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The Blasius function, denoted by f, is the solution to a simple
nonlinear boundary layer problem, a third order ordinary dif-
ferential equation on x € [0,00]. In this work, we calculate
several numerical constants, such as the second derivative of f
at the origin and the two parameters of the linear asymptotic ap-
proximation to f, to at least eleven digits. Although the Blasius
function is unbounded, we nevertheless derive an expansion
in rational Chebyshev functions TL; which converges exponen-
tially fast with the truncation, and tabulate enough coefficients
to compute f and its derivatives to about nine decimal places for
all positive real x. The power series of f has a finite radius of
convergence, but the Euler-accelerated expansion is apparently
convergent for all real x. We show that the singularities, which
are first order poles to lowest order, have an infinite series of
cosine-of-a-logarithm corrections. Lastly, we chart the behavior
of f in the complex plane and conjecture that all singularities lie
within three narrow sectors.

1. INTRODUCTION

The Blasius function is defined as the unique solu-
tion to the boundary value problem

subject to the boundary conditions

f(0) = f2(0) =0, fa(oo) = L.

Blasius himself [1908] derived both power series and
asymptotic expansions and patched them together
at finite x to obtain an approximation which agrees
quite satisfactorily with later treatments. Why, then,
have there been so many students of this problem
as but partially catalogued in Table 1, including
such luminaries as Hermann Weyl (three papers)
and John von Neumann?

Part of the answer is the sheer challenge: the dif-
ferential equation is so simple, the Blasius function
so smooth (indeed monotonic) that it appears that
it must have a simple analytic representation, or at
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Reference Comments

[Blasius 1908]
[Topfer 1912]

Matched power series to asymptotic solution

Showed that boundary-value problem could be reduced, through group
invariance, to a single integration of an initial-value problem; Runge-Kutta
computation of f;,(0) to several digits

Introduced f, = exp(—F/2) with F = [ 2f(y)dy and then approximated f in
the integral by power series

[Bairstow 1925]

[Piercy and Preston 1936]
[Weyl 1941; 1942a; 1942b]

Solved by successive approximations; computed f,(0) with about 3% error

Converted ODE to integral equation which he solved by provably convergent
iteration; showed that power series had radius of convergence p but bounds on p
differed by more than 1.5

von Neumann (1941)  Showed that symmetries allowed reduction to a first order equation (unpublished,

quoted by Weyl)

[Ostrowski 1948]
[Meksyn 1956]
[Punnis 1956a)]
[Punnis 1956b]

[Meksyn 1959]
distance from x =0

[Squire 1959a]
[Squire 1959b]
[Meksyn 1961]

[Treve 1967]

narrowed radius of convergence uncertainty

narrowed convergence limits to +1/300
Showed numerically f has pole like 6/(z — )

Showed that pole on the negative real axis is a trio of singularities at the same

Applies generalized Gauss—Laguerre quadrature

Three-point boundary conditions

Same boundary-value problem but very different boundary condition for
electrical engineering problem

TABLE 1. Highlights in the history of the Blasius equation.

least simple, accurate approximations. Another mo-
tive is that the Blasius problem is the simplest of all
nonlinear boundary layer problems. The hope has
been that mathematical technologies developed for
this epitome can then be applied to more difficult
hydrodynamics problems.

In this article, we explore the Blasius function
from a variety of perspectives. Our multiple lines of
attack have affinities with the philosophy and some-
times the methodology of the work of Van Dyke,
Hunter and others on computer-extended series [Van
Dyke 1974; 1975a; 1975b; 1977; 1978; 1984; 1990;
Meiron et al. 1982; Hunter and Lee 1986; Hunter and
Tajdari 1990; Drazin and Tourigny 1996]. While we
have been no more successful than others at deriving
a simple analytic solution, we at least can explain
why this seemingly well-behaved function is fraught
with complications and perils.

2. CONTINUOUS SYMMETRIES AND TWO SPECIAL
SOLUTION FAMILIES

The Blasius differential equation has two continu-
ous symmetries. First, because the coefficients of
the differential equation are independent of z, the
solution is translationally invariant; that is, if g(x)
is a solution, then so is

Second, there is a “dilational” symmetry: if g(z) is
a solution, then so also is

fz) = Ag(Ax)

Topfer [1912] observed that one could solve the Bla-
sius problem by (i) performing a single initial value
integration with f,.(0) = 1 (or any other arbitrary
value), (ii) evaluating the limit of f, for large z,
and then (iii) applying the dilational symmetry to

with p an arbitrary constant.



rescale the solution so that the boundary condition
at infinity is satisfied.

Two special solutions illustrate these syminetries.
First, there is the two-parameter family of solutions
which are linear polynomials in x:

flinear = ﬂ + ED)

where 3 and y are arbitrary complex constants. This
family represents only a single shape; by applying
the two continuous symmetries, one can generate
any member of this family from a single member of
the family, such as finear(2; 6 = 1,7 = 1).

Second, there is the simple pole

fpole = %

In this one-parameter family of solutions, the pa-
rameter is the location of the pole p. This singular
solution is invariant under the dilational symmetry,
so the family is not expanded by applying dilations.

The general solution to the Blasius equation is
a three-parameter family where the parameters are
the complex-valued constants that are the initial
conditions. However, the general solution contains
only a one-parameter family of shapes in the sense
that one can generate all the solutions by translat-
ing and dilating the one-parameter family of distinct
shapes. The particular shape which is the Blasius
function is, alas, not as simple as either a linear poly-
nomial or a simple pole. These special solutions are
nevertheless important because the Blasius function
is asymptotic to both in different portions of the
complex z-plane.

3. POWER SERIES AND ASYMPTOTIC SERIES

The power series begins

3,8 5

4 11
KT — qo57702

11
+161280 Kx A+ ’

where k = f,,(0) is the curvature of the function at
the origin. By integrating the initial value problem
using 27 decimal place accuracy with 50,000 grid
points and order-four Runge-Kutta time-marching,
we determined

K =~ 0.33205733621519630,

where all sixteen decimal places are believed correct.
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One remarkable feature is that only every third
power appears in the series. Thus, the curvature f,,
is a function of #* and is invariant under rotations by
120 degrees about the origin in the complex plane —
it is Cs-invariant, to use the jargon of group theory.
|f| has an even higher degree of symmetry if the
branch cuts are drawn symmetrically as explained
in Section 10 below.

The alternation of signs suggests that convergence
is limited by a singularity on the negative z axis.
Through a procedure described later, we found that
the singularity was at z, = —S5, where

S = 5.6900380545.

Punnis [1956b] showed the existence of this pole,
proved that its residue is exactly 6 and computed its
approximate location. The C'; symmetry in the com-
plex z-plane implies that there must also be poles
at x = Sexp(xin/3). However, near the pole, there
is also an infinite series of logarithmic corrections
(Section 8): the convergence-limiting singularity is
both a pole and a branch point.
Blasius noted that

3-1)

f~x+B asx— o0,

where B is an as yet unknown constant. Substitut-
ing this into the differential equation—for f only
and not for its derivatives —gives a linear differen-
tial equation for f,.:

The general solution is

foe = Qexp{—ix(w—i—QB)}, (3-2)
where by high precision Maple calculations
Q = 0.233727621285063,
(3-3)

B = —1.720787657520503.

Blasius then solved his boundary value problem and
determined the missing initial condition, f,,(0) =
K, by patching the power series to the asymptotic
approximation at some finite x.

Weyl [1941; 1942a; 1942b] strongly criticized Bla-
sius because the asymptotic series diverges and the
power series has but a finite radius of convergence.
The theoretical minimum error in Blasius’ patch-
ing is the error of the asymptotic approximation at
x = S. However, this is only 1 part in 5800 for
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the second derivative. Even at x =~ 3.345 (= 5/2),
where each term in the power series is approximately
half its predecessor, the relative error in the approx-
imation of f,, by Equation (3-2) is only 2.3%. So,
Weyl’s objection is not compelling unless one wants
high accuracy. His objection is completely removed
by the refinement explained in the next section.

4. EULER ACCELERATION OF THE POWER SERIES

The Euler method is an ancient scheme for trans-
forming a slowly convergent or divergent power se-
ries into a more rapidly convergent series by mak-
ing a change of coordinate. The Blasius function
is an interesting application of Euler acceleration
for the following reasons. First, the usual change
of coordinate must be modified to respect the Cs
symmetry of the Blasius function. Second, the Eu-
lerized series provides useful and hitherto unavail-
able information about singularity-free regions in
the complex z-plane. Third, the Eulerized series
appears to converge everywhere on the positive real
z-axis. Thus, Blasius’ procedure of patching power-
series-to-asymptotic-series is capable of arbitrary ac-
curacy, destroying Weyl’s objection. A Taylor series
is a very powerful tool when combined with enhance-
ments such as Euler acceleration.

The fundamental idea, from [Van Dyke 1975b], is
to make a change of coordinate so as to map the
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convergence-limiting singularity, here at x = —S, to
infinity in a new coordinate ¢ while simultaneously
choosing the form of {(z) so that the first N terms
of the power series in x are all that is needed to com-
pute the first NV terms of the power series in (. The
special challenge of the Blasius function is that there
are actually three convergence-limiting singularities.
We can move all three to infinity by replacing « by
2® in the usual transformation:

223 5 ¢
=— & =5 =
¢ S3 + a3 N 2-(
The denominator vanishes so that ( = oo when

z = Sexp(i(2j + 1)n/3, for j = 0,1,2, so that all
three convergence-limiting singularities are indeed
mapped away. However, the mapping itself is sin-
gular at ¢ = 2, which is mapped to x = oo, so the
radius of convergence in { will not be larger than 2
unless f is regular at infinity. This is not the case
here since f — oo as & — oo. The radius of con-
vergence in { may be less than 2 if f has additional
singularities which map to |(| < 2, so the Euler-
ized series gives information about the distribution
of singularities of f(x).
Write the power series for f as

FW) =v*> a;y¥
j=1

10710

10715

0 10 20 30 40 50 60 70
degree j

FIGURE 1. Left: errors in 50-term power series versus 50-term Eulerized series. Right: the numerically computed
coefficients b; of the Eulerized-power series (thin curve) are compared with the analytic fit to the coefficients,
b;j ~ (28/4%) 277 (thick curve). The plateau in the thin curve is due to roundoff error.



where

y=x/S
is a rescaled variable such that the convergence-
limiting singularities are at |y| = 1. The a; may

be found through a simple recurrence relation given
by Blasius [1908] or by the power series ODE-solver
built into Maple. The Euler series is

Fly)=v*d b ¢,
j=1
where the Euler coefficients are calculated recur-
sively by b; = a; and

1 = (m —2)!
bm iy ;
T 2 N G D Gn- =)

form=2,3,....

The left panel of Figure 1 shows that the Euler-
ized series is accurate far beyond the radius of con-
vergence (|z| < 5.69) of the ordinary power series.

Roundoff error makes it impossible in Matlab to
compute accurate Euler coefficients (from those of
the unaccelerated power series) for j > 50 as il-
lustrated by the plateau in the upper right panel
of Figure 1. Nevertheless, the accurately computed
coefficients for 7 < 50 fit rather well with

gt 2
as shown in the same graph. When power series
coefficients decay as 1/p?, perhaps multiplied by al-
gebraic factors of 7 such as 572 here, the radius of
convergence is p [Boyd 1989]. It follows that the
Eulerized series, to the extent that the fit is credi-
ble, converges for |¢| < 2. The contours of constant
|| are equiconvergence contours for the Eulerized
series in the sense that the expansion will converge
at approximately the same rate for all z on such a
contour. Figure 2 shows these contours. The series
diverges in the shaded regions bounded by ¢ = 2,
which are the images of the circle of convergence in
the complex (-plane. It appears that the Eulerized
series converges for all finite real positive z. The
Eulerized series also tells us that the Blasius func-
tion is free of singularities in the unshaded regions
where it converges; all the poles must lie somewhere
in the three shaded domains.
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FIGURE 2. The magnitude of the j-th Euler term
is roughly [¢/2|7. Thus, by plotting contours of
|¢(y)/2|, we can see curves in the complex y-plane
(where y = z/S) where the series converges at a
given rate. The shaded regions are where |(/2| > 1,
that is, are regions where the Eulerized series di-
verges. The dots show the three singularities that
are nearest the origin.

5. PADE APPROXIMANTS

The article [Boyd 1997] showed how Padé approxi-
mants can be used to solve nonlinear boundary value
problems. The [m/n] approximant is the ratio of
a polynomial of degree m divided by a polynomial
of degree n which is formed from the power se-
ries through the algorithm described in [Baker 1965;
1975; Bender and Orszag 1978]. For the Blasius
function, we divided f by 2% and then approximated
the remaining factor by a “diagonal” or [N/N] ap-
proximant in the variable w = 2®. This does not
have the correct asymptotic behavior as z — oo.
Nevertheless, for large but finite x, the approximant
should converge, as the degree N tends to infinity,
to the correct function. The unknown curvature s
is then adjusted for moderate x so that the approx-
imant satisfies the asymptotic boundary condition
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FIGURE 3. Zero contours of the boundary condition fz
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(z;k) = 1 as a function of z, the point where the

condition is imposed, and &, which is the value of f,.(0) used to solve the Blasius equation. f[!°/1%] is the Padé
approximant to the Blasius function; this is 22 times a polynomial of degree 10 in x® (that is, of degree 30 in z),

divided by a different polynomial of the same degree.

In our previous work, we restricted N < 8 and
displayed results only as a table generated by con-
ventional root-finding. It is more illuminating to
solve the problem graphically by drawing the zero
contour of the boundary condition fNV(z;k) — 1
as a function of z, the point where the boundary
condition is imposed, and x, which is the value of
f22(0) used in the power series (and Padé) approx-
imations to f. Figure 3 illustrates this contour, for
two different ranges in z, for the [10/10] approxi-
mant, which is derived from the power series up to
and including x%. The top graph was actually a
plot for k € [0,1/2], but the Maple contour algo-
rithm automatically restricted the axis limits to the
much smaller range of k spanned by the zero contour
for x € [0,15].

For small z, the slope of the true solution has not
yet completely asymptoted to one, so the boundary
condition f, = 1 can be satisfied only by using val-
ues of the curvature which differ from that of the
solution, and k varies rapidly with x. For large =,
the true solution does have a slope of one, but the
Padé approximant is increasingly inaccurate as =
increases. For intermediate x, both the asymptotic
approximation f, ~ 1 and the Padé approximation
f ~ fUo/1%(g) are accurate, so the zero contour is

flat, telling the truthful and consistent story that
Kk~ 0.332.

The most accurate approximation is where the
zero contour of the boundary condition varies least
with «. The lower panel of Figure 3 shows that, on
the zero contour, k(z) has a minimum for z = 8.1
for this order of approximant. The boundary con-
dition fIO/19) = 1 is satisfied at this z for &
0.3320576856. This approximation to x has an ab-
solute error of only 3.9 x 107, which is a relative
error of only 1 part in 8 million.

6. RATIONAL CHEBYSHEV NUMERICAL METHOD (TL
SERIES)

The Eulerized power series is highly nonuniform in x
in the sense that any finite truncation, such as the
fifty terms illustrated in Figure 1, is exact at the
origin and then deteriorates rapidly as x increases.
This nonuniformity can be overcome by expanding
the solution as a series of rational Chebyshev func-
tions TL. These are simply the cosine functions of
a Fourier series with a change of coordinate:

TL;(z; L) = cos(jt), t(z) = 2arccot \/x/L

The TL are rational functions of z.



The map parameter L is a constant which can be 10°

chosen to optimize the rate of convergence. After
some experimentation, L = 6 proved best, but any
choice between L = 3 and L = 15 was almost as
good as the optimum.

All derivatives of these basis functions can be eval-
uated by applying the chain rule or the tables of
[Boyd 1989; 1987]. The pseudospectral method is to
substitute the expansion with undetermined coeffi-
cients into the problem and demand that the resid-
ual be zero at each of N — b collocation points z;
where N is the number of terms in the series and
b is the number of boundary conditions which must
be explicitly applied. As explained in [Boyd 1989;
1987], the boundary condition of boundedness at in-
finity is a “natural” boundary condition, so b = 2
because only the boundary conditions at the origin
need be imposed as explicit constraints. The result
of these N — 2 collocation conditions plus the two
boundary conditions give N algebraic equations in
N unknowns which can be solved by Newton’s iter-
ation.

The only complication for the Blasius problem is
that f is mot bounded at infinity. However, if we
make the split

f=z+v(x),

where

N-1

v(z) = d; TL;(z; L), (6-1)
=0

then the pseudospectral method can be applied as

usual.

Figure 4 shows the convergence rate is remarkably
fast; dyoo is smaller than d; by roughly 10=**! Ta-
ble 3 on page 392 gives enough coefficients to evalu-
ate f and its first three derivatives with an absolute
error that is less than 1079 over the whole real axis.
A short Matlab implementation of this procedure is
available upon request.

The theory of rational Chebyshev expansions (see
[Boyd 1982]) predicts that the coefficients of a Gaus-
sian function are asymptotically of the form

d; = {} exp(—1.1995"/) cos(3.2j*/° + 7/6) (6-2)

as obtained by substituting L = 6, k = 2, and A =
+ in [Boyd 1982, Equations (3.16)—(3.18)], which
describe the coefficients for the more general form
exp(—Az"*). The empty braces denote factors which

10-°

10-10

10715
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FIGURE 4. Absolute values |d;| of the coefficients
of the rational Chebyshev functions of the Blasius
function.

vary more slowly with 7 than the functions which
are explicitly displayed.

This asymptotic formula ignores the contributions
of singularities of f which are enclosed within the
steepest descent contour —the usual Fourier coeffi-
cient integral in the ¢-plane must be deformed from
the real axis to pass through the complex-valued
saddle point. However, for finite j, only a finite
number of singularities is enclosed (although the
number increases with j). Because, as explained
later, arg x > /4 for all singularities of the Blasius
function and the “saddle point” has arg(t) > /10,
the images of all singularities within the steepest de-
scent contour have Im¢ > Im¢,. This implies that
their residues make contributions that are asymp-
totically negligible to that from the saddle point,
yielding Equation (6-2).

The exponent r of the decay factor

exp(—constant j")

is the “exponential index of convergence”. It is de-
fined as the limit (strictly speaking, an infimum
limit) of

log ‘log |d;] ‘
ima e E - 4 . - 6_3
Test t IOg ] ( )

Figure 5 shows that even with these fluctuations

embodied in the cosine factor in Equation (6-2),
Testimate appears to be converging to r = % as it

should. It is gratifying to see that the theoretical
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FIGURE 5. The estimate (6-3) for the exponential in-
dex of convergence r, versus the degree. The guide-

lineis at r = %.

concept of an “exponential index of convergence” r
can be verified for a nontrivial, engineering-relevant
function.

For many problems with smooth, monotonic so-
lutions, it is possible to obtain moderate accuracy
with just one or two basis functions, allowing an an-
alytic solution. Many examples are given in [Boyd
1989; Finlayson 1973] and in the article [Boyd 1993]
on symbolic computer algebra and Chebyshev meth-
ods. The Blasius function is so smooth, and has such
a tantalizing complex-plane symmetry, that it ought
to be one of these functions that can be represented
by a mere handful of functions —but it is not.

One needs at least seven TL to obtain the correct
sign for the second derivative at the origin (Table 2).
We made unsuccessful attempts to expand f as a
function of z? times a TL basis in 23, but were not
able to find a good scheme. Perhaps the reader will
be more ingenious!

7. STALKING THE WILD SINGULARITY

By substituting f ~ R/z" into the Blasius equation,
one finds that the only possible choices for residue
and exponent are those corresponding to the exact
pole solution discussed earlier: R = 6 and v = 1.
As the singularity is approached, the pole will more
and more dominate the numerical values of f and

N J22(0)
6 —0.0148
7 0.2535
8 0.3426
10 0.3284
20 0.332213
40 0.3320572088

TABLE 2. Approximation of the second derivative at
the origin (k) by TL as a function of N (L = 4).

its derivatives. To estimate the location of the sin-
gularity, we therefore calculated

oo=x—6/f(x), ox=x—|—-6/f

03 =& — (|12/fxz|)1/37

while integrating away from the origin on the neg-
ative real z-axis. All three o; should converge to
the location of the singularity as the pole is ap-
proached. By comparing these estimates, using an
adaptive fourth- and fifth-order Runge—Kutta to ap-
ply a smaller and smaller step size as the pole is
approached, we find the singularity is at © = =9,
where S = 5.6900380545 and all digits shown are
believed correct.

8. LOCAL ANALYSIS OF THE SINGULARITY: FIRST
CORRECTION

To analyze the neighborhood of the singularity, it is
convenient to define a new coordinate X:

=—log(l+x/S) <+ =S8 *-1).

Note that X = 0 is equivalent to « = 0 while the
singularity is moved to X = oo.
The Blasius equation becomes

Fxxx +3fxx +2fx — 1S (ffxx + ffx) =0,
(8-1)
with initial conditions

f0) =0, fx(0)=0, fxx(0)= 5%,

where k = 0.3320....
The leading order approximation, a first order
pole, becomes

(8-2)

6
ex.

fpole = g (8-3)



To calculate corrections, write f = f,o.+p(X). The
Blasius equation becomes

Pxxx —px —bp = %Se_Xp(pXX +px).  (8-4)
The linearization of this equation is
Pi,xxx —Pi,x — 6p1 =0, (8-5)

where p, denotes the solution to this linearized equa-
tion. The advantage of the change-of-coordinate is
now clear: Equation (8-5) is a constant coefficient
equation and therefore may be solved analytically
in terms of exponentials to give the general three-
parameter solution

p1 = Ae*® + Ae X cos(2V2X + ®).

The first term is more singular than fyqe—it is a
second-order pole in the original coordinate —and
is thus inconsistent with the linearization. Thus,
A = 0 and the remaining challenge is to determine
the amplitude A and phase ® of the sinusoidal term.

The Blasius equation is unusual in that, because
fpole 1S an ezact solution in its own right as well as
the leading order approximation to the Blasius func-
tion, the linearized equation is homogeneous. (Lin-
earization is employed in Newton’s iteration, too,
but the Newton—Kantorovich differential equation
is almost always inhomogeneous.)

We determined A and @ by curve-fitting the Bla-
sius function f, as computed by Runge-Kutta inte-
gration in X of the full nonlinear differential equa-
tion. (One could of course integrate the linearized
equation from X = 0, but the linearization is in-
accurate at X = 0.) Although there is a certain
ugliness in determining parameters by curve-fitting,
Figure 6 shows that the fit to the first correction is
quite good.

9. GENERALIZED STOKES EXPANSION: SECOND
CORRECTION TO THE POLE

The second correction is obtained by substituting
6 A
f= §ex+§e_x (exp(i2'/2 +i®)+exp(—i2'/* —i®))
+ p2(X) + -

into the Blasius equation and neglecting quadratic
terms in p, to obtain

P2, xxx —P2,x —bpy = %S€7Xp1 (p1,x +p2.x). (9-1)
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FIGURE 6. The two curves, which are almost indis-
tinguishable, show the numerical solution p and the
fitted approximation pgg(X) = fpole — 1.5036e % x
cos(2'/2X — 0.54454). The dots show the difference
between the two, which is very small over most of
the interval. The transformed variable X is defined
in Section 8. The rise in error for X > 5 (where
theoretically it should continue to decrease) is a nu-
merical artifact.

Just as found by Stokes for water waves in 1847,
the quadratic self-interaction of the sinusoidal func-
tion p; forces a second harmonic with twice the
wavenumber. If we continue the perturbation the-
ory to order j, the j-th order will contain a trigono-
metric function whose argument is proportional to

j 21/2 .
In particular, p, is given by
e (B, cos(8Y/2 X +2®) + B, sin(8Y/2 X +2®) + 3;),

with ‘
ﬂl = _%SAZJ

By = —52-V285 A%,
By = &SA%
With our curve-fit values,
foole = 1.05447¢™
p1 = —1.5036e % cos(2Y/2X — 0.54454),
po = ¥ (—0.1152 cos(8'/>X — 1.0891)
—0.021323 sin(8'/?X — 1.0891) + 0.2144).

It is obvious that this process can be continued
to any order, at least formally. One difference from
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the usual Stokes series described, with many histori-
cal references and illustrations, in [Boyd 1998; 1986,
Haupt and Boyd 1988], is that higher terms are mul-
tiplied by powers of exp(—X) [x y = x + S]. The
series converges geometrically fast near the singu-
larity because of this.

In the original coordinate, the first correction is
proportional to

cos(V2log(z + S) + @').

Thus, it oscillates an infinite number of times over a
finite interval in = as the singularity is approached.
To describe the singularity of the Blasius function
as a “simple” pole is a serious abuse of common
sense because the structure of the singularity is very
complicated indeed, even though the leading order
is merely a first order or “simple” pole.

Although the Stokes series appears to converge
geometrically, there is no proof of convergence. We
cannot as yet exclude the possibility of other terms,
singular at * = —S and decreasing faster than any fi-
nite power of (z+5) as the singularity is approached.
These would be transcendentally small (“beyond all
orders”) compared to the terms of the Stokes series
and thus cannot be computed by the procedure de-
scribed here, but rather require the heavier artillery
of “exponential asymptotics” [Boyd 1998; 1999].

10. CARTOGRAPHY OF THE COMPLEX PLANE

To map the structure of the Blasius function in the
complex plane, we integrated the differential equa-
tion for a large number of circular arcs , each begun
on the real axis and continued to argx = 7/3. The
sector spanned by these arcs is only one-sixth of the
complex plane. This is sufficient to map the whole
plane for two reasons. First, f,, has a power series
in 3 which implies a Cs-invariance in the complex
plane. Each of the three sectors into which the plane
is divided by the solid rays in Figure 7 is identical
with the other two for f,, and for |f|. (Because f
itself is a function of x® multiplied by x?, the val-
ues of f in the other two sectors are identical to
those in right-hand sector except for multiplication
by exp(idn/3) or exp(i8n/3).) The second reason
is that f is real-valued on the positive real axis. It
follows that |f| and Re f are symmetric with respect
to the positive real axis, which is shown as a dotted
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FIGURE 7. Schematic of the complex plane. The

solid rays at argz = im,m, 37 divide the plane into

three sectors which are identical (for f,, and |f]) if
the branch cuts (dashed line segments) connecting
the singularities (shown as black dots) are drawn in a
symmetrical way. The choice of symmetry-consistent
branch cuts is not unique; one particular choice is il-
lustrated. Most of the singularities are connected in
pairs by the branch cuts across the three solid divid-
ing rays. The exceptions are the three unpaired sin-
gularities, shown as disks surround by circles, which
are nearest the origin. The branch cuts from these
are rays to infinity superposed on the heavy solid
rays.

line in the figure. Thus, mapping any one of the six
sectors into which the complex plane is partitioned
by the three solid and three dotted rays is sufficient
to reconstruct the behavior in the other five por-
tions of the plane. In the language of group theory,
|f| has a D3 symmetry— invariant under rotations
through any multiple of 120 degrees plus invariance
with respect to reflections about an axis (the dotted
rays in the figure) in the middle of each third of the
plane.

There are at least two choices of branch cuts which
are consistent with D3 symmetry. One such choice is
illustrated in Figure 7. This choice is consistent with
integrating the differential equation along the circu-
lar arcs = pexp(ifl), p = constant, 6 € [0, 5]. The
Runge—Kutta algorithm forces the numerical solu-
tion to be continuous and thus implicitly assumes
that the path of integration is free of branch cuts.

A second choice, also consistent with symmetry,
is to simply connect each singularity to £ = oo by a
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FIGURE 8. Contours of log;, |fzz| in the complex
plane as computed using circular arcs of integration,
all begun from the real z-axis. Nonnegative contours
are solid; negative contours are dashed. Contours
have unit spacing except for the upper right corner
where the contours for —20, —30, etc. are shown.
200 values of |z| (200 arcs) were used with 5000 grid
points for the fourth order Runge—Kutta integration.
The bullseye-like clusters of circular contours denote
the location of the singularities of f.

ray of constant 6 where 0 = argx. If we integrated
the differential equation along radial paths from the
origin, we would be implicitly adopting this choice of
branch cut. Outside the region tesselated by these
competing choices of branch cuts, the choice is irrel-
evant. We chose circular arcs because preliminary
experiments showed that the integration was more
stable (and needed few points) than mapping by ra-
dial integration paths.

Figure 8 shows, computing along a sequence of cir-
cular arcs, the numerical results, depicted through
the contours of the logarithm of the absolute value of
the curvature f,, (rather than f itself). The nega-
tive contours of the logarithm (dashed) show where
the curvature is very small and therefore where, at
least for |z| > 3, f is well approximated by a linear
function of =x.

Blasius himself noted that, on the real axis,

foe = 0.234exp(—1z(z — 3.44)) for x> 1, (10-1)

where the constants are given with greater precision
in Equation (3-3) on page 383. The crucial point is
that when we move off the real axis, the Gaussian
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FIGURE 9. Schematic of a % sector of the complex

plane. The black dots indicate the singularities. The
dash-dotted ray at argx = 7 is the line where the
real axis asymptotic approximation fails. We conjec-
ture that the singularity locations asymptote to this
ray as |z| increases. The two shaded regions denote
where the Blasius function f can be approximated
by a linear polynomial (although the slopes are very
different in the two regions.) The branch cuts are as
illustrated in Figure 7; no circular arc from the real

axis to argz = I crosses a branch cut.

3
function increases, but, for sufficiently large |z|, is
still small compared to one everywhere within the
sector argx € [—7, 7). Since f itself is growing lin-
early with z, and the linear approximation to f is
the justification for the Gaussian shape (and small-
ness) of f,. as explained above (through solving
2fves + [foe = 0 as a first order ODE for f,, un-
der the assumption that f ~ —1.72 + x), it follows
that (10-1) should be accurate everywhere within
this sector, argz € [~7,F]. Since the smallness of
fue 18 obviously incompatible with a singularity, we
conjecture on the basis of these asymptotics that f
is free of singularities everywhere within |arg z| < 7.

Along the line arg z = 7, the curvature is as large
as f itself, and the asymptotic analysis fails. Our
numerical calculations show that the singularities
seem to asymptote to this ray as |x| increases. In-
deed, the locations of the singularities can be con-
nected to form a curve which is the center of a tran-
sition zone from the real axis asymptotics of Blasius
to something else. The “something else” turns out
be another region where f can be approximated by
a linear polynomial, but with a much greater slope.
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The linear family of exact solutions is an attractor in
the sense that if Re f > 0, then the Blasius equation
itself shows that curvature satisfies

Jaa

which forces the curvature f,, to decay rapidly, in
turn forcing f to asymptote to a linear polynomial.
This creates the second region of negative, dashed
contours of curvature in the upper right of Figure 8.
Because the ray argx = % is crossed by many branch
cuts (with the choice of cuts appropriate for integra-
tion along circular arcs), the coefficients of the linear
polynomial jump discontinuously at each cut.

Thus, the overall picture in a sector spanning sixty
degrees in arg z is as depicted in Figure 9. Two sep-
arate regions of linear behavior are separated by a
transition with singularities whose locations asymp-
tote to a ray from the origin with argz = 7.

<0, (10-2)

11. CONJECTURES AND UNRESOLVED QUESTIONS

Our numerical experiments suggest:

Conjecture. All singularities of the Blasius function
lie within the radial sector § € [7/4,5w/12] plus the
two sectors obtained from this by rotation about the
origin in the complex plane through angles of 2m/3
and 47 /3.

If demonstrated, this conjecture would have the im-
mediate corollary that the Euler-accelerated series
would converge for all positive real x.

A second conjecture is that there is an infinite
number of singularities and that the locations of
these asymptotes to the ray arge = w/4 (and the
five corresponding rays in other sectors) as |z| — oo.

The Blasius problem also poses some intriguing
questions. First, given the rapid rate of convergence,
why does one need at least 7 TL functions to obtain
even a crude approximation? Why is it so hard to
devise a good analytical approximation to a func-
tion which is monotonic and asymptotes rapidly to
a linear polynomial?

Second, why are the singularities — poles plus an
infinite series of logarithmic corrections —so com-
plicated? Are there further corrections, perhaps
proportional to exp(—constant/(z — x;)), which are
transcendentally small compared to the cosine-of-log
series discussed earlier?

Third, why does the physics of a boundary layer
imply a C3 symmetry in the complex plane, and
an infinite pattern of pole-plus-cosine-of-logarithm
singularities confined to narrow sectors?

The Blasius function is also noticeable for what
it does not display. The locations of the singulari-
ties to many famous nonlinear ordinary differential
equations such as the Lorenz system and the Duff-
ing oscillator form very complicated patterns with a
fractal structure. These fractal curves may be nat-
ural boundaries beyond which the function has no
analytic continuation [Chang et al. 1982; 1983; Ta-
bor and Weiss 1981; Fournier et al. 1988]. In marked
contrast, the singularities of the Blasius function ap-
pear to be isolated and discrete. However, a rigorous

j d; j d; J 4 J 4 J 4

1 —1.29633007174967 17 8.240572232304953 —5 | 33 —2.922628101455539 —8 |49 5948997  —10 | 65 —1.4191937 —12
2 —0.73007371589937 18 —1.211900272178847 —4 | 34 —1.999133757410387 —7 | 50 —1.425204994 —11 | 66 4.0957628 —13
3 0.44808018757846 19 —1.915852492525586 —5 | 35 11621141526 —9 |51 —2.840214  —10 | 67 8.0169682 —13
4 —0.16361350641264 20 5.508949359351957 —5 | 36 9.081089641209  —8 |52 —5.152015  —11 | 68 3.2677971 —14
5 —2.441619336720839 —3 | 21  2.522961313480479 —6 | 37 6.8351176675038 —9 | 53 1.240789  —10 | 69 —3.7832863 —13
6 3.965162549838397 —2 | 22 —2.449871878116695 —5 | 38 —4.073599849 —8|54 5145303  —11|70 —1.2835719 —13
7 —1.498314265405804 —2 | 23 8.256052721985555 —7 | 39 —7.234976345 —9 |55 —477717  —11|71 1.4452443 —13
§ —6.899795433728594 —3 | 24 1.082435361567464 —5 | 40 1.7831397 —8|56 —3.549064  —11 |72 1.0664167 —13
9 7.354027000875889 —3 | 25 —9.467824259183999 —7 | 41  5.45995274 —9 |57 14604904 —11 |73 —3.686789 —14
10 1.883816492482166 —4 | 26 —4.795937231672587 —6 | 42 —7.4912183978 —9 |58 2.0504416 —11 |74 —6.346098 —14
11 —2.792174323932853 —3 | 27  5.628131255177790 —7 | 43 —3.553380147 —9 |59 —2.022446  —12 | 75 —2.449579 —15
12 6.587260808050913 —4 | 28  2.141686005620873 —6 | 44  2.9417093785 —9|60 —1.036076  —11 |76 3.010344 —14
13 9.475077735890138 —4 | 29 —2.646166147226868 —7 | 45  2.10524715 —9 |61 —1.6526330 —12 |77 1.115762 —14
14 —4.761820769583224 —4 | 30 —9.654176751560853 —7 | 46 —1.0248602 —9 |62 4.5632488 —12 | 78 —1.093124 —14
15 —2.945676766131983 —4 | 31  1.026610305863982 —7 | 47 —1.15822758 —9|63 1.9982020 —12 |79 —9.14531 —15
16 2.537311676664253 —4 | 32  4.385787776046917 —7 | 48  2.73175919 ~10 |64 —1.6650512 —12 |80 2.21472 —15

TABLE 3. The first 80 coefficients of the TL series (6-1), given as mantissa and exponent (so dgo = 2.21472x10715).



proof is lacking; with numerical experiments, we can
only hope to explore part of the complex plane.

The Blasius function also teaches some lessons:
with tricks, both Euler acceleration and rational
Chebyshev expansion are very successful here. The
difficulty with the Euler method is that f is the
product of z? with a function of 3; the trick is to
modify the usual Euler change of coordinate by mak-
ing it a function of x? after first extracting the z?
factor. The complication for the Chebyshev series is
that f is unbounded, but after writing f = x4+ v(z),
the bounded function v can be expanded as a TL
series without complications; 80 terms give an ab-
solute error less than 1077,

This work was motivated primarily by pure cu-
riosity. For physical applications, a graph of f on
the positive real axis of only moderate accuracy is
probably sufficient. Nevertheless, there are practi-
cal lessons in the singularity analysis and complex-
plane cartography, too. The smoothness and mono-
tonicity for real x belie a complex-plane structure
which is rather complicated. No nonlinear differen-
tial equation relevant to engineering, it seems, is too
simple to be uncomplicated off the real axis.
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