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We have identified explicitly the dual of the hypersurface 15 de-
fined as the unique quintic hypersurface in P°C invariant under
the natural action of the Weyl group W(E) of the lattice Eg.

Let V be a finite-dimensional complex vector space
and X C P(V) a (reduced and irreducible) closed
projective subvariety. Set V' = Homg¢(V,C) as
usual; points of P(V*) correspond to hyperplanes
in P(V). The dual X+ of X is the closure in P(V ™)
of the set of hyperplanes of P(V') that are tangent
to X at some smooth point.

Generally, given X as the zero-set of a polynomial,
say, an explicit identification of X+ is difficult, ex-
cept in very special cases. This article studies the
case where X is a remarkable hypersurface of degree
five (quintic), I5 C P°C, the unique quintic that
is invariant under the natural action of the Weyl
group W (Eg) of the lattice Eg. This quintic was in-
vestigated in [Hunt 1996, Chapter 6], and a certain
amount of information about its dual was obtained.
However, an explicit determination of this dual —
and even of its degree —seemed to be an unsolvable
problem.

In [Freitag and Hermann 1998] a certain hypersur-
face 132 C P5C of degree 32, also invariant under
W (Es), was discovered in connection with the in-
vestigation of certain modular varieties. Computer
calculations in Macaulay led Hunt to conjecture that
132 is the dual of I5. Using Maple Freitag was able
to verify this conjecture up to a linear transforma-
tion that intertwines the representation of W (Eg)
with its contragredient.

Section 1 contains some more facts about dual va-
rieties in general. Section 2 introduces I5 and Sec-
tion 3 describes the calculation of the dual.
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1. DUALITY

We refer the reader to [Kleiman 1981] for a good
comprehensive introduction to the concept of the
dual variety. Here we mention only a few essen-
tial facts. Given X as above, the biduality theorem
states that (X*)* = X. In general the dimensions
of X and X* are different. But if X C P(V) is
a hypersurface, except for some exceptional cases
(ruled hypersurfaces), the dual variety X+ c P(V*)
is also a hypersurface and hence of the same dimen-
sion as X. The biduality theorem then implies that
the Gauss map X — X (which attaches to every
smooth point of X its tangent hyperplane) is bira-
tional.

We now assume that V = C" and identify V+
with C" in the usual manner. The hypersurfaces
X, X" are given as zero sets of irreducible polyno-
mials P, P+ € C[X,,...,X,], say of degrees d,d".
These polynomials of course are determined only up
to constant factors. We say that P and P+ are dual
polynomials. The duality relation is simply

P+(Grad P) =0 mod P,
where

Grad P = < or or )

X, T oX,

is the gradient of P. It is difficult to determine P+
explicitly from this equation because this involves
complicated elimination; even using computer alge-
bra systems such as Macaulay one has a chance only
in special cases of low dimension and degree. More-
over, with Macaulay what is calculated is a poly-
nomial in some finite characteristic, whereas we are
interested in the actual equation of the dual. For
this other methods are needed. It helps if one has
a guess about what P+ might be, but even then it
may be difficult to decide whether P*(Grad P) is
divisible by P. Our success in finding a big dual
polynomial is due to unusually lucky circumstances.

2. THE LATTICE E; AND THE INVARIANT QUINTIC

For background on this section see [Helgason 1978].
Let t = R® be a Cartan algebra of a compact form of
the Lie algebra Eg over R. We denote by Yi,...,Ys
the standard basis of the dual space of t, so that
Yi(z1,...,26) = z;. All we have to know about Eg

is that the roots are £(Y; £Y;) for 2 <i < j <6
and
IV £ Yo £ Y £ Y, £ Y5 £ 1Y),

where there is an even number of minus signs inside
the parentheses. A system of simple roots is

Wi=—3(-Yi+ Y+ Vs +Yi+ Y5 +Y5),

Wy =Y, — Y,
Ws=—3(Vi+Ys+Y; = Yy = Vs = Y),
Wy =Y; Yy,
Ws =Yy - Y5,
We =Y5 — Y.

The root lattice is the lattice A C t* generated by
the roots. There exists a unique symmetric bilinear
form such that all root vectors have norm 2. The
Gram matrix of A with respect to the simple roots is

2 0-1 0 0 O

0 2 0-1 0 O
-1 0 2-1 0 0
0-1-1 2 -1 0
0O 0 0-1 2 -1
0O 0 0 0-1 2

The Weyl group W (Es) is a subgroup of index two in
the full group of automorphisms of (A, (,)), charac-
terized by the fact that it does not contain a — —a.
The intersection of W(Eg) with the special linear
group is a simple subgroup of index 2 and order
25,920. The dual lattice A* of A is also considered a
sublattice of t* using (, ). This lattice has 27 pairs

of minimal vectors +a, each having norm %.

Proposition 1. The following 27 fundamental weights
are permuted under the Weyl group of Eg. Dividing
them by 6 one obtains a system of representatives of
the pairs of minimal vectors of A*.

Uo =Y1+3Y,+3Y5+3Y, +3Y5+3Y5
U =Y1-3Y, -3Ys+3Y, +3Y; +3Y
Uy =Y —3Y, +3Y; —3Y, +3Y5 +3Y5
Us =Y, —3Y, +3Y5+3Y, —3Y5 +3Y5
Us =Y —3Y, +3Y5+3Y, +3Y5 —3Y5
Us =Y1+3Y, —3Ys —3Y, +3Y; +3Y5
Us =Y1+3Y; —3Y5+3Y, —3Y5 +3Y5
Ur =Y1+3Y;, —3Y5+3Y, +3Y5 — 3Y5
Ug =Y1 +3Y, +3Y3 —3Y, —3Y;5 +3Y5
Uy =Y, +3Y, +3Y; —3Y, +3Y; —3Y;
Ui =Y1+3Y, +3Y3+3Y, —3Y; — 3Y5



Un=Y1+3Y,-3Y; —3Y,; —3Y; -3V
U =Y, —3Yo +3Y; —3Y, —3Y5; — 3Y¥;
Uiz =Y, —3Yo —3Y5+3Y, —3Y5 —3Y;
Uww=Y1—3Yo—3Y; —3Y, +3Y5; —3Ys
Uis =Y1 —3Y, —3Y; —3Y, —3Y5 +3Ys
Ui = 4Y1

Ui = -2Y, +6Y;
Up =-2Y, +6Y;5
Uy = —2Y, +6Y,
U3 = —2Y, +6Y5
Usps = —2Y, +6Y5

Uis = —2Y, —6Y;
Upp = —2Y, —6Y;
Uz, = —2Y, —6Y,
Ussa = —2Y, —6Y5
Usg = —2Y1 —6Y5

The polynomials

26
Je =) Uf
=0

are invariant under the Weyl group W (Eg). It is
known (see [Hunt 1996, Section B.1.2.2] for general
information on the invariants of unitary reflection
groups) that the ring of all invariant polynomials is
the polynomial ring

ClYy,... Y)WV E) = C[Jy, Js, Jg, Js, Jo, J1a).-

The polynomial J; is just a multiple of the Killing
form. The next one up, Js, is the one that interests
us; it defines the invariant quintic hypersurface

A quick way to write it explicitly is:

Proposition 2. Let E; denote the i-th elementary sym-
metric polynomial in the squares of the five variables
Ys,...,Ys. Then Js is given by

720(YY —6Y By —27Y1(Ef —4E,) +648Y,Y;Y, Y5 Y5).

3. THE DUAL OF THE INVARIANT QUINTIC

The invariant quintic I5 is an extremely interesting
variety, mainly because, as shown in [Hunt 1996], it
contains several subvarieties that are known to be
modular, that is, quotients of bounded symmetric
domains by certain arithmetic groups. It then fol-
lows from the general theory of Shimura that these
subvarieties are moduli spaces for certain moduli
problems. Furthermore, I5 is itself conjectured to
be closely related to the moduli space of marked cu-
bic surfaces. We briefly describe these connections.

I5 is singular; its singular locus consists of 120
lines meeting at 36 points: the projectivized roots of
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Eg. At these 36 points, I5 has multiplicity 3; blowing
up the points we get a copy of the Segre cubic three-
fold, the unique cubic threefold with 10 ordinary
double points (there are 10 of the 120 lines meeting
at each of the 36 points). Dual to the 36 singular
points are 36 hyperplane sections, each of which is
isomorphic to the Nieto quintic. Results from [Hunt
1996] and unpublished investigations of the same
author show that the Segre cubic, the Nieto quintic
and I5 are closely related to ball quotients.

The (conjectural) relation with the moduli space
of marked cubic surfaces has two descriptions. The
moduli space of cubic surfaces is a ball quotient [All-
cock et al. 1998], as is that of marked cubic surfaces.
The latter space is a Galois cover of the former with
a Galois group isomorphic to W (Eg). Since I5 is
related to a ball quotient and has automorphism
group isomorphic to W (Es), we see the first connec-
tion. Next, consider the hyperplane sections of I5.
These are quintic threefolds with 120 ordinary dou-
ble points. Moreover, for a tangent hyperplane sec-
tion, we have a 121-nodal quintic. It is well-known
that this is a Calabi-Yau threefold (after resolu-
tion), and that it has a cubic form on the cohomol-
ogy. In this case, the cubic form, taken projectively,
is a cubic surface! This is the other connection.

Our goal is to find the dual polynomial. Its degree
would be 5-4* = 1280 if the quintic where nonsingu-
lar [Kleiman 1981]. However, singularities tend to
lower the degree of the dual, in this case by a lot.

Theorem 3. The dual polynomial of Js has degree 32.
It is obtained from the polynomial J shown at the
top of the next page by the replacement Y, — 3Y;.

We denote by J the polynomial obtained from .J
replacing Y; — 3Y;. Similarly the polynomial ob-
tained from Jj by this transformation is denoted by
Jy,. The meaning of this transformation is that it
intertwines the dual representation of W (Eg) with
the original one. A simple observation states that
P(Grad Q) is invariant under W (Eg) if @ is invari-
ant under W (Eg) and P is invariant under the dual
representation (i.e., invariant under the transposed
matrices). We conclude that J,(Grad.J5) can be
written as a polynomial in the invariants J,, Js, Jg,
Js, Jg, Jia. As soon as one has found these poly-
nomials explicitly for kK = 2, 5, 6, 8, 9, 12 one has
a representation of J(Grad.J5) as a polynomial in
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J=2323165.72 J¢ _ 2343145.72 2. J2 4 938 3135.7J3 . J, —

— 235314 5. 72 ], Jo J3
— 236 3115.7.13,J3JgJs + 2% 310 72 13,8

299 312 72 JA 1, + 24310 72 61J4J2

— 283U B2 TN Js 3 + 283 5.7 JyJ2Js i + 2°°38105-T3 JhJ2J3 s
— 2% 3252 3T + 2% 310572 11373 T8 Jg

+ 235 31 52 7. 1772 s JeJsJo — 235 3115.73 J2J2Js 1, — 234395272 J2J2J3 — 235 310 72292 J4
4235 310 54 J37. g2 4 2363105272 J3 7.7 7, — 23538 5.72 41J3J3Jy — 236 39 53 73 J5 e 1
— 235 37 52 7.103J3J5J2J, — 231 3125.72 J3J2J2 + 233 38 72 36T.J3JJ; + 234 38 5% 72 JLJ2,

+2%6 310 53 74 JAJ3 — 298 3% 5% 13J4JsJ3

234 36 52 72 41J2J2 01, + 2%2 3% 5. 72 412 JAJ}

— 2% 315.72 J2J2 JsJs + 2303752 7-11-31J4J3Jy — 2273853 72139J3 JoJ2 — 22837547593 J5JsJ
+ 2303853 72 J2J2J1p + 2% 3%5.7210903J5J2J2 — 227365474 JSJsJ1o + 2263453 72112 41J5J2 Js
+ 227 3% 54 7457 I8 Js g Jy — 224 3% 72 179-593J5J% + 2% 3855 JIJ2 + 228 31 5% 72 4177 JsJ1a
— 2213253 72412 7 J3 + 228345-7264937J7 J2 Js + 2173452 72659947.J5 T2 — 2183%25.72239-23747 x

J8J2Js —

219 32 52 72 561947J3 JoJy — 2% 3° 58 7-17-179J9J5Jy — 2% 3% 5% 72 11-67.J3%

+ 2M527219-23-41-109J,°J2 + 2163253 724373J,1 J2 + 219325474 11-67J,%Jg — 21154 72 11-41-67 x

JB3Js+ 5572112672 J28.

the invariants. The duality relation means that this
polynomial is divisible by Js. This means exactly
that it vanishes after replacing Js by 0. Explicit ex-
pressions for J;,(Grad J;) as polynomials in the in-
variants, for each of the six cases, have been found
by computer; they can be found in [Freitag 1998|.

The most involved calculations concern the case
k = 12. The degree of J~12(Grad Js) is 48 and there
are 248 monomials of this degree. We chose 350 spe-
cial values at random and had to solve 350 equations
with 248 variables. The problem is that the solution
consists of huge rational numbers with denomina-
tors. Therefore we solved the equations modulo sev-
eral primes (actually 15 such beginning at 100003).
To reconstruct the rational numbers we made an
a priori assumption about their size. This a priori
assumption is justified later because it is easy to ver-
ify the result by direct calculation. The vanishing of
J(Grad Js) after the substitution J; = 0 again can
be verified by inserting enough special values.

Hunt [1996] has proved that J; defines a ratio-
nal variety. We conclude that the hypersurface 132
defined by J is rational.
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