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The 3n+1-problem is the following iterative procedure on the
positive integers: the integer n maps to n/2 or 3n+1, depending
on whether n is even or odd. It is conjectured that every positive
integer will be eventually periodic, and the cycle it falls onto is
1 +— 4 — 2 — 1. We construct entire holomorphic functions
that realize the same dynamics on the integers and for which all
the integers are in the Fatou set. We show that no integer is in a
Baker domain (domain at infinity). We conclude that any integer
that is not eventually periodic must be in a wandering domain.

1. INTRODUCTION

The following problem is well known under the name
of 3n+1-problem and has infected many people over
the years: Start with any positive integer n. If it
1s even, divide it by two; if it is odd, replace it by
3n+1. Show that, after finitely many such steps,
this process reaches the number 1.

The integer 1 itself is periodic under this map:
11— 4~ 2~ 1. A priori, three possibilities are
conceivable for any positive integer n:

e it falls, after finitely many steps, onto the peri-
odic cycle 1 — 4 — 2 — 1;

e it falls, after finitely many steps, onto a periodic
cycle other than 1 — 4 — 2 — 1;

e it never falls onto a periodic cycle; it will then
necessarily diverge to +oo.

It is conjectured that every positive integer realizes
the first possibility: it eventually reaches 1. Exten-
sive numerical experiments have been performed, all
in support of this conjecture: Roosendaal [1999] has
checked it for numbers up to 1.26 x 10'. More pre-
cisely, the second case has never been observed for
positive integers. (However, it is well known that
there are extra cycles of negative integers. Two ex-
amples are —1 — —2 — —1 and =5 — —14 —
—7 — —20 — —10 — —5, and the only further
known cycle goes through —17.) When any positive
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initial number n does not land at 1 or another cy-
cle after some large number of iterations, this might
either be an indication that it indeed converges to
400, or that it takes much longer to settle onto a
periodic orbit. Indeed, some relatively small num-
bers are known to take surprisingly long until they
finally reach 1: as an example, the number 27 takes
111 steps to reach 1, and the largest number it visits
along its way is 9232. Therefore, it is not quite clear
how the third case could ever be “observed” numer-
ically. For an entertaining discussion of this ques-
tion, see [Hofstadter 1979, Aria XII]. In any case,
no integer is known to diverge to oo, and no cycle
other than the ones above has been found. By a re-
cent theorem of Halbeisen and Hungerbiihler [1997],
any extra cycle of positive integers must contain
more than 10® numbers (even when counting any
3n+1-step and the subsequent division by 2 as one;
see below). Surveys of the history and the variety
of known results about the 3n+1-problem can be
found in [Lagarias 1985; Wirsching 1998]. Among
the gems to be found there is a theorem of John
H. Conway to the effect that a simple generaliza-
tion of the 3n+1-problem is “algorithmically unde-
cidable” because it encodes the halting problem for
Turing machines, and a comment of Erdds saying
that “Mathematics is not yet ready for such prob-
lems”.

The idea of this paper is to interpret the 3n-+1-
problem as an iterative procedure and to find an
entire holomorphic map that extends the given map
on the integers. This idea has been circulated by
the third author for a decade or two. In this paper,
we consider the problem from the point of view of
holomorphic dynamics and show that the existence
of any integer that is not eventually periodic implies
the existence of a “wandering domain” for our en-
tire holomorphic map. For a large class of entire
holomorphic maps, it is known that there are no
wandering domains. Unfortunately, this class does
not include our maps. Nonetheless, we hope that
this point of view might stimulate further progress.

First observe that the image 3n+1 of an odd inte-
ger n is even and will be replaced by (3n+1)/2 in the
next step. We can therefore equivalently consider
the iteration n — n/2if n is even and n — (3n+1)/2
if n is odd. The orbit 1 + 4 — 2+ 1 turns into the
orbit 1 — 2 +— 1, while 0 and —1 are fixed points

and —5 — —7+— —10 — —5. It is for this map that
Halbeisen and Hungerbiihler showed that the period
of any extra cycle of positive integers must be more
than 103,

We counsider the function f : C — C given by

f(z) =322+ 3(1 —cosmz)(z+ %)

+ %(% — cos 7rz) sinmz 4 h(z) sin® 7z, (1-1)

for any entire holomorphic function h. The con-
struction is chosen in such a way that many dynam-
ical properties of interest to us will not depend on
h. Therefore, although f of course depends on h, we
will suppress this from the notation. The function
f is displayed in Figure 1 for ~h = 0. We will often
be interested in the special case that f preserves the
reals, which happens if and only if h preserves the

reals, or if and only if f(Z) = f(z) for all z.
20
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10

-5

FIGURE 1. A graph of the map f on the reals, for
h = 0. Also indicated are the lines x — x/2 and
z— (3z+1)/2.

To begin with, sin 7z vanishes on the integers, so
the values of f on integers do not depend on h. Since
cos 7z is +1 on even integers and —1 on odd integers,
we have

~ [n/2
f<n)_{(3n+1)/2

That is, our function f agrees on all integers with
the given iteration function. Therefore, the problem
can equivalently be formulated thus:

if n is an even integer,

if n is an odd integer.



Letherman, Schleicher, and Wood: The 3n+1-Problem and Holomorphic Dynamics 243

Conjecture 1.1 (The holomorphic 3n+1-problem). Iter-
ating the function f on any positive integer will land
at the number 1 after finitely many steps.

A related function has independently been construc-
ted by Chamberland [1996]: his map is equal to the
first line in (1-1). The same map has independently
been discovered and investigated by Sasha Gajfullin.
Below, we will discuss similarities and differences be-
tween this map and ours.

2. HOLOMORPHIC DYNAMICS

In this section we provide some fundamental back-
ground on holomorphic dynamics. Details can be
found in [Milnor 1999], for example. The dynam-
ics of a holomorphic map f : C — C starts with a
dichotomy of the complex plane as follows: a point
z € C is in the Fatou set of f if there is a neighbor-
hood U of z such that the sequence f°" of iterates
on U forms a normal family in the sense of Montel
(that is, every infinite subfamily contains a subse-
quence that converges compactly to a holomorphic
limit function from U to the Riemann sphere; in
particular, a constant limit function with value oo
is allowed). The Fatou set is evidently open. Its
complement is known as the Julia set. Fatou and
Julia sets are forward and backward invariant under
the dynamics. By Montel’s Theorem, every neigh-
borhood U of any point z in the Julia set has the
property that the collection of iterates of f on U will
cover all of C with at most one exception.

Intuitively, the dynamics of f on the Fatou set is
tame and well-behaved, while the dynamics on the
Julia set is wild and chaotic. Depending on the map
f, the Fatou set may or may not be empty, while the
Julia set is never empty (unless f is a rational map
of degree at most 1). Any connected component
of the Fatou set is a Fatou component. Since the
Fatou set is open, any Fatou component is always
path connected.

A periodic point z is a point for which f°"(z) = z;
the period of z is the least positive integer n for
which this equation holds. Associated to such a peri-
odic point is the multiplier p = (d/dz) f°" (%), which
is the same for all the points on any periodic orbit.
If |u| < 1, the orbit is attracting and a neighborhood
of the orbit will converge to this orbit under itera-
tion. Attracting orbits are in the Fatou set. The

special case u = 0 is called superattracting. An or-
bit with |r| > 1 is known as repelling and contained
in the Julia set. Orbits with |u| = 1 are known as
indifferent and further subdivided according to the
rotation angle 0 satisfying p = €2, If 0 is rational,
the orbit is rationally indifferent and contained in
the Julia set; there are associated Fatou components
in which the dynamics converges locally uniformly
to the rationally indifferent orbit. In the irrationally
indifferent case (6 irrational), the orbit may or may
not be in the Fatou set. If it is, the dynamics in
these Fatou components is conformally conjugate to
a rigid rotation of a Euclidean disk about the angle
#, and the center of the disk corresponds to the indif-
ferent orbit. Such Fatou components are known as
Siegel disks. Finally, irrationally indifferent periodic
points in the Julia set are known as Cremer points;
they are not associated to Fatou components.

The basin of attraction of an attracting orbit is
the open set of points converging to this orbit. An
immediate basin is a connected component of this
basin containing a point on the attracting orbit. Ev-
ery rationally indifferent orbit has a basin of points
converging to this orbit; an immediate basin in this
case is a connected component that contains a point
of the rationally indifferent orbit on its boundary.

For entire holomorphic maps, any Fatou compo-
nent is of one of the following types (for a general ref-
erence, see [Eremenko and Lyubich 1989] or [Berg-
weiler 1993)):

e (periodic) immediate basins of (super-)attracting
periodic points;

e (periodic) immediate basins of rationally indiffer-
ent periodic points;

(periodic) Siegel disks;

(periodic) domains at infinity, also called Baker
domains, in which the dynamics converges to oo
locally uniformly;

e preperiodic components, those which eventually
map onto a periodic component of one of the
types above;

e wandering components, those whose forward or-
bits never repeat.

For entire meromorphic maps, there is one extra
possibility: Arnold—Herman rings, which are dou-
bly connected domains on which the dynamics is
conformally conjugate to a rigid rotation of an an-



244 Experimental Mathematics, Vol. 8 (1999), No. 3

nulus about an irrational angle. Moreover, Baker
domains for such maps can be adjacent to singular-
ities other than oo, and when the period is greater
than one, the periodic components can be based at
different singularities. In this paper, we will be con-
cerned only with entire holomorphic maps.

A critical point of a holomorphic map f is a point
where the derivative vanishes. Its image under f is
a critical value. A point w € C is an asymptotic
value if there is a curve 7 € C tending to oo such
that, along this curve, the values f(z) converge to
w. The closure of the set of critical and asymptotic
values is known as the set of singular values. It is
a well known observation in holomorphic dynamics
that the fates of singular values under iteration (the
singular orbits) determine many dynamical features.
For example, any periodic cycle of Fatou compo-
nents corresponding to attracting or rationally in-
different periodic orbits must contain at least one
singular value, and every boundary point of a Siegel
disk and every Cremer point must be on the closure
of some singular orbit.

We will now discuss whether Fatou components
may be multiply connected. As a consequence of
the Riemann-Hurwitz formula, periodic Fatou com-
ponents of holomorphic maps are simply connected,
doubly connected or infinitely connected. Doubly
connected components are always Arnold—Herman
rings; they must surround a pole of the map, so
they cannot occur for entire maps. For a simply or
infinitely connected Fatou component, all its prepe-
riodic preimages must also be simply respectively
infinitely connected.

In many cases, Fatou components of entire maps
must be simply connected; the following lemma con-
tains known results.

Lemma 2.1 (Fatou components are simply connected).
Any periodic or preperiodic Fatou component of an
entire transcendental map is stmply connected.

Proof. For a Fatou component corresponding to an
attracting or rationally indifferent periodic orbit,
this is quite easy to see (compare [Eremenko and
Lyubich 1989, Theorem 4.4]): any loop within this
component must converge to the attracting or ra-
tionally indifferent orbit, so it visits only a compact
subset of C. By the maximum principle, the same is
true for the region surrounded by this loop, which is

thus entirely contained in the Fatou set. It then fol-
lows that the corresponding preperiodic Fatou com-
ponents are also simply connected. (The statement
is false for rational maps and even for polynomi-
als: the basin of the superattracting fixed point oo
is infinitely connected if and only if it contains a
critical point in C. The proof above also applies to
Fatou components of polynomials around attracting
or rationally indifferent orbits in C, but it does not
apply to the basin of the superattracting fixed point
oo because it uses the maximum principle in C.)
Siegel disks are always simply connected, because
they are conformally equivalent to the unit disk.
Baker domains are also simply connected: in fact,
any multiply connected Fatou component of an en-
tire holomorphic map must be bounded [Baker 1975,
Theorem 1] (also to be found as [Bergweiler 1993,
Theorem 9] or [Eremenko and Lyubich 1989, Theo-
rem 4.3]). O

For certain choices of h, it can be shown that ev-
ery Fatou component, including any wandering do-
mains, is simply connected: see [Bergweiler 1993,
Theorem 10]. We will give an argument below that
is custom-tailored to our maps.

For rational maps, as well as for entire holomor-
phic maps with only finitely many singular values
(known as “entire maps of finite type”), there are no
domains at infinity and no wandering domains; this
is Sullivan’s Theorem [McMullen and Sullivan 1998]
in the extension of Eremenko and Lyubich [1992].
Unfortunately, the entire maps we are looking at
cannot possibly be of finite type. We will be able to
exclude domains at infinity, and we will show that a
diverging integer for the 3n+1-problem must sit in
a simply connected wandering domain.

3. THE HOLOMORPHIC 3n+1 MAP

We now begin to investigate the dynamics of our
maps f interpolating the 3n+1 problem. In view of
the discussion above, we start by looking at critical
points. A little calculation yields
/ ™ 1 .
fl(z) = (5 (z+ 1)+ 2sinmz 4 27h(z) cosmz
+h/(z) sin 7rz) sinmz, (3-1)

so all integers are critical points of f. Further criti-
cal points depend on h. Our function f is built up as
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FIGURE 2. The Julia set of the map f for h = 0. The real parts in the picture range through [-2.4,12.4]. The
black Fatou component to the left contains —1 and —2, the component next to it is the basin of 0. To the right
of it, there are the two basins of the 2-cycle 1 — 2 +— 1. Further Fatou components around integers are clearly

visible, particularly prominently around even integers.

follows: the first term models the behavior on even
integers, the second term adds the modification nec-
essary for odd integers, the third term vanishes on
the integers but makes them into critical points, and
the last term contains whatever freedom is left un-
der these circumstances: the difference between any
two such interpolations must have a double zero at
every integer. We state this as follows.

Lemma 3.1 (Interpolating the 3n+1-problem). Any en-
tire holomorphic map that interpolates the 3n+1-
problem in such a way that all integers are critical
points is of the form (1-1).

Much of our paper will be concerned with the case
that f and equivalently h preserve the reals. In ev-
ery result, we will state explicitly whether or not
this assumption is made.

The periodic cycle 1 — 2 — 1, like any other cycle
of integers, is superattracting. Our conjecture can
then equivalently be formulated as follows: every
positive integer is in the basin of attraction of the
superattracting orbit 1 — 2 — 1.

We have arranged our maps so that we only have
to deal with the Fatou set. Figure 2 shows the Julia
set of our map f, again in the case h = 0.

Lemma 3.2 (Integers in Fatou set). If h vanishes every-
where, all the integers are in the Fatou set of f.

Proof. The integer 0 is a superattracting fixed point
and thus in the Fatou set. For any non-zero integer
n, we define the open neighborhood

Uy :={z€C:|z—n| <1/|2n*n]};

for completeness, we choose Uy to be a neighborhood
of 0 so that f(Uy) C Uy. First observe that, for
z =n+0d € U, we have |sinmz| = |sinnd| <
sinh(7|d]); for |6] < 1/|2n%n| < 1/(27?%), we have
sinh(7|d]) < 1.005 7|6| and thus

|f'(2)] g(z+%)+2sin7rz | sinz|

< (m|n|/2+7|8| /247 /4+2-1.0057])
x 1.0057 |J]|

< (m|n|/24+1/(4m)+m/4+1.005/)
x1.005/|27n|

< 1.005(541/(87)*+£+1.005/(27%))

< 0.441.

It now follows that f(U,) C Ufn): the center of any
such neighborhood obviously maps to the center of
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the image neighborhood, and the derivative has ab-
solute value less than %; thus the image of U, is con-
tained in a disk around f(n) with radius 1/|47?n|.
But since |f(n)| < 2|n| for integers and the neigh-
borhood Uy, is the disk around f(n) with radius
1/|127%f(n)| > 1/]47*n|, we have indeed f(U,) C
Us(ny-

Consequently, the union |J U, is mapped into it-
self under the dynamics. By the Montel criterion
above, points in this union cannot be in the Julia
set. O

A similar conclusion can be made for any map f
that satisfies an appropriate growth condition in a
neighborhood of the integers.

In this section, we will investigate the types of
Fatou sets that can contain integers.

Lemma 3.3 (Integers in Fatou set). If a Fatou component
of f corresponding to an attracting orbit contains an
integer, then this orbit is superattracting. No Fatou
component corresponding to a rationally indifferent
orbit or to a Siegel disk can contain an integer. If f
preserves the reals, then no Siegel disk can intersect
the real axis.

Proof. If the integer n is within the basin of attrac-
tion of an attracting or rationally indifferent peri-
odic orbit, it must fall exactly onto this periodic
orbit because the orbit of n is contained in Z. This
orbit then consists of integers and is superattract-
ing because all integers are critical points of f. The
first case in the classification above is thus realized
only for superattracting orbits, the second case not
at all.

No integer can be in a Siegel disk because no or-
bit in a Siegel disk is discrete (except at the center,
which is an indifferent periodic point and cannot be
an integer either). This rules out the third possibil-
ity above. Stronger yet: if f preserves the reals, no
Siegel disk can intersect the real line because that
would require the closure of an orbit to be a smooth
simple closed curve. ]

We proceed by showing that for all our maps, all
Fatou components are simply connected. Except for
wandering domains, this is of course the statement
of the more general Lemma, 2.1 above, but our proof
works the same for all kinds of Fatou components.

Proposition 3.4 (Fatou components are simply connected).
Every Fatou component of any map f is simply con-
nected, whether or not f preserves the reals.

Proof. Suppose there is a multiply connected Fatou
component. Its forward images must also be mul-
tiply connected. Since every connected component
in the basin of the superattracting fixed point 0 or
of the superattracting cycle 1 — 2 +— 1 is simply
connected, we may exclude the possibility that our
Fatou component contains a point on the backwards
orbit of 0 or 1. The region surrounded by the Fatou
component contains points in the Julia set and thus
points that will eventually map to the fixed point 0.
Therefore, after finitely many iteration steps, every
forward image of our Fatou component must sur-
round 0. We thus have a sequence Wy, Wi, W, ...
of Fatou components such that f : W,, - W, is
a holomorphic covering, and all these domains sur-
round the origin. Since the point 0 is critical, the
mapping degrees of f : W,, — W, ,; must be at least
two.

We use the unique normalized hyperbolic metrics
on all W,,. The map f : W,, —» W, cannot in-
crease hyperbolic metrics. The component W, con-
tains a simple smooth curve 7, surrounding 0; let /g
be its hyperbolic length. The image curve f(7o) is a
smooth curve surrounding 0 at least twice and has
total length at most ly. Therefore, there is a smooth
curve 1 C Wy of length I; < [y/2 surrounding 0.
Continuing, we obtain smooth curves ~, C W,, sur-
rounding 0 and having hyperbolic lengths at most
lo/2". However, since no W, can contain the Fa-
tou component around 0 or any point 2% for a pos-
itive integer k, the hyperbolic length of any curve
surrounding 0 is uniformly bounded below: in fact,
for a smooth curve in C minus the superattracting
basin of 0 to be hyperbolically short, the curve must
be far away from the origin, so it must separate 0
and 2* from 2**! and oo for some positive integer k.
However, since all domains Vj, := C — {0,221}
are conformally equivalent, the hyperbolic lengths
of such curves are uniformly bounded below within
the appropriate V. Since any Fatou component con-
taining such a curve v, is contained in all V}, the
hyperbolic length of «,, within this Fatou component
is even greater than within V. This contradiction
finishes the proof. O
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We will now exclude domains at infinity (Baker do-
mains) in two ways: for the case that f preserves the
reals, we will show that no domain at infinity can in-
tersect the reals. We will then present an argument
due to Bergweiler that shows that no integer can be
in a domain at infinity even if f does not preserve
the reals.

Corollary 3.5 (No domains at infinity intersect reals for
real maps). If f preserves the reals, no domain at
infinity can intersect the real line. In particular, no
integer can be in a domain at infinity.

Proof. Suppose that x € R is in a domain at infinity
and denote its Fatou component by U. Then the
orbit of z must tend to co along the real line, and
since U is periodic, infinitely many points on this
orbit must be in U. Since all the numbers +2" land
at £1 and thus have bounded orbits, they cannot
be in U. Therefore, U intersects the real line at
infinitely many intervals. Since f is real, U must be
symmetric with respect to the real line, and it must
thus be infinitely connected. This is a contradiction
to simple connectivity of any Fatou component. [

A main idea for the following variant has kindly been
contributed by Walter Bergweiler. It applies even if
f does not preserve the reals, but it is somewhat
weaker in that it does not exclude domains at infin-
ity meeting the real line away from integers.

Proposition 3.6 (No integers in domains at infinity). No
domain at infinity can contain an integer, whether
or not f or h preserve the reals.

Proof. We will use the following variant of Koebe’s
i—theorem: for any two points a,b in a simply con-
nected domain U C C (with U # C) such that the
Euclidean distance from a to QU is d, the hyperbolic
distance in U between a and b is at least

*log(1 + |a —b|/d).

First we show that there is a number R > 0 such
that, for every integer n, the disk of radius R around
n intersects the Julia set. If not, then for every
€ > 0 there is an integer n such that n and n + 1
are within the same Fatou component U and the
hyperbolic distance in U between n and n+1 is less
than . Let d be the Euclidean distance from f(n)
or f(n+1) to df(U), whichever is smaller. Since

0¢ f(U), we have
d <min{f(n), f(n+1)} < 3(n+1).

But |f(n + 1) — f(n)| > n, so the hyperbolic dis-
tance in f(U) between f(n) and f(n+ 1) is at least
Tlog(1+n/d). This yields a lower bound for € and
is a contradiction.

Now let U be a domain at infinity. We know that
it is simply connected by Proposition 3.4 above. Let
R be a number as above. Suppose that an integer
n € U. Let p be the period of U and let ¢;, and h;,
be the Euclidean respectively hyperbolic distances
(in f°¢(U)) between f°*(n) and f°*+P)(n). By the
Schwarz Lemma, the sequence h; is monotonically
decreasing and thus bounded. We have

hi > ilog(l +ex/R),

which bounds the e, as well. But since the f°*(n)
diverge to oo, this implies that the pattern of steps
in which the orbit of n visits even or odd integers
(which determines the image point) must eventu-
ally be periodic. This pattern determines the or-
bit uniquely: if m and m' have the same pattern
of even and odd elements in their orbits and the
highest power of two dividing |m — m/| is 2%, then
|f(m) — f(m')] is divisible only by 27! and after
s steps, the pattern will be different. This implies
that the orbit of n is eventually periodic as well,
contrary to our assumption. [

We see that every integer sits either in the basin
of attraction of a superattracting periodic orbit of
integers, or it is in a wandering Fatou component.
We conjecture that the latter case does not occur.

Conjecture 3.7 (No wandering domains at integers). For
some entire function h, the corresponding map f
contains all the integers in its Fatou set and has
no simply connected wandering domain intersecting
the integers.

This conjecture immediately implies that every in-
teger is eventually periodic for the 3n+1-problem.
Notice that it suffices to prove the conjecture for
any entire function h.

Even if the conjecture is proved, this does not im-
ply that every positive integer will eventually land
on the cycle 1 — 2 +— 1. However, it does make all
integer orbits finite. The arguments do not distin-
guish between positive and negative integers, and
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there are three known periodic orbits among neg-
ative integers (and the integer 0 forms a cycle by
itself).

4. DYNAMICS ON THE REAL LINE

While our approach does not distinguish between
positive and negative integers, it does distinguish
between integers and non-integers in the case that
f preserves the reals and all the integers are in the
Fatou set (for example when A = 0). In this section,
we will discuss the dynamics of maps f restricted to
the real line.

Lemma 4.1 (Wandering real numbers). Consider any
real continuous interpolation of the 3n+1-problem
(not necessarily analytic). Then between any pair
of consecutive positive integers greater than 1, there
is a Cantor set of points that diverge to co strictly
momnotonically.

Proof. For any integer n > 3, the real interval
[2n, 2n+1] has subintervals that map onto [2n+2,
2n+3] and onto [2n+4, 2n+5] (not necessarily dif-
feomorphically). For any one-sided sequence of in-
tegers in {1, 2}, there is thus at least one real num-
ber in [2n, 2n+1] that diverges to infinity strictly
monotonically such that its orbit is restricted to in-
tervals of the type [2n;, 2n;+ 1] with integers n; such
that n; .1 —n; is the prescribed sequence of integers.
This is (at least) a Cantor set: a non-empty com-
pact completely disconnected set without isolated
points. (In fact, for h = 0 and n sufficiently large,
the derivatives at these subintervals will be strictly
larger than 1, and we obtain exactly a Cantor set).

The remaining intervals are easy to deal with:
[2,3] has a subinterval covering [4,5], which itself
has a subinterval covering [6,7], and the latter in-
terval contains a Cantor set as just described. Fi-
nally, any interval [2n—1, 2n] with n > 2 will cover
the interval [2n, 2n+1] in an orientation reversing
way. U

For our map f with A = 0, the interval [1,2] maps
over itself in an orientation reversing way. It con-
tains a repelling fixed point, and everything else will
converge to the orbit 1 — 2 — 1.

Remark. The dynamics of f is still richer: one can
label the orbits of all the real numbers by the integer
parts of the points they visit, and when h is not

too wild, it is not difficult to describe the allowed
sequences of integer parts: that is, the map f is
easy to describe by symbolic dynamics.

In the holomorphic case, all the reals in this es-
caping Cantor set will usually be in the Julia set.
The only other possibility is that such points are in
wandering Fatou components, and we get entire in-
tervals of monotonically escaping points, rather than
only a Cantor set. This is impossible in cases like
h = 0 when the derivative is bounded below by 1.
In any case, we will now show that the Julia set sep-
arates almost all integers, at least on the real line.

Lemma 4.2 (Julia set between integers). For any real
continuous interpolation of the 3n+1-problem, there
s a real fived point between any pair of consecutive
non-zero integers except possibly {—2,—1}, {—1,0},
{0,1}. In the holomorphic case when f preserves
the reals, then between any pair of consecutive even
integers, there is a fized point in the Julia set, and
there is a point in the Julia set between any pair of
consecutive integers except possibly {—1, —2}.

Proof. Since |f(n)| < |n| for non-zero even integers,
while |f(n)| > |n| for odd integers except —1, the
intermediate value theorem yields the existence of a
fixed point between any pair of consecutive non-zero
integers except for the three specified pairs. Be-
tween any non-zero even integer and the adjacent
odd integer with greater absolute value, the graph
of a real holomorphic f(z) has to cross the graph of
the identity from below, and the derivative at such a
fixed point has to be at least +1. Such fixed points
are thus repelling or rationally indifferent and hence
in the Julia set.

For similar reasons, there are fixed points in the
Julia set between the superattracting fixed points 0
and —1 and between 0 and 1.

It remains to consider the case of two adjacent
integers such that the odd one has smaller absolute
value: £2n and £(2n — 1). For n > 2, such an
interval maps over two adjacent even integers, and
there is a point in the Julia set in between. Since
there is a superattracting 2-cycle 1 — 2 +— 1, there
must be a point in the Julia set between these two
points, and the only pair of adjacent integers left is
{=1,—2}. They both map to —1 and could be in
the same Fatou component. O
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Corollary 4.3 (Integers in different Fatou components).
If the holomorphic map f preserves the reals, then
no two integers are in the same Fatou component,
except possibly for —1 and —2.

Proof. Between any pair of integers, other than pos-
sibly —1 and —2, there is a real number in the Julia
set, and any Fatou component containing these two
integers must be multiply connected. However, all
Fatou components are simply connected. O

As mentioned earlier, a related function has inde-
pendently been constructed by Chamberland [1996]:
he considers the single map

zrr 2z 4+ (1 —cosmz) (2 + 1)

consisting of the first two terms in (1-1), restricted
to the real line. It may be interesting to compare
our results to his. Of course, his map has the same
dynamics on the integers, but his critical points are
different. His map is not included in our family
because we insisted in the integers being critical
points. This implies that any cycles on the integers
are automatically superattracting, while Chamber-
land proves that they are attracting in his setting
and he finds estimates for critical points near in-
tegers. He also shows that his map has negative
Schwarzian derivative: this is an analytical condi-
tion that has several useful consequences. Among
iterated real maps, those with negative Schwarzian
derivative are special and much easier to deal with,
in a similar sense as holomorphic maps are special
among differentiable maps on the plane. For ex-
ample, in both settings there are certain families
of maps known for which there are no wandering
domains; however, these are quite remote from the
maps at hand. Chamberland observes that his map
has negative arguments where the Schwarzian fails
to be negative, and he notes that it “seems unlikely
that a general extension will have this property” (in-
deed, it is easy to construct plenty of counterexam-
ples).

Moreover, Chamberland obtains monotonically in-
creasing diverging trajectories on the reals (similar
to our Lemma 4.1), as well as an uncountable set of
“unstable” bounded orbits (the Julia set on the real
axis), and he applies a special case of Sharkovskii’s
theorem [Melo and van Strien 1993] to show that
there are periodic orbits of any period. This is true

for any real interpolation of the problem. He also
shows that any (real) neighborhood of some partic-
ular fixed point will under iteration cover every real
x > 1; the complex analog of this statement is that
any neighborhood of any point in the Julia set will
eventually cover all of C (minus at most one point),
and this is virtually built into the definition of the
Julia set via normal families and Montel’s theorem.

There is a general tendency that the extension of
a real-analytic map to the complex plane enriches
the available tools considerably: for iteration of con-
tinuous real maps, almost anything is possible, and
many dynamical properties of real continuous maps
can be recovered by C*-approximations. However,
it is a severe restriction for a real map to extend as
a holomorphic map to the complex plane; if this is
possible, then the dynamics gains a lot of structure
and many dynamical properties become almost ob-
vious. From the point of view of real dynamics, it is
not clear how to tell whether a given map can or can-
not be extended to the complex plane (or whether
this map is in some sense equivalent to one that can
be extended).

Chamberland states that his map “seems to be
the extension [of the 3n+1-problem| which permits
the ‘simplest’ analysis”. Since the dynamics is influ-
enced by the critical points, we rather want to have
at least the real critical points under control, and
this leads to the study of Equation (1-1).

5. CRITICAL POINTS

Since critical points control the dynamics, it is desir-
able to have as few critical points as possible. Even
in the special case that h vanishes everywhere, it
seems difficult to control all the critical points. The
freedom in the choice of h has been introduced in
order to have more flexibility to get rid of critical
points. Ideally, the only critical points of our maps
should be the integers. In view of Equation (3-1) for
the derivative, it would be useful to find an entire
function h such that

2sinmz + 2wh(z) cosmz + h'(z) sinmz = 0;

for such a function A, the only critical points of f
would be the integers, as well as z = —3 (on the
right hand side, we might allow some function with

as few critical points as possible). We will now argue
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that such a function h does not exist. We can rewrite
the desired condition as

COsSTz

h'(z) = —2mh(z)

: -2 (5-1)
sinmz

Since h should be an entire holomorphic function,
h' must also be such a function, and thus A must
have zeroes at all the integers. Near zero, we can
write

cos e

h'(g) ~ —2meh'(0)

— 2=~ —2h'(0) — 2
- 0 -2,

so it follows that A'(0) = —2h/(0) —2 or A'(0) = —2.
The differential equation (5-1) is real with real ini-
tial conditions, so we can look at it over the reals. A
periodic differential equation with periodic bound-
ary values will have periodic solutions. For all inte-
gers n, we have h(n) = 0 and thus h/(n) = —2. If
h(z) = 0 for any non-integer value z, then h'(z) =
—2. Therefore, whenever h(z) = 0 for any real num-
ber z, we have h/(x) < 0, and no real solution curve
with h(z) < 0 can ever reach the value zero again
in positive time.

The boundary condition h(0) = 0 will specify a
real solution to the differential equation. For small
positive z, we will have h(x) < 0 because h'(0) < 0
and h is analytic. Periodicity of the required solu-
tion needs h(1) = 0, but this is impossible. There-
fore, there is no entire function h solving the dif-
ferential equation (5-1), and consequently it is not
possible to reduce the set of critical points to the set
ZU{-3}.

In fact, any solution curve with h(z) < 0 for any
real value z will tend to —oo for finite values of z:
first consider the homogeneous differential equation

. =, COSTTE
R (z) = —2mh .
(@) mh(z) sin Tx

Its solutions are h(z) = «/sin®(nz) for arbitrary

real constants a, and every negative solution at any
non-integer will tend to —co when = approaches the
next integer. In our differential equation for h, the
derivative is even more negative than in this homo-
geneous example, and every negative solution will
diverge to —oo even faster. However, the value of x
at which the solution diverges will still be the same

integer, not a real number before. This same prob-
lem not only exists at the origin, but at all the in-
tegers.

This discussion shows that there is no entire func-
tion h so that f has no critical points besides the
integers and z = —%. It therefore seems unlikely
that the number of extra critical points of f can be
reduced significantly by a real entire function h.

A complex candidate map would be

2 2/24 (22 + 1)(1 — €™) /4,

possibly added to any entire holomorphic map van-
ishing on the integers, for example one that makes
all the integers again into critical points (such maps
are of course included in our family above). As it
stands without extra added holomorphic map, this
map has an interesting dynamical feature: for points
z with large positive imaginary parts, the dynamics
is very nearly addition of i. It is thus conceivable
that all points with sufficiently large imaginary parts
are contained in a single Fatou component, which
would then be a domain at infinity and could help
to describe the dynamics.

One could contemplate waiving the condition that
f and h must be entire holomorphic functions, al-
lowing entire meromorphic functions. In the real
case, we must still have h(n) = 0 for all (positive)
integers n, and the same problem remains because
the considerations above yield another pole exactly
at an integer.

We are still hoping that it might be possible to
find a holomorphic interpolating function for the
3n+1-problem for which all the integers are in dif-
ferent Fatou components and for which it is possible
to show that there are no wandering Fatou compo-
nents. We would like to hear suggestions from the
readers.

ACKNOWLEDGEMENTS

We are grateful to the London Mathematical Society
and Mary Rees, who made it possible for the second
author to enjoy a wonderful visit to Britain. Wal-
ter Bergweiler suggested the main idea for Propo-
sition 3.6, Phil Rippon contributed several useful
comments and Markus Neuhauser helped with some
inspiring discussions. We would like to thank them
all. Finally, we thank the referee for several helpful
suggestions.



Letherman, Schleicher, and Wood: The 3n+1-Problem and Holomorphic Dynamics 251

REFERENCES

[Baker 1975] I. N. Baker, “The domains of normality of
an entire function”, Ann. Acad. Sci. Fenn. Ser. A I
Math. 1:2 (1975), 277-283.

[Bergweiler 1993] W. Bergweiler, “Iteration of meromor-
phic functions”, Bull. Amer. Math. Soc. (N.S.) 29:2
(1993), 151-188.

[Chamberland 1996] M. Chamberland, “A continuous
extension of the 3x + 1 problem to the real line”,
Dynam. Contin. Discrete Impuls. Systems 2:4 (1996),
495-509.

[Eremenko and Lyubich 1989] A. E. Eremenko and M. Y.
Lyubich, “The dynamics of analytic transformations”,
Algebra i Analiz 1:3 (1989), 1-70. In Russian; trans-
lated in Leningrad Math. J. 1:3 (1990), 563-634.

[Eremenko and Lyubich 1992] A. E. Eremenko and M. Y.
Lyubich, “Dynamical properties of some classes of
entire functions”, Ann. Inst. Fourier (Grenoble) 42:4
(1992), 989-1020.

[Halbeisen and Hungerbiihler 1997] L. Halbeisen and
N. Hungerbiihler, “Optimal bounds for the length of
rational Collatz cycles”, Acta Arith. 78:3 (1997), 227
239.

[Hofstadter 1979] D. R. Hofstadter, Géddel, Escher, Bach:
an eternal golden braid, Basic Books, New York, 1979.

[Lagarias 1985] J. C. Lagarias, “The 3z 4+ 1 problem
and its generalizations”, Amer. Math. Monthly 92:1
(1985), 3-23.

[McMullen and Sullivan 1998] C. T. McMullen and
D. P. Sullivan, “Quasiconformal homeomorphisms and
dynamics, III: The Teichmiiller space of a holomorphic
dynamical system”, Adv. Math. 135:2 (1998), 351—
395. See http://math.harvard.edu/~ctm/papers.html.

[Melo and van Strien 1993] W. de Melo and S. van
Strien, One-dimensional dynamics, vol. 25, Ergebnisse
der Mathematik und ihrer Grenzgebiete (3), Springer,
Berlin, 1993.

[Milnor 1999] J. Milnor, Dynamics in one complex
variable: introductory lectures, Vieweg, Wiesbaden,

1999.

[Roosendaal 1999] E. Roosendaal, “3z + 1 calculation
algorithms and deep search results”, preprint, 1999.
See http://personal.computrain.nl/eric/wondrous.

[Wirsching 1998] G. J. Wirsching, The dynamical system
generated by the 3n + 1 function, Lecture Notes in
Math. 1681, Springer, Berlin, 1998.

Simon Letherman, Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL,

Great Britain

Dierk Schleicher, Fakultat fiir Mathematik, Technische Universitit, Barer Strafie 23, D-80290 Miinchen, Germany

(dierk@mathematik.tu-muenchen.de)

Reg Wood, Department of Mathematics, University of Manchester, Oxford Road, Manchester M13 9PL, Great

Britain (reg@ma.man.ac.uk)

Received April 27, 1998; accepted in revised form October 13, 1998



