
Hyperelliptic Simple Factors of J0(N)

with Dimension at Least 3
Hermann-Josef Weber

CONTENTS

1. Introduction

2. The Hyperelliptic Schottky Problem

3. Construction of the Rosenhain Model over C
4. Construction of a Minimal Curve Equation over Z�1

2

�
5. Application to Modular Curves

Acknowledgements

References

Work carried out at the Institute for ExperimentalMathematics, Essen, Germany.

We develop algorithms for three problems. Starting with a

complex torus of dimension g � 2, isomorphic to a princi-

pally polarized, simple abelian variety A/C , the first problem

is to find an algorithmic solution of the hyperelliptic Schottky

problem: Is there a hyperelliptic curve C of genus g whose ja-

cobian variety JC is isomorphic to A over C ? Our solution is

based on [Poor 1994]. If such a hyperelliptic curve C exists,

the next problem is the construction of the Rosenhain model

C : Y2 = X(X�1)(X��1)(X��2) . . . (X � �2g�1) for pairwise

distinct numbers �j 2 C n f0, 1g. Applying the theory of hy-

perelliptic theta functions we show that these numbers �j can

easily be computed by using theta constants with even charac-

teristics. If the abelian variety A is defined over a field k (this

field could be the field of rational numbers, an algebraic num-

ber field of low degree, or a finite field), we show only in the

case k = Q for simplicity, how the method in [Mestre 1991]

can be generalized to get a minimal equation over Z�1
2

�
for

the hyperelliptic curve C with jacobian variety JC
�=C A. This

is our third problem. For some hyperelliptic, principally po-

larized and simple factors with dimension g = 3, 4, 5 of the

jacobian variety J0(N) = JX0(N) of the modular curve X0(N) we

compute the corresponding curve equations by applying our

algorithms to this special situation.

1. INTRODUCTIONWe consider a g-dimensional abelian varietyA, withg � 2, which is principally polarized, simple andde�ned over the rational numbers Q . For example,A could be an abelian variety with real multipli-cation de�ned over Q ; that is, the endomorphismring End(A) is an order in a totally real �eld E ofdegree [E : Q ] = g. Since the generalized Shimura{Taniyama conjecture asserts that any abelian vari-ety with real multiplication de�ned over Q is isoge-nous to a factor of the jacobian variety JX0(N) of
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274 Experimental Mathematics, Vol. 6 (1997), No. 4the modular curve X0(N) for suitable level N 2 N,we restrict ourselves to these modular abelian vari-eties. The following three problems will be solvedalgorithmically in this paper.In Section 2 we give a solution, based on [Poor1994], of the hyperelliptic Schottky problem, byshowing that an abelian variety A=C is isomorphicto the jacobian variety JC of a hyperelliptic curveC=C of genus g � 3 if and only if a number n(g) ofcertain even theta constants associated to A vanish(the case g = 2 is trivial, since every curve of genus2 is hyperelliptic).Section 3 shows how the corresponding Rosen-hain model Y 2 = X(X�1)(X��1) : : : (X��2g�1),where �i 2 C n f0; 1g, of the hyperelliptic curve Cwith JC �=C A can be computed by the use of cer-tain other even theta constants.Section 4 generalizes the method introduced in[Mestre 1991] for computing a Z[ 12 ]-minimal curveequation of the curve C. This method can also beused for other �elds of de�nition, for example �-nite �elds or algebraic number �elds with tolerablearithmetic.In Section 5 we apply these algorithmic solutionsto hyperelliptic, principally polarized and simplefactors of JX0(N) with dimension g = 3; 4; 5. Theconstruction of such modular hyperelliptic curvesC of genus g is motivated by its use in public keycryptosystems for Pic0(C)(F q ) based on the dis-crete logarithm problem. Here F q denotes a �nite�eld with q = pr elements and Pic0(C)(F q ) theF q -rational divisor classes of degree 0 on C. Moreabout this topic can be found in [Weber 1996].
2. THE HYPERELLIPTIC SCHOTTKY PROBLEMWe take the set Hg(C ) of C -isomorphism classes ofhyperelliptic curves of �xed genus g � 2. This setis a coarse moduli space and has the structure of aquasi-projective irreducible algebraic variety withdimension 2g�1 [Deligne and Mumford 1969]. Weidentify Hg(C ) with the orbit spacefB � P1(C ) : #B = 2(g + 1)g=PSL2(C );

where the action is given by � P = a�+ bc � + dfor all  = �ac bd� 2 PSL2(C ) and P = (� : 1) 2P1(C ). Abel's map JP0 : C ! Pic0(C) with P 7![(P )�(P0)] gives us an embedding (depending on abase point P0 2 C) by sending a moduli point C 2Hg(C ) into the jacobian variety JC �=C Pic0(C).This jacobian variety JC is a principally polarizedabelian variety with dimension g and polarizationdivisorWg�1 = J (g�1)P0 (C(g�1)), that is, the image ofthe (g�1)-fold symmetric productC(g�1) under thesurjective map J (g�1)P0 : C(g�1) ! Wg�1 � Pic0(C).This divisor Wg�1 is de�ned uniquely up to trans-lation. For g = 2 the curve C is isomorphic toWg�1. See [Lang 1959] for these results.We get a morphism J : Hg(C ) ! Ag(C ) withC 7! (JC ;Wg�1), where Ag(C ) is the coarse mod-uli space of principally polarized abelian varietieswith �xed dimension g � 2. Torelli's theoremstates that this morphism is injective, that is, amoduli point C 2 Hg(C ) can be uniquely recon-structed from its principally polarized jacobian va-riety (JC ;Wg�1).We observe that a moduli point A 2 Ag(C ) is acomplex torus C g=(Zg +
Zg) with period matrix
 2 H g = fM 2 Mg(C ) : M t = M; Im(M) > 0g.So we get the description Ag(C ) = H g=�g, wherethe action of the full modular group �g = Sp2g(Z)is given by  � 
 = (a
 + b)(c
 + d)�1for all  = �ac bd� 2 �g and 
 2 H g .The hyperelliptic Schottky problem asks for a char-acterization of the hyperelliptic jacobian varietiesin Ag(C ). Since Ag(C )(J(Hg (C ))) has codimen-sion 12(g�1)(g�2), this problem is trivial for g � 2.That's the reason why the following question isonly interesting in the case g � 3:
Problem 2.1. Let A 2 Ag(2)(C ) be a simple mod-uli point given as a complex torus C g=(Zg +
Zg)with period matrix 
 2 H g (where simple means



Weber: Hyperelliptic Simple Factors of J0(N) with Dimension at Least 3 275symplectic irreducible). Let B = f1; 2; 3; : : : ; 2g+1;1g. Are there distinct numbers �i 2 C [f1g, fori 2 B, such that the moduli point C 2 Hg(C ) givenby Y 2 =Yi2B(X � �i)satis�es A �=C JC , and �1 corresponds to the basepoint P0 of Abel's map JP0 under the projection tothe projective line P1?Our algorithmic solution of this problem is basedon [Poor 1994], where the hyperelliptic jacobianvarieties are characterized by a number (dependingon the genus g) of vanishing even theta constants.Write F 2g2 for the set of characteristics � �"� withrow vectors �; " 2 F g2 . If we choose a symplecticbasis for the 2-torsion points A[2] of a moduli pointA 2 Ag(C ) by �xing a level-2-structure 	2 : � �"� 7!12(" + �
), we can identify A[2] with F 2g2 . We geta pair (A;	2) from the orbit space Ag(2)(C ) =H g=�g(2) with �g(2) = ker(�g ! Sp2g(F 2)).We attach to every characteristic � �"� 2 F2g2 atheta constant���"�(
) = Xn2Zg e� i ((n+ 12 �) 
 (n+ 12 �)t+(n+ 12 �) "t)and get 2g�1(2g +1) even or 2g�1(2g � 1) odd holo-morphic functions �� �"� : H g 7! C , depending onwhether �"t = 0 or �"t = 1. It follows that all theodd theta constants vanish; that is, ���"� � 0 when� "t = 1. The following result gives us a conditionnecessary to our Problem 2.1:
Theorem 2.2 [Krazer 1903, p. 459]. Let (A;	2) 2Ag(2)(C ) be a simple moduli point with torus rep-resentation C g=(Zg+
Zg) and A �=C JC for somemoduli point C 2 Hg(C ). Let V (A) = V (A;	2) bethe set of vanishing even theta constants,V (A) = ��� �"�(
) � 0 : � �"� 2 F2g2 ; � "t = 0	Then #V (A) = 2g�1(2g + 1)� �2g + 1g �:

We de�ne n(g) as the number in the right-handside of this equation.An azygetic fundamental system is a set � =f�1; : : : ; �2g+1g of 2g+1 pairwise distinct character-istics �i = � �i"i � 2 F 2g2 nf0g such that �i"tj+ �j"ti = 1for all �i and �j with i 6= j.
Proposition 2.3. (i) The �nite groupSp2g(F 2) �= �g=�g(2)acts transitively on the set of azygetic funda-mental systems in F 2g2 .(ii) Let�01 = h 1 0 0 0 : : : 00 0 0 0 : : : 0 i; �02 = h 1 0 0 0 : : : 01 0 0 0 : : : 0 i;�03 = h 0 1 0 0 : : : 01 0 0 0 : : : 0 i; �04 = h 0 1 0 0 : : : 01 1 0 0 : : : 0 i;�05 = h 0 0 1 0 : : : 01 1 0 0 : : : 0 i; �06 = h 0 0 1 0 : : : 01 1 1 0 : : : 0 i;: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :�02g+1 = h 0 0 0 0 : : : 01 1 1 1 : : : 1 i:Then the set �0 = f�01 ; : : : ; �02g+1g is an azygeticfundamental system in F 2g2 .
Proof. See [Igusa 1972, p. 212] for statement (i) and[Mumford 1983, p. 3.88] for (ii). �To state the following necessity and su�ciency cri-terion from [Poor 1994] we need some notations.Let U = f1; 3; 5; : : : ; 2g+1g � B be the set of oddindices and de�ne U �S = (U [S)n (U \S) for anyset S � B n f1g. (That is, U � S is the symmetricdi�erence of U and S).De�neT0(2) = fS � B n f1g : #S � 0 mod 2g:Then T0(2) is a disjoint union T=0 (2)[T 6=0 (2), whereT=0 (2) = fS � B n f1g : #(U � S) = g + 1g andT 6=0 (2) is de�ned analogously.For an azygetic fundamental system � in F 2g2 anda set S 2 T 6=0 (2) we put �S =Ps2S �s and callW (A; �) = f�[�S](
) � 0 : S 2 T 6=0 (2)gthe vanishing set of some moduli point A 2 Ag(C ).
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Theorem 2.4 [Poor 1994, Main Theorem 2.6.1]. Fora moduli point (A;	2) 2 Ag(2)(C ) the followingtwo statements are equivalent :(i) A is simple and there is an azygetic fundamentalsystem � = f�1; : : : ; �2g+1g such that V (A) =W (A; �).(ii) There exists a moduli point C 2Hg(C ) satisfy-ing the conditions of Problem 2.1.When (i) and (ii) hold , �i corresponds to �i (thatis, if Pi is a Weierstrass point with x-coordinate �i,then 	2(JP0(Pi))= �i), and �1 corresponds to 0.
Algorithm 2.5. Input. A simple moduli point A 2Ag(2)(C ) of dimension g � 2 given as a torusC g=(Zg +
Zg) with the standard polarization.
Output. An answer 2 fYES;NOg for the question:Is there a moduli point C 2 Hg(C ) with JC �=C A?For g = 2 the answer is always YES and there'snothing to do.
Step 1. Compute the 2g�1(2g + 1) even theta con-stants ���"�(
) with � "t = 0 and form the set V (A)(where the vanishing of the theta constants onlyhas been proved numerically).
Step 2. If #V (A) = n(g) continue with Step 3.Otherwise output NO because of Theorem 2.2.
Step 3. FormW (A; �0) with the azygetic fundamen-tal system �0 from Proposition 2.3. Output YESif V (A) = W (A; �0). Otherwise �nd, if possible, amatrix  2 Sp2g(F 2) such thatV (A) =W (A;  � �0);and output YES. If there is no such , output NO.
3. CONSTRUCTION OF THE ROSENHAIN MODEL

OVER CTake a simple moduli point (A;	2) 2 Ag(2)(C )given as a torus C g=(Zg + 
Zg) with an azygeticfundamental system � = f�1; : : : ; �2g+1g such thatV (A) = W (A; �). An application of Theorem 2.4gives a moduli point C and numbers �i, for i =1; 2; : : : ; 2g+1;1, as in the statement of the sametheorem.

Theorem 3.1 [Mumford 1983, Thomae's theorem,p. 3.120]. The value of (�[�S](
))4 is 0 for S 2T 6=0 (2) andc � (�1)#(U\S) Yi2(U�S) Yj 62(U�S) 1(�i � �j)for all S 2 T=0 (2), where c 2 C � is a constant thatdoes not depend on S.We introduce, for � = 1; : : : ; 2g � 1, the analyticmoduli �� = ��+2 � �1�2 � �1 ;to get the new modelY 2 = X (X � 1)(X � �1) : : : (X � �2g�1) (3–1)for the moduli point C 2 Hg(C ) with pairwise dis-tinct numbers �� 2 C n f0; 1g. Equation (3{1) iscalled the Rosenhain model of C.
Problem 3.2. Compute the Rosenhain model of C 2Hg(C ).This problem can easily be solved by using the nextresult, for which we introduce some more notation.For all � = 1; : : : ; 2g�1 write B as some disjointunion B = f1; 2; �+2;1g [B�0 [B�1 ;where B0 and B1 have g � 1 elements. SetS�1 = f1; 2g [B�0 ;S�3 = f1; �+2g [B�0 ;S�5 = f2; �+2g [B�0 ; S�2 = f1; 2g [B�1 ;S�4 = f1; �+2g [B�1 ;S�6 = f2; �+2g [B�1 :Finally, for � = 1; : : : ; 6 we set ��� = �[�U�S�� ](
).
Theorem 3.3. With the notation just introduced ,�� = (��1 ��2 )4 + (��3 ��4 )4 � (��5 ��6 )42 (��1 ��2 )4 ;for � = 1; : : : ; 2g�1.
Proof. Consider for some k 2 B n f1g the disjointdecomposition B n f1g = S [T [fkg for sets S; T



Weber: Hyperelliptic Simple Factors of J0(N) with Dimension at Least 3 277where S and T each have cardinality g. As anapplication of Theorem 3.1 we get the identity(�[�U�(T[fkg)](
))4(�[�U�(S[fkg)](
))4 = (�1)k+1Qi2T (�i � �k)Qj2S(�j � �k) :
(3–2)We �x � 2 f1; : : : ; 2g�1g. Then we apply (3{2)with k = 1 and S = S�1 n f1g and T = S�3 n f1g,obtaining ��3��1 = Qi2S�3 nf1g(�i � �1)Qj2S�1 nf1g(�j � �1) : (3–3)If we do the same for k = 1 and S = S�2 n f1g andT = S�4 n f1g we get from (3{2) the equation��4��2 = Qi2S�4 nf1g(�i � �1)Qj2S�2 nf1g(�j � �1) : (3–4)Multiplying (3{3) and (3{4) we get��3 ��4��1 ��2 = (��+2 � �1)2(�2 � �1)2 : (3–5)Applying (3{2) in the same manner to k = 2 andthe cases S = S�1 n f2g and T = S�5 n f2g, on theone hand, and S = S�2 n f2g, T = S�6 n f2g, on theother, we get an analogous equation��5 ��6��1 ��2 = (��+2 � �2)2(�1 � �2)2 : (3–6)We use (3{5) and (3{6) in the easily veri�ed iden-tity��+2��1�2��1 = (�2��1)2+(��+2��1)2�(��+2��2)22 (�2��1)2 ;and see that our statement is true for the given �.�

Algorithm 3.4. Input. A simple moduli point A 2Ag(2)(C ) of dimension g � 2 given as a torusC g=(Zg+
Zg) with an azygetic fundamental sys-tem � such that V (A) =W (A; �).
Output. The Rosenhain model (3{1) for some mod-uli point C 2 Hg(C ) with JC �=C A.
Step. Compute the roots �1; : : : ; �2g�1 using Theo-rem 3.3 and output (3{1).

4. CONSTRUCTION OF A MINIMAL CURVE
EQUATION OVER Z�1

2

�We now state and solve our third problem:
Problem 4.1. Let C 2 Hg(Q) be a moduli point ofgenus g � 2 with projective modelZ2g Y 2 = F (X;Z); (4–1)where F 2 C [X;Z] is the binary form of degree2(g + 1) given byF (X;Z) = 2(g+1)Xi=0 FiX iZ2(g+1)�i: (4–2)Decide whether C has an a�ne model over Q and ,if so, compute a curve equation that is minimalover Z�12�.Given an element  = �ac bd� in SL2(C ) and a formas in (4{2), we can writeF (aX+b; cZ+d) = 2(g+1)Xi=0 ~FiX iZ2(g+1)�i;where each ~Fi can be expressed as a polynomialwith integer coe�cients on the Fi and the entriesof . Then we can de�ne an action of SL2(C ) onC [X;Z; F0 ; : : : ; F2(g+1)] by setting( � ')(X;Z; F0; : : : ; F2(g+1))= '(dX�bZ;�cX+aZ; ~F0; : : : ; ~F2(g+1));for ' 2 C [X;Z; F0 ; : : : ; F2(g+1)] and  = �ac bd�. Thehomogeneous polynomials that are invariant underthis action form a �nitely generated algebraKg(C ) � C [X;Z; F0 ; : : : ; F2(g+1)]over C , called the covariant algebra of binary formsof degree 2(g + 1).Every covariant ' 2 Kg(C ) can be characterizedby its order i, which is its degree in X;Z, andits degree e, which is its degree in F0; : : : ; F2(g+1).



278 Experimental Mathematics, Vol. 6 (1997), No. 4Thus we can represent the covariant algebra as abihomogeneous graded algebraKg(C ) = Mi;e�0Kg(i; e)(C ):This graded algebra contains a subalgebraIg(C ) =Me�0 Kg(0; e)(C );the invariant algebra of binary forms with degree2(g+1). This subalgebra is also �nitely generatedover C . Some of these results can be found in theclassical papers of Hilbert.The right-hand side of (4{2) can be regarded asan element of C [X;Z; F0 ; : : : ; F2(g+1)], which we de-note by F and call the generic binary form. It is,by construction, a covariant of order 2(g + 1) andindex 1.The �uberschiebung operation on covariants is de-�ned as follows (see also [Vinberg and Popov 1994,p. 182]). If '1; '2 2 Kg(C ) have orders i1; i2 anddegrees e1; e2, and if h 2 f0; : : : ;min(i1; i2)g, weset('1; '2)h = � hXj=0 �hj� @h'1@Xh�j@Zj @h'2@Xj@Zh�j ;with � = (i1 � h)! (i2 � h)!i1! i2! ;this is a new covariant with order i1 + i2 � 2h anddegree e1 + e2. (The factor � is traditional.)
Theorem 4.2 [Clebsch 1872, p. 101]. The covariantalgebra Kg(C ) is generated by iterated �uberschie-bungen of the generic binary formF 2 Kg(2(g+1); 1)(C ):Now we generalize the method of Mestre [1991] tothe case where the genus is greater than 2 and the�eld of de�nition of the moduli point is Q . Sup-pose that the automorphism group Aut(C) of themoduli point C 2 Hg(C ) is trivial, which meansAut(C) = fid; �g, where � denotes the hyperellip-tic involution. Then Mestre's method (for g = 2)

gives us an a�ne model over Q , provided that sucha model exists.We now recall results from the classical invarianttheory that are fundamental for this method andits generalization. Let  1;  2;  3 2 Kg(C ) be threecovariants of order 2 = i1 = i2 = i3 and degrees0 < e1 < e2 < e3. Following [Clebsch 1872, p. 201],we have the following corresponding simultaneoussystem of generators:� 3 covariants'1 = ( 2;  3)1 2 Kg(2; e2+e3)(C );'2 = ( 3;  1)1 2 Kg(2; e3+e1)(C );'3 = ( 1;  2)1 2 Kg(2; e1+e2)(C );� 6 invariants Ql;m = ( l;  m)2 2 Ig(el+em)(C ),for l � m = 1; 2; 3; and� 1 invariantR123 = �'1 ? '2 ? '3 2 Ig(e1+e2+e3)(C );with R2123 = 12 det(Ql;m) for Q2;1 = Q1;2, Q3;1 =Q1;3, and Q3;2 = Q2;3. The operation ? is de-�ned in [Mestre 1991].
Proposition 4.3 [Clebsch 1872, p. 201].(i)P3l;m=1Ql;m'l'm = 0.(ii) R123F =P3l=1(F;  l)2'l.(iii) For �xed values of the indeterminates F1, . . . ,F2(g+1), the covariants '1, '2, and '3 are lin-early independent if and only if R123 6= 0 (here'1, '2, '3, and R123 are specialized at the givenvalues).Mestre recognized that relation (ii) is a special caseof Rg+1123 F = 3Xl1;:::;lg+1=1Hl1;:::;lg+1'l1 : : : 'lg+1 ;withHl1;:::;lg+1 = (: : : ((F;  l1)2;  l2)2; : : : ;  lg+1)22 Ig�Pg+1i=1 eli + 1�(C )for g 2 N [ f0g. This led him to the idea that wenow describe.
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Proposition 4.4 [Mestre 1991, pp. 322 and 324]. LetC and F be as in Problem 4.1, and consider thespecialization of the various covariants discussedabove to the given F1; : : : ; F2(g+1). Assume that Fhas trivial automorphism group. (In this case R123is nonzero). Let V(Q) be the conic de�ned by theirreducible quadratic form Q 2 C [X1 ;X2;X3] suchthat Q(X1;X2;X3) = 3Xl;m=1Ql;mXlXm;and let V(H) be the curve of degree g + 1 de�nedby the form H 2 C [X1 ;X2;X3] such thatH(X1;X2;X3) = 3Xl1;:::;lg+1=1Hl1;:::;lg+1Xl1 : : : Xlg+1 :Then:(i) The map � : P1(C ) ! V(Q) taking (X:Z) to('1:'2:'3) is an isomorphism de�ned over C ,and it maps the set of (X:Z) 2 P1(C ) such thatF (X;Z) = 0 to the set of (X1:X2:X3) 2 P2(C )such that Q(X1;X2;X3) = H(X1;X2;X3).(ii) The moduli point C2Hg(Q) possesses an a�nemodel over Q if and only if the conic V(Q) hasa rational point over Q .The discriminant �g 2 Ig(2(g + 1))(C ) is the in-variant of degree 2(g +1). Following [Geyer 1974],we have Hg(C ) �=C SpecC (Ig[��1g ]0).The elements of the algebra Ig[��1g ](C ) are calledabsolute invariants (that is, quotients of invariantswith the same degree) with discriminant power inthe denominator. If we choose an embeddingIg(C ) ,! Ig[��1g ](C )and specialize at F (X;Z) 2 Hg(Q), the invariantsQl;m and Hl1;:::;lg+1 are then elements in Q with re-stricted denominator and so a conversion from C toQ is possible. We will give the precise de�nition ofthe embedded coe�cients (depending on the genusg) in the last section and �x for these embeddedcoe�cients the same notation.

Lemma 4.5 [Mordell 1969, p. 47]. Suppose that Q 2Z[Z1; Z2; Z3] is an irreducible quadratic form witha nontrivial solution (Z01 ; Z02 ; Z03 ) 2 Z3nf0g. Thenevery other nontrivial solution has the form(Z1; Z2; Z3) = (h1(T ); h2(T ); h3(T ))with polynomials h1; h2; h3 2 Z[T ] of degree two,depending also on (Z01 ; Z02 ; Z03 ).
Algorithm 4.6. Input. A binary form F (X;Z) 2C [X;Z] with trivial automorphism group, whichcorresponds to a moduli point C 2 Hg(Q) of genusg � 2.
Output. An answer in fYES;NOg for the ques-tion: Has C an a�ne model over Q? If the an-swer is YES, output an a�ne model Y 2 = h(T ) =Pdeg(h)i=0 hiT i 2 Z[T ] with these properties:
(1) deg(h) = 2g+1 if C has a Q-rational Weierstrasspoint, and 2(g + 1) otherwise.
(2)
Pdeg(h)i=0 jhij 2 Z is minimal for C.

(3) j�g(h(T ))j 2 Z � 12� is minimal for C.
Step 1. Compute the embedded coe�cients Ql;m 2Q for l � m = 1; 2; 3. They are elements in Z[S�1],where S denotes the set of primes with bad reduc-tion of the moduli point C 2 Hg(Q).
Step 2. Using Lemma 4.5, compute the parametri-zation(Z1; Z2; Z3) = (h1(T ); h2(T ); h3(T )) (4–3)for the irreducible quadratic form Q(Z1; Z2; Z3) 2Z[Z1; Z2; Z3]. Output NO if (Z1; Z2; Z3) = (0; 0; 0)and YES otherwise.
Step 3. Compute the embedded coe�cientsHl1;:::;lg+1 2 Qfor l1; : : : ; lg+1 = 1; 2; 3. Without loss of generality,they are elements in Z[S�1]. Plug into (4{3) to geta squarefree polynomialh(3)(T ) = H(h1(T ); h2(T ); h3(T )) 2 Z[T ]of degree deg(h(3)) = 2(g + 1).
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Step 4. Factor �g(h(3)(T )), which has the formj�g(h(3)(T ))j = 2�2 m2(2g+1)(g+1)Yp2S p�pfor �2; �p;m 2 N0 .
Step 5. Minimize j�g(h(3)(T ))j by iterated com-putations of roots T0 of the congruence h(3)(T ) �0 mod n for some n 2 f2;mg [ S and afterwardsby doing the transformationh(3)(T ) 7! n�2(g+1)h(3)(T0 + nT ):The result is a polynomial h(2)(T ) with property(3).
Step 6. Minimize Pdeg(h(2))i=0 jh(2)i j 2 Z by iteratedcomputations of roots � 2 C and afterwards by do-ing the transformation h(2)(T ) 7! h(2)(T + Re(�))under the assumption h(2)2g+1 � h(2)0 . The result is apolynomial h(1)(T ) with property (2).
Step 7. Find a root  2 Z of the polynomial h(1)(T )(if C has a Q-rational Weierstrass point) and applythe transformation h(1)(T ) 7! h(1)(T�1+T0)T 2(g+1)to get a polynomial h(T ) 2 Z[T ] with property (3).Output the a�ne model Y 2 = h(T ).
Remark 4.7. Only for simplicity have we consideredthe case that the moduli point C 2 Hg(k) is de�nedover k = Q . If k is a �nite �eld or a number �eldof low degree, it's also possible to construct curveequations over these �elds. In [Weber 1996] thereis an example of a moduli point C 2 H2(k), whichis de�ned over a real quadratic number �eld k =Q(pd) with class number hk = 1. The jacobianvariety JC of this moduli point is isomorphic to anabelian variety A with complex multiplication.
5. APPLICATION TO MODULAR CURVESOur aim in this section is to construct (as an ap-plication of Algorithms 2.5, 3.4, and 4.6) hyper-elliptic curves with real multiplication and genusg = 3; 4; 5. The jacobian varieties of these curvesare principally polarized, simple factors of the jaco-bian variety J0(N) = JX0(N) of the modular curveX0(N). We recall the de�nition of this modularcurve.

Let N 2 N be a �xed natural number and let�0(N) be the subgroup of matrices �ac bd� 2 SL2(Z)with c � 0 mod N . The modular curve X0(N)=Ccan be regarded as the orbit space H �=�0(N), whereH � = f! 2 C : Im(!) > 0g [ P1(Q) and the actionof �0(N) is given by � ! = a! + bc ! + dfor all  = �ac bd� 2 �0(N) and ! 2 H � . If we denoteby S2(N) the space of cusp forms of weight 2 for thegroup �0(N), we get [Shimura 1971] for some �xednewform f(z) = 1 +P1n=2 ane(2�i n=N) z 2 S2(N) asimple abelian variety Af=Q satisfying these con-ditions:� End(Af ) is an order in the totally real �eld E f =Q(a2 ; : : : ; a1) with degree [E f : Q ] = dim(Af ).� Af is isogenous to a simple factor of the jacobianvariety J0(N).Using the programs of X. Wang and M. M�ullerwe can compute the decomposition of J0(N) intosimple factors of dimension g � 1, the Fourier co-e�cients of new forms f 2 S2(N), and the periodmatrices 
f of simple factors Af of J0(N) with di-mension g � 1. See [Wang 1995] for more details,including the de�nition of polarization and a crite-rion to test the principality given a period matrixof dimension g � 2.For those modular curves X0(N) that are hyper-elliptic (classi�ed in [Ogg 1974]), a�ne models inthe form Y 2 = f(T ) 2 Z[T ] have been computedby Gonz�alez Rovira [1991] and independently byM. Shimura [1995], who also considered the nonhy-perelliptic case. The methods used in these papersdon't leave the arithmetic of the modular curveX0(N), so they don't allow us to treat simple fac-tors of J0(N). We show now that by applyingour algorithms to hyperelliptic, principally polar-ized and simple factors of J0(N), we can constructa�ne models for these factors and for the casestreated by Gonz�alez Rovira and M. Shimura. Thecase g = 2 was solved in [Wang 1995].
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5.1. Three-Dimensional Factors of J0(N)We explain in detail how our algorithms must beapplied to get a�ne models of hyperelliptic curvesC=Q with real multiplication and genus g = 3.We start with the newformf = 1 + 1Xn=2 anqn 2 S2(284)whose Fourier coe�cients belong to the totally real�eld E f = Q(fan : n 2 Ng) = Q(�)with irreducible equation �3 + 3�2 � 3 = 0. The�rst few of these coe�cients area2 = 0;a5 = ��2 � 3� � 1;a11 = 2�;a17 = 4�2 + 6� � 6;a23 = �2�2 + 8;a31 = �2� � 8;a41 = �4�2 � 8� + 4;a47 = �4�2 � 8� + 8;
a3 = �;a7 = 2�2 + 2� � 6;a13 = �4�2 � 6� + 4;a19 = ��2 � 2;a29 = 6�2 + 9� � 8;a37 = ��2 � 4� � 2;a43 = ��2 � 3� + 1;: : : :By Shimura's construction we get an associatedsimple abelian variety Af isogenous to a three-dimensional simple factor of the jacobian varietyJ0(284) of the modular curve X0(284). In generala factor Af is simple over Q and simple over Conly if the level N is squarefree. If the level Ncontains a square we have to show that End(Af )has no zero-divisors to assume that Af is simpleover C .Af is principally polarized and possesses the torusrepresentation C 3=(Z3+
f Z3), where
f = (wij)1�i;j�3is the period matrix, whose entries (truncated to�ve decimal places) arew11 = �1:39675 + 1:71195 i;w22 = �0:36574 + 0:28982 i;w33 = 1:61009 + 1:33956 i;

w12 = w21 = �0:48286 + 0:49444 i;w13 = w31 = �0:59993 + 0:16233 i;w23 = w32 = 0:66735 + 0:30210 i:We use this torus C 3=(Z3+
f Z3) as an input forAlgorithm 2.5. In Step 1 we compute the 36 eventheta constants ���"�(
f ) for � �"� 2 F 62 and � "t = 0and build the set V (Af ). As an abbreviation weuse binary notation (by rows) for the theta con-stants; for example, the theta constant ��10 00 00�(
f )will be denoted by �[4; 0](
f ).In Step 2 we notice that because of V (Af ) =f�[5; 5](
f )g (this has been proven numerically)our condition #V (Af ) = n(g) = 1 is ful�lled.The canonical azygetic fundamental system � =f�01 ; : : : ; �07g for Step 3 is given by�01 = h 1 0 00 0 0 i; �02= h 1 0 01 0 0 i; �03 = h 0 1 01 0 0 i;�04 = h 0 1 01 1 0 i; �05= h 0 0 11 1 0 i; �06 = h 0 0 11 1 1 i;�07= h 0 0 01 1 1 i;and shows us that the vanishing set W (Af ; �0) =f�[7; 5](
f )g and the set V (Af ) are di�erent. By acomputer search we �nd a transformation matrix 2 Sp6(F 2) with = 0BBBB@ 0 0 1 0 0 00 1 1 0 0 01 0 0 0 0 00 0 0 0 1 10 0 0 0 1 00 0 0 1 0 0
1CCCCAand  � �0 = ~� = f~�1; : : : ; ~�7g for~�1 = h 0 0 10 0 0 i; ~�2= h 0 0 10 0 1 i; ~�3 = h 0 1 00 0 1 i;~�4 = h 0 1 01 1 1 i; ~�5= h 1 1 01 1 1 i; ~�6 = h 1 1 00 1 1 i;~�7= h 0 0 00 1 1 isuch that W (Af ; ~�) = f�[5; 5](
f )g = V (Af ). Sowe can produce the output YES and stop.



282 Experimental Mathematics, Vol. 6 (1997), No. 4To apply Algorithm 3.4 we choose the setsS11 = f1; 2; 4; 6g; S12 = f1; 2; 5; 7g; S13 = f1; 3; 4; 6g;S14 = f1; 3; 5; 7g; S15 = f2; 3; 4; 6g; S16 = f2; 3; 5; 7g;S21 = f1; 2; 3; 5g; S22 = f1; 2; 6; 7g; S23 = f1; 4; 3; 5g;S24 = f1; 4; 6; 7g; S25 = f2; 4; 3; 5g; S26 = f2; 4; 6; 7g;S31 = f1; 2; 3; 4g; S32 = f1; 2; 6; 7g; S33 = f1; 5; 3; 4g;S34 = f1; 5; 6; 7g; S35 = f2; 5; 3; 4g; S36 = f2; 5; 6; 7g;S41 = f1; 2; 3; 4g; S42 = f1; 2; 5; 7g; S43 = f1; 6; 3; 4g;S44 = f1; 6; 5; 7g; S45 = f2; 6; 3; 4g; S46 = f2; 6; 5; 7g;S51 = f1; 2; 3; 5g; S52 = f1; 2; 4; 6g; S53 = f1; 7; 3; 5g;S54 = f1; 7; 4; 6g; S55 = f2; 7; 3; 5g; S56 = f2; 7; 4; 6g:Then the roots �1; : : : ; �5 of the Rosenhain model(3{1) have the numerical values shown in the tablebelow. The associated binary formF (X;Y ) = X(X � Y ) 5Yi=1(X � �iY )corresponds to a moduli point C 2 H3(Q) withtrivial automorphism group (in the case of realmultiplication the automorphism group is alwayssimple since there are no nontrivial roots of unityin E f ).This Rosenhain model is then fed into Algorithm4.6. In Step 1 we de�ne the three covariants  1 =

(k;m)3 2 K3(2; 5)(C );  2 = (k;  1)2 2 K3(2; 7)(C )and  3 = (k;  2)2 2 K3(2; 9)(C ) with the help ofthe covariants k = (F;F)6 2 K3(4; 2)(C ) and m =(F; k)4 2 K3(4; 3)(C ). For the �uberschiebung weuse the parameter � = 1=(h!)2. Then we get withI2 = (F;F)8 2 I3(2)(C ) the embedded coe�cientsQl;m 7! Ql;m I11�(l+m)2�23 ; for l;m = 1; 2; 3;as elements in the algebra I3[��13 ]0(C ); we denotedthem by Ql;m as well.Using the procedure isolve in Maple we get inStep 2 the irreducible quadratic form Q(Z1; Z2; Z3)in the diagonalized representation shown at the topof the next page. Therefore we output YES, mean-ing that C has an a�ne model over Q .For Step 3 we compute the embedded coe�cients(�xing the same notation) of the curve V(H) byusing the embeddingHl1;:::;l4 7! Hl1;:::;l4 I5 I12�(l1+l2+l3+l4)2�33with invariant I5 = (k;m)4 2 I3(5)(C ). Usingthe coordinates Z1; Z2; Z3 for X1;X2;X3 that havediagonalized the quadratic form, we plug in theparametrization and get the squarefree polynomialh(3)(T ) given at the bottom of the next page.�1 = (�[1; 0](
f ) �[3; 0](
f ))4 + (�[0; 0](
f ) �[2; 0](
f ))4 � (�[0; 1](
f ) �[2; 1](
f ))42 (�[1; 0](
f ) �[3; 0](
f ))4 = 0:83032� 2:04464 i;�2 = (�[1; 2](
f ) �[3; 4](
f ))4 + (�[0; 2](
f ) �[2; 4](
f ))4 � (�[0; 3](
f ) �[2; 5](
f ))42 (�[1; 2](
f ) �[3; 4](
f ))4 = 2:41472� 1:37352 i;�3 = (�[5; 2](
f ) �[3; 4](
f ))4 + (�[4; 2](
f ) �[2; 4](
f ))4 � (�[4; 3](
f ) �[2; 5](
f ))42 (�[5; 2](
f ) �[3; 4](
f ))4 = �1:37026� 0:83267 i;�4 = (�[5; 2](
f ) �[3; 0](
f ))4 + (�[4; 2](
f ) �[2; 0](
f ))4 � (�[4; 3](
f ) �[2; 1](
f ))42 (�[5; 2](
f ) �[3; 0](
f ))4 = �0:15599� 1:87981 i;�5 = (�[1; 2](
f ) �[1; 0](
f ))4 + (�[0; 2](
f ) �[0; 0](
f ))4 � (�[0; 3](
f ) �[0; 1](
f ))42 (�[1; 2](
f ) �[1; 0](
f ))4 = 2:45210� 0:92310 i:Roots of the Rosenhain model (3{1) for the example of Section 5.1.



Weber: Hyperelliptic Simple Factors of J0(N) with Dimension at Least 3 283Q(Z1; Z2; Z3) = �310146482690273725409Z21 + Z22 + 113922743Z23;with squarefree coe�cientsZ1 = h1(T ) = 5408438734746610874028937383516975917117472 + 47474618257274676699357014108385504 T 2;Z2 = h2(T ) = 88093297856830518212763482347330720171053905689804927�6786519614930089882898902557690696309599959734634 T � 773272268003856949026968937601254212875245689 T 2;Z3 = h3(T ) = �3393259807465044941449451278845348154799979867317�1546544536007713898053937875202508425750491378 T + 29785622414876763820982183327918536466419 T 2:Quadratic form produced by Step 2 of Algorithm 4.6 for the example of Section 5.1.The factorization of the discriminant in Step 4,which has over 2000 digits, was carried out usingthe computer algebra program LiDIA [1996]. Weget �3(h(3)(T )) = �2236m56 713, withm=3�11�59�67�79�149�1993�7187�45757�16215770450329:Finally, after minimizing this polynomial in Steps5, 6, and 7, we get an a�ne modelY 2 = g(T ) = T 7+3T 6+2T 5�T 4�2T 3�2T 2�T�1
for our moduli point C 2 H3(Q) with JC �=C Af .We have investigated 228 three-dimensional sim-ple factors of J0(N) up to level N � 500. Only26 of them were principally polarized. For thosefactors that are isomorphic to hyperelliptic jaco-bians of dimension g = 3 we have computed thecorresponding curve equations with endomorphism�elds E f = End(Af ) 
 Q (f denotes here a new-form); see Table 1. Our result for N = 41 is thesame one that appears in [Gonz�alez Rovira 1991;h(3)(T ) = 8Xi=0 h(3)i T i 2 Z[T ], with coe�cientsh(3)0 = �124106094710662863340822193234454568071760054258264696428674415577551963836959258872941789n364518841252980669498433795610746275444834342956742139545374780761457h(3)1 = �289422967350034912763544130861983992324886848261913393813342090615151077677987075884065004n34547196076741770450238345218211412565742210132185732771321930472h(3)2 = �290576948995281531407381833896198365369397073243460940310410783006943147014187581943094580n095782923921718553605966633467667889218257444145427367626138812h(3)3 = 545485656312720261658668387978285496873098732561291294620283260390367935912590603344031205n31884519283982507149139230108128357890874000642828718145000h(3)4 = �538066929523204341945650993919758180851690142972368856289656737999525931488063312198414458n6915405047245504450865009231594542643350885484721455686h(3)5 = 790987028435054085783060904170360181468862221473517625495854403566263530462619899648934171n542410693902695032603650101661182395886508813476392h(3)6 = �513961847531856347240393860381315890092669916607668216423675988960751605597684364873850531n81625578918264790156206694021859969165064814204h(3)7 = 221540933088014339204476848833284885332655901902118189341769144664641839349319103761445514n6317987921412272748592467135373560827316824h(3)8 = �574135797825075316615253152523804806529259507348984589893321192177271150962633975074782362n37751674911801455587757292693422566801Polynomial produced by Step 3 of Algorithm 4.6 for the example of Section 5.1.



284 Experimental Mathematics, Vol. 6 (1997), No. 4N = 41curve = Y 2 = X8 + 4X7 � 8X6 � 66X5 � 120X4 � 56X3 + 53X2 + 36X � 16�3 = (�1) � 216 � 416E f = Q(�); with �3 + �2 � 5� � 1 = 0D = 148 = 22 � 37N = 95 = 5 � 19curve = Y 2 = 19X8 � 262X7 + 1507X6 � 4784X5 + 9202X4 � 10962X3 + 7844X2 � 3040X + 475�3 = 216 � 56 � 194E f = Q(�); with �3 � �2 � 3� + 1 = 0D = 148 = 22 � 37N = 284 = 22 � 71curve = Y 2 = X7 + 3X6 + 2X5 �X4 � 2X3 � 2X2 �X � 1�3 = (�1) � 713E f = Q(�); with �3 + 3�2 � 3 = 0D = 81 = 34N = 385 = 5 � 7 � 11curve = Y 2 = X8 + 12X7 + 68X6 + 114X5 + 282X4 + 176X3 � 123X2 � 170X + 25�3 = (�1) � 216 � 54 � 719 � 116E f = Q(�); with �3 + 4�2 + 2� � 2 = 0D = 148 = 22 � 37
TABLE 1. Hyperelliptic curves of genus 3 with real multiplication.Shimura 1995]. More detailed tables can be foundin [Weber 1996].

5.2. Four-Dimensional Factors of J0(N)In this section we mention only the main algo-rithmic di�erences from the case g = 3. If weconsider a generic four-dimensional hyperellipticfactor Af of J0(N), the corresponding vanishingset W (Af ; �0) consists of 10 even theta constants,namely,�[13;9](
f ); �[7;5](
f ); �[14;11](
f ); �[7;13](
f );�[11;13](
f ); �[15;5](
f ); �[14;10](
f );�[13;11](
f ); �[15;10](
f ); �[11;9](
f )(recall the binary notation for thetas on page 281).We de�ne covariants  1 = (F; k)8 2 K4(2; 3)(C ), 2 = (m; 1)2 2 K4(2; 5)(C ), and  3 = (m; 2)2 2K4(2; 7)(C ) with the help of the covariants

k = (F;F)6 2 K4(8; 2)(C );m = (F;F)8 2 K4(4; 2)(C );and choose for the �uberschiebung the parametervalue � = (h� 1)!=(h!)3. Using the invariant I2 =(F;F)10 2 I4(2)(C ) we get an embeddingQl;m 7! Ql;m � I8�(l+m)2�4for l;m = 1; 2; 3 into the algebra I4[��14 ]0(C ). Theembedding of the coe�cients of the curve V(H) ofdegree 5 has the formHl1;:::;l5 7! Hl1;:::;l5 � I15�(l1+l2+l3+l4+l5)2 �24 ;for l1; : : : ; l5 = 1; 2; 3. We found 114 four-dimen-sional simple factors of J0(N) up to level N � 500,and 11 of them were principally polarized. Table2 includes all curve equations with endomorphism



Weber: Hyperelliptic Simple Factors of J0(N) with Dimension at Least 3 285N = 47curve = Y 2 = X10 + 6X9 + 11X8 + 24X7 + 19X6 + 16X5 � 13X4 � 30X3 � 38X2 � 28X � 11�4 = 220 � 478E f = Q(�); with �4 � �3 � 5�2 + 5� � 1 = 0D = 1957 = 19 � 103N = 119 = 7 � 17curve = Y 2 = X10 + 2X8 � 11X6 � 14X5 � 40X4 � 42X3 � 48X2 � 28X � 7�4 = 220 � 76 � 176E f = Q(�); with �4 + �3 � 5�2 � � + 3 = 0D = 9301 = 71 � 131
TABLE 2. Hyperelliptic curves of genus 4 with real multiplication.N = 59curve = Y 2 = X12 + 8X11 + 22X10 + 28X9 + 3X8 � 40X7 � 62X6 � 40X5 � 3X4 + 24X3 + 20X2 + 4X � 8�5 = (�1) � 224 � 599E f = Q(�); with �5 � 9�3 + 2�2 + 16� � 8 = 0D = 138136 = 23 � 31 � 557
TABLE 3. Hyperelliptic curve of genus 5 with real multiplication.�elds E f = End(Af ) 
 Q (f denoting a newform)up to level N � 500. Our result for N = 47 isthe same one found in [Fricke 1924{28, p. 491;Gonz�alez Rovira 1991; Shimura 1995].

5.3. Five-Dimensional factors of J0(N)Our method is theoretically useful for all g 2 N. Inpractice we're restricted to the case g � 5 since thecomputation of the even theta constants requiresin practice a precision of approximately 50 g digitsand a great deal of computing time already for g =5 (roughly 55 hours per theta constant on a parallelIBM SP1 with four processors).The rarity of hyperelliptic factors of J0(N) forgenus g � 5 is another reason for the restriction tog � 5. Up to level N � 800 we found only the �ve-dimensional simple factor J0(59), which belongs tothe classical hyperelliptic modular curve X0(59);see Table 3.We discuss with the algorithmic di�erences be-tween the case g = 5 and the preceding ones. Thevanishing set W (Af ; �0) of a generic hyperelliptic

factor Af of J0(N) consists of 66 even theta con-stants, corresponding to the following pairs, where(i; j) stands for �[i; j](
f ):(30; 11); (15; 10); (27; 9); (15; 5); (14; 10); (28; 20);(11; 29); (31; 10); (29; 20); (22; 19); (7; 29); (13; 27);(26; 22); (19; 17); (31; 20); (28; 21); (13; 9); (25; 21);(26; 23); (21; 25); (31; 5); (14; 26); (29; 11); (15; 21);(25; 19); (30; 20); (7; 5); (21; 19); (19; 25); (25; 23);(30; 21); (25; 17); (27; 22); (28; 22); (13; 11); (28; 23);(11; 9); (19; 29); (15; 26); (23; 5); (11; 13); (31; 23);(23; 18); (21; 17); (7; 21); (30; 10); (14; 27); (14; 11);(26; 18); (21; 27); (27; 13); (23; 13); (7; 13); (11; 25);(29; 9); (27; 18); (31; 17); (26; 19); (22; 27); (23; 26);(31; 29); (13; 25); (19; 21); (22; 18); (22; 26); (29; 22):To de�ne the embedded coe�cients of the conicV(Q) and the curve V(H) of degree 6 we needthe covariants  1 = (m;n)3 2 K5(2; 5)(C ),  2 =(n;  1)2 2 K5(2; 7)(C ), and 3 = (n;  2)2 2 K5(2; 9)(C );



286 Experimental Mathematics, Vol. 6 (1997), No. 4with k = (F;F)6 2 K5(12; 2)(C );m = (F; k)10 2 K5(4; 3)(C );n = (F;F)10 2 K5(4; 3)(C ):For the �uberschiebung we choose the parametervalue � = 1=(h!)2. Then with the help of the invari-ant I2 = (F;F)12 2 I5(2)(C ) we get the embeddingQl;m 7! Ql;m I8�(l+m)2�5for l;m = 1; 2; 3 into the algebra I5[��15 ]0(C ). Theother embedded coe�cients have the formHl1;:::;l6 7! Hl1;:::;l6 I3 I22�(l1+l2+l3+l4+l5+l6)2 �35 ;for l1; : : : ; l6 = 1; 2; 3, with the invariantI3 = (F;F)6 2 I5(3)(C ):Our result for N = 59 (see Table 3) is the sameone found in [Gonz�alez Rovira 1991; Shimura 1995].
ACKNOWLEDGEMENTSThis paper is based on some parts of my thesis [We-ber 1996] and I thank my advisor Prof. G. Freyfor his help and encouragement. Another thankyou is due to M. M�uller and X. Wang for theirprograms and useful discussions and to the anony-mous reviewers for their useful comments. All thenumerical results were achieved by the use of thecomputer algebra systems Pari [Batut et al. 1995],LiDIA [LiDIA 1996] and Maple.
REFERENCES[Batut et al. 1995] C. Batut, D. Bernardi, H. Cohen,and M. Olivier, User's Guide to Pari-GP 1:39, Uni-versit�e de Bordeaux, 1995. See ftp://megrez.math.u-bordeaux.fr/pub/pari.[Clebsch 1872] A. Clebsch, Theorie der bin�aren alge-braischen Formen, Teubner, Leipzig, 1872.[Deligne and Mumford 1969] P. Deligne and D.Mumford, \The irreducibility of the space of curves

of given genus", Publ. Math. Inst. Hautes �Etudes Sci.36 (1969), 75{109.[Fricke 1924{28] R. Fricke, Lehrbuch der Algebra,Vieweg, Braunschweig, 1924{28.[Geyer 1974] W. D. Geyer, \Invarianten bin�arerFormen", pp. 36{69 in Classi�cation of algebraicvarieties and compact complex manifolds, edited byH. Popp, Lecture Notes in Math. 412, Springer,Berlin, 1974.[Gonz�alez Rovira 1991] J. Gonz�alez Rovira, \Equationsof hyperelliptic modular curves", Ann. Inst. Fourier(Grenoble) 41:4 (1991), 779{795.[Igusa 1972] J.-I. Igusa, Theta Functions, Springer,Berlin, Heidelberg, New York, 1972.[Krazer 1903] A. Krazer, Lehrbuch der thetafunktionen,Teubner, Leipzig, 1903. Reprinted by Chelsea, NewYork, 1970.[Lang 1959] S. Lang, Abelian varieties, InterscienceTracts in Pure and Applied Mathematics, Inter-science Publishers, New York, 1959. Reprinted bySpringer, New York, 1983.[LiDIA 1996] T. L. Group, \LiDIA: a C++ libraryfor computational number theory", software, Tech-nische Universit�at Darmstadt, Darmstadt, Germany,1996. See http://www.informatik.th-darmstadt.de/TI/LiDIA.[Mestre 1991] J.-F. Mestre, \Construction de courbesde genre 2 �a partir de leurs modules", pp. 313{334 inE�ective methods in algebraic geometry (Castiglion-cello, 1990), edited by T. Mora and C. Traverso,Progr. Math. 94, Birkh�auser, Boston, 1991.[Mordell 1969] L. J. Mordell, Diophantine equations,Pure and Applied Mathematics 30, Academic Press,London, 1969. Reprinted by Chelsea, New York,1970.[Mumford 1983] D. Mumford, Tata Lectures on ThetaII, Birkh�auser, Boston, 1983.[Ogg 1974] A. P. Ogg, \Hyperelliptic modular curves",Bull. Soc. Math. France 102 (1974), 449{462.[Poor 1994] C. Poor, \The hyperelliptic locus", DukeMath. J. 76:3 (1994), 809{884.[Shimura 1971] G. Shimura, Introduction to the arith-metic theory of automorphic functions, Publications



Weber: Hyperelliptic Simple Factors of J0(N) with Dimension at Least 3 287of the Mathematical Society of Japan 11, PrincetonUniversity Press and Iwanami Shoten, Tokyo, 1971.[Shimura 1995] M. Shimura, \De�ning equations ofmodular curvesX0(N)", Tokyo J. Math. 18:2 (1995),443{456.[Vinberg and Popov 1994] �E. B. Vinberg and V. L.Popov, \Invariant theory", pp. 123{278 in Algebraicgeometry IV, edited by A. N. Parshin and I. R.
Shafarevich, Encycl. of Math. Sc. 55, Springer,Berlin, 1994.[Wang 1995] X. D. Wang, \2-dimensional simple factorsof J0(N)", Manuscripta Math. 87:2 (1995), 179{197.[Weber 1996] H.-J. Weber, Algorithmische Konstruk-tion hyperelliptischer Kurven mit kryptographischerRelevanz und einem Endomorphismenring echt gr�o�-er als Z, Dissertation, Essen University, 1996.Hermann-Josef Weber, Mannesmann Information Technology, Theodorstra�e 90, 40472 D�usseldorf, Germany(hermann-josef.weber@it-mannesmann.de)Received December 2, 1996; accepted in revised form June 6, 1997


