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The Blasius function, denoted by f, is the solution to a simple

nonlinear boundary layer problem, a third order ordinary dif-

ferential equation on x 2 [0,1]. In this work, we calculate

several numerical constants, such as the second derivative of f

at the origin and the two parameters of the linear asymptotic ap-

proximation to f, to at least eleven digits. Although the Blasius

function is unbounded, we nevertheless derive an expansion

in rational Chebyshev functions TLj which converges exponen-

tially fast with the truncation, and tabulate enough coefficients

to compute f and its derivatives to about nine decimal places for

all positive real x. The power series of f has a finite radius of

convergence, but the Euler-accelerated expansion is apparently

convergent for all real x. We show that the singularities, which

are first order poles to lowest order, have an infinite series of

cosine-of-a-logarithm corrections. Lastly, we chart the behavior

of f in the complex plane and conjecture that all singularities lie

within three narrow sectors.

1. INTRODUCTIONThe Blasius function is de�ned as the unique solu-tion to the boundary value problem2fxxx + ffxx = 0subject to the boundary conditionsf(0) = fx(0) = 0; fx(1) = 1:Blasius himself [1908] derived both power series andasymptotic expansions and patched them togetherat �nite x to obtain an approximation which agreesquite satisfactorily with later treatments. Why, then,have there been so many students of this problemas but partially catalogued in Table 1, includingsuch luminaries as Hermann Weyl (three papers)and John von Neumann?Part of the answer is the sheer challenge: the dif-ferential equation is so simple, the Blasius functionso smooth (indeed monotonic) that it appears thatit must have a simple analytic representation, or at
c
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382 Experimental Mathematics, Vol. 8 (1999), No. 4Reference Comments[Blasius 1908] Matched power series to asymptotic solution[T�opfer 1912] Showed that boundary-value problem could be reduced, through groupinvariance, to a single integration of an initial-value problem; Runge{Kuttacomputation of fxx(0) to several digits[Bairstow 1925] Introduced fxx = exp(�F=2) with F � R0 xf(y) dy and then approximated f inthe integral by power series[Piercy and Preston 1936] Solved by successive approximations; computed fxx(0) with about 3% error[Weyl 1941; 1942a; 1942b] Converted ODE to integral equation which he solved by provably convergentiteration; showed that power series had radius of convergence � but bounds on �di�ered by more than 1.5von Neumann (1941) Showed that symmetries allowed reduction to a �rst order equation (unpublished,quoted by Weyl)[Ostrowski 1948] narrowed radius of convergence uncertainty[Meksyn 1956][Punnis 1956a] narrowed convergence limits to �1=300[Punnis 1956b] Showed numerically f has pole like 6=(x� xs)[Meksyn 1959] Showed that pole on the negative real axis is a trio of singularities at the samedistance from x = 0[Squire 1959a] Applies generalized Gauss{Laguerre quadrature[Squire 1959b] Three-point boundary conditions[Meksyn 1961][Treve 1967] Same boundary-value problem but very di�erent boundary condition forelectrical engineering problem
TABLE 1. Highlights in the history of the Blasius equation.least simple, accurate approximations. Another mo-tive is that the Blasius problem is the simplest of allnonlinear boundary layer problems. The hope hasbeen that mathematical technologies developed forthis epitome can then be applied to more di�culthydrodynamics problems.In this article, we explore the Blasius functionfrom a variety of perspectives. Our multiple lines ofattack have a�nities with the philosophy and some-times the methodology of the work of Van Dyke,Hunter and others on computer-extended series [VanDyke 1974; 1975a; 1975b; 1977; 1978; 1984; 1990;Meiron et al. 1982; Hunter and Lee 1986; Hunter andTajdari 1990; Drazin and Tourigny 1996]. While wehave been no more successful than others at derivinga simple analytic solution, we at least can explainwhy this seemingly well-behaved function is fraughtwith complications and perils.

2. CONTINUOUS SYMMETRIES AND TWO SPECIAL
SOLUTION FAMILIESThe Blasius di�erential equation has two continu-ous symmetries. First, because the coe�cients ofthe di�erential equation are independent of x, thesolution is translationally invariant; that is, if g(x)is a solution, then so isf(x) � g(x� �); with � an arbitrary constant:Second, there is a \dilational" symmetry: if g(x) isa solution, then so also isf(x) � �g(�x)T�opfer [1912] observed that one could solve the Bla-sius problem by (i) performing a single initial valueintegration with fxx(0) = 1 (or any other arbitraryvalue), (ii) evaluating the limit of fx for large x,and then (iii) applying the dilational symmetry to



Boyd: The Blasius Function in the Complex Plane 383rescale the solution so that the boundary conditionat in�nity is satis�ed.Two special solutions illustrate these symmetries.First, there is the two-parameter family of solutionswhich are linear polynomials in x:flinear � � + 
x;where � and 
 are arbitrary complex constants. Thisfamily represents only a single shape; by applyingthe two continuous symmetries, one can generateany member of this family from a single member ofthe family, such as flinear(x;� = 1; 
 = 1).Second, there is the simple polefpole � 6x� �:In this one-parameter family of solutions, the pa-rameter is the location of the pole �. This singularsolution is invariant under the dilational symmetry,so the family is not expanded by applying dilations.The general solution to the Blasius equation isa three-parameter family where the parameters arethe complex-valued constants that are the initialconditions. However, the general solution containsonly a one-parameter family of shapes in the sensethat one can generate all the solutions by translat-ing and dilating the one-parameter family of distinctshapes. The particular shape which is the Blasiusfunction is, alas, not as simple as either a linear poly-nomial or a simple pole. These special solutions arenevertheless important because the Blasius functionis asymptotic to both in di�erent portions of thecomplex x-plane.
3. POWER SERIES AND ASYMPTOTIC SERIESThe power series beginsf(x) � 12�x2 � 1240�2x5+ 11161280�3x8 � 54257792�4x11 + � � � ;where � � fxx(0) is the curvature of the function atthe origin. By integrating the initial value problemusing 27 decimal place accuracy with 50,000 gridpoints and order-four Runge{Kutta time-marching,we determined� � 0:33205733621519630;where all sixteen decimal places are believed correct.

One remarkable feature is that only every thirdpower appears in the series. Thus, the curvature fxxis a function of x3 and is invariant under rotations by120 degrees about the origin in the complex plane|it is C3-invariant, to use the jargon of group theory.jf j has an even higher degree of symmetry if thebranch cuts are drawn symmetrically as explainedin Section 10 below.The alternation of signs suggests that convergenceis limited by a singularity on the negative x axis.Through a procedure described later, we found thatthe singularity was at xs = �S, whereS = 5:6900380545: (3–1)Punnis [1956b] showed the existence of this pole,proved that its residue is exactly 6 and computed itsapproximate location. The C3 symmetry in the com-plex x-plane implies that there must also be polesat x = S exp(�i�=3). However, near the pole, thereis also an in�nite series of logarithmic corrections(Section 8): the convergence-limiting singularity isboth a pole and a branch point.Blasius noted thatf � x+B as x!1;where B is an as yet unknown constant. Substitut-ing this into the di�erential equation| for f onlyand not for its derivatives|gives a linear di�eren-tial equation for fxx:fxxx + 12 (x+B) fxx � 0 for x� 1:The general solution isfxx = Q exp�� 14x(x+ 2B)	; (3–2)where by high precision Maple calculationsQ = 0:233727621285063;B = �1:720787657520503: (3–3)Blasius then solved his boundary value problem anddetermined the missing initial condition, fxx(0) =�, by patching the power series to the asymptoticapproximation at some �nite x.Weyl [1941; 1942a; 1942b] strongly criticized Bla-sius because the asymptotic series diverges and thepower series has but a �nite radius of convergence.The theoretical minimum error in Blasius' patch-ing is the error of the asymptotic approximation atx = S. However, this is only 1 part in 5800 for



384 Experimental Mathematics, Vol. 8 (1999), No. 4the second derivative. Even at x � 3:345 (= S=2),where each term in the power series is approximatelyhalf its predecessor, the relative error in the approx-imation of fxx by Equation (3{2) is only 2.3%. So,Weyl's objection is not compelling unless one wantshigh accuracy. His objection is completely removedby the re�nement explained in the next section.
4. EULER ACCELERATION OF THE POWER SERIESThe Euler method is an ancient scheme for trans-forming a slowly convergent or divergent power se-ries into a more rapidly convergent series by mak-ing a change of coordinate. The Blasius functionis an interesting application of Euler accelerationfor the following reasons. First, the usual changeof coordinate must be modi�ed to respect the C3symmetry of the Blasius function. Second, the Eu-lerized series provides useful and hitherto unavail-able information about singularity-free regions inthe complex x-plane. Third, the Eulerized seriesappears to converge everywhere on the positive realx-axis. Thus, Blasius' procedure of patching power-series-to-asymptotic-series is capable of arbitrary ac-curacy, destroying Weyl's objection. A Taylor seriesis a very powerful tool when combined with enhance-ments such as Euler acceleration.The fundamental idea, from [Van Dyke 1975b], isto make a change of coordinate so as to map the

convergence-limiting singularity, here at x = �S, toin�nity in a new coordinate � while simultaneouslychoosing the form of �(x) so that the �rst N termsof the power series in x are all that is needed to com-pute the �rst N terms of the power series in �. Thespecial challenge of the Blasius function is that thereare actually three convergence-limiting singularities.We can move all three to in�nity by replacing x byx3 in the usual transformation:� � 2x3S3 + x3 $ x3 = S3 �2� � :The denominator vanishes so that � = 1 whenx = S exp(i(2j + 1)�=3, for j = 0; 1; 2, so that allthree convergence-limiting singularities are indeedmapped away. However, the mapping itself is sin-gular at � = 2, which is mapped to x = 1, so theradius of convergence in � will not be larger than 2unless f is regular at in�nity. This is not the casehere since f ! 1 as x ! 1. The radius of con-vergence in � may be less than 2 if f has additionalsingularities which map to j�j < 2, so the Euler-ized series gives information about the distributionof singularities of f(x).Write the power series for f asf(y) = y2 1Xj=1 aj y3j�3;
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FIGURE 1. Left: errors in 50-term power series versus 50-term Eulerized series. Right: the numerically computedcoe�cients bj of the Eulerized-power series (thin curve) are compared with the analytic �t to the coe�cients,bj � (28=j2) 2�j (thick curve). The plateau in the thin curve is due to roundo� error.



Boyd: The Blasius Function in the Complex Plane 385where y � x=Sis a rescaled variable such that the convergence-limiting singularities are at jyj = 1. The aj maybe found through a simple recurrence relation givenby Blasius [1908] or by the power series ODE-solverbuilt into Maple. The Euler series isf(y) = y2 1Xj=1 bj �j�1;where the Euler coe�cients are calculated recur-sively by b1 = a1 andbm = 12m�1 m�1Xp=1 ap+1 (m� 2)!(p� 1)! (m� 1� p)! ;for m = 2; 3; : : : .The left panel of Figure 1 shows that the Euler-ized series is accurate far beyond the radius of con-vergence (jxj < 5:69) of the ordinary power series.Roundo� error makes it impossible in Matlab tocompute accurate Euler coe�cients (from those ofthe unaccelerated power series) for j > 50 as il-lustrated by the plateau in the upper right panelof Figure 1. Nevertheless, the accurately computedcoe�cients for j � 50 �t rather well withbj � 28j2 12jas shown in the same graph. When power seriescoe�cients decay as 1=�j , perhaps multiplied by al-gebraic factors of j such as j�2 here, the radius ofconvergence is � [Boyd 1989]. It follows that theEulerized series, to the extent that the �t is credi-ble, converges for j�j < 2. The contours of constantj�j are equiconvergence contours for the Eulerizedseries in the sense that the expansion will convergeat approximately the same rate for all x on such acontour. Figure 2 shows these contours. The seriesdiverges in the shaded regions bounded by � = 2,which are the images of the circle of convergence inthe complex �-plane. It appears that the Eulerizedseries converges for all �nite real positive x. TheEulerized series also tells us that the Blasius func-tion is free of singularities in the unshaded regionswhere it converges; all the poles must lie somewherein the three shaded domains.
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FIGURE 2. The magnitude of the j-th Euler termis roughly j�=2jj . Thus, by plotting contours ofj�(y)=2j, we can see curves in the complex y-plane(where y = x=S) where the series converges at agiven rate. The shaded regions are where j�=2j > 1,that is, are regions where the Eulerized series di-verges. The dots show the three singularities thatare nearest the origin.
5. PADÉ APPROXIMANTSThe article [Boyd 1997] showed how Pad�e approxi-mants can be used to solve nonlinear boundary valueproblems. The [m=n] approximant is the ratio ofa polynomial of degree m divided by a polynomialof degree n which is formed from the power se-ries through the algorithm described in [Baker 1965;1975; Bender and Orszag 1978]. For the Blasiusfunction, we divided f by x2 and then approximatedthe remaining factor by a \diagonal" or [N=N ] ap-proximant in the variable w � x3. This does nothave the correct asymptotic behavior as x ! 1.Nevertheless, for large but �nite x, the approximantshould converge, as the degree N tends to in�nity,to the correct function. The unknown curvature �is then adjusted for moderate x so that the approx-imant satis�es the asymptotic boundary conditionfx = 1.
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FIGURE 3. Zero contours of the boundary condition f [10=10]x (x;�) = 1 as a function of x, the point where thecondition is imposed, and �, which is the value of fxx(0) used to solve the Blasius equation. f [10=10] is the Pad�eapproximant to the Blasius function; this is x2 times a polynomial of degree 10 in x3 (that is, of degree 30 in x),divided by a di�erent polynomial of the same degree.In our previous work, we restricted N � 8 anddisplayed results only as a table generated by con-ventional root-�nding. It is more illuminating tosolve the problem graphically by drawing the zerocontour of the boundary condition fN;Nx (x;�) � 1as a function of x, the point where the boundarycondition is imposed, and �, which is the value offxx(0) used in the power series (and Pad�e) approx-imations to f . Figure 3 illustrates this contour, fortwo di�erent ranges in x, for the [10=10] approxi-mant, which is derived from the power series up toand including x62. The top graph was actually aplot for � 2 [0; 1=2], but the Maple contour algo-rithm automatically restricted the axis limits to themuch smaller range of � spanned by the zero contourfor x 2 [0; 15].For small x, the slope of the true solution has notyet completely asymptoted to one, so the boundarycondition fx = 1 can be satis�ed only by using val-ues of the curvature which di�er from that of thesolution, and � varies rapidly with x. For large x,the true solution does have a slope of one, but thePad�e approximant is increasingly inaccurate as xincreases. For intermediate x, both the asymptoticapproximation fx � 1 and the Pad�e approximationf � f [10=10](x) are accurate, so the zero contour is


at, telling the truthful and consistent story that� � 0:332.The most accurate approximation is where thezero contour of the boundary condition varies leastwith x. The lower panel of Figure 3 shows that, onthe zero contour, �(x) has a minimum for x � 8:1for this order of approximant. The boundary con-dition f [10=10]x = 1 is satis�ed at this x for � =0:3320576856. This approximation to � has an ab-solute error of only 3:9 � 10�7, which is a relativeerror of only 1 part in 8 million.
6. RATIONAL CHEBYSHEV NUMERICAL METHOD (TL

SERIES)The Eulerized power series is highly nonuniform in xin the sense that any �nite truncation, such as the�fty terms illustrated in Figure 1, is exact at theorigin and then deteriorates rapidly as x increases.This nonuniformity can be overcome by expandingthe solution as a series of rational Chebyshev func-tions TL. These are simply the cosine functions ofa Fourier series with a change of coordinate:TLj(x;L) � cos(jt); t(x) � 2 arccotpx=LThe TL are rational functions of x.



Boyd: The Blasius Function in the Complex Plane 387The map parameter L is a constant which can bechosen to optimize the rate of convergence. Aftersome experimentation, L = 6 proved best, but anychoice between L = 3 and L = 15 was almost asgood as the optimum.All derivatives of these basis functions can be eval-uated by applying the chain rule or the tables of[Boyd 1989; 1987]. The pseudospectral method is tosubstitute the expansion with undetermined coe�-cients into the problem and demand that the resid-ual be zero at each of N � b collocation points xjwhere N is the number of terms in the series andb is the number of boundary conditions which mustbe explicitly applied. As explained in [Boyd 1989;1987], the boundary condition of boundedness at in-�nity is a \natural" boundary condition, so b = 2because only the boundary conditions at the originneed be imposed as explicit constraints. The resultof these N � 2 collocation conditions plus the twoboundary conditions give N algebraic equations inN unknowns which can be solved by Newton's iter-ation.The only complication for the Blasius problem isthat f is not bounded at in�nity. However, if wemake the split f = x+ v(x);where v(x) = N�1Xj=0 dj TLj(x;L); (6–1)then the pseudospectral method can be applied asusual.Figure 4 shows the convergence rate is remarkablyfast; d100 is smaller than d1 by roughly 10�14! Ta-ble 3 on page 392 gives enough coe�cients to evalu-ate f and its �rst three derivatives with an absoluteerror that is less than 10�9 over the whole real axis.A short Matlab implementation of this procedure isavailable upon request.The theory of rational Chebyshev expansions (see[Boyd 1982]) predicts that the coe�cients of a Gaus-sian function are asymptotically of the formdj = fg exp��1:199j4=5� cos(3:2j4=5 + �=6) (6–2)as obtained by substituting L = 6, k = 2, and A =14 in [Boyd 1982, Equations (3.16){(3.18)], whichdescribe the coe�cients for the more general formexp(�Axk). The empty braces denote factors which

10010�510�1010�150 20 40 60 80 100degree j
FIGURE 4. Absolute values jdj j of the coe�cientsof the rational Chebyshev functions of the Blasiusfunction.vary more slowly with j than the functions whichare explicitly displayed.This asymptotic formula ignores the contributionsof singularities of f which are enclosed within thesteepest descent contour|the usual Fourier coe�-cient integral in the t-plane must be deformed fromthe real axis to pass through the complex-valuedsaddle point. However, for �nite j, only a �nitenumber of singularities is enclosed (although thenumber increases with j). Because, as explainedlater, arg x > �=4 for all singularities of the Blasiusfunction and the \saddle point" has arg(t) > �=10,the images of all singularities within the steepest de-scent contour have Im t > Im ts. This implies thattheir residues make contributions that are asymp-totically negligible to that from the saddle point,yielding Equation (6{2).The exponent r of the decay factorexp(�constant jr)is the \exponential index of convergence". It is de-�ned as the limit (strictly speaking, an in�mumlimit) of restimate � log ��log jdj j��log j : (6–3)Figure 5 shows that even with these 
uctuationsembodied in the cosine factor in Equation (6{2),restimate appears to be converging to r = 45 as itshould. It is gratifying to see that the theoretical
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FIGURE 5. The estimate (6{3) for the exponential in-dex of convergence r, versus the degree. The guide-line is at r = 45 .concept of an \exponential index of convergence" rcan be veri�ed for a nontrivial, engineering-relevantfunction.For many problems with smooth, monotonic so-lutions, it is possible to obtain moderate accuracywith just one or two basis functions, allowing an an-alytic solution. Many examples are given in [Boyd1989; Finlayson 1973] and in the article [Boyd 1993]on symbolic computer algebra and Chebyshev meth-ods. The Blasius function is so smooth, and has sucha tantalizing complex-plane symmetry, that it oughtto be one of these functions that can be representedby a mere handful of functions|but it is not.One needs at least seven TL to obtain the correctsign for the second derivative at the origin (Table 2).We made unsuccessful attempts to expand f as afunction of x2 times a TL basis in x3, but were notable to �nd a good scheme. Perhaps the reader willbe more ingenious!

7. STALKING THE WILD SINGULARITYBy substituting f � R=x� into the Blasius equation,one �nds that the only possible choices for residueand exponent are those corresponding to the exactpole solution discussed earlier: R = 6 and � = 1.As the singularity is approached, the pole will moreand more dominate the numerical values of f and

N fxx(0)6 �0:01487 0:25358 0:342610 0:328420 0:33221340 0:3320572088
TABLE 2. Approximation of the second derivative atthe origin (�) by TL as a function of N (L = 4).its derivatives. To estimate the location of the sin-gularity, we therefore calculated�1 � x� 6=f(x); �2 � x�pj � 6=fxj;�3 = x� (j12=fxxj)1=3;while integrating away from the origin on the neg-ative real x-axis. All three �j should converge tothe location of the singularity as the pole is ap-proached. By comparing these estimates, using anadaptive fourth- and �fth-order Runge{Kutta to ap-ply a smaller and smaller step size as the pole isapproached, we �nd the singularity is at x = �S,where S � 5:6900380545 and all digits shown arebelieved correct.

8. LOCAL ANALYSIS OF THE SINGULARITY: FIRST
CORRECTIONTo analyze the neighborhood of the singularity, it isconvenient to de�ne a new coordinate X:X � � log (1 + x=S) $ x = S(e�X � 1):Note that X = 0 is equivalent to x = 0 while thesingularity is moved to X =1.The Blasius equation becomesfXXX + 3fXX + 2fX � 12Se�X (ffXX + ffX) = 0;

(8–1)with initial conditionsf(0) = 0; fX(0) = 0; fXX(0) = S2�; (8–2)where � = 0:3320 : : : .The leading order approximation, a �rst orderpole, becomes fpole = 6S eX : (8–3)



Boyd: The Blasius Function in the Complex Plane 389To calculate corrections, write f = fpole+p(X). TheBlasius equation becomespXXX � pX � 6p = 12Se�Xp(pXX + pX): (8–4)The linearization of this equation isp1;XXX � p1;X � 6p1 = 0; (8–5)where p1 denotes the solution to this linearized equa-tion. The advantage of the change-of-coordinate isnow clear: Equation (8{5) is a constant coe�cientequation and therefore may be solved analyticallyin terms of exponentials to give the general three-parameter solutionp1 = �e2X +Ae�X cos(21=2X +�):The �rst term is more singular than fpole|it is asecond-order pole in the original coordinate|andis thus inconsistent with the linearization. Thus,� = 0 and the remaining challenge is to determinethe amplitude A and phase � of the sinusoidal term.The Blasius equation is unusual in that, becausefpole is an exact solution in its own right as well asthe leading order approximation to the Blasius func-tion, the linearized equation is homogeneous. (Lin-earization is employed in Newton's iteration, too,but the Newton{Kantorovich di�erential equationis almost always inhomogeneous.)We determined A and � by curve-�tting the Bla-sius function f , as computed by Runge{Kutta inte-gration in X of the full nonlinear di�erential equa-tion. (One could of course integrate the linearizedequation from X = 0, but the linearization is in-accurate at X = 0.) Although there is a certainugliness in determining parameters by curve-�tting,Figure 6 shows that the �t to the �rst correction isquite good.
9. GENERALIZED STOKES EXPANSION: SECOND

CORRECTION TO THE POLEThe second correction is obtained by substitutingf = 6S eX+A2 e�X�exp(i21=2+i�)+exp(�i21=2�i�)�+ p2(X) + � � �into the Blasius equation and neglecting quadraticterms in p2 to obtainp2;XXX � p2;X � 6p2 = 12Se�Xp1(p1;X + p2;X): (9–1)

10�710�610�510�410�310�210�1100

86420 XOrigin Singularity!
p� p�t

p

FIGURE 6. The two curves, which are almost indis-tinguishable, show the numerical solution p and the�tted approximation p�t(X) = fpole � 1:5036e�X �cos(21=2X � 0:54454). The dots show the di�erencebetween the two, which is very small over most ofthe interval. The transformed variable X is de�nedin Section 8. The rise in error for X > 5 (wheretheoretically it should continue to decrease) is a nu-merical artifact.Just as found by Stokes for water waves in 1847,the quadratic self-interaction of the sinusoidal func-tion p1 forces a second harmonic with twice thewavenumber. If we continue the perturbation the-ory to order j, the j-th order will contain a trigono-metric function whose argument is proportional toj 21=2.In particular, p2 is given bye�3X ��1 cos(81=2X+2�)+�2 sin(81=2X+2�)+�3�;with �1 = � 131452 SA2;�2 = � 52904p2SA2;�3 = 160 SA2:With our curve-�t values,fpole = 1:05447eX ;p1 = �1:5036e�X cos(21=2X � 0:54454);p2 = e�3X ��0:1152 cos(81=2X � 1:0891)�0:021323 sin(81=2X � 1:0891) + 0:2144�:It is obvious that this process can be continuedto any order, at least formally. One di�erence from



390 Experimental Mathematics, Vol. 8 (1999), No. 4the usual Stokes series described, with many histori-cal references and illustrations, in [Boyd 1998; 1986,Haupt and Boyd 1988], is that higher terms are mul-tiplied by powers of exp(�X) [/ y = x + S]. Theseries converges geometrically fast near the singu-larity because of this.In the original coordinate, the �rst correction isproportional tocos�p2 log(x+ S) + �0�:Thus, it oscillates an in�nite number of times over a�nite interval in x as the singularity is approached.To describe the singularity of the Blasius functionas a \simple" pole is a serious abuse of commonsense because the structure of the singularity is verycomplicated indeed, even though the leading orderis merely a �rst order or \simple" pole.Although the Stokes series appears to convergegeometrically, there is no proof of convergence. Wecannot as yet exclude the possibility of other terms,singular at x = �S and decreasing faster than any �-nite power of (x+S) as the singularity is approached.These would be transcendentally small (\beyond allorders") compared to the terms of the Stokes seriesand thus cannot be computed by the procedure de-scribed here, but rather require the heavier artilleryof \exponential asymptotics" [Boyd 1998; 1999].
10. CARTOGRAPHY OF THE COMPLEX PLANETo map the structure of the Blasius function in thecomplex plane, we integrated the di�erential equa-tion for a large number of circular arcs , each begunon the real axis and continued to arg x = �=3. Thesector spanned by these arcs is only one-sixth of thecomplex plane. This is su�cient to map the wholeplane for two reasons. First, fxx has a power seriesin x3 which implies a C3-invariance in the complexplane. Each of the three sectors into which the planeis divided by the solid rays in Figure 7 is identicalwith the other two for fxx and for jf j. (Because fitself is a function of x3 multiplied by x2, the val-ues of f in the other two sectors are identical tothose in right-hand sector except for multiplicationby exp(i4�=3) or exp(i8�=3).) The second reasonis that f is real-valued on the positive real axis. Itfollows that jf j and Re f are symmetric with respectto the positive real axis, which is shown as a dotted

FIGURE 7. Schematic of the complex plane. Thesolid rays at argx = 13�; �; 53� divide the plane intothree sectors which are identical (for fxx and jf j) ifthe branch cuts (dashed line segments) connectingthe singularities (shown as black dots) are drawn in asymmetrical way. The choice of symmetry-consistentbranch cuts is not unique; one particular choice is il-lustrated. Most of the singularities are connected inpairs by the branch cuts across the three solid divid-ing rays. The exceptions are the three unpaired sin-gularities, shown as disks surround by circles, whichare nearest the origin. The branch cuts from theseare rays to in�nity superposed on the heavy solidrays.line in the �gure. Thus, mapping any one of the sixsectors into which the complex plane is partitionedby the three solid and three dotted rays is su�cientto reconstruct the behavior in the other �ve por-tions of the plane. In the language of group theory,jf j has a D3 symmetry| invariant under rotationsthrough any multiple of 120 degrees plus invariancewith respect to re
ections about an axis (the dottedrays in the �gure) in the middle of each third of theplane.There are at least two choices of branch cuts whichare consistent withD3 symmetry. One such choice isillustrated in Figure 7. This choice is consistent withintegrating the di�erential equation along the circu-lar arcs x = � exp(i�), � = constant, � 2 [0; �3 ]. TheRunge{Kutta algorithm forces the numerical solu-tion to be continuous and thus implicitly assumesthat the path of integration is free of branch cuts.A second choice, also consistent with symmetry,is to simply connect each singularity to x =1 by a
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0�10�20�30�40�50�60��

0 2 4 6 8 10 12 14 jxj
FIGURE 8. Contours of log10 jfxxj in the complexplane as computed using circular arcs of integration,all begun from the real x-axis. Nonnegative contoursare solid; negative contours are dashed. Contourshave unit spacing except for the upper right cornerwhere the contours for �20, �30, etc. are shown.200 values of jxj (200 arcs) were used with 5000 gridpoints for the fourth order Runge{Kutta integration.The bullseye-like clusters of circular contours denotethe location of the singularities of f .ray of constant � where � � arg x. If we integratedthe di�erential equation along radial paths from theorigin, we would be implicitly adopting this choice ofbranch cut. Outside the region tesselated by thesecompeting choices of branch cuts, the choice is irrel-evant. We chose circular arcs because preliminaryexperiments showed that the integration was morestable (and needed few points) than mapping by ra-dial integration paths.Figure 8 shows, computing along a sequence of cir-cular arcs, the numerical results, depicted throughthe contours of the logarithm of the absolute value ofthe curvature fxx (rather than f itself). The nega-tive contours of the logarithm (dashed) show wherethe curvature is very small and therefore where, atleast for jxj > 3, f is well approximated by a linearfunction of x.Blasius himself noted that, on the real axis,fxx = 0:234 exp�� 14x(x� 3:44)� for x� 1; (10–1)where the constants are given with greater precisionin Equation (3{3) on page 383. The crucial point isthat when we move o� the real axis, the Gaussian

Rex
FIGURE 9. Schematic of a �3 sector of the complexplane. The black dots indicate the singularities. Thedash-dotted ray at argx = �4 is the line where thereal axis asymptotic approximation fails. We conjec-ture that the singularity locations asymptote to thisray as jxj increases. The two shaded regions denotewhere the Blasius function f can be approximatedby a linear polynomial (although the slopes are verydi�erent in the two regions.) The branch cuts are asillustrated in Figure 7; no circular arc from the realaxis to argx = �3 crosses a branch cut.function increases, but, for su�ciently large jxj, isstill small compared to one everywhere within thesector arg x 2 [��4 ; �4 ]. Since f itself is growing lin-early with x, and the linear approximation to f isthe justi�cation for the Gaussian shape (and small-ness) of fxx as explained above (through solving2fxxx + ffxx = 0 as a �rst order ODE for fxx un-der the assumption that f � �1:72 + x), it followsthat (10{1) should be accurate everywhere withinthis sector, arg x 2 [��4 ; �4 ]. Since the smallness offxx is obviously incompatible with a singularity, weconjecture on the basis of these asymptotics that fis free of singularities everywhere within jarg xj < �4 .Along the line arg x = �4 , the curvature is as largeas f itself, and the asymptotic analysis fails. Ournumerical calculations show that the singularitiesseem to asymptote to this ray as jxj increases. In-deed, the locations of the singularities can be con-nected to form a curve which is the center of a tran-sition zone from the real axis asymptotics of Blasiusto something else. The \something else" turns outbe another region where f can be approximated bya linear polynomial, but with a much greater slope.



392 Experimental Mathematics, Vol. 8 (1999), No. 4The linear family of exact solutions is an attractor inthe sense that if Re f > 0, then the Blasius equationitself shows that curvature satis�es(fxx)xfxx < 0; (10–2)which forces the curvature fxx to decay rapidly, inturn forcing f to asymptote to a linear polynomial.This creates the second region of negative, dashedcontours of curvature in the upper right of Figure 8.Because the ray arg x = �3 is crossed by many branchcuts (with the choice of cuts appropriate for integra-tion along circular arcs), the coe�cients of the linearpolynomial jump discontinuously at each cut.Thus, the overall picture in a sector spanning sixtydegrees in arg x is as depicted in Figure 9. Two sep-arate regions of linear behavior are separated by atransition with singularities whose locations asymp-tote to a ray from the origin with arg x = �4 .
11. CONJECTURES AND UNRESOLVED QUESTIONSOur numerical experiments suggest:
Conjecture. All singularities of the Blasius functionlie within the radial sector � 2 [�=4; 5�=12] plus thetwo sectors obtained from this by rotation about theorigin in the complex plane through angles of 2�=3and 4�=3.If demonstrated, this conjecture would have the im-mediate corollary that the Euler-accelerated serieswould converge for all positive real x.

A second conjecture is that there is an in�nitenumber of singularities and that the locations ofthese asymptotes to the ray arg x = �=4 (and the�ve corresponding rays in other sectors) as jxj ! 1.The Blasius problem also poses some intriguingquestions. First, given the rapid rate of convergence,why does one need at least 7 TL functions to obtaineven a crude approximation? Why is it so hard todevise a good analytical approximation to a func-tion which is monotonic and asymptotes rapidly toa linear polynomial?Second, why are the singularities|poles plus anin�nite series of logarithmic corrections|so com-plicated? Are there further corrections, perhapsproportional to exp(�constant=(x� xs)), which aretranscendentally small compared to the cosine-of-logseries discussed earlier?Third, why does the physics of a boundary layerimply a C3 symmetry in the complex plane, andan in�nite pattern of pole-plus-cosine-of-logarithmsingularities con�ned to narrow sectors?The Blasius function is also noticeable for whatit does not display. The locations of the singulari-ties to many famous nonlinear ordinary di�erentialequations such as the Lorenz system and the Du�-ing oscillator form very complicated patterns with afractal structure. These fractal curves may be nat-ural boundaries beyond which the function has noanalytic continuation [Chang et al. 1982; 1983; Ta-bor and Weiss 1981; Fournier et al. 1988]. In markedcontrast, the singularities of the Blasius function ap-pear to be isolated and discrete. However, a rigorousj dj j dj j dj j dj j dj1 �1:29633007174967 17 8:240572232304953 �5 33 �2:922628101455539 �8 49 5:948997 �10 65 �1:4191937 �122 �0:73007371589937 18 �1:211900272178847 �4 34 �1:999133757410387 �7 50 �1:425204994 �11 66 4:0957628 �133 0:44808018757846 19 �1:915852492525586 �5 35 1:1621141526 �9 51 �2:840214 �10 67 8:0169682 �134 �0:16361350641264 20 5:508949359351957 �5 36 9:081089641299 �8 52 �5:152015 �11 68 3:2677971 �145 �2:441619336720839 �3 21 2:522961313480479 �6 37 6:8351176675038 �9 53 1:240789 �10 69 �3:7832863 �136 3:965162549838397 �2 22 �2:449871878116695 �5 38 �4:073599849 �8 54 5:145303 �11 70 �1:2835719 �137 �1:498314265405804 �2 23 8:256052721985555 �7 39 �7:234976345 �9 55 �4:77717 �11 71 1:4452443 �138 �6:899795433728594 �3 24 1:082435361567464 �5 40 1:7831397 �8 56 �3:549064 �11 72 1:0664167 �139 7:354027000875889 �3 25 �9:467824259183999 �7 41 5:45995274 �9 57 1:4604904 �11 73 �3:686789 �1410 1:883816492482166 �4 26 �4:795937231672587 �6 42 �7:4912183978 �9 58 2:0504416 �11 74 �6:346098 �1411 �2:792174323932853 �3 27 5:628131255177790 �7 43 �3:553380147 �9 59 �2:022446 �12 75 �2:449579 �1512 6:587260808050913 �4 28 2:141686005620873 �6 44 2:9417093785 �9 60 �1:036076 �11 76 3:010344 �1413 9:475077735890138 �4 29 �2:646166147226868 �7 45 2:10524715 �9 61 �1:6526330 �12 77 1:115762 �1414 �4:761820769583224 �4 30 �9:654176751560853 �7 46 �1:0248602 �9 62 4:5632488 �12 78 �1:093124 �1415 �2:945676766131983 �4 31 1:026610305863982 �7 47 �1:15822758 �9 63 1:9982020 �12 79 �9:14531 �1516 2:537311676664253 �4 32 4:385787776046917 �7 48 2:73175919 �10 64 �1:6650512 �12 80 2:21472 �15
TABLE 3. The �rst 80 coe�cients of the TL series (6{1), given as mantissa and exponent (so d80 = 2:21472�10�15).



Boyd: The Blasius Function in the Complex Plane 393proof is lacking; with numerical experiments, we canonly hope to explore part of the complex plane.The Blasius function also teaches some lessons:with tricks, both Euler acceleration and rationalChebyshev expansion are very successful here. Thedi�culty with the Euler method is that f is theproduct of x2 with a function of x3; the trick is tomodify the usual Euler change of coordinate by mak-ing it a function of x3 after �rst extracting the x2factor. The complication for the Chebyshev series isthat f is unbounded, but after writing f = x+v(x),the bounded function v can be expanded as a TLseries without complications; 80 terms give an ab-solute error less than 10�9.This work was motivated primarily by pure cu-riosity. For physical applications, a graph of f onthe positive real axis of only moderate accuracy isprobably su�cient. Nevertheless, there are practi-cal lessons in the singularity analysis and complex-plane cartography, too. The smoothness and mono-tonicity for real x belie a complex-plane structurewhich is rather complicated. No nonlinear di�eren-tial equation relevant to engineering, it seems, is toosimple to be uncomplicated o� the real axis.
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