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The 3n+1-problem is the following iterative procedure on the

positive integers: the integer n maps to n/2 or 3n+1, depending

on whether n is even or odd. It is conjectured that every positive

integer will be eventually periodic, and the cycle it falls onto is

1 7! 4 7! 2 7! 1. We construct entire holomorphic functions

that realize the same dynamics on the integers and for which all

the integers are in the Fatou set. We show that no integer is in a

Baker domain (domain at infinity). We conclude that any integer

that is not eventually periodic must be in a wandering domain.

1. INTRODUCTIONThe following problem is well known under the nameof 3n+1-problem and has infected many people overthe years: Start with any positive integer n. If itis even, divide it by two; if it is odd, replace it by3n+1. Show that, after �nitely many such steps,this process reaches the number 1.The integer 1 itself is periodic under this map:1 7! 4 7! 2 7! 1. A priori, three possibilities areconceivable for any positive integer n:� it falls, after �nitely many steps, onto the peri-odic cycle 1 7! 4 7! 2 7! 1;� it falls, after �nitely many steps, onto a periodiccycle other than 1 7! 4 7! 2 7! 1;� it never falls onto a periodic cycle; it will thennecessarily diverge to +1.It is conjectured that every positive integer realizesthe �rst possibility: it eventually reaches 1. Exten-sive numerical experiments have been performed, allin support of this conjecture: Roosendaal [1999] haschecked it for numbers up to 1:26� 1016. More pre-cisely, the second case has never been observed forpositive integers. (However, it is well known thatthere are extra cycles of negative integers. Two ex-amples are �1 7! �2 7! �1 and �5 7! �14 7!�7 7! �20 7! �10 7! �5, and the only furtherknown cycle goes through �17.) When any positive
c
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242 Experimental Mathematics, Vol. 8 (1999), No. 3initial number n does not land at 1 or another cy-cle after some large number of iterations, this mighteither be an indication that it indeed converges to+1, or that it takes much longer to settle onto aperiodic orbit. Indeed, some relatively small num-bers are known to take surprisingly long until they�nally reach 1: as an example, the number 27 takes111 steps to reach 1, and the largest number it visitsalong its way is 9232. Therefore, it is not quite clearhow the third case could ever be \observed" numer-ically. For an entertaining discussion of this ques-tion, see [Hofstadter 1979, Aria XII]. In any case,no integer is known to diverge to 1, and no cycleother than the ones above has been found. By a re-cent theorem of Halbeisen and Hungerb�uhler [1997],any extra cycle of positive integers must containmore than 108 numbers (even when counting any3n+1-step and the subsequent division by 2 as one;see below). Surveys of the history and the varietyof known results about the 3n+1-problem can befound in [Lagarias 1985; Wirsching 1998]. Amongthe gems to be found there is a theorem of JohnH. Conway to the e�ect that a simple generaliza-tion of the 3n+1-problem is \algorithmically unde-cidable" because it encodes the halting problem forTuring machines, and a comment of Erd}os sayingthat \Mathematics is not yet ready for such prob-lems".The idea of this paper is to interpret the 3n+1-problem as an iterative procedure and to �nd anentire holomorphic map that extends the given mapon the integers. This idea has been circulated bythe third author for a decade or two. In this paper,we consider the problem from the point of view ofholomorphic dynamics and show that the existenceof any integer that is not eventually periodic impliesthe existence of a \wandering domain" for our en-tire holomorphic map. For a large class of entireholomorphic maps, it is known that there are nowandering domains. Unfortunately, this class doesnot include our maps. Nonetheless, we hope thatthis point of view might stimulate further progress.First observe that the image 3n+1 of an odd inte-ger n is even and will be replaced by (3n+1)=2 in thenext step. We can therefore equivalently considerthe iteration n 7! n=2 if n is even and n 7! (3n+1)=2if n is odd. The orbit 1 7! 4 7! 2 7! 1 turns into theorbit 1 7! 2 7! 1, while 0 and �1 are �xed points

and �5 7! �7 7! �10 7! �5. It is for this map thatHalbeisen and Hungerb�uhler showed that the periodof any extra cycle of positive integers must be morethan 108.We consider the function f : C ! C given byf(z) = 12z + 12�1� cos�z)(z + 12�+ 1�� 12 � cos�z� sin�z + h(z) sin2 �z; (1–1)for any entire holomorphic function h. The con-struction is chosen in such a way that many dynam-ical properties of interest to us will not depend onh. Therefore, although f of course depends on h, wewill suppress this from the notation. The functionf is displayed in Figure 1 for h � 0. We will oftenbe interested in the special case that f preserves thereals, which happens if and only if h preserves thereals, or if and only if f(�z) = f(z) for all z.
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FIGURE 1. A graph of the map f on the reals, forh � 0. Also indicated are the lines x 7! x=2 andx 7! (3x+ 1)=2.To begin with, sin�z vanishes on the integers, sothe values of f on integers do not depend on h. Sincecos�z is +1 on even integers and�1 on odd integers,we havef(n) = �n=2 if n is an even integer,(3n+ 1)=2 if n is an odd integer.That is, our function f agrees on all integers withthe given iteration function. Therefore, the problemcan equivalently be formulated thus:
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Conjecture 1.1 (The holomorphic 3n+1-problem). Iter-ating the function f on any positive integer will landat the number 1 after �nitely many steps.A related function has independently been construc-ted by Chamberland [1996]: his map is equal to the�rst line in (1{1). The same map has independentlybeen discovered and investigated by Sasha Gajfullin.Below, we will discuss similarities and di�erences be-tween this map and ours.
2. HOLOMORPHIC DYNAMICSIn this section we provide some fundamental back-ground on holomorphic dynamics. Details can befound in [Milnor 1999], for example. The dynam-ics of a holomorphic map f : C ! C starts with adichotomy of the complex plane as follows: a pointz 2 C is in the Fatou set of f if there is a neighbor-hood U of z such that the sequence f�n of iterateson U forms a normal family in the sense of Montel(that is, every in�nite subfamily contains a subse-quence that converges compactly to a holomorphiclimit function from U to the Riemann sphere; inparticular, a constant limit function with value 1is allowed). The Fatou set is evidently open. Itscomplement is known as the Julia set. Fatou andJulia sets are forward and backward invariant underthe dynamics. By Montel's Theorem, every neigh-borhood U of any point z in the Julia set has theproperty that the collection of iterates of f on U willcover all of C with at most one exception.Intuitively, the dynamics of f on the Fatou set istame and well-behaved, while the dynamics on theJulia set is wild and chaotic. Depending on the mapf , the Fatou set may or may not be empty, while theJulia set is never empty (unless f is a rational mapof degree at most 1). Any connected componentof the Fatou set is a Fatou component. Since theFatou set is open, any Fatou component is alwayspath connected.A periodic point z is a point for which f�n(z) = z;the period of z is the least positive integer n forwhich this equation holds. Associated to such a peri-odic point is themultiplier � := (d=dz)f�n(z), whichis the same for all the points on any periodic orbit.If j�j < 1, the orbit is attracting and a neighborhoodof the orbit will converge to this orbit under itera-tion. Attracting orbits are in the Fatou set. The

special case � = 0 is called superattracting. An or-bit with j�j > 1 is known as repelling and containedin the Julia set. Orbits with j�j = 1 are known asindi�erent and further subdivided according to therotation angle � satisfying � = e2�i�. If � is rational,the orbit is rationally indi�erent and contained inthe Julia set; there are associated Fatou componentsin which the dynamics converges locally uniformlyto the rationally indi�erent orbit. In the irrationallyindi�erent case (� irrational), the orbit may or maynot be in the Fatou set. If it is, the dynamics inthese Fatou components is conformally conjugate toa rigid rotation of a Euclidean disk about the angle�, and the center of the disk corresponds to the indif-ferent orbit. Such Fatou components are known asSiegel disks. Finally, irrationally indi�erent periodicpoints in the Julia set are known as Cremer points;they are not associated to Fatou components.The basin of attraction of an attracting orbit isthe open set of points converging to this orbit. Animmediate basin is a connected component of thisbasin containing a point on the attracting orbit. Ev-ery rationally indi�erent orbit has a basin of pointsconverging to this orbit; an immediate basin in thiscase is a connected component that contains a pointof the rationally indi�erent orbit on its boundary.For entire holomorphic maps, any Fatou compo-nent is of one of the following types (for a general ref-erence, see [Eremenko and Lyubich 1989] or [Berg-weiler 1993]):� (periodic) immediate basins of (super-)attractingperiodic points;� (periodic) immediate basins of rationally indi�er-ent periodic points;� (periodic) Siegel disks;� (periodic) domains at in�nity, also called Bakerdomains, in which the dynamics converges to 1locally uniformly;� preperiodic components, those which eventuallymap onto a periodic component of one of thetypes above;� wandering components, those whose forward or-bits never repeat.For entire meromorphic maps, there is one extrapossibility: Arnold{Herman rings, which are dou-bly connected domains on which the dynamics isconformally conjugate to a rigid rotation of an an-



244 Experimental Mathematics, Vol. 8 (1999), No. 3nulus about an irrational angle. Moreover, Bakerdomains for such maps can be adjacent to singular-ities other than 1, and when the period is greaterthan one, the periodic components can be based atdi�erent singularities. In this paper, we will be con-cerned only with entire holomorphic maps.A critical point of a holomorphic map f is a pointwhere the derivative vanishes. Its image under f isa critical value. A point w 2 C is an asymptoticvalue if there is a curve 
 2 C tending to 1 suchthat, along this curve, the values f(z) converge tow. The closure of the set of critical and asymptoticvalues is known as the set of singular values. It isa well known observation in holomorphic dynamicsthat the fates of singular values under iteration (thesingular orbits) determine many dynamical features.For example, any periodic cycle of Fatou compo-nents corresponding to attracting or rationally in-di�erent periodic orbits must contain at least onesingular value, and every boundary point of a Siegeldisk and every Cremer point must be on the closureof some singular orbit.We will now discuss whether Fatou componentsmay be multiply connected. As a consequence ofthe Riemann{Hurwitz formula, periodic Fatou com-ponents of holomorphic maps are simply connected,doubly connected or in�nitely connected. Doublyconnected components are always Arnold{Hermanrings; they must surround a pole of the map, sothey cannot occur for entire maps. For a simply orin�nitely connected Fatou component, all its prepe-riodic preimages must also be simply respectivelyin�nitely connected.In many cases, Fatou components of entire mapsmust be simply connected; the following lemma con-tains known results.
Lemma 2.1 (Fatou components are simply connected).Any periodic or preperiodic Fatou component of anentire transcendental map is simply connected .
Proof. For a Fatou component corresponding to anattracting or rationally indi�erent periodic orbit,this is quite easy to see (compare [Eremenko andLyubich 1989, Theorem 4.4]): any loop within thiscomponent must converge to the attracting or ra-tionally indi�erent orbit, so it visits only a compactsubset of C . By the maximum principle, the same istrue for the region surrounded by this loop, which is

thus entirely contained in the Fatou set. It then fol-lows that the corresponding preperiodic Fatou com-ponents are also simply connected. (The statementis false for rational maps and even for polynomi-als: the basin of the superattracting �xed point 1is in�nitely connected if and only if it contains acritical point in C . The proof above also applies toFatou components of polynomials around attractingor rationally indi�erent orbits in C , but it does notapply to the basin of the superattracting �xed point1 because it uses the maximum principle in C .)Siegel disks are always simply connected, becausethey are conformally equivalent to the unit disk.Baker domains are also simply connected: in fact,any multiply connected Fatou component of an en-tire holomorphic map must be bounded [Baker 1975,Theorem 1] (also to be found as [Bergweiler 1993,Theorem 9] or [Eremenko and Lyubich 1989, Theo-rem 4.3]). �For certain choices of h, it can be shown that ev-ery Fatou component, including any wandering do-mains, is simply connected: see [Bergweiler 1993,Theorem 10]. We will give an argument below thatis custom-tailored to our maps.For rational maps, as well as for entire holomor-phic maps with only �nitely many singular values(known as \entire maps of �nite type"), there are nodomains at in�nity and no wandering domains; thisis Sullivan's Theorem [McMullen and Sullivan 1998]in the extension of Eremenko and Lyubich [1992].Unfortunately, the entire maps we are looking atcannot possibly be of �nite type. We will be able toexclude domains at in�nity, and we will show that adiverging integer for the 3n+1-problem must sit ina simply connected wandering domain.
3. THE HOLOMORPHIC 3n+1 MAPWe now begin to investigate the dynamics of ourmaps f interpolating the 3n+1 problem. In view ofthe discussion above, we start by looking at criticalpoints. A little calculation yieldsf 0(z) = ��2 �z + 12�+ 2 sin�z + 2�h(z) cos�z+h0(z) sin�z� sin�z; (3–1)so all integers are critical points of f . Further criti-cal points depend on h. Our function f is built up as
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FIGURE 2. The Julia set of the map f for h � 0. The real parts in the picture range through [�2:4; 12:4]. Theblack Fatou component to the left contains �1 and �2, the component next to it is the basin of 0. To the rightof it, there are the two basins of the 2-cycle 1 7! 2 7! 1. Further Fatou components around integers are clearlyvisible, particularly prominently around even integers.follows: the �rst term models the behavior on evenintegers, the second term adds the modi�cation nec-essary for odd integers, the third term vanishes onthe integers but makes them into critical points, andthe last term contains whatever freedom is left un-der these circumstances: the di�erence between anytwo such interpolations must have a double zero atevery integer. We state this as follows.
Lemma 3.1 (Interpolating the 3n+1-problem). Any en-tire holomorphic map that interpolates the 3n+1-problem in such a way that all integers are criticalpoints is of the form (1{1).Much of our paper will be concerned with the casethat f and equivalently h preserve the reals. In ev-ery result, we will state explicitly whether or notthis assumption is made.The periodic cycle 1 7! 2 7! 1, like any other cycleof integers, is superattracting. Our conjecture canthen equivalently be formulated as follows: everypositive integer is in the basin of attraction of thesuperattracting orbit 1 7! 2 7! 1.We have arranged our maps so that we only haveto deal with the Fatou set. Figure 2 shows the Juliaset of our map f , again in the case h � 0.

Lemma 3.2 (Integers in Fatou set). If h vanishes every-where, all the integers are in the Fatou set of f .
Proof. The integer 0 is a superattracting �xed pointand thus in the Fatou set. For any non-zero integern, we de�ne the open neighborhoodUn := fz 2 C : jz � nj < 1=j2�2njg;for completeness, we choose U0 to be a neighborhoodof 0 so that f(U0) � U0. First observe that, forz = n + � 2 Un, we have j sin�zj = j sin��j �sinh(�j�j); for j�j < 1=j2�2nj � 1=(2�2), we havesinh(�j�j) � 1:005�j�j and thusjf 0(z)j = ����2 (z+ 12)+2 sin�z��� j sin�zj� (� jnj=2+�j�j=2+�=4+2�1:005�j�j)�1:005� j�j� (� jnj=2+1=(4�)+�=4+1:005=�)�1:005=j2�nj� 1:005( 14+1=(8�)2+ 18+1:005=(2�2))< 0:441:It now follows that f(Un) � Uf(n): the center of anysuch neighborhood obviously maps to the center of



246 Experimental Mathematics, Vol. 8 (1999), No. 3the image neighborhood, and the derivative has ab-solute value less than 12 ; thus the image of Un is con-tained in a disk around f(n) with radius 1=j4�2nj.But since jf(n)j < 2jnj for integers and the neigh-borhood Uf(n) is the disk around f(n) with radius1=j2�2f(n)j > 1=j4�2nj, we have indeed f(Un) �Uf(n).Consequently, the union SUn is mapped into it-self under the dynamics. By the Montel criterionabove, points in this union cannot be in the Juliaset. �A similar conclusion can be made for any map fthat satis�es an appropriate growth condition in aneighborhood of the integers.In this section, we will investigate the types ofFatou sets that can contain integers.
Lemma 3.3 (Integers in Fatou set). If a Fatou componentof f corresponding to an attracting orbit contains aninteger , then this orbit is superattracting . No Fatoucomponent corresponding to a rationally indi�erentorbit or to a Siegel disk can contain an integer . If fpreserves the reals, then no Siegel disk can intersectthe real axis.
Proof. If the integer n is within the basin of attrac-tion of an attracting or rationally indi�erent peri-odic orbit, it must fall exactly onto this periodicorbit because the orbit of n is contained in Z . Thisorbit then consists of integers and is superattract-ing because all integers are critical points of f . The�rst case in the classi�cation above is thus realizedonly for superattracting orbits, the second case notat all.No integer can be in a Siegel disk because no or-bit in a Siegel disk is discrete (except at the center,which is an indi�erent periodic point and cannot bean integer either). This rules out the third possibil-ity above. Stronger yet: if f preserves the reals, noSiegel disk can intersect the real line because thatwould require the closure of an orbit to be a smoothsimple closed curve. �We proceed by showing that for all our maps, allFatou components are simply connected. Except forwandering domains, this is of course the statementof the more general Lemma 2.1 above, but our proofworks the same for all kinds of Fatou components.

Proposition 3.4 (Fatou components are simply connected).Every Fatou component of any map f is simply con-nected , whether or not f preserves the reals.
Proof. Suppose there is a multiply connected Fatoucomponent. Its forward images must also be mul-tiply connected. Since every connected componentin the basin of the superattracting �xed point 0 orof the superattracting cycle 1 7! 2 7! 1 is simplyconnected, we may exclude the possibility that ourFatou component contains a point on the backwardsorbit of 0 or 1. The region surrounded by the Fatoucomponent contains points in the Julia set and thuspoints that will eventually map to the �xed point 0.Therefore, after �nitely many iteration steps, everyforward image of our Fatou component must sur-round 0. We thus have a sequence W0;W1;W2; : : :of Fatou components such that f : Wn ! Wn+1 isa holomorphic covering, and all these domains sur-round the origin. Since the point 0 is critical, themapping degrees of f :Wn !Wn+1 must be at leasttwo.We use the unique normalized hyperbolic metricson all Wn. The map f : Wn ! Wn+1 cannot in-crease hyperbolic metrics. The component W0 con-tains a simple smooth curve 
0 surrounding 0; let l0be its hyperbolic length. The image curve f(
0) is asmooth curve surrounding 0 at least twice and hastotal length at most l0. Therefore, there is a smoothcurve 
1 � W1 of length l1 � l0=2 surrounding 0.Continuing, we obtain smooth curves 
n � Wn sur-rounding 0 and having hyperbolic lengths at mostl0=2n. However, since no Wn can contain the Fa-tou component around 0 or any point 2k for a pos-itive integer k, the hyperbolic length of any curvesurrounding 0 is uniformly bounded below: in fact,for a smooth curve in C minus the superattractingbasin of 0 to be hyperbolically short, the curve mustbe far away from the origin, so it must separate 0and 2k from 2k+1 and1 for some positive integer k.However, since all domains Vk := C � f0; 2k; 2k+1gare conformally equivalent, the hyperbolic lengthsof such curves are uniformly bounded below withinthe appropriate Vk. Since any Fatou component con-taining such a curve 
n is contained in all Vk, thehyperbolic length of 
n within this Fatou componentis even greater than within Vk. This contradiction�nishes the proof. �



Letherman, Schleicher, and Wood: The 3n+1-Problem and Holomorphic Dynamics 247We will now exclude domains at in�nity (Baker do-mains) in two ways: for the case that f preserves thereals, we will show that no domain at in�nity can in-tersect the reals. We will then present an argumentdue to Bergweiler that shows that no integer can bein a domain at in�nity even if f does not preservethe reals.
Corollary 3.5 (No domains at infinity intersect reals for

real maps). If f preserves the reals, no domain atin�nity can intersect the real line. In particular , nointeger can be in a domain at in�nity .
Proof. Suppose that x 2 R is in a domain at in�nityand denote its Fatou component by U . Then theorbit of x must tend to 1 along the real line, andsince U is periodic, in�nitely many points on thisorbit must be in U . Since all the numbers �2n landat �1 and thus have bounded orbits, they cannotbe in U . Therefore, U intersects the real line atin�nitely many intervals. Since f is real, U must besymmetric with respect to the real line, and it mustthus be in�nitely connected. This is a contradictionto simple connectivity of any Fatou component. �Amain idea for the following variant has kindly beencontributed by Walter Bergweiler. It applies even iff does not preserve the reals, but it is somewhatweaker in that it does not exclude domains at in�n-ity meeting the real line away from integers.
Proposition 3.6 (No integers in domains at infinity). Nodomain at in�nity can contain an integer , whetheror not f or h preserve the reals.
Proof. We will use the following variant of Koebe's14 -theorem: for any two points a; b in a simply con-nected domain U � C (with U 6= C ) such that theEuclidean distance from a to @U is d, the hyperbolicdistance in U between a and b is at least14 log(1 + ja� bj=d):First we show that there is a number R > 0 suchthat, for every integer n, the disk of radius R aroundn intersects the Julia set. If not, then for every" > 0 there is an integer n such that n and n + 1are within the same Fatou component U and thehyperbolic distance in U between n and n+1 is lessthan ". Let d be the Euclidean distance from f(n)or f(n + 1) to @f(U), whichever is smaller. Since

0 =2 f(U), we haved < minff(n); f(n+ 1)g � 12(n+ 1):But jf(n + 1) � f(n)j � n, so the hyperbolic dis-tance in f(U) between f(n) and f(n+1) is at least14 log(1 + n=d). This yields a lower bound for " andis a contradiction.Now let U be a domain at in�nity. We know thatit is simply connected by Proposition 3.4 above. LetR be a number as above. Suppose that an integern 2 U . Let p be the period of U and let ek and hkbe the Euclidean respectively hyperbolic distances(in f�k(U)) between f�k(n) and f�(k+p)(n). By theSchwarz Lemma, the sequence hk is monotonicallydecreasing and thus bounded. We havehk � 14 log(1 + ek=R);which bounds the ek as well. But since the f�k(n)diverge to 1, this implies that the pattern of stepsin which the orbit of n visits even or odd integers(which determines the image point) must eventu-ally be periodic. This pattern determines the or-bit uniquely: if m and m0 have the same patternof even and odd elements in their orbits and thehighest power of two dividing jm � m0j is 2s, thenjf(m) � f(m0)j is divisible only by 2s�1, and afters steps, the pattern will be di�erent. This impliesthat the orbit of n is eventually periodic as well,contrary to our assumption. �We see that every integer sits either in the basinof attraction of a superattracting periodic orbit ofintegers, or it is in a wandering Fatou component.We conjecture that the latter case does not occur.
Conjecture 3.7 (No wandering domains at integers). Forsome entire function h, the corresponding map fcontains all the integers in its Fatou set and hasno simply connected wandering domain intersectingthe integers.This conjecture immediately implies that every in-teger is eventually periodic for the 3n+1-problem.Notice that it su�ces to prove the conjecture forany entire function h.Even if the conjecture is proved, this does not im-ply that every positive integer will eventually landon the cycle 1 7! 2 7! 1. However, it does make allinteger orbits �nite. The arguments do not distin-guish between positive and negative integers, and



248 Experimental Mathematics, Vol. 8 (1999), No. 3there are three known periodic orbits among neg-ative integers (and the integer 0 forms a cycle byitself).
4. DYNAMICS ON THE REAL LINEWhile our approach does not distinguish betweenpositive and negative integers, it does distinguishbetween integers and non-integers in the case thatf preserves the reals and all the integers are in theFatou set (for example when h � 0). In this section,we will discuss the dynamics of maps f restricted tothe real line.
Lemma 4.1 (Wandering real numbers). Consider anyreal continuous interpolation of the 3n+1-problem(not necessarily analytic). Then between any pairof consecutive positive integers greater than 1, thereis a Cantor set of points that diverge to 1 strictlymonotonically .
Proof. For any integer n � 3, the real interval[2n; 2n+1] has subintervals that map onto [2n+2;2n+3] and onto [2n+4; 2n+5] (not necessarily dif-feomorphically). For any one-sided sequence of in-tegers in f1; 2g, there is thus at least one real num-ber in [2n; 2n+1] that diverges to in�nity strictlymonotonically such that its orbit is restricted to in-tervals of the type [2ni; 2ni+1] with integers ni suchthat ni+1�ni is the prescribed sequence of integers.This is (at least) a Cantor set: a non-empty com-pact completely disconnected set without isolatedpoints. (In fact, for h � 0 and n su�ciently large,the derivatives at these subintervals will be strictlylarger than 1, and we obtain exactly a Cantor set).The remaining intervals are easy to deal with:[2; 3] has a subinterval covering [4; 5], which itselfhas a subinterval covering [6; 7], and the latter in-terval contains a Cantor set as just described. Fi-nally, any interval [2n�1; 2n] with n � 2 will coverthe interval [2n; 2n+1] in an orientation reversingway. �For our map f with h � 0, the interval [1; 2] mapsover itself in an orientation reversing way. It con-tains a repelling �xed point, and everything else willconverge to the orbit 1 7! 2 7! 1.
Remark. The dynamics of f is still richer: one canlabel the orbits of all the real numbers by the integerparts of the points they visit, and when h is not

too wild, it is not di�cult to describe the allowedsequences of integer parts: that is, the map f iseasy to describe by symbolic dynamics.In the holomorphic case, all the reals in this es-caping Cantor set will usually be in the Julia set.The only other possibility is that such points are inwandering Fatou components, and we get entire in-tervals of monotonically escaping points, rather thanonly a Cantor set. This is impossible in cases likeh � 0 when the derivative is bounded below by 1.In any case, we will now show that the Julia set sep-arates almost all integers, at least on the real line.
Lemma 4.2 (Julia set between integers). For any realcontinuous interpolation of the 3n+1-problem, thereis a real �xed point between any pair of consecutivenon-zero integers except possibly f�2;�1g, f�1; 0g,f0; 1g. In the holomorphic case when f preservesthe reals, then between any pair of consecutive evenintegers, there is a �xed point in the Julia set , andthere is a point in the Julia set between any pair ofconsecutive integers except possibly f�1;�2g.
Proof. Since jf(n)j < jnj for non-zero even integers,while jf(n)j > jnj for odd integers except �1, theintermediate value theorem yields the existence of a�xed point between any pair of consecutive non-zerointegers except for the three speci�ed pairs. Be-tween any non-zero even integer and the adjacentodd integer with greater absolute value, the graphof a real holomorphic f(z) has to cross the graph ofthe identity from below, and the derivative at such a�xed point has to be at least +1. Such �xed pointsare thus repelling or rationally indi�erent and hencein the Julia set.For similar reasons, there are �xed points in theJulia set between the superattracting �xed points 0and �1 and between 0 and 1.It remains to consider the case of two adjacentintegers such that the odd one has smaller absolutevalue: �2n and �(2n � 1). For n � 2, such aninterval maps over two adjacent even integers, andthere is a point in the Julia set in between. Sincethere is a superattracting 2-cycle 1 7! 2 7! 1, theremust be a point in the Julia set between these twopoints, and the only pair of adjacent integers left isf�1;�2g. They both map to �1 and could be inthe same Fatou component. �
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Corollary 4.3 (Integers in different Fatou components).If the holomorphic map f preserves the reals, thenno two integers are in the same Fatou component ,except possibly for �1 and �2.
Proof. Between any pair of integers, other than pos-sibly �1 and �2, there is a real number in the Juliaset, and any Fatou component containing these twointegers must be multiply connected. However, allFatou components are simply connected. �As mentioned earlier, a related function has inde-pendently been constructed by Chamberland [1996]:he considers the single mapz 7! 12z + 12(1� cos�z)�z + 12�consisting of the �rst two terms in (1{1), restrictedto the real line. It may be interesting to compareour results to his. Of course, his map has the samedynamics on the integers, but his critical points aredi�erent. His map is not included in our familybecause we insisted in the integers being criticalpoints. This implies that any cycles on the integersare automatically superattracting, while Chamber-land proves that they are attracting in his settingand he �nds estimates for critical points near in-tegers. He also shows that his map has negativeSchwarzian derivative: this is an analytical condi-tion that has several useful consequences. Amongiterated real maps, those with negative Schwarzianderivative are special and much easier to deal with,in a similar sense as holomorphic maps are specialamong di�erentiable maps on the plane. For ex-ample, in both settings there are certain familiesof maps known for which there are no wanderingdomains; however, these are quite remote from themaps at hand. Chamberland observes that his maphas negative arguments where the Schwarzian failsto be negative, and he notes that it \seems unlikelythat a general extension will have this property" (in-deed, it is easy to construct plenty of counterexam-ples).Moreover, Chamberland obtains monotonically in-creasing diverging trajectories on the reals (similarto our Lemma 4.1), as well as an uncountable set of\unstable" bounded orbits (the Julia set on the realaxis), and he applies a special case of Sharkovskii'stheorem [Melo and van Strien 1993] to show thatthere are periodic orbits of any period. This is true

for any real interpolation of the problem. He alsoshows that any (real) neighborhood of some partic-ular �xed point will under iteration cover every realx > 1; the complex analog of this statement is thatany neighborhood of any point in the Julia set willeventually cover all of C (minus at most one point),and this is virtually built into the de�nition of theJulia set via normal families and Montel's theorem.There is a general tendency that the extension ofa real-analytic map to the complex plane enrichesthe available tools considerably: for iteration of con-tinuous real maps, almost anything is possible, andmany dynamical properties of real continuous mapscan be recovered by C1-approximations. However,it is a severe restriction for a real map to extend asa holomorphic map to the complex plane; if this ispossible, then the dynamics gains a lot of structureand many dynamical properties become almost ob-vious. From the point of view of real dynamics, it isnot clear how to tell whether a given map can or can-not be extended to the complex plane (or whetherthis map is in some sense equivalent to one that canbe extended).Chamberland states that his map \seems to bethe extension [of the 3n+1-problem] which permitsthe `simplest' analysis". Since the dynamics is in
u-enced by the critical points, we rather want to haveat least the real critical points under control, andthis leads to the study of Equation (1{1).
5. CRITICAL POINTSSince critical points control the dynamics, it is desir-able to have as few critical points as possible. Evenin the special case that h vanishes everywhere, itseems di�cult to control all the critical points. Thefreedom in the choice of h has been introduced inorder to have more 
exibility to get rid of criticalpoints. Ideally, the only critical points of our mapsshould be the integers. In view of Equation (3{1) forthe derivative, it would be useful to �nd an entirefunction h such that2 sin�z + 2�h(z) cos�z + h0(z) sin�z = 0;for such a function h, the only critical points of fwould be the integers, as well as z = � 12 (on theright hand side, we might allow some function withas few critical points as possible). We will now argue
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h0(z) = �2�h(z)cos�zsin�z � 2: (5–1)

Since h should be an entire holomorphic function,h0 must also be such a function, and thus h musthave zeroes at all the integers. Near zero, we canwriteh0(") � �2�"h0(0)cos�"�" � 2 � �2h0(0)� 2;
so it follows that h0(0) = �2h0(0)�2 or h0(0) = � 23 .The di�erential equation (5{1) is real with real ini-tial conditions, so we can look at it over the reals. Aperiodic di�erential equation with periodic bound-ary values will have periodic solutions. For all inte-gers n, we have h(n) = 0 and thus h0(n) = � 23 . Ifh(x) = 0 for any non-integer value x, then h0(x) =�2. Therefore, whenever h(x) = 0 for any real num-ber x, we have h0(x) < 0, and no real solution curvewith h(x) < 0 can ever reach the value zero againin positive time.The boundary condition h(0) = 0 will specify areal solution to the di�erential equation. For smallpositive x, we will have h(x) < 0 because h0(0) < 0and h is analytic. Periodicity of the required solu-tion needs h(1) = 0, but this is impossible. There-fore, there is no entire function h solving the dif-ferential equation (5{1), and consequently it is notpossible to reduce the set of critical points to the setZ [ f� 12g.In fact, any solution curve with h(x) < 0 for anyreal value x will tend to �1 for �nite values of x:�rst consider the homogeneous di�erential equation~h0(x) = �2�~h(x)cos�xsin�x :Its solutions are ~h(x) = �= sin2(�x) for arbitraryreal constants �, and every negative solution at anynon-integer will tend to �1 when x approaches thenext integer. In our di�erential equation for h, thederivative is even more negative than in this homo-geneous example, and every negative solution willdiverge to �1 even faster. However, the value of xat which the solution diverges will still be the same

integer, not a real number before. This same prob-lem not only exists at the origin, but at all the in-tegers.This discussion shows that there is no entire func-tion h so that f has no critical points besides theintegers and z = � 12 . It therefore seems unlikelythat the number of extra critical points of f can bereduced signi�cantly by a real entire function h.A complex candidate map would bez 7! z=2 + (2z + 1)(1� ei�z)=4;possibly added to any entire holomorphic map van-ishing on the integers, for example one that makesall the integers again into critical points (such mapsare of course included in our family above). As itstands without extra added holomorphic map, thismap has an interesting dynamical feature: for pointsz with large positive imaginary parts, the dynamicsis very nearly addition of 14 . It is thus conceivablethat all points with su�ciently large imaginary partsare contained in a single Fatou component, whichwould then be a domain at in�nity and could helpto describe the dynamics.One could contemplate waiving the condition thatf and h must be entire holomorphic functions, al-lowing entire meromorphic functions. In the realcase, we must still have h(n) = 0 for all (positive)integers n, and the same problem remains becausethe considerations above yield another pole exactlyat an integer.We are still hoping that it might be possible to�nd a holomorphic interpolating function for the3n+1-problem for which all the integers are in dif-ferent Fatou components and for which it is possibleto show that there are no wandering Fatou compo-nents. We would like to hear suggestions from thereaders.
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