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Affine spheres with definite and indefinite Blaschke metric are

discretized in a purely geometric manner. The technique is

based on simple relations between affine spheres and their du-

als which possess natural discrete analogues. The geometry of

these duality relations is discussed in detail. Cauchy problems

are posed and shown to admit unique solutions. Particular dis-

crete definite affine spheres are shown to include regular poly-

hedra and some of their generalizations. Connections with inte-

grable partial difference equations and symmetric mappings are

recorded.

1. INTRODUCTIONThe study of a�ne di�erential geometry has a longhistory. According to [Nomizu and Sasaki 1994],it was initiated by Tzitzeica in the �rst decade ofthe twentieth century, with a remarkable paper [Tzi-tzeica 1910] on a particular class of hyperbolic sur-faces and its invariance under a B�acklund{Moutard-type transformation. Even though Tzitzeica's anal-ysis was undertaken in the language of standardclassical di�erential geometry, his class of surfacesturns out to be of particular importance in a�nedi�erential geometry. Indeed, the Tzitzeica prop-erty proves to be invariant under (equi)a�ne trans-formations, and his surfaces are now known as a�nespheres (A�nsph�aren) [Blaschke 1923] because theyare analogues of spheres in a�ne di�erential geom-etry. An elementary introduction to this topic anda novel characterization of a�ne spheres is given inSection 2.The issue of canonical discretizations of geome-tries in the context of integrable systems has re-cently become a subject of extensive studies. In-deed, one may propose various discrete problemshaving the same continuum limit but rather di�erentproperties. Thus, is there a distinct discretization
c
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262 Experimental Mathematics, Vol. 8 (1999), No. 3which one should choose? The problem of �nding aproper discretization of a given geometric model be-longs to experimental mathematics. Many conceptsin this area of research have been developed on useof geometric and algebraic methods with an essen-tial input of trial and error. The current problem ofdiscretizing a�ne spheres turns out to be very muchof this kind:Early attempts to discretize particular coordinatesystems on surfaces go back to Sauer. An accountof his work and references may be found in [Sauer1970], where he sets in correspondence di�erentialgeometric objects and di�erence geometric models.Such models include discrete conjugate and asymp-totic nets. The latter were used in 1950 to de-�ne discrete models for surfaces of constant nega-tive Gau�ian curvature [Sauer 1950]. Independently,Wunderlich [1951] derived a discrete counterpart ofthe classical B�acklund transformation for these dis-crete pseudospherical surfaces. A discrete analogueof the sine-Gordon equation which governs pseudo-spherical surfaces was not discussed in his work.Some tweny-�ve years later, an integrable discretesine-Gordon equation was set down by Hirota [1977]and it was only recently that a connection betweenthat discretization and the discrete pseudospheri-cal surfaces was established by Bobenko and Pinkall[1996b]. Since then integrable discrete models ofsurfaces of constant mean curvature [Bobenko andPinkall 1999] and isothermic surfaces [Bobenko andPinkall 1996a] have been constructed.The geometry of higher-dimensional integrable lat-tices has also been the subject of recent studies.Thus, the conjugate nets of Sauer [1970] were gener-alized to higher dimensions and investigated in con-nection with integrability in [Bogdanov and Kono-pelchenko 1995; Doliwa 1997; Doliwa and Santini1997]. Multi-dimensional lattices which model cur-vature (conjugate and orthogonal) coordinate lineswere de�ned in [Bobenko 1999] and their geomet-ric and analytic integrability investigated in [Cie-�sli�nski et al. 1997; Doliwa et al. 1998]. Remarkably,two-dimensional lattices (nets) of this type (cyclicnets) have been used earlier in computer-aided sur-face design [Martin et al. 1986; Nutbourne 1986].Two- and three-dimensional cyclic lattices in Eu-clidean spaces of arbitrary dimension were derivedvia suitable eigenfunction constraints in [Konopel-

chenko and Schief 1998], where explicit parametri-zations of lattices on the line, plane and in R 3 aregiven.In [Bobenko and Schief 1999] we solved in a purelygeometric manner the problem of discretizing a�nespheres with inde�nite Blaschke metric in such away that integrability is preserved. We exploitedthe fact that asymptotic lines on inde�nite a�nespheres possess a property which we term `a�neLorentz harmonicity' for lack of a better expression.Thus, by demanding that discrete inde�nite a�nespheres constitute both discrete asymptotic and dis-crete a�ne Lorentz harmonic nets, discrete inde�-nite a�ne spheres have been constructed. Section 3starts with a brief review of this construction. How-ever, an analogous route is not available in the con-vex case. We conclude Section 3 with an alternativebut equivalent de�nition of discrete inde�nite a�nespheres in terms of simple duality relations involv-ing a dual or conormal lattice. It is this descriptionwhich may be adopted in the de�nite case. We notethat the concept of dual surfaces may also be usedin the de�nition of discrete isothermic surfaces andsurfaces of constant mean curvature [Bobenko andPinkall 1999; Hertrich-Jeromin et al. 1999].Section 4 is concerned with the de�nition andproperties of discrete de�nite a�ne spheres and theirduals. It turns out that the duality relations aresuch that the discrete surfaces regarded as latticesmay be of any type, for instance triangular, quadri-lateral or honeycomb. Examples of discrete de�nitea�ne spheres include certain symmetric solids, inparticular the regular polyhedra. In the case of sur-faces Z 2 ! R 3, it is shown that the discrete du-ality relations are self-consistent in the sense thata Cauchy problem may be formulated and its well-posedness proven. These discrete surfaces are dis-cussed in detail in Section 5. The correspondingdiscrete Gau� equations are formulated and it isshown that their compatibility conditions (discreteGau�-Weingarten equations) lead to a discrete ellip-tic version of the classical Tzitzeica equation whichadmits a well-posed Cauchy problem. The paperconcludes with a particular class of discrete de�nitea�ne spheres which is governed by a one-dimen-sional integrable mapping well known in soliton the-ory. This may be regarded as an indication of theintegrability in the generic case.
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2. CLASSICAL CASESIn this section, we present the well-known descrip-tion of a�ne spheres with inde�nite and de�niteBlaschke metrics (for more details see, for exam-ple, [Blaschke 1923; Simon and Wang 1993]). Here,a�ne di�erential geometry is treated in its classi-cal setup, that is as the geometry which investigatesproperties of surfaces in R 3 that are invariant under(equi)a�ne transformationsr 7! Ar + a; with A 2 SL(3; R ); a 2 R 3:Thus, let r : M! R 3;(x; y) 7! r(x; y)be an immersion with a nondegenerate second fun-damental form (Gau�ian curvature K 6= 0). Intro-duce L = jry; rx; rxxj;M = jry; rx; rxyj;N = jry; rx; ryyj;where j � ; � ; � j denotes the standard determinant inR 3.
Definition 2.1. The quadratic formg = Ldx2 + 2M dxdy +N dy2jLN �M 2j1=4 (2–1)is equia�ne invariant. It is called the Blaschke met-ric of the immersion.The Blaschke metric is conformally equivalent to thesecond fundamental form of the immersion.
Definition 2.2. A transversal vector �eld � on a sur-face r(M) is called a�ne normal if it satis�es� = � 12�gr;where �g is the Laplace{Beltrami operator of theBlaschke metric.In contrast to Blaschke's de�nition, we choose thea�ne normal to point outwards a convex surface (seeFigure 1). The reason is that in the convex case weprefer to `look' at the surface from outside ratherthan inside. The direction of the a�ne normal hasa simple geometrical meaning [Blaschke 1923]. Inthe hyperbolic case, it can be described as follows.Consider an in�nitesimal quadrilateral composed of

ry
rx

�

FIGURE 1. The orientation of the triad frx; ry; �g.asymptotic lines. Build two planes, each being par-allel to a pair of opposite edges of the quadrilateral.The a�ne normal is parallel to the line of intersec-tion of these two planes. If r; r12 and r1; r2 are twopairs of opposite vertices of the quadrilateral (seeSection 3 for notations), then the a�ne normal isparallel to � � r12 + r � r1 � r2: (2–2)In the convex case, the description is di�erent. Letr(M) be a locally convex surface in R 3 and p 2 M.For any small t consider a plane �t parallel to thetangent plane �0 = dr(TpM). The plane �t inter-sects the surface in a plane curve �(t) which is theboundary of a planar domain D(t):@D(t) = �(t):Let 
(t) be the centre of gravity of D(t). The tan-gent vector 
0(0) to the curve 
 de�nes the a�nenormal direction at the point r(p).Regarding the normalization of �, we mention twoproperties of the a�ne normal:� d� 2 dr(TM);� jdr(�); dr(�); �j is the volume form correspondingto the Blaschke metric, that is,jrx; ry; �j = jLN �M 2j1=4: (2–3)

Definition 2.3. A non-degenerate surface in R 3 iscalled an a�ne sphere if all a�ne normals inter-sect at a point. If this point is not in�nite it maybe chosen as the origin of R 3 so that� = Hr; H : M! R :H is called the a�ne mean curvature.One can prove that in the case of a non-degenerateBlaschke metric the a�ne mean curvature of the



264 Experimental Mathematics, Vol. 8 (1999), No. 3a�ne sphere is constant. In the following, we con-sider proper a�ne spheres; that is, we assume thatH 6= 0. Consequently, H may be normalized toH = �1 on use of a scaling transformation of theambient space R 3. It is natural to distinguish be-tween the cases of a de�nite Blaschke metric (convexsurfaces K > 0) and of an inde�nite Blaschke met-ric (hyperbolic surfaces K < 0). In the convex case,H de�ned as above is positive and in the inde�nitecase, it can be set positive by a change of the orien-tation r ! �r. In the sequel, we assume thatH = 1:
2A. Indefinite affine spheresIn the case of an inde�nite Blaschke metric, it is nat-ural to consider the asymptotic line parametrizationof surfaces L = N = 0;which is a�ne invariant. Applying if necessary anorientation-preserving transformation(x; y)! (y;�x);one can always achieve M > 0.For a�ne spheres we set � = r as indicated. Onintroduction of the functionh = jrx; ry; rj (2–4)and the cubic di�erentials a dx3; bdy3, wherea = jrx; rxx; rj; b = �jry; ryy; rj; (2–5)one obtains jrx; ry; rxyj = h2 (2–6)and the following linear system for the immersion r(Gau� equations):rxx = hxh rx + ahry;rxy = hr;ryy = hyh ry + bhrx:

(2–7)

Using rxx; ryy 2 spanfrx; ryg, one can easily provethe following fact:
Lemma 2.4. An asymptotically parametrized surface(x; y)! r(x; y) is an a�ne sphere if and only ifrxy k r:

The compatibility conditions for (2{7) yield(log h)xy = h� abh�2; ay = 0; bx = 0: (2–8)The above system is invariant with respect to thetransformation a! �a; b! ��1b (2–9)with arbitrary � 2 R . This gives rise to the followingresult:
Theorem 2.5. Every inde�nite a�ne sphere possessesa one-parameter (� 2 R ) family of deformationspreserving the Blaschke metric and the di�erentialab dx3 dy3. These deformations are described by thetransformation (2{9). The system0@ rxryr

1Ax =
0@hxh�1 �ah�1 00 0 h1 0 0

1A0@ rxryr
1A ;0@ rxryr

1Ay =
0@ 0 0 h��1bh�1 hyh�1 00 1 0

1A0@ rxryr
1A (2–10)

determines the corresponding family of immersions.In the terminology of modern soliton theory, the lin-ear system (2{10) is the Lax representation for thesystem (2{8). In fact, for a 6= 0 and b 6= 0, one mayre-parametrize the asymptotic coordinates accord-ing to x! ~x(x); y ! ~y(y)in such a way that a = 1; b = " = �1 and theorientation is preserved. Thus, we obtain(logh)xy = h� "h�2: (2–11)Finally, the parameter " may be absorbed if one al-lows negative valued solutions h. Indeed, if h(x; y) isa solution to the integrable Tzitzeica equation [Tzi-tzeica 1910] (log h)xy = h� h�2and r(x; y) is the corresponding immersion, then~h(x; y) = "h(x; "y) is a solution to (2{11) with as-sociated immersion ~r(x; y) = r(x; "y).It is readily veri�ed that the quantity� = 1hrx � ry (2–12)is a solution of the adjoint or dual system repre-sented by � = �1. The geometric signi�cance of



Bobenko and Schief: Affine Spheres: Discretization via Duality Relations 265� is as follows. By de�nition, the vector � is per-pendicular to the tangent plane spanned by rx; ry.Furthermore, the normalization (2{3) shows thatr � � = 1:Hence � is called a conormal. The conormal de�nesdiscrete a�ne spheres which may be considered dualto those given by r. This is made precise in thefollowing
Theorem 2.6 (Duality relations for indefinite affine

spheres). Inde�nite a�ne spheres and their dualsare equivalently described by the Lelieuvre formulaerx = � � �x;ry = �y � �; �x = rx � r;�y = r � ry; (2–13)which imply that r � � = 1.One can directly verify that � as given by (2{12)obeys the duality relations (2{13). Conversely, twovector-valued functions r and � which satisfy theduality relations de�ne two a�ne spheres with co-normals � and r respectively. For symmetry rea-sons, it is su�cient to focus only on r, say. Thus,the Lelieuvre formulae yieldrxx ? �; ryy ? �; rx ? �; ry ? �;which implies that r forms an asymptotic net and� is a corresponding normal. Secondly, the compat-ibility condition �xy = �yx for (2{13)2;4 readsrxy � r = 0 =) rxy k r;which means that r is an a�ne sphere by virtueof Lemma 2.4. Finally, if we insert �x as given by(2{13)2 into (2{13)1, we obtain r � � = 1.
2B. Definite affine spheresIn the convex case, it is natural to consider the con-formal Blaschke metricg = 2hdz d�z; with h > 0; z = x+ iy;i.e., L4 = N4 = h2 = i jrz; r�z; rz�zj; M = 0in (2{1). For a�ne spheres (� = r), the relation(2{3) implies that we have another representationfor h, namely ih = jrz; r�z; rj:

The cubic di�erentials a dz3; b d�z3, wherea = i jrz; rzz; rj; b = �i jr�z; r�z�z; rj;are complex conjugates. The Gau� equations of def-inite a�ne spheres readrzz = hzh rz � ahr�z;rz�z = �hr;r�z�z = h�zh r�z � bhrz:
(2–14)

Using rxx � ryy; rxy 2 spanfrx; ryg;one can easily prove the following fact:
Lemma 2.7. A convex immersion (z; �z) 7! r(z; �z)with conformal Blaschke metric (conformal secondfundamental form) is an a�ne sphere if and only ifrz�z k r:The compatibility conditions for (2{14) yield(log h)z�z + h+ jaj2h�2 = 0; a�z = 0: (2–15)The above system is invariant with respect to thetransformation a! �a; �a! 1��a (2–16)with arbitrary � 2 C ; j�j = 1. This fact gives riseto the following Lax representation for the system(2{15):
Theorem 2.8. Every de�nite a�ne sphere possessesa one-parameter (j�j = 1) family of deformationswhich preserve the Blaschke metric and the di�er-ential jaj2 dz3 d�z3. These are described by the trans-formation (2{16). The system0@ rzr�zr

1Az =
0@hzh�1 ��ah�1 00 0 �h1 0 0

1A0@ rzr�zr
1A ;0@ rzr�zr

1A�z =
0@ 0 0 �h���1�ah�1 h�zh�1 00 1 0

1A0@ rzr�zr
1A (2–17)

determines the corresponding family of immersions.For a 6= 0, by a conformal reparametrization z !~z(z), one can normalize a = 1 and obtain the Tzi-tzeica equation for de�nite a�ne spheres(log h)z�z + h+ h�2 = 0:



266 Experimental Mathematics, Vol. 8 (1999), No. 3It is easy to check that the conormal (� � r = 1)� = � ihrz � r�zis descriptive of an a�ne sphere represented by thesystem (2{17) with � = �1. We call this a�nesphere the dual of r. We conclude this section by acomplete analogue of Theorem 2.6.
Theorem 2.9 (Duality relations for definite affine spheres).De�nite a�ne spheres and their duals are equiva-lently described by the symmetric (with respect to rand �) Lelieuvre formulaerz = i�z � �;r�z = i� � � �z; �z = irz � r;� �z = ir � r�z;which imply that r � � = 1. In the real coordinatesx; y (with z = x + iy), the Lelieuvre formulae takethe formrx = �y � �;ry = � � �x; �x = ry � r;�y = r � rx: (2–18)

3. A DISCRETIZATION OF INDEFINITE AFFINE
SPHERESIn [Bobenko and Schief 1999], a�ne spheres withinde�nite Blaschke metric have been discretized ina purely geometric manner. The corresponding dis-crete Gau� and Gau�{Codazzi equations have beenset down and used to derive a discrete analogueof the classical Tzitzeica transformation for a�nespheres. An interpretation of the discrete Gau�equations in terms of loop groups has also beengiven. Here, we recall the elementary properties ofthese discrete a�ne spheres and show that they maybe equivalently de�ned via simple duality relationsinvolving the conormal. Duality relations of similarkind will prove key to the discretization of convexa�ne spheres discussed in the following section.In this section, discrete surfaces constitute two-dimensional lattices in Euclidean space R 3, that ismapsr : Z 2 � �! R 3; (n1; n2) 7! r(n1; n2): (3–1)It is convenient to suppress the arguments of func-tions of n1 and n2 since we only deal with auton-omous di�erence equations. Thus, increments of

discrete variables are denoted by subscripts, for in-stance r = r(n1; n2);r1 = r(n1+1; n2);r2 = r(n1; n2+1);r11 = r(n1+2; n2);r12 = r(n1+1; n2+1);r22 = r(n1; n2+2);and decrements are indicated by overbars, that is,r�1 = r(n1 � 1; n2); r�2 = r(n1; n2 � 1):We also adopt the following notation of the usualdi�erence operators:�ir = ri � r; �12r = r12 � r1 � r2 + r:
3A. Definition and properties

Definition 3.1. A two-dimensional lattice (discretenet) in three-dimensional Euclidean spacer : Z 2 � �! R 3
is called a discrete inde�nite a�ne sphere if it hasthe following properties:
[A] Any point r(n1; n2) and its neighbours r1, r2,r�1, r�2 lie on a plane.

r�1
r2

r�2 r1
r

[H] All discrete a�ne normals �, whose directionsare de�ned by � � �12r;intersect at a point O.
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12 (r12+r)
r1

r
r2

r12
�

O
12 (r1+r2)

Nets possessing property [A] are called asymptotic.They model asymptotic lines on smooth surfaces[Sauer 1970]. In analytic terms, [A] translates intojr1�r; r2�r; r�r�1j = 0; jr1�r; r2�r; r�r�2j = 0:Nets of type [H] may be termed a�ne Lorentz har-monic, i.e., there exists a function � such that�12r = �(r12 + r1 + r2 + r);equivalently, r12 + r k r1 + r2:For these conditions to hold, O has to be chosen asthe origin of the ambient space R 3. Remarkably, thede�nition of the discrete a�ne normal coincides ex-actly with the classical one (2{2) for hyperbolic sur-faces if one regards the edges of elementary quadri-laterals as in�nitesimal asymptotic line segments ona surface.A straightforward analysis of the conditions [A]and [H] now leads to the following theorem [Bobenkoand Schief 1999]:
Theorem 3.2 (The Gauß equations for discrete indefinite

affine spheres). Discrete inde�nite a�ne spheres aregoverned by the discrete Gau� equationsr11�r1 = H1�1H1(H�1)(r1�r)+ A1H�1(r12�r1);r12+r = H(r1+r2);r22�r2 = H2�1H2(H�1)(r2�r)+ B2H�1(r12�r2):
(3–2)

They are compatible moduloA2 = (H=H�1)A; B1 = (H=H�2)B;H12H(H1 +H2 �H1H2 + A12B12)= H12 +H � 1: (3–3)

The discrete analogues of the formulae (2{4){(2{6)derived in the previous section readjr;�1r;�2rj = c(H � 1)=H;j�1r;�2r;�12rj = 2c(H � 1)2=H;jr;�1r;�11rj = cA1;jr;�2r;�22rj = �cB2: (3–4)

Here c is a constant of `integration' .The discrete Gau�{Codazzi equations (3{3) may bevisualized as follows: The a�ne Lorentz harmonic-ity condition (3{2)2 suggests associating the func-tion H with the elementary quadrilateral(r; r1; r2; r12):The functions A and B naturally `live' on the vertexr. Thus, the linear equation (3{3)1 may be regardedas a relation for any quadrupel consisting of two H-functions and two A-functions which enclose a `ver-tical' edge [r; r2] of the lattice. Similarly, any `hor-izontal' edge [r; r1] is enclosed by two H-functionsand two B-functions. They are linked by (3{3)2.The situation is illustrated in Figure 2.

A
A2

B1B H�2
HHH�1

FIGURE 2. The A- and B-equations.The remaining equation (3{3)3 relates a productof A- and B-functions which is de�ned on a vertexto the four adjacent H-functions; see Figure 3.
H2

B12 A12 H1H
H12

FIGURE 3. The H-equation.



268 Experimental Mathematics, Vol. 8 (1999), No. 3In the natural continuum limit one regards a dis-crete function f : Z 2 ! R as an approximation of asmooth function ~f : R 2 ! R , that isf(n1; n2) = ~f(x; y)��(x;y)=("1n1;"2n2)for small "i. Then, on dropping the tilde, the Taylorexpansions f1 = f + "1fx +O("21);f2 = f + "2fy +O("22)apply. Now, the form of the discrete Gau� equations(3{2) suggests the natural expansionH = 1 + 12"1"2h; A = 12"31a; B = 12"32b;so that the discrete Gau�{Codazzi equations reduceto (log h)xy = h� abh�2; a = a(x); b = b(y)in the limit "i ! 0. Similarly, the discrete Gau�equations become the continuous ones (2{7) in thislimit. It is therefore justi�ed to term (3{3) a discreteTzitzeica system.The linear equations (3{3)1;2 for A and B may besolved identically by introducing a potential � whichparametrizes A;B and H according toA = ~c � 2��1�1 ; H = �1�2��12 ; B = ĉ � 2��2�2 ;where ~c and ĉ are arbitrary constants. This, insertedinto the nonlinear equation (3{3)3 for H, results inthe discrete Tzitzeica equation������ �22 �122 �1122�2 �12 �112� �1 �11
������ = ~cĉ� 312: (3–5)

Note that the Tzitzeica equation(logh)xy = h� h�2may be brought into the form������ �yy �xyy �xxyy�y �xy �xxy� �x �xx
������ = 14� 3in terms of a � -function de�ned viah = �2(log �)xy:This underlines the analogy between the classicalcontinuous case and the discrete formalism presen-ted here.

A well-posed Cauchy problem for the � -equation(3{5) is associated with the Cauchy data�(n; i�n); for i = 0; : : : ; 3; (3–6)that is, � is prescribed arbitrarily on four adjacentdiagonal chains of lattice points (Figure 4). (Infact, � may be prescribed on an arbitrary stairway-shaped strip.)

�
�112�12
�1122�122

�1 �11
�2
�22

FIGURE 4. A well-posed Cauchy problem for the� -equation (3{5).Now, if one chooses the Cauchy data in such a waythat the determinant ��12 � �1�2 does not vanish,then the � -equation may be solved for �1122. Simi-larly, all other values of � on the diagonal (n; 4�n)may be calculated provided the relevant determi-nants are non-zero. This process may be iteratedad in�nitum so that � is known on the upper-righthalf-plane. Alternatively, the � -equation may be re-garded as an equation for the unknown values of �on the lower-left half-plane. Thus, the Cauchy data(3{6) determine � uniquely.
3B. The conormal and duality relationsIt is evident that the discrete Tzitzeica system isinvariant under A ! �A, B ! ��1B, where � isan arbitrary constant. This observation may be ex-ploited to inject a parameter into the discrete Gau�equations:
Theorem 3.3 (A Lax representation for the discrete Tzi-

tzeica system). Every solution of the discrete Tzi-tzeica system (3{3) corresponds to a one-parameter



Bobenko and Schief: Affine Spheres: Discretization via Duality Relations 269family of discrete inde�nite a�ne spheres governedbyr11�r1 = H1�1H1(H�1)(r1�r)+� A1H�1(r12�r1);r12+r = H(r1+r2);r22�r2 = H2�1H2(H�1)(r2�r)+ 1� B2H�1(r12�r2):
(3–7)

For � = 1, we recover the discrete Gau� equations(3{2). Moreover, it is readily veri�ed that the quan-tity � = 12 HH � 1(r1 � r)� (r2 � r) (3–8)is a solution of the adjoint or dual system repre-sented by � = �1. The geometric signi�cance of �is as follows. Since r constitutes an asymptotic net,the lattice points r; r1; r2; r�1 and r�2 lie on a plane.By de�nition, the vector � is perpendicular to thisplane. Furthermore, the �rst integral (3{4)1 showsthat we may normalize r in such a way thatr � � = 1:In analogy with the continuous case, we call � a co-normal and conclude that the conormal de�nes dis-crete inde�nite a�ne spheres which may be consid-ered dual to those given by r. This is made precisein the following statement:
Theorem 3.4 (Duality relations for discrete indefinite af-

fine spheres). Discrete inde�nite a�ne spheres andtheir duals are equivalently described by the discreteLelieuvre formulaer1 � r = � � �1;r2 � r = �2 � �; �1 � � = r1 � r;�2 � � = r � r2; (3–9)which imply that r � � = 1.One can directly verify that � as given by (3{8)obeys the duality relations (3{9). Conversely, twovector-valued functions r : Z 2 ! R 3 and � : Z 2 !R 3 which satisfy the duality relations de�ne two dis-crete inde�nite a�ne spheres with conormals � andr respectively. For symmetry reasons, it is su�cientto focus only on r, say. Thus, the discrete Lelieuvreformulae yield�1r ? �; �2r ? �; ��1r ? �; ��2r ? �;

which implies that r forms a discrete asymptoticnet and � is a corresponding normal. Secondly, thecompatibility condition �12 = �21 for (3{9)2;4 reads(r12 + r)� (r1 + r2) = 0 =) r12 + r k r1 + r2and hence r is a�ne Lorentz harmonic. Finally, ifwe insert �1 as given by (3{9)2 into (3{9)1, we obtain�1r = (r � �)�1r;which implies that r � � = 1 in the generic case.It is interesting to note that a well-posed Cauchyproblem may also be formulated at the surface levelusing the duality relations. Thus, consider the ad-missible datar(n; �n); �(n; 1�n); �(0; 0) (3–10)subject to the constraints�(n; 1�n) � r(n; �n) = 1;�(n; 1�n) � r(n�1; 1�n) = 1;�(0; 0) � r(0; 0) = 1; (3–11)

as displayed in Figure 5.
r2 �2 r1 �1r � ��2 �1 r ?

FIGURE 5. A well-posed Cauchy problem for discreteinde�nite a�ne spheres and their duals.Since �;�2 and r are known, the vertex r2 maybe calculated by means of the duality relations (3{9)which, in turn, enables us to determine ��12. Thisprocess may be iterated so that r and � are uniquelydetermined on the diagonals (n;�n) and (n; 1� n).Note that all duality relations are satis�ed due tothe constraints (3{11) on the Cauchy data.It is evident that the existence of the discretea�ne sphere and its dual now depends on the solu-tion to the following problem: Suppose the pairs ofvectors (r1;�1); (r2;�2) and (r;�) (which live on thevertices of an elementary quadrilateral) satisfy thecorresponding duality relations (3{9). Is it possible



270 Experimental Mathematics, Vol. 8 (1999), No. 3to construct (uniquely) vectors r12 and �12 whichobey the duality relationsr12 � r2 = �2 � �12;r12 � r1 = �12 � �1; �12 � �2 = r12 � r2�12 � �1 = r1 � r12
(3–12)(Figure 5)? The following constructive proof givesa positive answer to this question.Elimination of r12 and �12 from the left-hand sidesof (3{12) results inr1 � r2 = (�1 + �2)� �12�1 � �2 = r12 � (r1 + r2): (3–13)Similarly, the duality relations (3{9) yieldr1 � r2 = � � (�1 + �2)�1 � �2 = (r1 + r2)� rwhich implies that �(r;�) is a particular solutionof (3{13) if regarded as linear inhomogeneous equa-tions for (r12;�12). Thus, the latter take the formr12 = �r + �(r1 + r2)�12 = �� + �(�1 + �2); (3–14)where �; � are as yet unknown. However, the nec-essary conditionsr1 � �12 = r12 � �2 = 1imply that � = � = 21 + r1 � �2 : (3–15)The fact that � = � is hardly surprising since bothr and � satisfy the a�ne Lorentz harmonicity con-dition (3{7)2 with the same coe�cient H. In fact,the preceding analysis delivers the expressionsH = 21 + r1 � �2 = 21 + r2 � �1if one takes into account that r1 � �2 = r2 � �1. Itis now readily veri�ed that r12 and �12 as given by(3{14), (3{15) indeed satisfy the relations (3{12).This proves that discrete inde�nite a�ne spheresand their duals are uniquely determined by the Cau-chy data (3{10){(3{11).

4. DISCRETE DEFINITE AFFINE SPHERES

4A. Duality relationsIn the previous section, it has been shown that dis-crete inde�nite a�ne spheres and their conormals

can be de�ned by the discrete Lelieuvre formulae(3{9). This observation suggests de�ning discretede�nite a�ne spheres by means of a canonical dis-cretization of the Lelieuvre formulae (2{18). Thus,in the discrete case, the partial derivatives @x and@y should correspond to di�erences de�ned on `hor-izontal' and `vertical' edges of a lattice respectively.Since the Lelieuvre formulae (2{18) mix these deriv-atives, it is necessary to distinguish between the lat-tices r and �. We therefore denote by �� the lat-tice dual to � � Z 2. We may think of the �eld� : �� ! R 3 as de�ned on the faces of a discretesurface r : � ! R 3 (see Figure 11). The followingdiscrete Lelieuvre relations (for notations see Fig-ure 11) constitute a natural geometric discretizationof the Lelieuvre formulae (2{18):r1 � r = � � ��2;r2 � r = ��1 � �; � � ��1 = r2 � r;� � ��2 = r � r1: (4–1)They constitute relations on edges. If we denote thefour �elds attached to an edge by up, down, left,right as in Figure 6, the duality relations take asymmetric form.
Definition 4.1. A discrete de�nite a�ne sphere r andits dual (discrete de�nite a�ne sphere) � are mapsr : � ! R 3 and � : �� ! R 3 satisfying the discreteLelieuvre relationsrr � rl = �u � �d;ru � rd = � l � �r; �r � � l = ru � rd;�u � �d = rl � rr: (4–2)

�l �r
ru
rd �d

�u
rrrl

FIGURE 6. The duality relations for discrete de�nitea�ne spheres.Since De�nition 4.1 is symmetric with respect to rand �, it is su�cient to investigate the geometricalproperties of r, say.
Theorem 4.2. Discrete de�nite a�ne spheres have thefollowing geometrical properties:(i) All elementary quadrilaterals (r; r1; r12; r2) areplanar .



Bobenko and Schief: Affine Spheres: Discretization via Duality Relations 271(ii) � is the conormal of r, i .e.,� � r = � � r1 = � � r2 = � � r12 = 1:(iii) For each vertex and its 4 neighboursr1 + r�1 + r2 + r�2 k r: (4–3)Nets with this property may be termed discretea�ne harmonic.(iv) For r;� de�ned by (4{1), we have(r1�r) �(����2) = (r2�r) �(����1) = 0;(r1�r) �(����1) = (r2�r) �(����2): (4–4)Properties (i), (ii), (iv) follow immediately from thediscrete Lelieuvre formulae. The latter are readilyshown to be invariant under volume preserving equi-a�ne transformations. We have chosen De�nition4.1 in such a way that the normalization r � � =const = 1 holds. Any other choice of this constantwould result in a slightly di�erent but equivalent(modulo appropriate scaling of r and �) de�nition.In order to derive (4{3), one should consider fourneighbouring faces in Figure 11 and substitute (4{1)into the trivial identity(� � ��2) + (��1 � �) + (��1�2 � ��1) + (��2 � ��1�2) = 0:
Remark 4.3. In [Sauer 1970], a net (or a discretesurface) r : Z 2 ! R 3 is called discrete conjugateif all its elementary quadrilaterals are planar. Re-cently, discrete conjugate nets and their specializa-tions have become a focus of interest in the theory ofintegrable systems (see Introduction). Property (i)of the theorem implies that discrete de�nite a�nespheres are conjugate nets. This property is naturalsince the Blaschke metric (which is proportional tothe second fundamental form) is conformal.
Remark 4.4. The a�ne harmonicity condition admitsa simple geometric interpretation. We de�ne a dis-crete a�ne normal � at the vertex r as a vectorwhich passes through the barycenter of the verticesr1, r�1, r2, r�2, and r, that is,� � r1 + r�1 + r2 + r�2 � 4r;and require that all a�ne normals meet at a point O,say. If we identify this point with the origin of theambient space R 3 then the discrete a�ne normalis parallel to the position vector r and hence thecondition (4{3) is retrieved. Note the resemblance

14 (r1+r�1+r2+r�2)
�� O

r
rr1

r1

r2

r2
r12
r�1

r�2

FIGURE 7. A planar quadrilateral and the discretea�ne normal.between the de�nitions of the a�ne normal in thediscrete and continuous cases.
Remark 4.5. Property (iv) is a discrete analogue ofthe conformality of the second fundamental formrx � �y = ry � �x = 0; rx � �x = ry � �y;where � is any normal �eld on the surface.
4B. A Cauchy problemA canonical Cauchy problem for discrete de�nitea�ne spheres is obtained by prescribing r on a ver-tical chain of lattice points and the conormal � onadjoining quadrilaterals, that isr(0; n); �(0; n);subject to the normalization conditionsr(0; n) � �(0; n) = 1;r(0; n) � �(0; n� 1) = 1: (4–5)This is schematically indicated in Figure 8. Here,bullets and boxes represent the Cauchy data r(0; n)and �(0; n) respectively.Now, comparison with the duality relations en-coded in Figure 6 shows that both r(1; n) (circles)and �(�1; n) (dashed boxes) may be calculated fromthe Cauchy data. We stress that all duality relationsare satis�ed by virtue of the constraints (4{5). It is
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FIGURE 8. A well-posed Cauchy problem for discretede�nite a�ne spheres.evident that iterative application of this procedureuniquely determines the discrete a�ne sphere andits dual.A particular class of discrete a�ne spheres is ob-tained if the Cauchy data r(0; n) and �(0; n) gen-erate two regular polygons of order N . For givenN , the a�ne spheres admit the discrete symmetryZN and possess one degree of freedom. However,the additional assumption of a re
ection symmetrywith respect to the polygon fr(0; n)g removes thisambiguity. In this case, it is not di�cult to showthat for N = 4 the discrete a�ne sphere is com-pact as shown in Figure 9. We conjecture that forN 6= 4 the discrete a�ne spheres do not close in thesense that the `discrete meridians' do not intersectat vertices.

FIGURE 9. Discrete a�ne spheres `of revolution', forN = 16; 4. For clarity, only part of the sphere cor-responding to N = 16 is shown.
4C. General netsSince the duality relations are de�ned on edges onecan naturally generalize De�nition 4.1 to discretesurfaces with arbitrary topology di�erent from Z 2.

The faces may be planar polygons of any type whichmay meet at vertices in any number. Each internaledge must belong to exactly two faces. In this sec-tion, we are concerned with this generalized notionof the discrete de�nite a�ne spheres: � and �� inDe�nition 4.1 are two arbitrary mutually dual lat-tices which form discrete surfaces.Figure 9 is reminiscent of a famous result in a�nedi�erential geometry due to Blaschke [1923]:
Theorem 4.6. All compact a�ne spheres are ellipsoids(the round sphere and its a�ne transforms).In the discrete case, it is natural to pose the samequestion:
Problem 4.7. Classify compact discrete a�ne spheres.We do not have a complete solution of this problem.In the simplest cases, however, the solution is re-markably close to the above mentioned theorem ofBlaschke. First of all, note that all tetrahedra area�ne equivalent and the regular one is obviously adiscrete a�ne sphere. The normalization r � � = 1implies that a tetrahedron a�ne sphere and its dualhave the same volume. In our normalization, thevolume of the tetrahedron a�ne sphere is 83 .
Theorem 4.8. All discrete a�ne spheres with thetopology of a cube are parallelopipeds (the regularcube and its a�ne transforms).To prove this theorem, denote by �u, �d, �l, �r, �f ,�b the conormals of the up, down, left, right, frontand back faces of a discrete surface with the cubetopology (all faces are planar quadrilaterals, threefaces meet at a vertex). It is not di�cult to showthat the sum of all conormalsA = �u + �d + �l + �r + �f + �bmust vanish. Indeed, consider A � �u. Since theconormals are discrete a�ne harmonic we have A��u = �d��u, which implies thatA = �d+��u withsome �. For symmetry reasons � = 1. Consideringall pairs of opposite faces, we obtainA = �d + �u = �l + �r = �f + �b:The sum of these three formulae (3A = A) impliesthat A = 0 and�d = ��u; � l = ��r; �f = ��b:



Bobenko and Schief: Affine Spheres: Discretization via Duality Relations 273The opposite faces of the surface are parallel. Thisobservation completes the proof.In our normalization, the volume of this a�necube is 4.
Corollary 4.9. All discrete a�ne spheres with thetopology of an octahedron are a�ne transforms ofthe regular octahedron.This statement follows from the previous one by du-ality. The volume of the octahedron is 83 . Further-more, the following theorem is evident:
Theorem 4.10. Regular solids and their a�ne trans-forms are discrete a�ne spheres.

L�L
FIGURE 10. The truncated cube, shown here for� = 12 (p17� 3) = 1=(2L3).We should mention that the regular solids do notexhaust the list of discrete compact a�ne spheres.In particular, the truncated hexahedron as shownin Figure 10 and its dual are discrete a�ne spheres;they are not Archimedean solids since there are twotypes of edges. Another simple example is the trun-cated tetrahedron (also non-Archimedean) and itsdual. See section on Electronic Availability below.

5. THE DISCRETE GAUSS EQUATIONS AND A
DISCRETE TZITZEICA SYSTEMThe aim of this section is to derive explicitly a dis-crete elliptic Tzitzeica system which governs discretede�nite a�ne spheres in the case of Z 2-lattices. Asin the continuous case, the discrete Tzitzeica sys-tem may be regarded as associated discrete Gau�{Codazzi equations. They arise as the compatibility

condition of the discrete Gau� equations which are,in turn, a consequence of the de�ning relations (4{1)for discrete de�nite a�ne spheres and their duals.It is also recorded that the discrete Gau� equationsadmit an elementary interpretation in terms of thevolumesV = jr; r1; r2j;V 00 = jr; r�2; r1j; V 0 = jr; r2; r�1jV 000 = jr; r�1; r�2j: (5–1)(Compare Figure 11.)

r r1
r12r2

r1�2r�2r�2

r�1
r�1�2

r�12
���1

��1�2 ��2
VV 0
V 00V 000

FIGURE 11. The Z 2-lattice, its conormals and corre-sponding volumes.
5A. The discrete Gauß equationsThe de�ning relations (4{1) readily imply the fol-lowing result:
Theorem 5.1 (The discrete Gauß equations). The dis-crete Gau� equations associated with discrete de�-nite a�ne spheres take the formr12 � r = P (r1 � r) +Q(r2 � r);r1 + r�1 + r2 + r�2 = (4�H)r;r1 � r�1 � r2 + r�2 = Ar1 +Br2 + Cr; (5–2)

with constraintsA+B + C = A+BA�BH;
2S1S = A1Q ; S = A�B2H ;2S2S = �B2P : (5–3)

The conormal � is given by� = S(r1 � r)� (r2 � r): (5–4)



274 Experimental Mathematics, Vol. 8 (1999), No. 3The condition (5{2)1 expresses the fact that the el-ementary quadrilaterals are planar (compare Figure7). Secondly the condition (4{3) implies that thereexists a function H such that (5{2)2 holds. The re-maining relation (5{2)3 is trivial if one assumes thatthe vectors r; r1; r2 are linearly independent. Theadditional constraints are obtained by satisfying theconditions (4{1) identically. To this end, it turns outconvenient to bring the discrete Gau� equations intocanonical form, by writing the vectors r11; r22 andr12 as linear combinations of r1, r2 and r. This isachieved by incrementing the sum and the di�erenceof (5{2)2;3, namely2r1+2r�2 = Ar1+Br2+(4�H+C)r;2r�1+2r2 = �Ar1�Br2+(4�H�C)r; (5–5)with respect to n1 and n2. We deduce thatA1r11 = (4�H1�C1)r1�2r�(2+B1)r12;r12 = r+P (r1�r)+Q(r2�r);B2r22 = �(4�H2+C2)r2+2r+(2�A2)r12;which is of the required form if one substitutes forr12.Now, the �rst step in the procedure is to �nd anexplicit expression for the conormal �. Thus, sincethe dual lattice is also discrete a�ne harmonic, thereexists a function H� such that�1 + ��1 + �2 + ��2 = (4�H�)�:If we increment n1 and n2 in (4{1)2;4 respectively,we obtain �1 � � = r12 � r1;�2 � � = r2 � r12; (5–6)which combined with (4{1)2;4 yields�H�� = (�1��)+(��1��)+(�2��)+(��2��)= (r12�r)�(r1�r2):Hence, by virtue of the conjugacy condition (5{2)1,the conormal is given by� = S(r1 � r)� (r2 � r);S = P +QH� ; (5–7)

which re
ects the fact that � is indeed orthogonalto the elementary quadrilateral (r; r1; r2; r12).The expression for � may now be inserted into(5{6)1. Its component in r12-direction is identically

satis�ed. The component in r1-direction producesthe constraint (5{3)3 while (5{6)1 � r yieldsA+B + C +H = AS :Similarly, evaluation of (5{6)2 results in the con-straint (5{3)4 and the relationA+B + C �H = BS :Thus, the relations (5{3)1;2 are retrieved. Finally, itis readily veri�ed that r �� = r1 ��1 = r2 ��2 whichimplies that r may by chosen in such a way thatr � � = 1 and hence the de�ning relations (4{1)1;3are also satis�ed.To summarize, discrete de�nite a�ne spheres aregoverned by the discrete Gau� equations given inTheorem 5.1. The corresponding dual discrete def-inite a�ne spheres represented by the conormal �take the form (5{4).
5B. Geometric properties of the discrete Gauß equationsIt has been pointed out that the �rst two discreteGau� equations re
ect conjugacy and a�ne har-monicity of the lattice. The third equation encodesthe fact that, in the continuous case, the second fun-damental form is not only diagonal but conformal.Furthermore, it is possible to interpret the coe�-cients in the discrete Gau� equations in terms ofthe volumes V; V 0; V 00; V 000. Thus, consider the tripleproduct [(5{5)1 � r] � r1, which yields2(r�2 � r) � r1 = B(r2 � r) � r1:By virtue of the de�nitions (5{1) this becomesB = �2V 00V :Similarly, the triple product [(5{5)2 � r] � r2 resultsin A = 2V 0V :Moreover, since r � � = 1, the expression (5{7) forthe conormal � yieldsS = 1V ;so that the constraints (5{3)3;4 may be written asP = V 002V ; Q = V 01V :



Bobenko and Schief: Affine Spheres: Discretization via Duality Relations 275Hence, we conclude that the coe�cients A;B andP;Q are essentially ratios of certain volumes associ-ated with the lattice.The above relations may now be used to rewritethe two expressions (5{3)2 and (5{7)2 for S. Indeed,it is readily veri�ed thatH = V 0 + V 00; H� = V 01 + V 002 : (5–8)It is evident that for symmetry reasons the condi-tions H = V + V 000; H� = V + V 00012 (5–9)must also hold. In fact, it is shown in the followingsubsection that these relations are a consequence ofthe compatibility conditions for the discrete Gau�equations. In this connection, it turns out conve-nient to introduce the quantitiess = 1S ; p = PS ; q = QS ;so that s = V; p = V 002 ; q = V 01 :If we complete these identities byt := V 00012 ;the expressions (5{8){(5{9) assume the formH = p�2 + q�1 = s+ t�1�2;H� = p+ q = s+ t: (5–10)These relations may be memorized in the followingway:

H
H�s

p t
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t�1�2
q�1
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FIGURE 12. The geometric interpretation of H and H�.

We associate the quantities H and H� with thevertex r and the quadrilateral represented by � re-spectively. In view of the connection with the vol-umes V , V 0, V 00, V 000, the functions p; q; s and t maybe regarded as `living' on the quadrilaterals betweenH and H� as indicated in Figure 12. The relations(5{10) then express the fact that the sum of any di-agonally related pair of these functions equals thefunction they enclose, that is H or H�. It is empha-sized that there is a complete symmetry between thelattice r and its dual �. This is re
ected inj�;��1;��2j = V;j��2;�;��1�2j = V 00; j��1;��1�2;�j = V 0j��1�2;��2;��1j = V 000:
5C. The discrete Gauß–Codazzi equationsEven though we have satis�ed the de�ning relations(4{1) identically, there exist further constraints onthe coe�cients of the discrete Gau� equations dueto compatibility. Thus, the consistency conditionsr121 = r112 and r122 = r221 lead to two equations ofthe form E0r + E1r1 + E2r2 = 0;where the functions Ei depend on the coe�cientsA;B;P;Q and H. If we assume that the vectorsr1; r2 and r are linearly independent, the conditionsEi = 0 consist of the linear systemH12 = p1 + q2; H� = s+ tand the nonlinear systemH2�p�s2ps2 + H12�t�q2tq2+ H��t�ppt + H�2�s2�q2s2q2 +1 = 0;H1�q�s1qs1 + H12�t�p1tp1+ H��t�qqt + H�1�s1�p1s1p1 +1 = 0: (5–11)The former system represents the additional rela-tions (5{9) alluded to in the previous subsection.Furthermore, (5{10) may be regarded as a linearsystem for the functions p; q and s; t. It may besolved explicitly in terms of two potentials � and �according to p = � + �2;s = � + � ; q = �1 + � ;t = �1 + �2;



276 Experimental Mathematics, Vol. 8 (1999), No. 3so that H = � + ��2 + � + ��1;H� = � + �1 + � + �2:Insertion of these expressions into (5{11) producesa coupled system of equations for � and � which isencapsulated in the following statement:
Theorem 5.2 (A discrete Tzitzeica system). The discreteGau�{Codazzi equations associated with the discreteGau� equations for discrete de�nite a�ne spheresmay be cast into the form���2(��12+�)(�2+�) + ���1(�2+�)(�+�)+ ����2(�+�)(��1+�) + ����1(��1+�)(��12+�) = 1;���2(�+�)(�1+�) + ���1(�1+�)(�1�2+�)+ ����2(�1�2+�)(��2+�) + ����1(��2+�)(�+�) = 1: (5–12)They constitute a discretized elliptic version of theclassical Tzitzeica equation. On use of the repara-metrization � = �(m1;m2);�(n2+n1; n2�n1) = �(n1; n2);�(n2+n1; n2�n1�1) = �(n1; n2);the system (5{12) may be combined to the singleequation���12(�2+�)(�1+�) + ���1�2(�1+�)(��2+�)+ ����1�2(��2+�)(��1+�) + ����12(��1+�)(�2+�) = 1: (5–13)The potentials � and � may be associated with thevertical and horizontal edges of the lattice respec-tively. For instance, Figure 12 shows that s is en-closed by a vertical edge and a horizontal edge. Onthe other hand, s = � + � . Hence, it is naturalto label the vertical edge by � and the horizontaledge by � . Accordingly, the `�-equation' (5{12)1represents a relation between � and its eight near-est neighbours as indicated in Figure 13. It is com-pletely symmetric in the sense that each of the fourterms consists of �, a nearest �-function and twoadjoining � -functions. The `� -equation' (5{12)2 hasa similar interpretation as depicted in Figure 14.
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FIGURE 13. The �-equation.
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FIGURE 14. The � -equation.An alternative `diagonal' labelling of the edges isdisplayed in Figure 15 and is associated with the`�-equation' (5{13).The edges of the conormal lattice have been in-cluded in order to demonstrate the complete sym-metry between the discrete a�ne spheres and theirduals. As a consequence, the functions �; � and �may also be associated with the edges of the duallattice.The natural Cauchy data associated with the �-equation are given by�(m;m�1); �(m;m); �(m;m+1); �(m;m+2)which make up four adjacent vertical chains of data,as depicted in Figure 16.The �-equation may then be used to calculate thevalues of � on the adjoining vertical edges on theright and the horizontal edges on the left. Iterationof this procedure covers the entire lattice so that �is indeed uniquely determined.In order to perform a continuum limit on the dis-crete system (5{12), we need to introduce an arbi-trary lattice step size ". Inspection of the discrete
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FIGURE 15. The �-equation.

FIGURE 16. A well-posed Cauchy problem for the�-equation.Gau� equations reveals that the potentials � and �scale as �; � � "2:It is therefore natural to seth = � + �2"2 ; ' = � � �2"2 :We regard the discrete variables n1; n2 as discretiza-tions of some continuous variables x; y, say, that isx = "n1; y = "n2and assume once again that any discrete functionconstitutes an approximation of a smooth functionwhich admits a Taylor expansion, for instanceh1 = h+ "hx + 12"2hxx +O("3);h�1 = h� "hx + 12"2hxx +O("3):

In this interpretation, the discrete system (5{12) re-duces to the elliptic Tzitzeica system�(logh) + 4h+ (r')2h2 = 0; �' = 0in the limit " ! 0. Here, r and � are the usualgradient and Laplace operator respectively. Su�ceit to say that the discrete Gau� equations coincidewith the continuous ones discussed in Section 2 ifone applies the same limit.
5D. A class of discrete affine spheres governed by elliptic

functionsHere, we consider a class of discrete a�ne sphereswhich is associated with a one-dimensional reduc-tion of the discrete Tzitzeica system (5{12). It turnsout that this reduction leads to a particular memberof a class of integrable mappings which is well-knownin soliton theory. In order to be as general as possi-ble, it is observed that the discrete Tzitzeica systemonly depends on the quantities� + � ; �i(� + �); �i(� � �):We assume that these depend on n1+n2 only. Notethat the special case � = �(n1+n2); � = �(n1+n2)reduces the number of arbitrary constants of inte-gration by one. In terms of the variables a; b and hde�ned by � = h+ ';� = h� '; �1' = a�2' = b; (5–14)the symmetry reduction considered here readsh = h(n1 + n2); a = a(n1 + n2); b = b(n1 + n2):The compatibility condition �2a = �1b gives riseto the �rst integralb = a+ 2�; � = const:Another �rst integral is given bya+ �x+ x1 � 2 = constwith the change of dependent variableh = x+ �2 ; (5–15)so thata = c(x+x1�2)��; b = c(x+x1�2)+�; (5–16)



278 Experimental Mathematics, Vol. 8 (1999), No. 3where c is another constant of integration. The dis-crete Tzitzeica system then reduces to the second-order di�erence equationx1 = f 1(x)� x�1f 2(x)f 2(x)� x�1f 3(x) ; (5–17)where the functions f i are de�ned byf 1 = 4(1�c2)x4+8(3c2�1)x3+ �(c2�1)�2�48c2�x2+ 4�(1�c2)�2+8c2�x+4c2�2f 2 = 4(c2�1)x3�16c2x2+ ��2(1�c2)+16c2�x+ 2(c2�1)�2f 3 = 4(1�c2)x2+8(1+c2)x+(c2�1)�2:
(5–18)

It has been shown in [Quispel et al. 1988; 1989]that second-order di�erence equations of the form(5{17) admit a �rst integral if the vectors
f = 0@ f 1f 2f 3

1A ; x = 0@x2x1
1A

obey the conditionf = (Ax)� (Bx); (5–19)where the constant matrices A and B are symmet-ric but otherwise arbitrary. In this case, the �rstintegral is biquadratic and symmetric in x and x1.It may be parametrized in terms of elliptic func-tions with the module being the remaining constantof integration. Proto-typical examples for integrable(di�erential)-di�erence equations which admit sym-metry reductions to these integrable mappings in-clude the (modi�ed) Korteweg{de Vries, the nonlin-ear Schr�odinger and the Heisenberg spin equations.It turns out that there exist matrices A;B suchthat the functions f i given by (5{18) indeed satisfythe condition (5{19). As a consequence:
Theorem 5.3. If the coe�cients of the discrete Gau�equations for discrete de�nite a�ne spheres dependonly on n1 + n2, the associated Gau�{Codazzi equa-tions reduce to the integrable symmetric mappingK(�2+4xx1)(x+x1�2) = c2(x+x1�2)2�(x+x1)2;

(5–20)where K is an arbitrary constant of integration. Thepotentials � and � may be retrieved on use of thechange of variables (5{14), (5{15){(5{16).

6. PERSPECTIVESApart from the important geometric problem of clas-sifying compact discrete a�ne spheres which maylead to an analogue of Blaschke's classical result(see Theorem 4.6), there are open questions concern-ing the integrability of the discrete de�nite a�nespheres investigated in the previous section. It hasbeen pointed out that in the case of discrete indef-inite a�ne spheres a Lax representation of the dis-crete Tzitzeica system is available which may be in-terpreted in terms of loop groups. Furthermore, theB�acklund transformation set down in [Bobenko andSchief 1999] obeys the usual `tangency condition',that is the conormal � and its B�acklund transform� 0 are parallel. In other words, the `tangent planes'de�ned by the vertices r, r1, r2, r�1, r�2 and r0, r01, r02,r0�1, r0�2 coincide. In the continuous case, the tangencycondition is satis�ed for de�nite and inde�nite a�nespheres. However, in the case of discrete de�nitea�ne spheres, the conormals are associated with theplanar quadrilaterals and not the vertices so that itis not immediately clear how tangent planes and anassociated B�acklund transformation should be de-�ned.Alternatively, one could try to inject a `spectral'parameter into the Gau� equations for discrete de�-nite a�ne spheres and �nd a corresponding interpre-tation in terms of loop groups. A B�acklund transfor-mation may then be derived by means of a Darbouxmatrix. A �rst step in this direction has alreadybeen taken. Thus, it turns out that in the one-dimensional case the di�erence equation (5{20) ad-mits a simple Lie point symmetry which gives rise toan arbitrary parameter in the Gau� equations (5{1).Remarkably, this parameter coincides with the oneintroduced in (2{17) in the continuum limit. How-ever, an analogous symmetry in the generic case isyet to be found.Finally, we hope that future application of re-cently developed tests for integrability, such as thesingularity con�nement test of [Grammaticos et al.1991], will inform us further about the integrablenature of the discrete Tzitzeica equation (5{13).
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ELECTRONIC AVAILABILITYExamples of compact discrete a�ne spheres in Javaand VRML formats, including the non-Archimedeanpolyhedra mentioned at the end of Section 4C, canbe found at http://www-sfb288.math.tu-berlin.de/~bobenko/.
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