 + 6Y6 U26 = �2Y1 � 6Y6The polynomials Jk := 26Xi=0 Ukiare invariant under the Weyl group W (E6). It isknown (see [Hunt 1996, Section B.1.2.2] for generalinformation on the invariants of unitary re
ectiongroups) that the ring of all invariant polynomials isthe polynomial ringC [Y1; : : : Y6]W (E6) = C [J2; J5; J6; J8; J9; J12]:The polynomial J2 is just a multiple of the Killingform. The next one up, J5, is the one that interestsus; it de�nes the invariant quintic hypersurfaceI5 := fJ5 = 0g:A quick way to write it explicitly is:
Proposition 2. Let Ei denote the i-th elementary sym-metric polynomial in the squares of the �ve variablesY2; : : : ; Y6. Then J5 is given by720�Y 51 �6Y 31 E1�27Y1(E21�4E2)+648Y2Y3Y4Y5Y6�:
3. THE DUAL OF THE INVARIANT QUINTICThe invariant quintic I5 is an extremely interestingvariety, mainly because, as shown in [Hunt 1996], itcontains several subvarieties that are known to bemodular, that is, quotients of bounded symmetricdomains by certain arithmetic groups. It then fol-lows from the general theory of Shimura that thesesubvarieties are moduli spaces for certain moduliproblems. Furthermore, I5 is itself conjectured tobe closely related to the moduli space of marked cu-bic surfaces. We brie
y describe these connections.I5 is singular; its singular locus consists of 120lines meeting at 36 points: the projectivized roots of

E6. At these 36 points, I5 has multiplicity 3; blowingup the points we get a copy of the Segre cubic three-fold, the unique cubic threefold with 10 ordinarydouble points (there are 10 of the 120 lines meetingat each of the 36 points). Dual to the 36 singularpoints are 36 hyperplane sections, each of which isisomorphic to the Nieto quintic. Results from [Hunt1996] and unpublished investigations of the sameauthor show that the Segre cubic, the Nieto quinticand I5 are closely related to ball quotients.The (conjectural) relation with the moduli spaceof marked cubic surfaces has two descriptions. Themoduli space of cubic surfaces is a ball quotient [All-cock et al. 1998], as is that of marked cubic surfaces.The latter space is a Galois cover of the former witha Galois group isomorphic to W (E6). Since I5 isrelated to a ball quotient and has automorphismgroup isomorphic toW (E6), we see the �rst connec-tion. Next, consider the hyperplane sections of I5.These are quintic threefolds with 120 ordinary dou-ble points. Moreover, for a tangent hyperplane sec-tion, we have a 121-nodal quintic. It is well-knownthat this is a Calabi{Yau threefold (after resolu-tion), and that it has a cubic form on the cohomol-ogy. In this case, the cubic form, taken projectively,is a cubic surface! This is the other connection.Our goal is to �nd the dual polynomial. Its degreewould be 5�44 = 1280 if the quintic where nonsingu-lar [Kleiman 1981]. However, singularities tend tolower the degree of the dual, in this case by a lot.
Theorem 3. The dual polynomial of J5 has degree 32.It is obtained from the polynomial J shown at thetop of the next page by the replacement Y1 7! 3Y1.We denote by ~J the polynomial obtained from Jreplacing Y1 7! 3Y1. Similarly the polynomial ob-tained from Jk by this transformation is denoted by~Jk. The meaning of this transformation is that itintertwines the dual representation of W (E6) withthe original one. A simple observation states thatP (GradQ) is invariant under W (E6) if Q is invari-ant under W (E6) and P is invariant under the dualrepresentation (i.e., invariant under the transposedmatrices). We conclude that ~Jk(GradJ5) can bewritten as a polynomial in the invariants J2, J5, J6,J8, J9, J12. As soon as one has found these poly-nomials explicitly for k = 2, 5, 6, 8, 9, 12 one hasa representation of ~J(GradJ5) as a polynomial in
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J = 232 316 5 �72 J48 � 234 314 5 �72 J25J6J28 + 238 313 5 �7J35J8J9 � 239 312 72 J45J12 + 234 310 72 61J45J26� 235 314 5 � 72 J2J6J38 � 235 314 52 7J2J5J28J9 + 238 312 5 � 72 J2J25J8J12 + 236 310 5 � 73 J2J25J26J8� 236 311 5 � 7 � 13J2J35J6J9 + 235 310 72 13J2J65 � 234 312 52 72 J22J28J12 + 233 310 5 � 72 113J22J26J28+ 235 311 52 7 �17J22J5J6J8J9 � 235 311 5 �73 J22J25J6J12 � 234 39 52 72 J22J25J36 � 235 310 72 29J22J45J8+ 235 310 54 J32J8J29 + 236 310 52 72 J32J6J8J12 � 235 38 5 � 72 41J32J36J8 � 236 39 53 7J32J5J9J12� 235 37 52 7 � 193J32J5J26J9 � 231 312 5 � 72 J32J25J28 + 233 38 72 367J32J45J6 + 234 38 53 72 J42J212+ 226 310 53 74 J42J38 � 233 38 54 13J42J6J29 � 234 36 52 72 41J42J26J12 + 232 34 5 � 72 412 J42J46� 227 314 5�72 J42J25J6J8 + 230 37 52 7�11�31J42J35J9 � 227 38 53 72 139J52J6J28 � 228 37 54 7�59J52J5J8J9+ 230 36 53 72 J52J25J12 + 228 34 5 �72 10903J52J25J26 � 227 36 54 74 J62J8J12 + 226 34 53 72 112 41J62J26J8+ 227 35 54 7 � 457J62J5J6J9 � 224 34 72 179 � 593J62J45 + 227 38 55 J72J29 + 228 34 54 72 41J72J6J12� 227 32 53 72 412J72J36 + 223 34 5�72 64937J72J25J8 + 217 34 52 72 659947J82J28 � 218 32 5�72 239�23747�J82J25J6 � 219 32 52 72 561947J92J6J8 � 219 35 53 7 � 17 � 179J92J5J9 � 218 34 53 72 11 � 67J102 J12+ 217 52 72 19�23�41�109J102 J26 + 216 32 53 72 4373J112 J25 + 210 32 54 74 11�67J122 J8 � 211 54 72 11�41�67�J132 J6+ 53 72 112 672J162 :
the invariants. The duality relation means that thispolynomial is divisible by J5. This means exactlythat it vanishes after replacing J5 by 0. Explicit ex-pressions for ~Jk(GradJ5) as polynomials in the in-variants, for each of the six cases, have been foundby computer; they can be found in [Freitag 1998].The most involved calculations concern the casek = 12. The degree of ~J12(GradJ5) is 48 and thereare 248 monomials of this degree. We chose 350 spe-cial values at random and had to solve 350 equationswith 248 variables. The problem is that the solutionconsists of huge rational numbers with denomina-tors. Therefore we solved the equations modulo sev-eral primes (actually 15 such beginning at 100003).To reconstruct the rational numbers we made ana priori assumption about their size. This a prioriassumption is justi�ed later because it is easy to ver-ify the result by direct calculation. The vanishing of~J(GradJ5) after the substitution J5 = 0 again canbe veri�ed by inserting enough special values.Hunt [1996] has proved that J5 de�nes a ratio-nal variety. We conclude that the hypersurface I32de�ned by J is rational.
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