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We use the Valentiner action of A on CIP? to develop an it-
erative algorithm for the solution of the general sextic equation
over C, analogous to Doyle and McMullen’s algorithm for the
quintic.

1. INTRODUCTION

1A. Overview

Doyle and McMullen [1989] devised an iterative so-
lution to the fifth degree polynomial. At the core
of the method is a rational mapping f of CP' with
the icosahedral symmetry of a general quintic. Alge-
braically, this means that f commutes with a group
of Mobius transformations that is isomorphic to the
alternating group As. Moreover, this As-equivariant
posseses reliable dynamics: for almost any initial
point a € CP', the sequence of iterates f*(a) con-
verges to one of the periodic cycles that comprise an
icosahedral orbit; see [Doyle and McMullen 1989,
p. 163] for a geometric description. This break-
ing of As-symmetry provides for a generally con-
vergent quintic-solving algorithm: with almost any
fifth-degree equation, associate a rational mapping
that has reliable dynamics and whose attractor con-
sists of a single orbit from which one computes a
root.

An algorithm that solves the sixth-degree equa-
tion calls for a dynamical system with 8¢ or Ag sym-
metry. Since neither 8¢ nor Ag acts on CPI, atten-
tion turns to higher dimensions. Acting on CP? is an
Ag-isomorphic group of projective transformations
found by Valentiner in the late nineteenth century.
The present work exploits this two-dimensional Ag
soccer ball in order to discover a Valentiner-sym-
metric rational mapping of CP? whose dynamics ez-
perimentally appear to be nice in the above sense —
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transferred to the CP? setting. This map provides
the central feature of a conjecturally generally con-
vergent sextic-solving algorithm analogous to that
employed in the quintic case.

1B. Solving Equations by lteration

For n < 4, the symmetric groups 8, act faithfully
on CP'. Corresponding to each action is a map
whose nice dynamics provides for algorithmic con-
vergence to roots of a given nth-degree equation.
For instance, Newton’s method provides a direct it-
erative solution to quadratic polynomials, but, due
to a lack of symmetry, not to higher degree equa-
tions. My interests here are the geometric and dy-
namical properties of complex projective mappings
rather than numerical estimates.

The search for elegant complex geometry and dy-
namics continues into degree five where Aj is the ap-
propriate group, since 85 fails to act on the sphere.
This reduction in the galois group requires the ex-
traction of the square root of a polynomial’s discrim-
inant. Such root-taking is itself the result of a reli-
able iteration, namely, Newton’s method. In prac-
tical terms, the Doyle-McMullen algorithm solves
a family of fifth-degree resolvents the members of
which possess Az symmetry. A map with icosahe-
dral symmetry and nice dynamics plays the leading
role.

Pressing on to the sixth-degree leads to the two-
dimensional Ag action of the Valentiner group V.
Here the problem shifts to one of finding a nice V-
symmetric mapping of CP? from whose attractor
one calculates a given sextic’s root. (The solution
procedure follows that of the quintic algorithm: see
Section 4.) Providing the overall framework is the
two-dimensional Ag analogue of the icosahedron.

1C. Proofs and Computations

At the moment, many of this work’s results have
only computational support; accordingly, I call them
“facts”. Furthermore, its conjectural nature calls
for a deeper understanding of Valentiner geometry
and dynamics. As the theory of complex dynamics
in several dimensions develops more sophisticated
weaponry, the barricades to understanding might
become assailable. For now, I hope that these dis-
coveries provide a stimulus to such development.

2. VALENTINER’S GROUP: THE A, ACTION ON CIP?
In 1884, Klein wrote

If ...any equation f(z) = 0 is given, we will
investigate what is the smallest number of vari-
ables with which we can construct a group of
linear substitutions which is isomorphic with
the Galois group of f(z) = 0. [Klein 1913,
p. 138]

In the wake of the mid-nineteenth century ab-
stractionist turn in mathematics the theory of group
representations began to emerge. Part of the con-
crete yield from work on symmetric groups was Val-
entiner’s discovery [1889] of a complex projective
group that is isomorphic to Ag—the alternating
group of six things. Then Wiman [1895] explored
some of the geometric and invariant structure de-
termined by this action on the complex projective
plane. A more thorough exposition appeared in
[Fricke 1926].

Here I take a new approach to the generation of
the Valentiner group and then explore some of its
rich combinatorial geometry. The core of this work
involves the development of a combinatorially sen-
sitive description of the basic geometric structures.
In so doing, I reproduce some of the Wiman and
Fricke results. The study culminates in an account
of the system of Valentiner-invariant polynomials
and, thereby, lays the algebraic foundation for con-
structing Valentiner-symmetric mappings of CP.

2A. Basics of A,

These are the nonidentity elements of Ag classified
by order and cycle-structure:

order structure # of elements
2 (ab)(cd) 45 = 1(9) - 3!
3 (abc) 0= (%)-2
3 (abe)(def) 40=(5)-2
4 (abed) (ef) 90 = () - 3!
5 (abede) 144 =6 - 4!

Sitting inside Ag are twelve versions of Ajs that de-
compose into two conjugate systems of six:

(1) the stabilizers Stab{k} of one thing, and
(2) the permutations of the six pairs of antipodal
icosahedral vertices under rotation.
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Acting by conjugation, Ag permutes each of the two
systems individually. A given As subgroup fixes it-
self set-wise and permutes its five conjugates accord-
ing to the rotational icosahedral group’s action on
the five cubes found in the icosahedron. Meanwhile,
the other system of six subgroups undergo the per-
mutations of the six pairs of antipodal vertices. Con-
sequently, the intersection of two As subgroups in
the same system is isomorphic to A4 — the tetrahe-
dral rotations —while two in different systems give
a dihedral group Ds.

2B. Generating the Valentiner Group

An Ajs subgroup of Ag, say Stab{1}, extends to Ag
by addition of the generator (12)(3456). Further-
more, this order-four element generates an 8, over
the A4 subgroup

((35)(46), (456)) C Stab{1}.

This structure suggests a method for producing an
Ag-isomorphic group V in PGL;(C):

(1) take a tetrahedral subgroup T of an icosahedral
group J;
(2) by addition of an order-4 transformation @), ex-

tend T to an octahedral group O = (T, Q);
(3) generate V = (J,Q) ~ A
T3
€2

FIGURE 1. The icosahedron in octahedral coordinates.

The 15 pairs of antipodal edges of the standard
icosahedron decompose into five triples such that
three lines joining antipodal edge-midpoints are mu-
tually perpendicular. Stabilizing each such triple is
one of the five tetrahedral subgroups of the icosahe-
dral group. Alternatively, the lines in such a triple

correspond to the two-fold rotational axes of a tetra-
hedron whose four vertices are face-centers of the
icosahedron, as in Figure 1. With such a triple of
lines as coordinate axes, in octahedral coordinates
{x1, z2, 23}, the points

A={[1,1,1], [-1,-1,1], [1,-1,-1], [-1,1,-1]}

constitute a set of tetrahedral vertices, where the
brackets indicate homogeneous coordinates for pro-
jective space, as usual. The corresponding tetrahe-
dral group T = Stab(A) consists of the identity and
the 11 orthogonal transformations:

1 00 -10 0 -1 00
Zi=|0-1 0|, Zy=| 01 0], Zz=| 0-10],
0 0-1 00 -1 0 01
0 0 1 0 1 0
Ty=(10 o), T? 00 1},
01 0 1 00
0 0-1 0 1 0
— 2 __
Th=(1 0 0), Ty=| 0 0o-1}),
0-1 0 -1 0 0
0 0-1 0-1 0
— 2 _
Ty=(-1 0o o), Ty=|( o0 0 1),
0 1 0 -1 0 0
0 0 1 0-1 0
— 2 _
Ty=(-1 0o o], T4_ 0 0-1
0-1 0 1 00

Being orthogonal, T preserves the quadratic form
C(z) = 2% + x5 + 23,

hence also the conic € = {C' = 0} in CP?. This
conic contains two sets of orbits of size four: two of
the points fixed projectively by each of the three-
fold T;,. This is a manifestation of the pairs of an-
tipodal tetrahedra found in the icosahedron, that is,
tetrahedra obtained from one another by negating
all coordinates. The third fixed point is one of the
elements of the set A above. With p = >/ the
respective points are

vy Z[,o,p2 1], v = [p? p, 1],
=[-p,—p" 1], wvz=[-p", —p, 1],
=[ p,p2,1] vs = [—p°, p, 1],
=[p, =% 1,  wvi=[p? —p, 1.

The barred notation v; derives from Fricke, being
suggested by an antiholomorphic relationship be-
tween the two systems of tetrahedra. Indeed, in the
x coordinates chosen above, the conjugation map
x — ¥ exchanges a tetrahedron and its antipode.
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The order-four transformation

1 0 O
Q=10 0 p
0 —p O
cyclically permutes the v, but not the v;, while
B 1 0 0
Q=0 0 p
0 —p* 0

cyclically permutes the v; but not the v,. Also,
Q* = Q? = Z,. Since PGL3(C) is four-times transi-
tive, @ and @ are the unique such projective trans-
formations. Accordingly, the groups O = (7, @) and
O = (7, Q) are octahedral, that is, isomorphic to 8.

us

(75} Ug

FIGURE 2. The icosahedron in icosahedral coordinates.

Extending T to an icosahedral group J requires a
projective transformation P of order five that pre-
serves C and point-wise fixes a pair of antipodal icos-
ahedral vertices. One way of producing such a P is
to turn the icosahedron of Figure 1 as in Figure 2, so
that a pair of antipodal vertices corresponds to the
point [0, 1,0], i.e., to the affine points (0,%1,0). In
these icosahedral coordinates {uy, us, us} the desired
transformation of order five is

27 .27
cos— 0 —sin—
5
P, = 0 1 0
.27 0 27
sin — Ccos —
5 5

The change of basis from octahedral to icosahedral
coordinates is

where

5+ vE [5—=5
V1o TV 10
Thus, in icosahedral coordinates, the conic form pre-
served by J is

C(u) = u? + ul + u3,

while P has the expression

1 1 R—
P=A'PA==|7" 7 1 ,
2 T -1 71

with

Finally, J = (7, P). This produces two Valentiner
groups distinguished by chirality:

V=(,Q), V={Q).

Our terms “octahedral coordinates” and “icosahe-
dral coordinates” are from Fricke [1926, pp. 263 ff.].
His octahedral generators are nearly those above. In
his icosahedral coordinates, the conic form is

Chrricke(2) = 2123 + Z;-

The change of coordinates B that yields C'(Bz) =
Crricke(2) 18

1 0 2
B=|(0 1 0
1 0 —3

Set ¢ = €*™/% and Z = Z,. The generators Z, =
AZ, A" and P, = AP,A~! become Fricke’s icosa-
hedral generators 7' and S [1926, p. 263]:

1446 —1+5

2
) 2 2
Z,=BZ,B™' = — 1 1 1
V5
—14++5 1445
2 2
) e24+e® 2 e+¢et
= — 1 1 1
et+et 2 2468
and
e 0 O
P,=BP,B'=(0 1 0
0 0 ¢*
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2C. Valentiner Geometry

Icosahedral conics. Since a ternary icosahedral group
has an orthogonal representation on R®, its com-
plexification stabilizes the quadratic form

C(x) = z7 + x5 + 3

over C, hence also the conic @ = {C(z) = 0} in CP*.
For reasons that will become clear, the two systems
of six icosahedral groups J; and J; in 'V receive the
designations “barred” and “unbarred”. Correspond-
ing to each of the twelve icosahedral subgroups of V
is a quadratic form C; or C, and conic C; or C,
that J; or J, preserves. Thereby, each such conic
possesses the structure of an icosahedron.

Call the form above C;. The action of V produces
the five remaining forms. With n = (3 +v/151)/4,
we have
C1(w) = 2§ +a3 +a3,

C3(z) = C1(Q'w) =i +p a3 +pas,
C3(z) = C5(P*z)
(23 +pa3+p*e3)+(p* z172+pr123—T273)),

Cg(z) =C5(P ')
= 77(
The action of V is given as follows (where, as before,
Z = Zs):
P:Ci+Ci, C;—-C3— Cs— C; — C5 — C5;
Z: 01+ Cq, Cs > C3, C5 & p°Cq, Cs < pCh;
Q:Ci < Cs, C3— Cg— p°Cs — p°Cy — Cs.
Direct calculation yields this result:

Proposition 2.1. The quadratic forms Cy, are linearly
independent and so span the six dimensional space of
ternary quadratic forms. In particular, an unbarred
conic form C, is a linear combination of the Cy, that
1s tnvariant under the icosahedral group J,.

To be specific, the “5-cycle” P belongs to J; and
to an unbarred icosahedral group —say J3 —so that
the indexing agrees with that of Fricke. (Recall that

the intersection of two nonconjugate As subgroups
of Ag is a Ds.) Relative or projective invariance
under P requires C3 to take the form

Cs=aCi+Cs5+C5+C;+ Cs + Cs.

To determine the constant, apply to the Cy, an ele-
ment 1" of J3 that does not belong to Ji, say one of
the 20 elements of order three in J3. Recalling the
association between J3 and the permutations of the
six pairs of antipodal icosahedral vertices labeled
according to the action of P, such a transforma-
tion corresponds to a double 3-cycle of the form
(abc)(def). Specifically, the permutation (164)(235)
used below corresponds to an element of Js.

The action of the generators on the conics Cg, is
given by the permutation of the indices:

P (26543),
Z : (34)(56),
Q : (12)(3654).
Computation in Ag yields the correspondence
T = QP?’QPQ* : (164)(235).
Moreover, the action on the conic forms is
T:C;— Cs— pCi— Ci, Ca— pC3— p*Cs — Cy,
so that
Cs(T™'z) = p* C1 + p(Cz + C5 + Ci + Cs) + aCs.
The projective invariance under 1" of the conic C; =
{C3 = 0} requires a = p. Accordingly,
Cs3(T'z) = p* C1 + p(Cs + C3 4+ Ci + Cs + Cs)
= pCs(x).

Just as the barred forms stem from Cfj, the re-
maining unbarred conic forms arise from C; (again,
our indices are chosen to agree with Fricke’s labels):

Cl(l') = Cg(Pill‘)
= C1+pC3+Cs+p*Ci+Cs+pCs

4.2, 2

= —n(p* =i+ 5n’a5 +pai 4+ 2p(p—1)z123),
Co(x) = C5(Q ')
= Ci+pCs+pCs+Ci+p*C5+C

= —n(p* e+ 50’5+ pai—2p(p—1)m1s),
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Cs(z) = pCi1+Cs+C5+Ci+Cs+Cs
= —np(pxi+p’ x5+ 0 e +2p(p—1)7122),
Cy(z) = Cy(P2x)
=Ci+p*Ca+Cs5+pCi+pCs+Cs

= —n(pai +p* a4+ 51705 —2p(p—1)w122),
Cs(l‘) = CQ(P72JI)

= C1+C5+4p°C3+Ci1+pCs+pCh
= —n(§n°x}+pad+p° a3 +2p(p— 1)mams),
Cg(.’l)) = 02<P74.’L')

= Ci+C§+p03+p04+Cg+p203

= —n(§n°wi+pad+p°ai —2p(p— 1)maws).

Application of V yields
P:.C3+C;, Cp —-Cs —Cy — Cg— Cy — (Y,
Z:Cy+ O, Oy Oy, O34 pCy, Cs > Cg,
Q:Cs e Cg, C, > C3 — Cy— pCy — Ch.

Antiholomorphic symmetry. The one-dimensional icos-
ahedral group Ggo acts on two sets of five tetrahedra
each of which corresponds to a quadruple of points
in CP'. However, no element of the group sends the
tetrahedra of one set to those of the other. Such an
exchange occurs by means of anti-holomorphic maps
of degree one. Of these, 15 correspond to reflections
through the 15 great circles of reflective icosahedral
symmetry; the remaining 45 are the various “odd”
compositions of the 15 basic reflections—e.g., the
antipodal map. Extending the holomorphic Ggy by
such an “anti-involution” produces the group G120
of all 120 symmetries of the icosahedron. The 15
icosahedral reflections generate this extended group
while their even products result in Ggq. In coordi-
nates where one of the great circles corresponds to
the real axis, the associated anti-involution is com-
plex conjugation: in homogeneous coordinates,

[X1,Ts] = [T1, T2

The Valentiner analogues of the tetrahedra are
the two systems of conics. Are there ternary anti-
involutions that exchange the barred and unbarred
conics? If so, can they take the form

(@1, Za, T3] = [Z1, L2, 23] 7

Fricke answered both questions affirmatively [1926,
pp. 270271, 286-289]. (See below for a combinato-
rial geometric computation of this additional sym-
metry.) In the current octahedral coordinates, this
bar-unbar map is

bub[zy, 22, 23] = [p° T1—pTs, —p (p+T) Ta, —pT1—T3).

The action on the conic forms is:

Cy(bub(z)) = ap® Ci(z),
Cs(bub(z)) = apCs(z),
Cs(bub(z)) = aCs(z),
Cy(bub(z)) = aCi(z),
Cs(bub(z)) = ap® Cs(x),
Co(bub()) = apCe(x),

where o = £(3 + v/157). (The match between C;
and C, is no accident. Fricke used this map to dub
the unbarred conics.)

Proposition 2.2. The group Vs.s60 = (V, bub) is a de-
gree two extension of V.

Proof. For T € V, the composition 7" = bub o T o
bub is a projective transformation that permutes the

conics within a system. Therefore it belongs to V.
O

Concerning the form of a bub map, there are coor-
dinate systems in which its expression is conjuga-
tion of each coordinate. While interesting in their
own right, such coordinates also yield computational
benefits. Some of the Valentiner structure suggests
a means of achieving this diagonalization. I will take
up the topic once the relevant framework is in place.

Special orbits. Some of the special icosahedral points
on a conic C; occur at the intersections of C; and
the other 11 conics.

Fact 2.3. Within a system, C; meets each Cg (where
m # a) in four tetrahedral points; this gives the 20
face-centers on Cj.

The overall result is a 60 point V-orbit Og. Sim-
ilarly, the unbarred intersections yield Ogo. Alter-
natively, each member of Og (or Og) is a point
fixed by one of the 20 barred (or unbarred) cyclic
subgroups of order three in V. (In Ag, the barred-
unbarred splitting manifests itself in the two struc-
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turally distinct sets in order three, namely (abc) and
(abe)(de).)

Fact 2.4. Across systems the intersection of C; with
the Gy gives six pairs of antipodal icosahedral vertices

{pablapabz}-

These total to 72 = 6-12 points each of which is fixed
under one of 36 order-five cyclic groups (Ps). Since
an icosahedral group is transitive on its vertices—
indeed, some element J; of order two exchanges p g,
and pgp,, the 72 points

Ors = {pap,Ja,b=1,...,6} U{pap,]a,b=1,...,6}

form a V-orbit. A Valentiner exchange of ps,, and
Dab, also transposes the lines L, and L, tangent
to C, and Cj at pap, and pap,. (The labeling of these
lines in the subsubscript is arbitrary and is done so
as to agree with the natural cases in which a point
does not reside on its associated line.) Hence, the
intersection of these lines belongs to a 36-point orbit,
as show in Figure 3. We will call them “36-points”;
in general, we will refer to special points and lines in
terms of the size of their orbits. Each 36-point p g
corresponds to the 36-line Lz, = {Lg, = 0} passing
through ps,, and pgap,. Furthermore, a dihedral Dy
stabilizes the triangle {pay, , Pap,, Pav }:

Dap = Stab{pay} = Stab{pas, , Pav, }
= <Pab> ZLchd> ~ Ds.

An explanation of the indices attached to the ele-
ment Zzzpqg of order two occurs below.

{Lap = 0}
{L@bz = 0}
Pab,
N
DPab Ca
Pab,
{L@bl = 0}

FIGURE 3. The triangle of one 36-point and two 72-points.

As for other special orbits, each of the 45 involu-
tions Z in V is conjugate to

1 0 0
0 -1 0
0 0 -1

In CP? each such Z fixes a point p; and point-wise
fixes a line L. Furthermore, Z is the square of an
element () of order four. The three fixed points of
@ consist of py and two points (pg); and (pg)2 on
L 7. Each of the latter points have a Z /4 stabilizer
and so belong to a 90-point orbit Ogg. The points
pz, having D, stabilizers, give an orbit O45. Since Z
acts trivially on L, the D, action restricted to L4
reduces to that of a Klein-four group. Finally, the
generic points on a “45-line” lie in four-point orbits
and, overall, provide V-orbits of size 180.

The configuration of 45 lines and points. The intersec-
tions of 45-lines yield special orbits of size less than
180. Furthermore, the number of lines meeting at
such a site p corresponds to the number of involu-
tions in the stabilizer of p. Being Ds-stable, a 36-
point lies on five of the 45-lines. Similarly, four of
the 45-lines meet at a 45-point while three concur
at each of the 60 and 60-points. This accounts for
all intersections of the 45-lines:

36(3) +45(5) +60(3) +60(3) = (%).
On a 45-line there are four points of each type so

that the corresponding clusters of lines complete the
remaining set of 44 lines:

A 4 + 3 4+ 2 + 2 ) =44

36—points 45—points 60—points 60—points

Furthermore, only one involution fixes a 90-point.
Hence, such points lie on just one of the 45-lines.
Since a 72-point has a Z/5 stabilizer, Oy acquires
its exceptional status as the only special orbit that
is not a subset of the 45-lines.

Valentiner-speak. Given that the combinatorial rela-
tionships among special objects derive from those
at the level of conics, the special orbits should ad-
mit description in a conic-based terminology. We
start with the observation that, by the Valentiner
duality between special points and lines, whatever
holds for such points also holds for the associated
lines. Thus, I will usually supress reference to one
or the other.
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Already evident is the natural designation of 36,
72-points in terms of one barred and one unbarred
conic:

{p&fn?pﬁbz} - e& N eb

and pg, is the pole of {pap,,pab, } With respect to
Gz and C,. Turning to the 45-points, a given involu-
tion Z belongs to two tetrahedral subgroups of the
barred and unbarred icosahedral systems alike. If
Z preserves conics Gz, C;, C., and Cg4, then it does
so uniquely (see below). Accordingly, Z= ..y Pabeds
and L_;_, denote the transformation, corresponding
point and line respectively. Alternatively, the 45-
line L, contains the 36-points pac, Dads Poe> Pod
or by duality, the 45-point p_;., lies at the intersec-
tion of the 36-lines L;., Laq, L., L34- Furthermore,
L., is an icosahedral axis of order two for C;, Cj,
C., and €4, while the intersections

La_bcd N Cg, Lﬂcd N Gz, La_bcd N G, Lﬁcd NGy

correspond to the antipodal pairs of edge midpoints.
Of course, the labels for the pair of 90-points — each
of which Zz; ., fixes—should be pg;, ., and pz.4,-

12|13|14(15(16|23|24|25|26|34|35|36|45|46|56

vl [ vo)[ o[ =1 = ([ = ([ =]~
SR E NS
°
°
°

SR EEERE
Ol Ol O] Ol Ol i~

[ ]

[ ]

[ ]

FIGURE 4. Combinatorial scheme for the Valentiner group.

Now, given a 45-line L_;.,, which four of the 45-
points belong to it? Since there are 15 = (g) choices
each for the prefix ab and suffix cd, a 15 x 15 ar-
ray with 45 distinguished entries depicts the con-
figuration of 45-points and lines: see Figure 4. Be-
ing V-equivalent, the rows and columns each contain

three marked eritries. Associated with each of the
15 barred rows ab and its triple of 45-things indexed
by {abcd, abef,abgh}, where

{cadaevfagah}:{17"'76}a

is a tetrahedral group
T(ﬁ) == ja N JB

whose three involutions are Zg 4, Zz.¢y Zapgn- The
analogous state of affairs obtains for the unbarred

columns where the tetrahedral group
TJa=73. NIy

contains involutions Z; ., Z5cd, Zip.q- Fach of these
15 tetrahedral groups extends to an octahedral sub-
group of V,

007) = Sta‘b{ptﬁcd7pa)ef7pa)gh}7
Oca = Stab{pz.a» Pred: Prica}-

Hence, the stabilizer of p_; ., is the intersection of
octahedral groups

Oa) N Ocd = Sta‘b{pu_bcd} = Sta‘b{’ﬁ’a_bcd} ~ 'D4.

Furthermore, the involution Z ., associates canon-
ically with the pair of barred and unbarred tetrahe-
dral groups
‘J’a_b N Tcd = <Zﬂ)cd> ~ Z/Q

This 45-array, a graphical version of which ap-
pears in [Wiman 1895, p. 542|, encodes a wealth of
combinatorial geometry including an answer to the
query of the preceding paragraph. At a 45-point
Dapeq there are four concurrent 45-lines whose refer-
ences have the form L@ef, L@gh, Limmcd, and Lieq.
To find these lines read along the ab row and the cd
column. By way of example,

Praza € Lz N Lisse M Lagaa N Lagaa-
Duality gives

{P13125 P1356> P3634> Pa534 ) C Lisza-

The Dj stabilizer of a 36-point pz, contains five in-
volutions whose indices have a prefix a and a suffix
b. For pss this gives 1335, 2315, 3445, 3556, 3625.
Hence,

P35 € Lizzs N Lazis N Laaas N Lasse N Lagos
and

{p1335, P7315> P3d455 P353565 P3625 ) C L3s-
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The array also supplies a connection to Ag. For
instance, the involution Ziss, fixes L35, pointwise
while preserving L1315, L1356, L3634, and Lzzs, as
sets. Accordingly, it permutes the conics by

@3 — (‘36, (‘3;1 <~ @5, G« 62, @5 <~ 66-
Finally, which three involutions fix a 60, 60-point
p? (The stabilizer of p is a D3.) Unlike the other
special orbits, Og; and Og have a bias toward one
or the other system of conics. Recalling that p is an
icosahedral face-center for two conics, say C; and Cg,
an involution Z that fixes p cannot preserve the two
conics individually; such an action would have order
three. Hence, Z exchanges the conics and lacks a
prefix ab. For ab = 25 the array indicates six such

involutions:

Zr314 ¢ (25)(46),  Zga ¢ (25)(13),
Zgs (2_5)(1_4): Zig95 (_5)(?75)7
Z3as6 (2_5)(1_6), AR (2_5)(3_4)

The six associated lines pass through the four points
in C; N C5 as edges of the tetrahedron whose stabi-
lizer is T3. They naturally fall into four sets of
three lines; among these triples a given index in
{1,3,4,6} appears twice. The intersection of the
three lines occurs at the three-fold 60-points (see
Figure 5), thereby suggesting appropriate names:

L1314 N Laas N Lisss = {Prszst
L1314 N L3336 N L3gas = {Paiaas}
L1aas N L3aze N Lagra = {prtse )
L1636 N L3525 N Lag1s = {Paamat
Similarly, I will call the 60-points pu.peq-

To finish off the description of the special Valen-
tiner points on a 45-line: Which four of the 60, 60-
points lie on Lz; ;7 Since L3, contains 60-points
whose indices satisfy cxdst and dxcxy, the matter
comes down to finding values of s,t,z,y that are
“Valentiner consistent.” This means that they fill
out the scheme

Dexdst € Licd N Lics N £’Tcta

Pesdus € Lmeqg N L=y N Loey,
pd*czy € L’ﬁcd N Lﬁdaz N L’ﬁdya
Pdxczw € chd N Lfdz N erwa

{LEM = 0} {L1_314 = O}

{LT425 = 0}

Dgx13a —\ {L1gss = 0}

P1i346

P3i146

P36 {Lgags = 0}

{L%% = 0}

Intersecting conics within a system: a

FIGURE 5.
tetrahedral configuration.

where each triple of prefixes exhausts {1,...,6} and

{s,t,u,v} ={x,y,z,w} ={1,...,6} — {c,d}.
For L1544,

Pasase € L1ass N Lsgas N Lagse,
Pas124 € Ligzq N Ls13 N Ligas,
Pas3se € L1asa N L3ass N Lipae,
Pas123 € L1334 N L3524 N Lgg1s

and
Pzse € Lia3a N L1326 N Lig1ss

Ptiaas € 5534 N LT425 N Lﬁwa
P36 € Liasa N Lazis N Lagass
Patas € Liasa N Lagie N Lagas-

Collected below are the various data for Lig3,.

Orbit Special points Multiplicity

on L1534 of 45-lines
O36 Pi3 Pia P23 P24 (2) =10
O4s P1212 Pizs6 P3634 Pis34 ;1 =

(
O Prz36 Pxmise Phooss Pwids (
(

O60 D3x124 P4x123 P3x456 P4ax356

Ogo P1234, P1i234, 0
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For subsequent reference, we summarize the geo-
metric terminology.

point/line orbit stabilizer
Pav/Lav O36 Ds
{Pab,»Pavs } /{Las,» Lav, } O72 7[5
Pabeal Lavea O4s Dy
{Pavear» Paveas /{5 a8eay s Laveas b Oo0 Z /4
Pavveal Lavvea Ogo D3
Pasbed/ Lasbed Oso D3

2D. Computing a diagonal bub involution

One way to approach the matter of an antiholomor-
phic symmetry that exchanges systems of conics is
to look for points that such a symmetry should fix.
Given three such points a, b, ¢ in coordinates y where

a=1[1,0,0, b=1[0,1,0], ¢=10,0,1],

the associated bub map would have the diagonal
form

bub[yh Y2, y3] = [QE, ﬁ%a %]

Fixing a fourth point determines appropriate values
for the inhomogeneous parameters «, 3.
But, which points should such a map fix? More-

over, how many such anti-involutions should there
be?

A heuristic for bub-symmetry. The basic Valentiner ob-
ject involving a mixture of barred and unbarred con-
ics is the Dy structure consisting of a pair of con-
ics {C3,Cp} that intersect in the pair of 72-points
{pav,sPab, }- A bub map that exchanges these two
conics, must preserve the set {pay, ,Pan, } as well as
the associated 36-point pz,. To put some flesh on
the skeletal configuration of Figure 3, consider two
icosahedra that share a five-fold axis and, about
this axis, are one-tenth of a revolution away from
each other; see Figure 6. The poles where the axis
passes through the icosahedra correspond to the pair
of five-fold points pa, ,. A reflection through the
equatorial plane preserves this arrangement while
exchanging the icosahedra and the poles. The icosa-
hedra also transpose under reflection through five
planes that include the polar axis. In these cases,
the two poles are fixed. This model hints that for

FIGURE 6. Intersecting icosahedra. The union of a
barred and unbarred conic has a Ds structure rep-
resented by two icosahedra that meet at a pair of
antipodal vertices and are turned away from one an-
other by an angle of 7/5. The reflection through
the equatorial plane exchanges the icosahedra and
so suggests that for each pair {Cz, Cy} there is a pri-
mary bub involution. Also transposing the icosa-
hedra are secondary reflections through five vertical
planes. These correspond to primary reflections for
five other pairs of conics.

each pair C; and @y, there is a distinguished bub-
involution and five of a secondary nature. This
makes for a total of 36 maps bubg,.

For the primary reflection relative to the pair

{Géu 62}7

this heuristic demands that ps,, and ps., exchange
while ps, remains fixed. What other points should
“bubs,” fix? Since five other bub maps switch Cs
and C,, symmetry requires that bubsz, provide a
secondary reflection for each barred-unbarred pair
of icosahedra associated with the 22 configuration.
This being so, bubs, fixes the corresponding poles of
72-points. Accordingly, the correspondence between
the five remaining barred and unbarred conics deter-
mines these five pairs of points. Now, the five pairs
of nonpolar antipodal vertices on the Cs icosahedron
correspond to the points of intersection of C; with
the five conics Cy, Cs, C4, Cs, and Cg while the non-
polar vertices on the €, icosahedron correspond to
the intersections of C, with the five conics Cz, Cs, C3,
Cs, and Cg. Let these sets of five pairs correspond
to vertices of two pentagons that are one-tenth of
a revolution away from each other with antipodal
pairs of points being bubsz, symmetric (see Figure 7
and imagine looking down, from above a pole, on
the intersecting icosahedra of Figure 6). The Dj
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25 62

FIGURE 7. A heuristic for bub-symmetry. Regard
each of the five pairs of antipodal vertices on the
Ds union of conics C; and Cy as a vertex of one
of two pentagons whose arrangement corresponds
to that of the remaining icosahedra. The primary
bubs, reflection interchanges the pentagons as well
as antipodal vertices. The secondary reflections are
{bubg, : a # 2} and transpose the vertices 2a and
a2 respectively.

action D5, = Stab{Cs, Cy} determines the specific
arrangement.
One of the elements of order five that belongs to
'DQQ is
Py = QPQ .

The associated five-cyclings of conics are (15436)
and (15436). The matching of the 2k and m2 ver-
tices depends upon the five involutions that stabilize
C; and C,. For example, the generator Zis;, asso-
ciates 1 with 1, while the 5-cycles above determine
the remaining matches of @ with a. This informa-
tion is also readily available in the 45-array. The five
entries that involve both 2 and 2 are 2a2a. Indeed,
the array’s symmetry about the diagonal abab is a
combinatorial manifestation of bubss.

Special coordinates and the bub-RIP. Following the clue
provided by the above heuristic, make a param-
etrized change of icosahedral to octahedral coordi-
nates, of the form

A:( ap?ll ‘ bp%z | ngl
1-V5 1-V5 1+5
2 2 2
= 5—/5 5—/5
a > b 51 0
1 1 1

In these icosahedral coordinates y, the 11 triangle is
pill = [17070]7 pilz = [07170]7 P11 = [0707 1]

The candidate bubs, map K(y) = gy fixes each of
these. In octahedral coordinates the 22 triangle con-

sists of
Pas, = 1+2\/5 02, /5+275 i, 1}
o VR p, 1]

pe = 55020, 1)

B

[
P22, = B

The hope here is that, when transformed to y coor-
dinates, some choice of a, b results in

K(A_1p§21) = P22y,
K(A_1p522) = P22,
K(A ' pa) = pa.
Satisfying these conditions are the values
_ V315
8
The change of coordinates becomes

a=b

-5 B=vEd)  (1=vV5)(B=VEi) 145
42 42 2
A= | V5-V53-V5i) V5-v5(3-V5i) 0
4 4
3—V5i 3—/5i 1
2V/2 2v/2

As for the conic forms, they satisfy the desired con-
dition:
Ci(y) = Ci(v)-

A further change of coordinates given by a real
diagonal matrix leaves bubsy(y) = ¢ undisturbed.
In y coordinates the one-point orbit ps, under the
Ds for 22 is

1,1, V6/7],

where as before 7 = (1 4+ v/5). For a final simplifi-
cation, the additional coordinate change

1 0 0

0 1 0

0 0 V6/r

arranges for this point to be [1,1,1]. In these ad-
justed y coordinates, the 11 and 22 triangles are

B =

P11, = [17070]7 Da2, = [37 27727 _7]]7
pilz = [07170]7 p§22 = [37 27727 _77]7
P11 :[07071]7 p?2:[]—7171]7
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where as before 7 = 1(3 4+ v/154); in these bubs,
coordinates, the normalized conic forms for 1 and 1
are

Ci(y) = (277)° yrys + 42
Cily) = (20) yiye + 42,

The unwieldy expressions for the remaining forms
are not recorded here.

Since bubs, restricts to the identity on the RP?
given by

Rao = {[t1,ta, t3] : t, € R},

symmetry provides for such a fixed set R;,, for each
of the 36 maps bubg,. Figure 8 provides a geomet-
ric interpretation of these RP?s. One consequence
of the extra symmetry is that Vs.350-invariant forms
and V,.3g0-equivariant maps are, when expressed in
special bub-coordinates, given by polynomials with
real and even, in special cases, rational coefficients.
This is discussed in a later section on basic invari-
ants; see page 221. We remark that although Wiman
[1895, pp. 548-550] and Fricke [1926, pp. 286—289]
mention these coordinates, they seem not to have
made much use of them.

2E. Invariant Structure

For a group action on a vector space the Molien
series provides one of the basic tools of classical in-
variant theory. Given a finite group G acting faith-
fully on C", the dimension of the space C[z]J of
invariant homogeneous polynomials of degree m ap-
pears as the coefficient of the mth degree term in
the Molien series for G:

M(C[x)®) =) (dim C[z],) .

m=0

In the Valentiner case the space is C* while the
group is a 1-to-3 lift of V to a subgroup Vs.3g9 of
SU;. As a result of the character (p) that appears
under V’s action on the icosahedral conic forms, this
lift of V to a linear group has minimal order. (A lift
of a projective group G to a linear group §’ has mini-
mal order if any other lift H of G satisfies |H| > |F'|.
See [Fricke 1926, pp. 267-268] for details.) A further
consequence of minimality is that the Molien series
for the V3.3 gives complete information concerning
the invariants of the projective group V.

{Lu(bubas (p)) = 0}
{Ca=0)

bubg(p) —

Rayp

FIGURE 8. A geometric interpretation of bub-maps.
Since bubg, interchanges the pair of conics €z and
Cp as well as the lines L;(p) = {La(p) = 0} and
Ly(bubgy(p)) = {Ly(p) = 0}, tangent to C; at p and
to Cp at bubgy(p), it also fixes the RP?’s worth of
points Rz, = {La(p) N Ly(bubay(p)) : p € Ca}-

Proposition 2.5. The invariants of V and Vs.369 are in
one-to-one correspondence.

Proof. Trivially, a V3.360-invariant gives a V-invariant.
Conversely, let F(z) be a V-invariant with

F(T7'z) = o(T) F(x)

for T' € V3.360. The kernel of the multiplicative char-
acter

[ Vg.ggo — C — {0}

is the normal subgroup Stab(F) C V336 that sta-
bilizes F'. Since the projective image [Stab(F')] ~
Stab(F)/{(p) is normal in the simple group V o~
Vs.360/(p), [Stab(F')] is either trivial or V. In the
former case, Stab(F') would be either trivial or (p)
so that V3.360/Stab(F’) would be nonabelian. Thus,
[Stab(F)] = V. Since V3360 includes no subgroup
of order 360, Stab(F) = Vj360 and F is V3.30-
invariant. U

Also, V lifts 1-to-6 to a so-called unitary reflection
group Vg.360 generated by 45 involutions on C?; see
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[Shephard and Todd 1954, pp. 278, 287]. The el-
ements of Vg.360 satisfy detl’ = +1 while those of
V3.360 satisfy detT = 1.

Molien’s theorem and its application to V. By project-
ing C[z],, onto C[z]?

m?
function for the Molien series.

one arrives at a generating

Theorem 2.6. For a finite group action § on C",
1 |Cr|
M = — S Dt
(9) S| Z det(I — tT-1)’
CrC§
where Cp are conjugacy classes.
For the proof, see [Benson 1993, pp. 21-22].

Proposition 2.7. For the Valentiner groups Vs.3g0 and
Ve.360, the Molien series are given by

14 t*
M(Vaaso) = 545y 1 = 12) (1 = 430y
=14+t 262 28" ot
1
M(V6-360) =

(1— (1 —2) (1 - )
=14+t +2t242¢" + ...,

Proof. With k = 0, 1,2, the matrices
+pFI, +pFP, +p* 7, £p*Q, £p*PZ, £p*T

represent distinct conjugacy classes in Vg.369. For
V3.360 the three matrices of each type corresponding
to the +p* do the job. Substitution into the formula
of Molien’s theorem produces the indicated generat-
ing functions. O

The basic invariants themselves. We know from the the-
ory of complex reflection groups that there are three
algebraically independent basic forms that generate
the ring of Vg.3go-invariants. The generating func-
tion for the Molien series indicates that these occur
in degrees 6, 12, and 30. Techniques of classical in-
variant theory provide for the computation of the
forms in degrees 12 and 30 from that of degree 6.
But, how does the latter arise? Although Vg.350 per-
mutes the conics, its action on the conic forms is not
stmple —a nontrivial character appears. However,
the cubes of the forms do receive simple treatment
by Ve.360- Hence, summing the cubes of either sys-

tem of conic forms and normalizing the coefficients
yields a Vg.360-invariant:

m=1 m=1
= x? + xg + xg + 3(5 — 152)1‘%.’1);%%
+ %(2\/_ —(5b— \/5) ,0) (vixl + r3ad + 23xd)
— %(2\/5 + 5B+ \/5) ,02) (2123 + 2ixy + 2in3).

By uniqueness, F' is also Vs.369-invariant. FExpressed
and normalized in bubs, coordinates,

F(y) = 10yiys + 9y7ys + 9y5ys
— 4595 y3y3 — 135y11y5 + 275

The form ® of degree 12 arises from the determi-
nant of the Hessian H(F') of F:

D(y) = as |H(F(y))|

=6y;'y> — 38yrys + 63145 + 90y y5ys

+ 90y7y5ys — 91 °vs — 468y7y5v5 — 95 v
7.2 3 2. 7.3 4, 4 4
+ 1080y, y5y5 + 1080y7y2ys + 3375y 1Yoy
— 324ySyays — 324y1y5y5 — 1080yTy5yS
+291692y7 4 2916y5ys + 1215y%y2y5
+ 4374y1y2y§0 + 729y§2.
Similarly, the form W of degree 30 arises from the

determinant of the “bordered Hessian” BH (F, ®) of
F and ®:

U(y) = ag |BH(F(y), ®(y))

|
Fyl
F,

<

2

Fy
Fylesz:a‘ 0

=3y + - +3y3°+ -+ + 57395628 y5°.

3

The constants ag = —1/20250 and ag = 1/24300
remove the highest common factor among the coef-
ficients.

Finally, the product of the 45 linear forms that
correspond to the generating involutions is a rela-
tive Vg.30-invariant but an absolute V;.3¢0-invariant,
and hence a projective V-invariant. As a specific in-
stance of a general result [Shephard and Todd 1954,
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p. 283], this degree-45 form is given by the Jacobian
determinant

X(y) = ax [J(F(y),®(y), ¥(y))]

Fyl Fy2 Fy3
= ax q)yl q)yz (I>y3
\ijl \ij2 \I]y?,
= ﬁ H Lﬁcd(y)
=y 4+ —ys® + - + 3570467226624 y3ys°,
where ay = —1/4860 and [ is a constant. Being

Ve.ss0-invariant, X2 is a polynomial in F', ®, U:
3°X? =4F¥® 4+ 80F''®* + 816 F°®*
+ 4376 F"®* 4 13084 F°®° + 12312 F39°
+ 5616 F®" + 18 F'°0 + 198 F2d U

+ 954 FS®2¥ — 198 FAP3 ¥ — 5508 F2d*4 W
— 1944 %5V — 162 F5U? — 1944 F3p P2
— 1458 F®2W? 4+ 72903, (2-1)

V-symmetric maps and the sextic. The system of invari-
ants provides a foundation on which to construct
mappings of C* or CP? that are symmetric or equiv-
ariant under the action of V3369 or V. Algebraically,
this means that the map commutes with the action.
Given such a map that also possesses reliable dy-
namics, the sixth-degree equation has an iterative
solution.

3. RATIONAL MAPS WITH VALENTINER SYMMETRY

An iterative solution to the sextic utilizes a par-
ametrized family of dynamical systems having Ag
symmetry. In practice, a given sixth-degree poly-
nomial p with galois group Ag specifies a projective
transformation

Sy CP? - CP?
and thereby hooks up to a rational map
S:tofobs,

that has Ag symmetry. Accordingly, the fixed map
f is the centerpiece of a sextic-solving algorithm.

3A. Finding Equivariant Maps
A linear group G acts on the exterior algebra A(C")
by

(T(e))(z) = (T "),

where T' € G, « is a 1-form, and x € C". As in
the case of V-invariant polynomials, V-invariant p-
forms associate one-to-one with Vj.sg0-invariant p-
forms. Hence, the search for symmetric maps can
take place within the regime of the linear action.

Define a map f to be relatively G-equivariant if,
forallT € G, we have T'f = xr foT (for an appropri-
ate choice of xr). If the character xr is trivial, f is
absolutely equivariant. As we look for equivariants,
the V3.360 action on A(C*) provides guidance, thanks
to a correspondence between V3 .3g0-equivariants and
Vs.360-invariant 2-forms. Set

dX2 = (dﬂ?g A dl‘g, d.’L’g A dl‘l, dl‘l A dl’g)

and let - signify a formal dot product.

Proposition 3.1. For a given finite action § C Uz and
a G-invariant 2-form
= f(ﬂf) dX2 = fl (l’) dl’z/\d.’l)g

+f2($) d$3Ad$1+f3(.T) dml /\d.’L‘g,

the map f = (f1, fa, f3) is relatively G-equivariant.
If § C SU;, the equivariance of f is absolute.

p()

Proof. Given T’ S 9, set T = t21 t22 t23 and

Cii Cio Cis
= |T|71 Co Ca Css
Cs31 O3 Csg

We wish to show that Tf(T 'z) is a multiple of
f(z). Let (e1,es,es) be the canonical basis of C?,
and evaluate the forms T f (T~ 'z)-dX, and f(z)-dX,
on (eq,e3). By definition and the invariance of ¢,

(f(z) - dX3) (€2, €3)
= p(x)(e2, e3) = (T()) () (e2, €3) = (T ") (€2, €3)
= [T|72(f1(T7"(2))(C22Cs3 — C23C3s)
+ fo(T7(2))(C32C15 — C33C12)
4 Fo(T(2))(CraCas — C1aCis))
= [T17° (AT (@)t + fo(T7 (2))tn
(T (@) ).

(Here C33C533 — C3C32 comes from d(zZ C'Qi:vi) A
d(zi Cgi.’L'i) applied to (es,e3), and so on.) The
preceding expression, apart from the factor |73,
is exactly the result of evaluating (T'f (T 'z)) - dX,
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on (e, e3). The same equality holds for other pairs
of basis vectors, showing that T'f (T'z) = |T|*f (z),
and f is relatively equivariant. If 7" € SUj3, we have
|7'| = 1 and absolute equivariance occurs. O

Conversely, an absolute equivariant corresponds to a
relatively invariant 2-form, with absolute invariance
holding in case § C SUj;.

For invariant exterior forms, there is a 2-variable
“exterior Molien series”

M(AS) = z: < ,,i (dim A, (C”)fn) tm> s,

in which the variables s and ¢ index respectively the
rank of the form and the polynomial degree, and the
A,(C™)$ are the G-invariant homogeneous p-forms

m

of degree m; see [Benson 1993, p. 62] or [Smith 1995,
pp. 265 ff.]. Projection of A,(C"),, onto A,(C")9,
yields the analogue to Molien’s theorem.

Theorem 3.2. The exterior Molien series for a finite
group action G is given by the generating function

1 det (I +sT71)

9y — E 2

M) =19 €l Qv @ —71)
CrC§

where the Cr are conjugacy classes.

As in the case of invariants, this has the following
consequence:

Proposition 3.3. For Vs.360, the exterior Molien series
M (AV#30) is given by
1_,’_t45 _,’_ (t5+t11+t20+t26+t29+t44)S
+ (t+t16+t19+t25+t34+t40)82 + (1+t45)83
(1—t%)(1—t")(1—¢)
=1+t 42t 424843474+ 4% - .

+ (2 + 3T 20+ 4t 4242 16120+ - ) s
(T2t 0 310 422 4 5 24 ) §?
+ (154241242418 43424+ 4430+, . ) 5%,

3B. A Query on Finite Reflection Groups

For a reflection group G that acts on C" the n ba-
sic invariant O-forms are algebraically independent
[Shephard and Todd 1954, pp. 282 ff.]. Multiplica-
tion of an invariant p-form « of degree £ by an invari-
ant O-form F' of degree m promotes « to an invariant
p-form Fa of degree £+ m. In the series M (A”") for

a subgroup H C G the contribution of the free alge-
bra generated by the basic 0-forms disappears upon
division of M(A™) by M(AJ) = M(C[z]%). The
resulting polynomial in two variables displays the
degrees of the generating H-invariant forms. In the
cases of the 0, n-forms, which have identical series,
what remains are the terms corresponding to non-
constant polynomials that are H-invariant but not
G-invariant.

Proposition 3.4. For the Valentiner group, the “exte-
rior Molien quotient” is

M(Avs-sso)/M(Ags-sso)
— (1+t45) + (t5+t11+t20+t26+t29+t44)8

Notice the duality in degree 45 between 0 and 3-
forms:

s0: 1=t %

8 ¥ 1=1t°

and between 1 and 2-forms:

81 . t5 tll t20 t26 t29 t44

82 . t40 t34 t25 t19 t16 t.

By uniqueness, up to scalar multiplication, of the
3-form X vol associated with the 45 complex planes
of reflection, the exterior product of “dual” forms
must yield a multiple of this form.

This duality between invariant p and (n—p)-forms
also appears in the ternary icosahedral group Jgo.
The generating 0-forms for the full reflection group
Ja.60 have degrees 2, 6, and 10 [Shephard and Todd
1954, p. 301, line 23 of table]. From the discussion
of the Valentiner conics the invariant of degree 2 is
familiar, while those of degrees 6 and 10 are prod-
ucts of linear forms that Jgy preserves. Here the
duality occurs in degree 15 which is the number of
reflection-planes for the icosahedron:

M(A%) /M (Ag*)
= (14815 + (E+£5 O+ 0+ 110 +14)s
+ (P + 07+ 1) s + (1+217)s%,
Which finite reflection groups have series with this

property? Is this duality connected to that described
by Orlik and Terao [1992, p. 286]7
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On V-equivariance and special orbits. Suppose a is fixed
by an element T € G. Since a G-equivariant map
f: CP" — CP" satisfies

fla) = f(Ta) = Tf(a),

T also fixes f(a). Hence, special orbits map to spe-
cial orbits. For the Valentiner action, the points
fixed by an involution are a 45-point and its line
while the 3, 4, 5-fold fixed points come in triples.
Table 1 summarizes the matter. Thus, under a V-
equivariant f, a 45-line L, maps either to itself or
to its point p_;.;. In the former case, f preserves the
pair of 90-points {pzz.q,s Pasea, ;- Since Oy5 cannot
map to Ogg, f must fix the 45-points. (The pos-
sibility of f’s being projectively undefined at p_.,
exists; see below for a case study.) Concerning the
36-72 triples the matter stands just as in the case of
the 45-90 points so that f either fixes or exchanges
the 72-points pap,, Pas, and fixes the 36-points pgp.
What about a triple of 60 points? Symmetry forces
f to permute the three points. Since the Valentiner
group does not distinguish between 60-points, an
equivariant action must fix the orbit pointwise.

Order Number and Type Notation

2-fold 1 45-point, 1 45-line Paeas Laeat

3-fold 3 60-points {Paxdef,PbrdefsDesdes }
3-fold 3 60-points {pagers> Povaer: Povaer t
4-fold 1 45-point, 2 90-points  {pgzz.qs Pased, s Pabed, |
5-fold 1 36-point, 2 72-points {pab Pab,,Pabs }-

TABLE 1. Fixed points of V

3C. The Degree 16 Map

Returning to the exterior Molien series for V3.369, the
coefficient of ¢"s? gives the dimension of the space
of degree m equivariants. The series in ¢ begins

ttT 2t

The first term ¢ is due to the identity map, while
t" occurs through promotion of the identity to the
degree-7 map F'id. (Note that although the iden-
tity map is always absolutely equivariant, its 2-form
counterpart xy dxs Adxs+ o drs Adx, 4+ x5 dry Adxy
will not be absolutely invariant if the group is not in
SU;.) Two dimensions worth of invariants in degree

12 account for the 2t term. The occurrence in
degree 16 of the first nontrivial equivariant finds ex-
planation in exterior algebra. Since exterior differ-
entiation and multiplication preserve invariance, the
2-form dF' A d® is invariant, and hence corresponds
to an equivariant map whose coordinate functions
are given by the coefficients of the 2-form basis

{dxg VAN d.’Eg, d.’Eg A d.’IIl, d.’IIl A d.’IIg}

Proposition 3.5. Up to scalar multiplication, the only
V3.360-tnvariant 2-form of degree 16 1is

dF(z) Nd®(z) = (VF(z) x V®(z)) - dXs.
Consequently, the unique degree 16 V-equivariant is
ig(z) = VF(x) x VO(z).

Here V is a formal gradient VF = (g—fl, g—i, gT}Z)
and X is the cross-product. Geometrically, 1 asso-
ciates a point y € CP? with the intersection of the

pair of lines
b(y) ={VF(y) -z =0} N{Ve(y) -z = 0}.

Dynamics of the 16-map. Given a generic point a that
lies on just one 45-line L, the lines

{VF(a) - =0} and {V®(a) -z =0}

pass through the point p_;_.,. Thus, 1 collapses L.,
to its companion point. Taking pz;., = [1,0,0] and
£’E)cd = {xl = 0}7

¥(a) = [¢1(a),0,0]

where 1;(a) has degree 16 in the homogeneous co-
ordinates a = [0, as,as]. The 16 roots of 1 (a) cor-
respond to the 16 points where L_; , intersects the
44 remaining 45-lines. These occur at the 36, 45, 60,
60-points of which there are four each on L ;. The
blowing-down of the 45-lines forces the blowing-up
of their intersections: To which 45-point could the
intersection go?

Their collapsing behavior makes 1 critical on the
45-lines. Since the Jacobian determinant |J,| has
degree 3(16 — 1) = 45, {X = 0} is exactly the
critical set. Thus, the 45-lines are superattracting.
But, in approaching L, a trajectory inevitably
gets carried near the point p_;., which is blowing
up onto L ,; this means that the CP" of directions
through p_;., maps, by the agency of the Jacobian
transformation Jy,, to points on L., (see below).
Conversely, J,, associates a point on L_; ., with a
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direction through p.;.,. The next two iterations of
1 first return the trajectory to the vicinity of p .,
and then send it back to L., somewhere.

Observation of trajectories that start near p_;.,
or L., reveals a rapid attraction on every other
iteration. What about the 3 and 5-fold intersections
of 45-lines? Are they attracting? While these points
do indeed blow-up, their “image” under v is not a
curve that blows-down to the point; such is the sole
propriety of the 45-points. Hence, 1 draws a generic
point near a 60, 60, 36-point into one of three or five
point-line cycles.

This “every-other” dynamics poses the following
problem: which every-other iterate do we watch?
For some initial postions, the even iterates converge
to a 45-point while the trajectory spends the odd
times around the corresponding 45-line. For others,
the process is reversed. Moreover, experiment in-
dicates that the dynamics at the 45-line eventually
settles down; trajectories end up at one of the 45-
points on the line. Hence, the iteration outputs a
pair of 45-points each of which lies on the line of
the other. But, there are, for each 45-point, four
possible pairs of this sort so that taking every other
iterate amounts to a neglect of information.

The dynamics of ¥ appears to come down to what
takes place on the critical 45-lines. Given a point x
on a 45-line L;.,, the derivative J,, associates with
x a CP' through p; ,;, namely, the image Ly (z) of
Jy(x). In turn, Jy(pg.) sends the line £, (x) to the
point (Jy(pzpeq))Lw(x) on L., The degree-15 map

z = (Jy(Pg5ea)) Ly (2)

gives ¢ on L3 ..

Figure 9 on page 237 shows a basins-of-attraction
plot illustrating the dynamics on a 45-line. The
union of the patches in a given color indicates a
basin of attraction for one of the four attracting
45-points. The black dots contain points that the
45-points mught not attract. Does this set have in-
terior or positive measure? (For more details about
the figure, see the Appendix.)

On a 45-line the map is not critically finite (see
[Fornaess and Sibony 1994, pp. 223ff.] for this con-
cept); in particular, its critical points are not pe-
riodic. Indeed, there might be a wandering critical
point there, as suggested by Curt McMullen (private
communication). Hence, establishing convergence

almost everywhere would be difficult should the map
even possess this property. Moreover, this behav-
ior hardly reveals the geometric elegance whose pro-
spective discovery motivates the present enterprise.

Unlike the one-dimensional case of the icosahedral
group, for which the nontrivial equivariant of lowest
degree provides an elegant dynamical system [Doyle
and McMullen 1989, pp. 152-153] for the purposes
of solving the quintic, the higher-dimensional Val-
entiner action fails to bear similar fruit. The failure
occurs in spite of the 16-map’s being obtained by
a procedure analogous to that employed by Doyle
and McMullen in producing the degree-11 icosahe-
dral map:

1 dimension

F: J-invariant of degree 12

fu =

Ty
F, F,
2 dimensions

F, ®: V-invariants of degrees 6, 12
T g z
1;bl(i = Fz Fy Fz
e, ¢, 9,

where Z, 9, Z represent unit coordinate vectors. But
in one dimension all J-symmetric maps arise as com-
binations of three others each of which are con-
structed in the manner of f;; but with different basic
invariants standing in for F'. A richer stock of equiv-
ariants inhabits the Valentiner waters. In contrast,
the next higher degree offers promise as well as a bit
of mystery.

3D. A Family of 19-Maps

The Molien series for Valentiner equivariants
t+t" + 2t 1+ 3¢

specifies three dimensions worth of maps in degree
19 of which two are due to promotion of the iden-
tity by degree-18 invariants. Hence, there are, as
the exterior Molien quotient (Section 3B) indicates,
nontrivial V-symmetric maps in degree 19. How do
these arise? Since there is no apparent exterior al-
gebraic means of producing such a map, the more
practical matter of computing them takes priority.
(Peter Doyle and Anne Shepler appear to have found



226 Experimental Mathematics, Vol. 8 (1999), No. 3

a “differential” method of generating all invariant
2-forms. The geometric and dynamic consequences
remain to be explored.)

19 = 64 - 45. Multiplication of a degree-19 equivari-
ant f by Xys5 elevates f to the 14-dimensional space
of 64-maps. There are 14 ways of promoting the
maps Pig, P34, and fyy to degree 64:

(a) 7 dimensions of degree 48 invariants to promote
P16 = VF x V&;

(b) 4 dimensions of degree 30 invariants to promote
34 = VF x VU;

(c) 3 dimensions of degree 24 invariants to promote
f1o=V® x VY,

Proposition 3.6. These 14 maps span the space of de-
gree 64 equivariants.

Proof. If not, then for some «, not all 0,

(@ F* + -+ a; FOW) dF A d®
—I—(a3F5+—|—a11\I/)dF/\d\I/
+ (a12F4+a13F2@+a14¢2) d® N d¥ = 0.

Since dFF A d® A d¥ = [ X vol for some constant
0B # 0, at least one of the following equalities hold:

(@ F®+-- 4+ a; FOU)BX =0,
(a8F5+---+a11‘11)ﬂX:0,
(a12F4 +Q13F2@ +0614¢2)BX =0.

In at least one case, there is a nonzero «;,. Then the
invariants F', ®, ¥ are not algebraically indepen-
dent, contrary to the theory of complex reflection
groups [Shephard and Todd 1954, p. 282]. O

In this event, X f is a combination of maps whose
computation is straightforward.
Reasoning in the other direction, a 64-map

foa = Fusth16 + F30p34 + Fasfao

that “vanishes” on the 45-lines —i.e., each coordi-
nate function of fs; vanishes— must have a factor
of X. The quotient is a degree 19 equivariant

Jou
o= X
Arranging for the vanishing of fs4 on the 45-lines
requires consideration of only one line; symmetry
tends to the remaining 44. Forcing fg, to vanish at
12 independent points on a 45-line—independent

in the sense that the 12 resulting linear conditions

in the 14 undetermined coefficients of fg, are in-
dependent — we obtain a two-parameter family of
64-maps each member of which vanishes on {X =
0}. The two inhomogeneous parameters reflect the
three dimensions (i.e., homogeneous parameters) of
degree-19 V-equivariants. In bubs, coordinates, set-
ting these two parameters equal to 0 and normaliz-
ing the coeflicients yields

foa(y) = (10F(y)° @(y) + 100 F(y)* @(y)?
+45F(y)*®@(y)® + 156 ®(y)*

+39F(y)* W (y) + 51F (y)@(y) U(y)) ¥ (y)
—27%(y) p(y) + 542(y)* f(y)- (3-1)

The two-parameter family of nontrivial 19-maps is
then

g19(y;a,0) = fro(y)+(aF(y)>+bF(y)®(y))y. (3-2)

Are any of these maps dynamically “special”’? In-
deed, what might it mean to be special in this sense?

Extended symmetry in degree 19. Since fig is a nontriv-
ial Vg.gso—equivariant—note the integer coefficients
in (3-1), each member of the two real parameter
family

fio+ F (aBis +aU;2)id

is impartial towards the two systems of conics and
so, enjoys the additional symmetry. Here B, =
[1Cr and Ui, = [[C) are the degree-12 invari-
ants given by the product of the respective six conic
forms. To honor the doubled symmetry a member of
this family must preserve each R, that bubg, fixes
point-wise.

3E. The 19-Map

The icosahedron again. An intriguing aspect of the 19-
maps is the degree itself. Since 19 is one of the
special equivariant numbers [Doyle and McMullen
1989, p. 166] for the binary icosahedral group, there
arises the prospect of finding a V-equivariant that
restricts to self-mappings of the conics. By symme-
try, an equivariant that fixes (setwise) a conic of a
given system also fixes the other five. Might there
be a map that preserves each of the 12 conics?
From [Doyle and McMullen 1989, p. 163] comes
a geometric description of the canonical degree-19
icosahedral mapping of the round Riemann sphere:
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stretch each face F' over the 19 faces in the com-
plement of the face antipodal to F' while making
a half-turn in order to place the three vertices and
edges of F' on the three antipodal vertices and edges.
By symmetry, the 20 face-centers are fixed and re-
pelling. Since the resulting map is critical only at
the 12 period-2 vertices, it has reliable dynamics
[Doyle and McMullen 1989, p. 156]. A conic-fixing
V-equivariant of degree 19 would, when restricted to
a conic C; or @, give the unique map in degree 19
with binary icosahedral symmetry. This would de-
termine its effect on the special icosahedral orbits:

(1) fix the face-centers: 60, 60-points of the appro-
priate system;

(2) exchange antipodal vertices: pairs of 72-points;

(3) exchange antipodal midpoints of edges: intersec-
tions of conics €z, C, with a 45-line indexed by a
and b.

General V-equivariants satisfy condition (1). (We
say “general” because, while some maps can be set
to blow-up at the 60-points, such a circumstance is
rare.) Since

Op = {F =0} N {® =0},

the image of a 72-point under each g9 in (3-2) is
the same as that under fi9. Propitiously, fig ex-
changes pairs of 72-points. Finally, a 19-map can-
not blow-down a 45-line; this would make it critical
there—a condition precluded by the critical set’s
being an invariant of degree 54 = 3 (19 —1). Con-
sequently, each 45-line must map to itself so that ar-
ranging for 3) costs one parameter for each system
of conics. Fortunately, there are two parameters to
spend and their expenditure purchases a canonical
V-equivariant hig that maps each of the 12 conics
onto itself. See below for an explicit expression.

Fact 3.7. There is a unique degree-19 V-equivariant
hig that preserves each of the 12 icosahedral conics.

By favoring neither system of conics, hi9 possesses
bub-symmetry and so, self-maps each of the Rg.
Expressing the family of 19-maps by

919 = hig + F (a B12 + bU»2) id

makes evident the one-parameter collections that fix
the barred (b = 0) and the unbarred (a = 0) conics.

Unlike the 16-map 114, the 19-map hi9 does not
blow up somewhere.

Proposition 3.8. The conic-preserving map hig ts hol-
omorphic on CP?,

Proof. By equivariance, the set of points on which
h1g blows up is empty or a union of V-orbits. Direct
calculation shows that

h1g (p) #0

for

pE 036UO45U060UO@U090.

The remaining possibilities are that h;j9g = 0 on a
180 or 360 point orbit.

First, take the case of a 180 point orbit and recall
that each such point belongs to one 45-line. Also,
let hyg = [h1, ha, hs]. Since hyg preserves each 45-
line £, the only way that hy = hy = hy = 0 is
for the coordinates of the restriction hyg|; to have
a common factor. In bubs, coordinates we have
Liz12 = {y1 — y2 = 0}, so that

h19|L§12 = [f: fa g]

But the resultant of f and g does not vanish. Hence,
f and g do not have a common factor.

Finally, suppose that h;g = 0 at a 360 point orbit
and that [0,0,1] is a 36-point psg. Since

[{h1 =0} N {hy =0} N {hy =0} <1919 = 361,

there is only one member of iy (pss) in CP*. Of
course, this holds for every 36-point of which there
are four on a 45-line L. Moreover, hig(pss) = pss-
Thus, the one-dimensional rational map hjg|. has
four exceptional points —a state of affairs that re-
quires the map to be of degree one [Beardon 1991,
p. 52]. Since the restricted map is not of degree one,
hig does not vanish at a 360 point orbit. (Indeed,
no degree 19 equivariant can blow up a 360 point
orbit.) O

Fact 3.9. The conic-firing equivariant has the bubs,
expression given at the top of the next page.

Dynamical behavior. The discovery of hi9 supplies the
unique degree-19 V-equivariant that self-maps, in
addition to the 45-lines and the 36 bub-RP?s, the
12 conics. The dynamics on each conic is well-
understood. A plot showing the basins of attraction
appears in Figure 10 on page 237.
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hio(y) = 1620 F(y)* - [y1, y2, ys] + f1o(y) =
[—3591y1%y3 — 5263y1%y5 + 9747ydyi*

— 81y3? + 17955y1%ySys + 10260y]y3

lys — 7695y7y3%ys — 107730y1*y3y3

— 74385y3ySy2 + 161595yiysdy2 — 969570yilySys + 1292760ySyi0y3 — 46170y1y3%ys — 234697535yl ys

— 807975 y3yl2ys — 3587409y 0ydys

+ 10277442y3y9y5 + 13851ty — 969570yi%y2yS — 3986010y ySyS

— 1939140y2y31y8 — 526338042y3yT — 28117530yySyl + 831060y 1y8 + 2423925y1y2y3 + 4363065y y3° y3

— 24931800y8yZy3 + 43630650y5 y2y3

— 3112319735 yiys0 + 95987431910 4 1495908047 yoyit + 23269680y y3yA2

— 2617839045413 + 52356780y, 5518 + 1869885013 y2yL4 + 20194758 y4yL> + 2243862042y, y6 + 7479540y, 18,

—81y19 + 9747y1 y2 — 5263y?y10 — 3591yfy15

— 7695y1%y2ys + 10260y} ylys + 179558 ya2ys + 161595y 3ysy2

— 74385y1y2y3 — 107730y1y2 y3 — 461703/1 y2y3 =4 12927603/1 y2y3 — 9695703/1y2 y3 = 8079753/1 y2y3
— 2346975y1y2y3 + 13851y1 y3 + 10277442y1y2y3 — 3587409y1y2 y3 — 1939140y4t y2y3 — 3986010y1y2y3
— 969570y1y2 y3 - 28117530y1y2y3 — 5263380y1y2y3 + 4363065y1 ygy3 + 2423925y1y2y3 + 831060y§1y§

+ 4363065047 313
+ 5235678035 ysyL®

3078yi2yl — 3078yl ya?

— 24931800121812 + 9598743910

—1026y17y2 — — 102632437

— 31123197yy3y3° + 14959080y, yayit + 23269680 y3 y5y3*
— 26178390ySya% + 18698850y y3yst 4+ 20194758 yiyi® + 22438620y, y3ys6 + 7479540y2y38,

— 5130y1*ysys + 113240y y9ys — 5130yty3tys + 3078y1%y2y3

— 272916y1 y2y3 — 272916y1y2 y3 + 3078y1y2 y3 + 215460y1 y2y3 + 687420y1y2y3 + 215460y1y2 y3

— 4617y15y5 + 937251y 0ySys + 9372515 yd ys + 4617y
— 1454355y3y5yS — 1454355yty3yS + 2520882y1lyqys + 8812314 y5ySyl + 2520882y, yityd +
— 19876185 y3y5yS — 2036097yi%3 + 5623506y5y5ys — 2036097 yi%yS + 5235678y y3yi0
— 2617839y1ySya?

_ 37813230y gyl
— 598363212y ya®

— 2617839 y5y2y3?

— 4487724y, y2y3" — 1023516y3°]

30y3 + 290871yt 2y2y3 + 4813992y yIy3 + 290871y2yd?y3

+ 1987618595 y5v5
+ 5235678 y3ysyi°
— 2908710y3y3y3® + 6357609y5yi* + 6357609y5y3*

The conic-fixing equivariant hqg.

Proposition 3.10. Under hig, the trajectory of almost
any point on an icosahedral conic tends to an an-
tipodal pair of the superattracting vertices.

Moreover, the conics themselves are attracting.

Proposition 3.11. The Jacobian J;,, has rank one at
the superattracting 72-points. Thus, hiy attracts on
a full CP? neighborhood of such a point. Further-
more, the Fatou components of the restricted map
higle, are the intersections with C; of Fatou compo-
nents of the map on CP?.

Is this attracting behavior of the conics pervasive
in the measure-theoretic sense? What about the
restricted dynamics on the 45-lines and RIP*s?
Perhaps the place to begin is at a 72-point, say
p11,, which lies at the hub of much Valentiner activ-
ity. Passing through pi;, are many special objects:

(1) the pair {Cy,C;} of conics, which meet tangen-
tially;

(2) the 36-line L1, which gives a 10-fold D5 axis
about which €; U G turns;

(3) the 72-line L1;,, which is stable under the cyclic
half of the Dy stabilizer of L3; and thereby tan-
gent to C1; and Cy;

(4) the sixth-degree curve { F' = 0}, which is tangent
to Lila

(5) the twelfth-degree curve {® = 0}, which is tan-
gent to L13,;

(6) the five RP*s {R3s, Ras, Ris, Rss, Ras}, each of
which intersect €; and C1 only at p1;, and piy,.

In addition, a 72-point situates itself at the intersec-
tion of two components {Fg = 0} and {G4s = 0} of
hig’s critical set.

Fact 3.12. The Jacobian determinant |J,,,| = Fs Gus
where the invariant G distinguishes itself by lack-
g a U term when decomposed into an expression
i the basic invariants F, ®, U:
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Gas(y) = —13718 (14 F(y)® + 180 F(y)° ®(y)
+1701 F(y)* @ (y)* + 3402 F (y)* @ (y)* + 5103 2(y)*).

Since Gz is a polynomial in F' and ® alone, its curve
satisfies

(F=01n{Gs=0}={F=01n{&=0} = Op.

Furthermore, the special invariant structure of Gyg
has an alternative expression in terms of B;, and
Ui, alone. From the identities

Bua(y) =2(5—V150)p F(y)*~2V15(1+V15i)p*®(y),
Ura(y) = 2(5+V150)p" F (y)*~2V15(1-V150) p® (y),

it follows that

Gus(y) = 2°3%*5%19%(—6/(3 — V15i) p Bia(y)*
+ 4(32 4 3V/151) p* B12(y) U2 (v)
— 333 B1a(y)* Ur2(y)*
+4(32 — 3V/15i) p B2 (y) Ura (y)®
-6(3+ \/BZ'),O2 UlZ(y)4)'

Consequently, the degree-48 component of the crit-
ical set meets the conics only at the 72-points:

{Gus = 0} N {B1s = 0} = {Gus = 0} N {Usz = 0}
= (B, =0} N {Up, = 0}
= Op.

Accounting for the multiplicity at these eighth-order
intersections is the singularity of {Gs = 0} at O,
a result that follows directly from the invariant de-
composition.

RIP? dynamics. On each of the five bub-RP’s that are
mutually tangent at pi;, and piy,, these 72-points
are superattracting for the restricted maps

h/19|92m,7 C_Lb == §2, 34, 213, 56, 65

Are there attracting sites on Rz, other than the five
pairs of 72-points? Are there sets of positive mea-
sure or open sets on which hqg|x,, fails to converge
to a pair of 72-points? The experimental evidence
strongly suggests that

(1) the 72-points are the only attractors;

(2) there is no region with thickness or positive mea-
sure that remains outside of their influence;

(3) the set of 45-lines {X = 0} is repelling.

The Appendix exhibits basin plots of hqg|x,, which,
of course, is dynamically equivalent to each hqg|x.,.
What significance does the RP*-dynamics hold for
that on CP*? Extensive trials [Crass 1997a] in CP?
have not revealed behavior contrary to that observed
on the RP?s.

Conjecture 3.13. The only attracting periodic points
for hig are the elements of O75. Moreover, the union

of the basins of attraction for Qo has full measure
in CIP?.

The 45-lines present a problem in that they map to
themselves but do not contain the 72-points. (Again,
this is a feature peculiar to the 72-points. They form
the only special V-orbit that does not lie on the
45-lines.) The basin plot in Figure 11 (page 238)
reveals repelling behavior along the RP' where the
RP? meets one of the 45-lines left invariant by bubs,.

Conjecture 3.14. On the 45-lines hyg is repelling, and
hence {X = 0} resides in the Julia set Jy,,,.

Is J,,, the closure of the backward orbit of the 45-
lines?

4. SOLVING THE SEXTIC

By means of various algebraic manipulations, a gen-
eral sixth-degree polynomial reduces to a member
of a two-parameter family of Valentiner resolvents.
Such a reduction requires the extraction of square
and cube roots. Furthermore, a certain set of sextics
transforms into a special one-parameter collection of
resolvents. These resolvents are especially suited for
solution by an iterative algorithm that exploits Val-
entiner symmetry and symmetry-breaking.

4A. General Sixth-Degree Valentiner Resolvents

At the core of Klein’s program for equation-solving
is the “form problem” relative to a particular ac-
tion of a given equation’s symmetry group: for pre-
scribed values ay, .. ., a, of the generating invariants
Fy,...,F, find a point p common to the inverse
images F['(a1), ..., F, (a,). As with the quintic,
solving the general sextic is tantamount to solving
the corresponding form-problem; see [Fricke 1926,
pp. 308-310; Coble 1911]. This circumstance has a
projectively equivalent formulation in terms of ra-
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tional functions in the basic invariants. In the Val-
entiner setting this concerns

i) v
Yl = Oéﬁ and }/2 = ﬂﬁ,
where o and (3 are chosen so that Y; =1l and Y, =1
at a 36-point. (In bubszy coordinates o = 1 and

0 = i) Given values a; and a, of Y; and Yj;, the
task is to find a point z in CP? that belongs to the
V-orbit

Y7 (a1) N Y5 (az).

Accordingly, the general 6-parameter sextic p(x) re-
duces to a resolvent that depends on the two pa-
rameters Y; and Y. Such a reduction requires the
extraction of a cube root [Fricke 1926, p. 285] in ad-
dition to the square root of p’s discriminant. This
cube root is a so-called “accessory irrationality” —
its adjunction to the coefficient field does not re-
duce the galois group. The 1-to-3 correspondence
between the projective and linear Valentiner groups
V and V.39 accounts for its appearance. In the one-
dimensional icosahedral case, the projective group
lifts 1-to-2 to a linear group, thereby producing the
need for an accessory square root; see [Klein 1913,
pp. 172-173].

As for the derivation of a two-parameter resol-
vent, the map

Y : CP? — {F(z) = 0} — (CP? — {F(2) = 0})/V
given by
Y(z) = [F(2)°®(2), ¥(2), F(2)°] = [Y1(2),Ya(2), 1]

provides the V-quotient of CP?> — {F(z) = 0} in
that the fibers are V-orbits. The exceptional status
of the sixth-degree curve is due to its being the fiber
above the single point [0,1,0]. Furthermore, under
the icosahedral function

Ci(2)°
SO =Ty

a fiber Y '[a;, as, 1] maps to six points
{Ua(z) = Ca(2)’/F(2) :n=1,...,6},

where z € Y [ay, a2, 1]. The Uy(z) are the roots of
the sixth-degree polynomial

As z varies in CP? — {F(z) = 0}, R.(u) yields a
family of sextic resolvents. Since Vj.360 permutes
the C(z)? simply — no multiplicative character ap-
pears, R, is V-invariant in z, and hence so is each
u-coefficient. Expressing the coefficients in terms of
the basic invariants F'(z), ®(z), ¥(z) and then con-
verting to Y7 and Y5 yields, in bubs, coordinates, the
resolvents Ry (u) = Ry, v,)(u). With w = /154,

their expression is

Ry (u)
6 —54w .5 11(1—w)—3(34+w)Y7 , 4
=u + 90 U + 223552 u

(100457w)+9(304w)Y: . 3
+ 3954 u

—(152417w)+18(—21+4w)Y; +27(—4+w)YZ 2
+ 2231155 ()

(425+103w)+6(75+193w) Y3 +27(—25+33w) Y2 —7776wY>
+ 2331458 (%

—(5+3w)+9(15—7w)Y; +81(25—w) Y +81(45+11w) Y}
+ 2431858 .

This makes explicit the fact that the solution of
Ry (u) follows from inversion of Y.
For the unbarred functions
Cu(2)?
F(z) "

Un(z) =

one obtains the associated resolvents Sy from Ry
by complex conjugation of the u-coefficients:

Sy (u) = Ry (1).

4B. Special Sixth-Degree Resolvents

For the resolvents Ry the parameter space is an
affine plane [Y7, Y3, 1] that lifts to CP*— {F(z) = 0}.
There is a complementary set of resolvents parame-
trized by a CP' that lifts to {F(z) = 0}.

The sixth-degree V-invariant curve {F(z) = 0} is
a genus 10 surface that contains three special Val-
entiner orbits:

O ={F(z) = 0} N{2(z) = 0},
Ogo = {F(2) =0} N{¥(z) = 0},
O180 = {F(2) =0} N{X(2) =0} — Ogp.
Set
o
V(Z) - \11(2)2,

constant « is chosen so that V = 1 at a 180-point.
(In bubs, coordinates, o = 2.) On {F(z) = 0} this
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rational map gives the 2-4-5 quotient of { F(z) = 0}
under V:

V:{F(z) =0} - {F(z) =0}/V.
Furthermore, the icosahedral function

Sj(Z) = %Cl(z)?’

divides {F'(z) = 0} by the icosahedral subgroup Ji:
Si {F(z) =0} = {F(2) = 0}/J;.

A value Vj # 0,1,00 of V has an inverse image on
{F(z) = 0} that consists of a V-orbit of size 360
while the image of V(1) N {F(z) = 0} under S;
is the set of six points

[Sa(2) = B(2)2Co(2)¥/T(2) in =1,...,6},

where z € V1(Vp) N{F(z) = 0}. The S;(z) supply
roots of a V-parametrized family of sextic resolvents

As above, T, is V-invariant in z, and hence so is each
s-coeflicient. Expressing the coefficients in terms of
the basic invariants F(z), ®(z), and ¥(z), restrict-
ing to {F(z) = 0}, and converting to V' gives the
one-parameter resolvents

-3+ V1514
o Vior Vst —
253352
V15

4+ /154 V2g?
283655
) 45 — 11+/15%
+ " y2s 4 Ly,
263758 21331158
Again, with the unbarred functions
®(2)?
Sn(z) = Cn(2)?,
(2) = 3y Cal)

conjugation of the coefficients of T} yields the un-
barred resolvents.

Ty(s) = s° —

4C. Parametrized Families of Valentiner Groups

The algorithms that solve given resolvents Ry or Ty
employ an iteration of a dynamical system hy (w)
or hy(w) that belongs to a family of maps param-
etrized by Y = (¥1,Y2) or V, and each member
of which is conjugate to hig(y). The first task is
to parametrize by Y and V families of Valentiner
groups. Each such group supports a conic-fixing 19-
map the computation of which follows that of its
conjugate, hig(y).

Invariant building-blocks. Success in finding a 19-map
for arbitrary Y or V (with the exception of the sin-
gular values Y ({X(z) = 0}) of Y and the values 0,
1, oo of V') requires provision only of basic invariant
forms

FY7¢Y7\I’Y7XY or FV';@V:\IJVaXV:

parametrized by Y and V. In turn, the latter three
of each type depend on the single forms Fy and Fy, .

Much of this development amounts to keeping
track of coordinates. The Valentiner actions V, and
V, on the respective planes CPi and CIP’i are the
same—the parameter z merely replaces y. Think
of these as a parameter and reference space respec-
tively.

To obtain a parametrized sixth-degree form in the
general case, we proceed as follows:

(1) Compose F'(z) with a certain family of maps 7, (w)
each of which is V -equivariant and linear in w.
(The w-space CP? is the iteration space.)

(2) Express the coefficients of the w monomials in
terms of F'(z), ®(z), and ¥(z).

(3) Convert these coefficients to expressions in Y;
and Y, —as in the derivation of Ry .

The special case requires more care.

(1) Compose F(z) with a select family of maps o, (w)
each of which is V_-equivariant and linear in w.

(2) Restrict to {F(z) = 0} and express the coeffi-
cients of the w monomials in terms of ®(z), ¥U(z).
(The choice of o,(w) becomes significant at this
stage; see below.)

(3) Divide through by any overall factors in ® and
U to obtain a polynomial whose degree in z is
a multiple of 60 —the degree of V—and then
express the result in terms of V.

Sixth-degree forms in the two-parameter case. Consider
the family of maps

Yy = TZ(w)
= (F(z)4z) wy + (F(Z)hlg(z)) wa + ka5 (2) ws,

which are of degree 25 in z and projective transfor-
mations in w. Here kys(2) is the equivariant whose
expression in “Hermitian coordinates” is

ks (2) = VE(VF(2)).
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(We use the term “Hermitian” because each 7' in
V260 satisfies TTT = 1)

With 7., one constructs a z-parametrized family
of Valentiner groups V,, = 7, 1‘/;JTZ each member of
which acts on (CIP’fU. By construction, this family
possesses an equivariance property: for T € V,,V,,

17, (W) = T, ().
Hence,
F(rr(w)) = F(7.(w))

so that the w-coefficients of F(7,(w)) are V,-invari-
ant and thereby expressible in terms of the basic
forms F(z), ®(z), ¥(z), and X (z). However, since
the degree in z of each w-coefficent is 6 - 25 = 150,
an odd power of X (z) cannot appear in the decom-
position of these coefficients into polynomials in the
basic invariants. Being Vs.360-invariant, X? decom-
poses into a polynomial in F', ®, and ¥; see equa-
tion (2-1) on page 222. Thus, each coefficient is a
combination of the forms of degrees 6, 12, and 30.
After division by an appropriate power of F(z) as
well as a simplifying numerical factor «, the result
is expressible in terms of Y7 and Y5:

F(r.(w))

CF )P (4-1)

Fy(w) =

The coefficients of the Y monomials in a w-coefficient
are solutions to a system of linear equations. The
five-page explicit expression for this fundamental
form can be found in [Crass 1997a; 1997b, pp. 64—
68].

An important matter concerns the degeneration of
7.(w) where the determinant |7,| vanishes. Taking
2T, hig(2)T, and kqs(2)” to be column vectors, we
can write

I, | = ‘ F(2)'%2T F(2)hio(2)T kas(2)T ‘

=F(2)° | 2" hp(2)" k25(z)T‘
= —1458 F(2)° X ().

The final equality follows by uniqueness of X as a
degree-45 invariant and evaluation of |r,|, F(z), and
X(z) at a single point. Thus, the square of |7,| is

expressible in F(z), ®(z), and ¥(z) alone. In terms
of Y,

|7.]? = 1458 F'° X?
=432 F% (Y, +20Y +204Y; +1094Y}*
+3271Y 4 3078Y 4 1404Y" +18Y,
+198Y1Y2+954Y?Y, — 198Y,*Y, — 5508 Y'Y,
+1944Y7Y, —648Y, — 7776 Y, Yy

—5832Y Y, +11664Y7). (4-2)

The special case. Take the family of maps
o.(w) = (72@(2)*2) wy
+ (‘II(Z)hlg(Z)) we + (24(1)(2)2k25(2)) ws,

having z-degree 49 and w-degree one. The integer
coefficients have been chosen so that, in bubsg,-coor-
dinates, the point

[w17w27w3] = [17 ]-7 1]
corresponds to the map
VF(z) x VX(z)

associated with the 2-form dF AdX. As in the gen-
eral situation,

or.(w) =To,(w)

so that
F(or.(w)) = F(o.(w)).

Thus the w-coeflicients are V,-invariant and thereby
expressible in terms of the basic forms F(z), ®(z),
¥(z), and X(z). Since the degree in z of F(o,(w))
is 6-49 = 294, odd powers of X (z) cannot take part
in the basic invariant decomposition of these coef-
ficients. Furthermore, restriction of the parameter
space CP? to {F(z) = 0} yields coefficients in (%)
and U(z) alone. Finally, since 294 = 22 - 12 4+ 30 =
212+ 9 - 30, the restriction F(o.(w))|(r(:)=o} is
divisible by ®(z)*¥(z). Hence,

F(o.(w))]{rz)=0y = nP(2)*¥(2)" Fy (w),

where 7 is a simplifying numerical factor and Fy (w)
is a polynomial that is degree four in V' and degree
six in w. The expression for Fy (w) also appears in
[Crass 1997b, pp. 68-69].

Since the parameter space gets restricted to

{F(2) =0},
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|| should not vanish there. In fact, 49 is the lowest
degree in which this fails to occur for three projec-
tively distinct maps. Explicitly,

l0.] = | 720%(2)2T W(2)hio(2)T 24@%(2)kns(2)T ‘
= 24720 (2) U(2)D2(2) |z huo(2) k25(z)‘
=273 (2)° W(2) X (2).
Furthermore, on {F(z) = 0}, the expression (2-1)
for X? reduces to
X? = -5 (80°0 —30°) =
Ut 3V &
(85 3

Consequently,

|2 — —214315@12\115(‘/ _ 1)

|0
10

@
14915 9
—21310PW o (

= _liglsg? @9<3§/) (V-1

V1)

—283"T9*WVA(V — 1).

The remaining basic invariants. The forms of degrees
12, 30, and 45 arise from the sixth-degree invariant
as before. However, a parametrized change of co-
ordinates requires special handling. Under y = Ax,
the Hessian H,, the bordered Hessian BH,, and the
Jacobian J, transform as

H,(F(y)
BH,(F(y),G(y

)
)) =

(5 (f) e (5 V).
»)

Jo(F(y), G(y), K

"
1?1
S
=

||
A
\./
=
s
2
<
~
o~

where the subscripts z, y indicate the differentiation

variable. As for transformation of the respective
determinants:
|H.(F(y))| = AP |Hy(F(y))],
|BH,(F(y),G(y))| = |AP |BH,(F(3), Gw))],

|1 (F(y), G(y), K(9))| = |Al|J,(F

y),G(y), K(y))|.

For the parametrized change of coordinates y =
7. (w), let

Oy (w) = ap ‘Hw<FY(w)) ’
Uy (w) = oy | BH, (Fy (w), By (w))],
Xy (w) = ax ‘Jw(Fy(w); Py (w), ¥y (w))],

where the constants ag, ag, ax are thosed defined
in Section 2E (page 221). Then we have

©(y) = ao|H,(F(y))]
= g | H, (F(7.(w)))|
72|H aF(z)sty(w))‘

- a<I>|Tz

(aF(2)*)* |Hu(Fy (w))]

- | |2
(4-3)

U(y) = ay|BH,(F(y),2(y))|
(72 (w)), ®(7-(w)))]
= ag|n|? ‘BHw (aF(z)25Fy(w),

EC

|7 [?

= ay|BH,(F

and

(4-5)

With y = o.(w), similar calculations lead to the
one-parameter forms:

®(y) EXE Py (w)
U(y) (77(b(zlzfzzlli‘(Z)g)8 Yy (w)
xw) = T

The 19-maps. With an invariant system in place for
each (nonsingular) value of Y (or V'), production of
the degree-19 map that preserves all 12 of the conics
proceeds as before:

(1) determine a 64-map (fes)y(w) that vanishes at

{ Xy (w) = 0};
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(2) compute (fi9)y(w) = (foa)y (w)/ Xy (w);
(3) compute the conic-fixing map hy (w).

In fact, the previous calculations in the coordinates
{y1,y2,y3} provide a framework for those at hand.
Into the y-expressions involving F(y), ®(y), ¥(y),
and X (y) as well as the maps ¥16(y), ¢34(y), and
fao(y) substitute the appropriate terms in Y and
w, namely, Fy(w), ®y(w), ¥y (w), Xy(w), Py (w),
vy (w), and fy(w). The substitutions for the invari-
ants appear in equation (4-1) on page 232 and in
(4-3), (4-4), and (4-5) on the preceding page. Con-
cerning maps, they transform as the coefficients of
2-forms. In terms of the cross-product, for u = Ax,

Vo (F(u)) x V. (G(w))
= A"V,F(u) x A"V,G(u)
— |AT[((AT) )T (VuF (u) x V. G(u)
= |AJA(V,F(u) x V,G(u)).
Accordingly,
Y(y) = V,F(y) x V,2(y)

T

- ] (Vw (aF(z)25Fy(w))
<o (M ey )

|7-[?

7.V Fy(w) X V,, Oy (w)

= |T_1z:|TZ <Vw(aF(z)25F (w))
wi((alTT(jz ) xpy(w))>
 (@F()®)

|Tz|7 TZ(‘)OY(w))v

and
fly) =V, @(y) x V,¥(y)

1 - (vw(% By (w))

|72

|7

- PO - ()

The one-parameter maps transform as follows:

|Tz

R )
e(y) Oﬂp(jiﬁ(z)g)gaz(sw(w))
fly) = (7]<I>(z|)jjlg(z)9)11 o.(fy(w)).

Making the substitutions into the expression for
fea(y) yields a collection of maps (fss)y (w) each of
which is divisible by Xy (w). Finally, substitution
into the formula for the canonical map hyg(y) sup-
plies the conic-fixing family hy (w). The explicit cal-
culations appear in [Crass 1997b, pp. 68-69].
General expressions for the canonical 19-map. Each w-
coefficient in

ha(w) = 7.7 (ho (7 (w)))
is a polynomial in Y; and Y with z-degree
deg, h.(w) <21-25=19-25+2-25
=12-40+45=30-16 4 45.
The factor |7.| ! due to 7. ! does not affect the map

on CP?, so we neglect it. After dividing away a
factor of X (z), the polynomial map hy (w) satisfies

degy. hy (w) <40 degy, hy (w) < 16.

Hence, one finds the coefficients of the w monomials
by solving, for each term, 353 linear equations.
In the one-parameter case,

ha(w) = 0. (hag (0= (w)))
and
deg. h.(w) < 21-49 = 12-82+45 = 12-2+30-32+45.
Thus, on {F(z) = 0}, the map h,(w) is divisible by
®(2)? X (z), so that

hao(w) ) _
deg, (W) =60-16, deg, hy(w) < 16.

4D. Symmetry Lost, a Root Found

Under Conjecture 3.13, the trajectory {hf,(yo)} con-
verges to a pair of 72-points for almost any y, €
(CIP’; Being conjugate to hig(y), the maps hy (w)
share this property for points in CIP’?U. Breaking the
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Ag symmetry of Ry (u) = 0 qualifies hy (w) for a role
in root finding. An analogous treatment applies in
the one-parameter case.

Root selection. Consider the rational function
- I, (w)®
J(w) = =——"—"—,
F(2)¥(r.(w))

where

-y [l et

m=1n#m

m( )

At a 72-point pair {qi,¢2} = 7. ({Paby, Pav, }) in w
space, five of the six terms in I',(w) vanish. The
result is a “selection” of one of the six roots U, (z)
of Ry (u):

(Hnyga Cﬁ({pdblapdbz}))3 C'a(z)3
Y({pav,,Pav, }) F(z)
Ua(2)
L
Here p is the value of

Y({pab,,Pav, }) 7
(Hn;ﬁa Ci({pab,, Pas, }))3

which is constant on Or,:
_6561(279 + 1451/151)
= 5 i
In light of the V.-invariance of I, (w), J. also en-

joys this property and so, presents a second face
which expresses itself in Y and w. Since

jz({qu Q}) =

deg, T.(w) =252 =10-25+2 =642,
it transforms by
s L. (w)
r =
"= GRe®

where [ is a simplifying factor for the coefficients
over w. Each coefficient is a polynomial in Y; and
Y5 whose coefficients satisfy a system of linear equa-
tions. (See [Crass 1997a] for the lengthy expression
of the polynomial T'y (w).) Now, let Ty be the poly-
nomial in Y; and Y, that satisfies

|7:|* = F(2)* Ty;
see (4-2) on page 232. Then, from (4-4),

\P(Tz<w)) _ (aF(z)25)8 048 F(Z)125

(F(2)5Ty ) v(w)= Ty T (w).

Finally,
o 7 B (Iy Ty (w))?*

In the one-parameter case, t}_le above development
goes through with J,(w) and I',(w) replaced by

o 8(Ere.w)
Blw) = e (w))
and

— Z H Ci(0.(w))Cn(2)-

m=1n#m

First of all, there is the transformation of ©,(w)
under o, on {F(z) = 0}:

. - (w)l{r)=0)
S) = —"t 7
ETTE T
(See [Crass 1997a] for the expression of this poly-
nomial.) Furthermore, restricting to {F(z) = 0}
yields, on the one hand, a root of Ty (s)
Sa(2)
p

Rz({qla QZ}) -
and, on the other,

f B(2)? (v®(2) U (2)* Oy (w))’ |o.|°

B lw) = P () Ty ()
PV — 170y ()
- By (w)

The algorithm. Now within reach are the ingredients
required for preparation of a root-finding algorithm;
see [Crass 1997a] for an implementation. To sum-
marize the procedure:

(1) Select a value A = (Ay, A2) of Y = (Y3,Y2) and,
thereby, a sixth-degree resolvent R,(u). (For
sake of description, let z € Y; *(4;) NY, *(4s).
The algorithm actually finds a root without ex-
plicitly inverting Y; or Y3.)

(2) From an initial point wy € CIP?U,
ha(w) to convergence:

iterate the map

A (wo) — {q1, 2} € (O72) C CP2.

As output take the pair of approximate 72-points
in CP?,

{p1,p2} = {q, 2} = {7 (pabl)a T, (pabz)}
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(3) Using p; or ps, approximate a root of R4 (u):
Ua(z) ~ :UJjA(pl)

_ 1B (TaTa(py))?
a® W4 (p1)

= 273%(11 4 3V/151)

TaTa(py))?
Ta(pr)

Performing the corresponding steps in the special
case produces an approximate solution to the V-
resolvent T, (s) given an initial choice V;, of V:

Sa(z) = pKy, (p1)
2230 1y Vo (Vo — 1)° O, (p1)

Wy, (p1)

= —2°579(11 + 3V154)

Vo’ (Vo — 1)*Oy, (p1)
Uy, (p1)

4E. Getting All the Roots

Because a pair of 72-points lies on one barred conic,
the algorithm above determines just one of the six
roots of the selected resolvent. This manifests the
iteration’s failure to break the galois symmetry com-
pletely; the stabilizer of a 72-point is a Ds. From
the coefficient field of the resolvent R4(u), the al-
gorithm leads to an extended field K whose galois
group G(X/K) is Ds. Of course, ¥ is the splitting
field for R4.

Finding all six roots calls for a dynamical system
that converges to 6-cycles in a 360 point orbit and a
root selector function that gives equations in all the
roots. This would likely complicate the associated
formulas.

APPENDIX: SEEING IS BELIEVING

Figures 9-12 provide empirical dynamical informa-
tion for some of the special maps discussed in the
text. They were created using the program Dy-
namics [Nusse and Yorke 1994] running on a Sil-
icon Graphics Indigo-2, and have a resolution of
720 x 720.

The first three images are the product of the BAS
routine, which colors a grid-cell if the trajectory of
the cell’s center gets close enough to a specified at-
tractor to guarantee ultimate attraction to it. The
color depends upon the destination. If, in a specified
number of iterations, the center’s trajectory fails to
converge to an attractor, the cell’s color is black.

For Figure 9, which shows the basins of 4 re-
stricted to a 45-line, the attractors are the 45-points,
which lie in the large basins near the center. The
figure suggests that most points converge to one of
these attractors. Does this happen for almost every
point? Or do the black specks contain sets of pos-
itive measure whose forward orbits fail to converge
to one of the four attractive 45-points? The BAS
algorithm checked 60 iterates before giving up on
determining convergency.

Figure 10 shows the basins of the conic-fixing map
hqg restricted to one of the invariant conics. Six at-
tracting orbits are known, each consisting of a pair
of 72-points. Each basin is the one-dimensional in-
tersection of a two-dimensional basin in CP?. Does
the backward orbit of these basins fill out CP? in
measure? (This is the second part of Conjecture
3.13.)

Figure 11 shows the same map, but this time re-
stricted to one of the bub-RP?*s—specifically Rs,,
with the 1-point orbit ps, at the origin and the 1-
line orbit L3, at infinity. The chosen coordinates
make evident the map’s Dy symmetry. Along the
unit circle is the 10-point orbit of 72-points paq, ,,
with a = 1, 3,4,5,6. The five lines of reflective sym-
metry passing through (0,0) are affine lines in the
five RP' intersections with Rs, of both the 45-lines
Lszo, and the Ry, for a = 1,3,4,5,6. The figure
reveals repelling behavior along the RP' where the
RP? meets one of the 45-lines left invariant by bubs,.
Ounly the five period-2 cycles of 72-points appear as
attractors. No black specks are seen; their presence
would compromise Conjecture 3.13. Several magni-
fied views of this basin plot appear in [Crass 1997a].

Figure 12 is a partial plot using the BA algorithm
of Dynamics, which colors whole trajectories of cells,
thereby manifesting some aspects of the dynamics.
(See [Nusse and Yorke 1994, pp. 269 ff.] for a more
thorough description of BA).

Many of the points in the strip are mapped in-
side the hazy pentagon whose vertices lie on the 45-
lines— the inner star is nearly filled. Around this
pentagon is the outer star-like piece of the critical
set shown in Figure 15. Futhermore, the pentagon
seems to be the image of the inner pentagonal oval.
Accordingly, the map folds the plane along the pen-
tagon’s edges just outside of which the 72-points
make their presence seen in the dense streaks at
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FIGURE 9. Basin of attraction of the
degree-16 map 116 restricted to a 45-line;
each color represents one of the four
attracting 45-points. The black specks
indicate points for which no attraction to
one of these four points was detected after
60 iterations.

FIGURE 10. Dynamics of the degree-19
map with icosahedral symmetry on

C U{oo}. Almost all points are attracted
to a pair of antipodal vertices. Each of the
six colors corresponds to such a pair; the
three large basins each contain a vertex.
For the conic-fixing hig, the basin plot on
each conic is conjugate to this one.
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FIGURE 11. RP? dynamics of hyg. The
vertical and horizontal scales are roughly
from —2 to 2. The large radial basins are
immediate, i.e., each contains one of the
72-points and come in pairs as do the
period-2 attractors. Notice the repelling
behavior along the 45-lines and
particularly at their intersection in the
36-point pas.

FIGURE 12. More RPP? dynamics of hig.
The vertical strip on the left is a copy of
the same area in Figure 11; the rest of the
figure shows trajectories, colored
according to their destinations, of the
points in the strip.
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FIGURE 13. Configuration of 72-lines on a bub-RPZ.
Under bubs,, the five pairs of 72-lines {Lza,, Laas }s
for a = 1,3,4,5,6, map to themselves. Accord-
ingly, each line meets Rz, in an RP'. The pic-
ture shows their configuration in the affine plane
of Figures 11 and 12. A given pair Lg,, and Lz,
passes through the 72-points paq, and paz., respec-
tively; they intersect in the corresponding repelling
and fixed 36-point pa,

Paa, .- Compare this pattern of streaks to that of the
72-lines given in Figure 13. Since C; and C, are tan-
gent to Rz, at paq, ,, the icosahedral 19-map opens
up a triangular angle of 7/3 to 47 /3. Thus, the be-
havior at a 72-point consists of “fourth-powering”.
Figure 14 displays this local squeezing. (Figures 13—
15 were produced using Mathematica.)
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FIGURE 15. Contour plot of the critical set of hig,
the sixth-degree curve {F = 0}, on R3,. At the 10
inflection points are the superattracting 72-points.
Further computation suggests that {G4s = 0} hits
the RP? in a discrete set. Might this set consist only
of the singular 72-points?
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