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Snap is a computer program for computing arithmetic invariants
of hyperbolic 3-manifolds, built on Jeff Weeks’s SnapPea and
the number theory package Pari. Its approach is to compute
the hyperbolic structure to very high precision, and use this to
find an exact description of the structure. Then the correctness
of the hyperbolic structure can be verified, and the arithmetic
invariants of Neumann and Reid can be computed. Snap also
computes high precision numerical invariants such as volume,
Chern-Simons invariant, eta invariant, and the Borel regulator.

1. INTRODUCTION

This paper describes Snap, a computer program for
computing arithmetic invariants of hyperbolic three-
manifolds. Snap is based on the program Snap-
Pea [Weeks 1993] and the number theory package
Pari [Batut et al. 1998]. SnapPea computes the hy-
perbolic structure on a finite volume hyperbolic 3-
manifold numerically (from its topology) and uses it
to compute much geometric information about the
manifold. Snap’s approach is to compute the hyper-
bolic structure to very high precision, and use this
to find an exact description of the structure. Then
the correctness of the hyperbolic structure can be
verified, and the arithmetic invariants of Neumann
and Reid [1992a] can be computed. Snap also com-
putes high precision numerical invariants such as
volume, Chern—Simons invariant, eta invariant, and
the Borel regulator. As sources of examples both
Snap and SnapPea include the Hildebrand—Weeks
census of all 4,815 orientable cusped manifolds tri-
angulated by up to seven ideal simplices [Hildebrand
and Weeks 1989], and the Hodgson—Weeks census of
11,031 low-volume closed orientable manifolds hav-
ing no geodesic of length less than 0.3 [Hodgson and
Weeks > 2000]. (SnapPea also includes a census of
nonorientable cusped manifolds.)
Snap is available electronically; see the Web page
http: //www.ms.unimelb.edu.au/-snap.
© A K Peters, Ltd.
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2. IDEAL TRIANGULATIONS

SnapPea and Snap represent an orientable hyper-
bolic 3-manifold of finite volume as a set of ideal
tetrahedra in H® with face pairings. Identifying the
sphere at infinity of H® with C = C U {oo}, the
orientation preserving congruence class of a tetra-
hedron is given by the cross ratio of its vertices; ori-
ented tetrahedra, whose vertices are numbered con-
sistently with the orientation, correspond to cross
ratios with positive imaginary part. After choosing
orderings for the vertices of each tetrahedron, the
tetrahedra are given by complex numbers

{Z]_,...

called their shape parameters, lying in the upper half
plane. Changing the vertex ordering of a tetrahe-
dron may replace z; by 1 — 27" or (1 —z;) 7"

For the result of gluing these tetrahedra to rep-
resent a hyperbolic 3-manifold, the following gluing

conditions must be satisfied:

> Zn}y

1. Around each edge of the complex, the sum of the
dihedral angles must be 27, and the edge must
be glued to itself without translation.

2. Each cusp (neighborhood of an ideal vertex) must
either (i) have a horospherical torus cross sec-
tion, or (ii) admit a compactification by adding
a closed geodesic around which there is an angle
of 27 and no translation.

Remark 2.1. A probably more familiar situation is
that of gluing the faces of a compact polytope to
obtain a closed geometric manifold. In this case
the translation condition is unnecessary since it is
automatically satisfied.

If every cusp has a horospherical torus cross section,
the glued complex is a complete hyperbolic 3-mani-
fold. If some cusps require compactification, the re-
sult is a Dehn filling of the glued complex. Ideal
triangulations are described in much more detail in
[Thurston 1979].

The above conditions are equivalent to a set of
equations in the z; which we shall describe shortly.
First we need to define a kind of “complex dihedral
angle” for the edges of an ideal tetrahedron. For
each edge of an ideal tetrahedron, there is a loxo-
dromic transformation, having the edge as axis, and
taking one of the two adjacent faces onto the other.

The logarithmic edge parameter of the edge is r+ 10,
where r is the translation distance of the transfor-
mation, and 6 is the angle through which it rotates.
For oriented tetrahedra, with consistently numbered
vertices, we can take 6 € (0, 7). The corresponding
edge parameter is e’ 7% If the tetrahedron has shape
parameter z, each edge parameter is one of

z, 1—27" or (1—2)""

Condition 1 is that for each edge of the 3—complex
the sum of the logarithmic edge parameters is 27i.
Condition 2 can be similarly expressed; the exact
set of terms which are added depends on whether
the cusp is complete or filled. We call these the log-
arithmic gluing equations of the ideal triangulation.

When SnapPea is given a 3-manifold topologi-
cally, as a set of face pairings for ideal tetrahedra,
and perhaps also Dehn fillings for some of the cusps,
it attempts to solve the logarithmic gluing equations
numerically. A solution is called geometric if all the
z; lie in the upper half plane. Corresponding ideal
tetrahedra can then be glued together, along some of
the faces, to give an ideal fundamental polyhedron
for the manifold; the remaining face pairings give a
faithful representation of its fundamental group into
PSL(2,C).

If not all of the z; lie in the upper half plane the
solution may still have a meaningful interpretation.
Regard any quadruple of points in C as a tetrahe-
dron. Call it geometric if the cross ratio lies in the
upper half plane, flat if it is real and not equal to 0 or
1, degenerate if it is 0,1, oo or undefined (i.e., if two
or more vertices coincide), and negatively oriented
if it is in the lower half plane. A solution without
degenerate tetrahedra certainly gives a representa-
tion of the fundamental group of the manifold into
PSL(2,C). However, the representation need not be
faithful and may not have a discrete image.

It follows from the existence of canonical ideal cell
decompositions of finite volume hyperbolic mani-
folds [Epstein and Penner 1988] that every such 3-
manifold can be represented using only geometric
and flat tetrahedra: decompose each cell into tetra-
hedra, then match differing face triangulations using
flat tetrahedra (if necessary). It is conjectured that
in fact only geometric tetrahedra are needed in this
case.
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For closed hyperbolic 3-manifolds the situation is
less clear. Certainly every such manifold can be ob-
tained topologically by Dehn filling a suitable hy-
perbolic link complement. This means that any so-
lution of the gluing equations will give a representa-
tion of the fundamental group into PSL(2,C). Un-
less, however, the solution is geometric, it cannot
be guaranteed that the representation is faithful or
discrete.

What is important, for present purposes, is that
the gluing conditions can also be given as a set
of polynomial equations, with rational coefficients,
in the z;. The gluing equations are obtained from
the logarithmic gluing equations by exponentiation.
These equations state that certain products of edge
parameters (of the form z;, 1 —z; ', and (1 — 2,)™%)
equal 1. Multiplying through by suitable powers of
z; and (1—2z;) we obtain polynomial equations. Note
that the gluing equations only specify that the angle
sum, around each edge or filled cusp, is a multiple
of 2. In terms of numerical computation however,
it is straightforward to check if a solution actually
gives an angle sum of precisely 2.

Mostow—Prasad rigidity (see [Mostow 1973]) im-
plies that the solution set of the gluing equations
is 0-dimensional. It follows that the z; in any so-
lution are algebraic numbers: compare [Macbeath
1983, proof of Theorem 4.1]. For example, the com-
plement in S® of the figure 8 knot has an ideal tri-
angulation by two tetrahedra with shape parameter

21 =2y = % + ?z
This is actually the shape parameter of a regular
ideal tetrahedron.

We can also assume that the entries of a set of
PSL(2,C) matrices for the fundamental group are
algebraic: position the fundamental polyhedron so
that one tetrahedron has three of its vertices at 0, 1,
and oco. The remaining vertices will be algebraic, as
will entries of the face pairing transformation ma-
trices. The other matrices, being products of these,
will also have algebraic entries.

3. COMPUTATION WITH ALGEBRAIC NUMBERS

In order to give an exact representation of a 3-mani-
fold we clearly need a way to represent algebraic
numbers. We give a brief discussion, referring to

[Cohen 1993; Pohst 1993] for more details. The most
obvious way to represent an algebraic number is to
give a polynomial with rational coefficients, whose
roots include the number in question, and somehow
specify which root is intended. The latter can be
done by giving the root numerically to sufficient pre-
cision. The roots can also be sorted and given by
number.

Carrying out the field operations with algebraic
numbers given in this way is slightly non-trivial: a
“resultant trick” enables us, given two numbers, to
compute a polynomial whose roots include the sum
of the two numbers. We must then determine which
root is the sum, perhaps by computing the latter nu-
merically to sufficient precision. Differences, prod-
ucts and quotients can be similarly computed.

In fact we do not use quite this approach. We
specify one number, 7 say, in the above manner,
then represent other numbers as QQ-polynomials in
7. Let f be the minimum polynomial of 7 and let
n be the degree of f. Then the field Q(7) is a de-
gree n extension of Q, and each element of Q(7) has
a unique representation as a Q-polynomial in 7 of
degree at most n — 1.

Field operations in Q(7) are now very easy: sum
and difference computations are obvious; a product
can be computed directly then reduced to a poly-
nomial of degree at most n — 1 by subtracting a
suitable multiple of f(7). A quotient g,(7)/g.(7) is
computed by using the Euclidean algorithm to find
polynomials a, b such that af + bg, = 1, whence

b(r) = ga(7) ™.

Pari [Batut et al. 1998] implements this kind of
arithmetic: the expression Mod (g, f), called in Pari
a polymod, represents g(7) where 7 is a root of f.
Note that it is not necessary to specify which root
is chosen to do arithmetic with polymods, since a
change of root is a field isomorphism.

Of course if we want to add «, 3 belonging to dif-
ferent number fields we must either fall back on the
first approach, or find a new primitive element, o
such that

Q(0) 2 Q(a, ),

and re-express both a and [ in terms of 0. For
the most part, however, our approach is to first find
a number field which contains all the numbers we
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are interested in and then carry out the required
computations inside this field.

Our aim then, given a 3-manifold with shape pa-
rameters {z,...,2,}, is to find an irreducible poly-
nomial f € Z[x| with root 7 such that

Z1ye s 2n € Q(7).
In outline what we do is this:

1. compute each z; to high precision (typically some
50 decimal places);

2. use the LLL algorithm [Lenstra et al. 1982] to
guess a polynomial in Z[x] vanishing on each z;

3. check if all the z; belong to the field generated by
one of them, also using the LLL algorithm.

Step 1 is done by Newton’s method, using the solu-
tion provided by SnapPea as a starting point. Usu-
ally the check in Step 3 is successful. When it is not
we try small rational linear combinations of the z;
to find a primitive element for Q(zy,...,2,). A side
effect of Step 3 is that we obtain an expression for
each of the z; in terms of the primitive element.

Since the LLL algorithm is fundamental we de-
scribe a little further what it is and how it is applied
in Steps 2 and 3 above. Most of what follows is de-
scribed much more precisely in [Cohen 1993; Pohst
1993].

The LLL algorithm is an algorithm which finds a
“good” basis for an integer lattice with respect to
a given inner product. A good basis is one which
consists of short and approximately orthogonal ele-
ments. Roughly, how it does this is to apply Gram-—
Schmidt “orthogonalization” to the starting basis,
but modified so that only nearest integer multiples
of basis elements are added or subtracted. When-
ever an element is obtained which is significantly
shorter than the preceeding ones, it is moved in front
of them, and Gram-Schmidt is started again from
there. The resulting basis always contains elements
not too far from being shortest in the lattice. We
emphasize that the result is dependent on the inner
product: the lattice in our case is always simply the
integer lattice Z"; it is by varying the inner product
that we obtain useful results.

Now suppose that z approximates an algebraic
number 7. To find an integer polynomial, of degree
at most m, vanishing on 7 we look for one which is
small on z. In fact we use LLL to find a short vector

in Z™"" with respect to the inner product given by
the quadratic form!

(ag, ..., an) —
a8+...+afn+N|a0+alz+a2z2+"'+amzm|27

where N is a large number, around 10!-5¢ if 7 is given

to d decimal places. If ag+a12+as2? +---+a,, 2™ is
not zero, to approximately the precision to which z
is known, the term Nlag+ a1z + azz? +- -+ a,, 2™ |
will make (ay,...,a,) long. Thus if LLL finds any
short vectors, it has most likely found (ay,...,a,,)
such that ag + a;7 + ay7™ + -+ + a,,7™ = 0. By
factoring this polynomial, and identifying which ir-
reducible factor has 7 as a root, we can determine
7’s minimum polynomial. Of course, if 7’s mini-
mum polynomial has degree greater than m, this
whole process is doomed to failure. Assuming how-
ever that we have chosen m sufficiently large, this
application of LLL completes Step 2 above.

For Step 3 we need to check if «, algebraic, ap-
proximated by w, belongs to Q(7). We use the LLL
algorithm to find a small vector in Z"** with respect
to the inner product given by the quadratic form

(aa Ao, - - - 7an—1) —
a2+a§+. . -—|—ai71+N|aw—|—a0+a1Z+. . '+an712n71|2,

where NV is as before and n is the degree of 7’s min-
imum polynomial. As before, if LLL finds a short
vector, it most likely has found (a, ay,...,a, ) such
that ac+ag+a, 7+aym?+- - -+a,_17"t = 0. Since n
is the degree of 7’s minimum polynomial, a should
not be zero; so we obtain an expression for « in
terms of 7. On the other hand, if aw + ag + a1z +
a2’ + -+ + a,_12""* is not zero, to approximately
the precision to which z and w are known, it is likely
that « € Q(7). Refinements of these procedures can
be found in [Cohen 1993; Pohst 1993].

We can give a rough analysis of the above use
of the LLL algorithm. Denote by b(ag,...,a,) the
above quadratic form that is reduced by the LLL al-
gorithm to find a good integer polynomial for z. One

L A slightly different quadratic form is actually used, namely the
a% term is omitted if 2 is real and the a% and a% terms are omitted
if z is nonreal. The reason is pragmatic: LLL initializes by doing a
true Gram—Schmidt reduction of the form, and the resulting basis-
change is the same to within machine precision for the modified
form, but is given by a much simpler formula.
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can eagily check that this bilinear form has determi-
nant approximately equal to N or N? according as
z is real or non-real. (In this discussion, “approx-
imately equal to” will mean “equal to a bounded
multiple of”. The actual determinants are very close
to N and (Im zN)? respectively.) In our applications
z is complex, but we will analyze the algorithm with-
out this assumption, so let £ = 1 or 2 according as z
is real or non-real. Putting N = 107, we can write

det(b) ~ 10%7,

Now crude estimates suggest that a “random” quad-
ratic form of determinant D on Z™"" will have min-
imum on Z™*" — {0} of approximately D'/("+1. In
our case,

yay) € 2T —{0}}
~ lokP/(m—i-l)‘

min{b(ag,...,a,) : (ag,...

Since the coefficients a; contribute their squares to
this minimal b(ay, . .., a,,), they will be bounded by
approximately 10%7/(2m+2)  Thus if we expect co-
efficients bounded by 10¢ we need ¢ less than kP/
(2m + 2) and hence

P~2(m+1)c/k
or larger. Conversely, once P is chosen, ¢ is bounded
by about Pk/2(m + 1).
The minimal b(aq, ...
bution 10F1? with
l=ap+a1z+ -+ a,z™",
so we also have 107]1|2 ~ 10*/(m+1) g0

|l| ~ 10P(k7m71)/2(m+1) .

, @) also includes a contri-

This is expected even if the original 7 that z ap-
proximates does not satisfy an integer polynomial
in degree m. Thus to detect that the polynomial
that we find is a good one, we should use somewhat
more than P(m + 1 —k)/2(m + 1) =~ P/2 digits of
precision.

Snap adjusts P so that it uses d = 2P/3 digits of
precision. Since k = 2 in Snap’s applications, this
means we can hope Snap will find polynomials with
coefficients up to about 1032+ Snap’s default
(which can be changed at any time) is to work with
degree 16 and precision d = 50, so we can hope to
find polynomials with coefficients bounded by about
10%5, and expect to find them if the coefficients are
significantly smaller than this.

We can roughly quantify the likelihood of finding
“false positives” in these applications of LLL. Given
n random complex numbers (;,...,(, in the unit
disk, the number of complex numbers of the form

a1+ -+ anCy

in the unit disk with |a;| < 10° is approximately
10(»=2)¢ 5o the total area covered by a disk of radius
10~? around each will be approximately 10("~2)¢2p7
if p is significantly larger than (n — 2)e. Thus the
probability of one of these linear combinations a,(; +
-+ 4+ a,(, being “accidentally” within 1077 of 0 is
about 10(»=2¢=2P_ With a machine precision of 10~¢
and coeflicients up to 10¢ we should take p = d — ¢,
so the likelihood of a false positive becomes about
10m=24. With Snap’s defaults (n = 17, d = 50)
described above and ¢ = 4.5, this is about 10723,

As we increase both precision and degree, the run-
ning time of the algorithm goes up. We were unable
to find any estimates of the expected running time of
the LLL algorithm in the literature, but experiment
suggests that typical running times using Pari 2.03’s
implementation on a Sparc 5 machine are given ap-
proximately, in seconds, by

3.7 x 10~ "precision®“degree® ",
for degrees between 10 and 20 and precisions be-
tween 80 and 180.

Finally, note that whatever choice we make for n
in Step 2, it is the degree of the minimum polyno-
mial found which governs n in Step 3: often this will
be smaller and the LLL computations in Step 3 will
run correspondingly faster.

Snap follows the procedure outlined above to find
a number field containing all the shape parameters
of a given 3-manifold, and an exact expression for
each shape in terms of a primitive element for that
field. Snap’s “verify” function then substitutes the
exact shapes back into the gluing equations to check
that they are satisfied. Here is sample output for the
figure 8 knot complement.

Shapes (Numeric)

shape(1) = 0.50000000000000000000000 +
0.86602540378443864676372*1

shape(2) = 0.50000000000000000000000 +
0.86602540378443864676372*1
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Shape Field

min poly: x"2 - x + 1

root number: 1

numeric value of root:
0.50000000000000000000000 +
0.86602540378443864676372*1

Shapes (Exact)
shape(1) = x 1.33737 E-67
shape(2) = x 5.24561 E-68

Gluing Equations

Meridians:

1, 0; 0, 1; 0 -> 1 : 9.27301 E-68
Longitudes:

0, -2; 0, 4; 2 ->1: O0.E-57
Edges:

2, -1; -1, 2; 0 -=> 1 : 1.29822 E-67
-2, 1; 1, -2, 0 > 1 1.29822 E-67

The root number says which root of the minimum
polynomial is used as a primitive element for the
field. The numbering scheme used will be described
when we discuss canonical representations of num-
ber fields in C. The small number following each ex-
act shape (e.g., 1.33737 E-67) gives the accuracy
of the originally computed numerical shape. It is
included only as a sanity check.

Finally we have the gluing equations. As we have
already noted, the gluing equations come down to
the requirement that certain products of terms of
the form z;, 1 — 2; ' and (1 — 2;)~! give 1. This is
equivalent to certain products of powers of z;, 1 — z;
and —1, giving 1: see for example [Neumann and
Zagier 1985]. Reading each gluing equation horizon-
tally we have powers of z, ..., z,, powers of 1 — z;,

.., 1 —2z,, and the power of —1, followed by their
product in exact arithmetic. This is followed after
a colon by the precision to which the logarithmic
gluing equation has been verified. Since the gluing
equation is exactly correct, the logarithmic gluing
equation is known to be correct up to an integer
multiple of 27, so it would suffice to verify it to
much lower precision than is actually done.

Since this output shows that the logarithmic glu-
ing equations have been verified exactly, and since
the shape parameters were in the upper half plane,
signifying correctly oriented simplices, it proves the

existence of a hyperbolic structure with an ideal tri-
angulation with the given simplex shapes.

The meridian and longitude referred to in the
printout are curves, in a cross section of the cusp,
which give a basis for the first homology group of
that cross section. Typically SnapPea uses shortest
curve and next shortest independent curve, in the
Euclidean structure on a horospherical cusp cross
section, as the meridian and longitude respectively.
(For knot and link complements, SnapPea uses the
conventional terminology: where a meridian means
a curve bounding a disk transverse to the knot or
link, while a longitude means a curve that runs par-
allel to the knot or to a component of the link and is
null-homologous in S* minus the knot or link com-
ponent.) Corresponding to each meridian or longi-
tude is a gluing equation for the cusped hyperbolic
structure. The gluing equations for a Dehn filled
manifold include one equation for each filled cusp,
corresponding to the filling curves.

4. COMMENSURABILITY INVARIANTS

Two finite volume, orientable, hyperbolic 3-mani-
folds are said to be commensurable if they have a
common finite-sheeted cover. Subgroups I',T" C
PSL(2,C) are commensurable if there exists g €
PSL(2,C) such that ¢ 'I'¢gNTI" is a finite index sub-
group of both ¢7'I'g and I"". Therefore, by Mostow
rigidity orientable hyperbolic 3-manifolds of finite
volume are commensurable if and only if their fun-
damental groups are commensurable as subgroups
of PSL(2,C).

4A. The Invariant Trace Field

Let I' be the group of covering transformations of
such a manifold, and let I denote the preimage of I'
in SL(2,C). The traces of elements of I generate a
number field Q(tr I') called the trace field of T'. That
Q(trT) is a number field follows from the observa-
tion that I is finitely generated and, by conjugating
suitably (as described at the end of Section 2) we can
assume that the generators have algebraic entries.
The trace field Q(trI") is almost, but not quite, a
commensurability invariant of I': see [Reid 1990].
The invariant trace field k(I") of T' may be defined
as the intersection of all the fields Q(trI"), as I
varies over all finite index subgroups of I'. Defined
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in this way it is clear that k(") is a commensurability
invariant of I'. What is less clear is that it is ever
non-trivial. We have, however, the following.

Theorem 4.1 [Reid 1990)].

K(T) =Q({tr*(v) | vy € T}) = Q(er '),
where T'?) s the finite index subgroup of I generated
by squares {y* |y € T'}.

We have seen how it is possible, given a set of gener-
ators for a field, to guess a primitive element for that
field along with its corresponding minimum polyno-
mial. In order to compute the trace and invariant
trace fields of I' we must find finite sets of generators
for the two fields.

Theorem 4.2, Let I' C SL(2,C) be finitely generated
by {g1,---,9.}. The trace, tr(g;, ...g:.), of an el-
ement of T can be ezpressed as a polynomial with
rational coefficients in the traces: tr(g;),1 <i < n,
tr(g:9;),1 < i < j < mn, and (if n > 2) the trace
of one triple product of generators, e.g. tr(g19293).
Also, tr(gi, ... gi,) ts an algebraic integer if each
tr(g;), for 1 < i < n, and each tr(g,g;), for 1 <
1 < j < n, 1s an algebraic integer.

Proof. For the trace relations used in the follow-
ing, see [Magnus 1980]. Let K be the field gen-
erated over Q by the traces tr(g;),1 < i < n, and
tr(g:9;),1 <1 < j < n. Let Py, = tr(gig;gn) +
tr(gigrg;) and Qi = tr(g:9;9x)- tr(gigrg;). Then
tr(g;9;9x) and tr(g;g,g;) are the roots of z2* — P;j, 2+
Qijx = 0. Fricke’s Lemma [Magnus 1980] implies
that P, and @,;;, are integer polynomials in the
tr(g;) and tr(g;g;), hence they are in K. Writing
A(gi, 95, 9x) for the discriminant P7, — 4Qq; it is
clear that for any extension K; of K, tr(g;9;91) €
K, if and only if both tr(g,9,9:) and tr(g;grg;) €
K, if and only if \/A(g;,9;,9x) € K.

By [Magnus 1980, Lemma 2.3], for any i, j, k and
i3k in {1,...,n},

\/A(giagjagk) ’ \/A(gi’agj’agk’) € K.

Therefore

A(gi, 95, 91) € Ky <= \/A(9s,95,9r) € K.

If we now put K; = K(tr(g19293)) it follows from
the above observations that tr(g;g;gx) € K; for all
1,7, kinl, ..., n.

We show next, by induction on k£ > 3, that K;
contains the traces of all k—fold products of the gen-
erators g;. We have just shown that this is so for
k = 3. Suppose then that & > 3 and K; contains
the traces of all (k—1)—fold products of generators.
Then for each product ¢' = g;, ... g;,_,, K; contains
all traces, and all traces of products of pairs, of el-
ements in the set {g1,...,9,,9'}. Moreover it con-
tains at least one triple product, namely tr(g;g.9gs3).
By the above argument it follows that K; contains
the traces of all triple products of elements of this
set. In particular, K contains the trace of ¢'g;g; for
each ¢’ as above, and 7,7 in {1,...,n}. Since these
are all the k—fold products of the g;, this proves the
first statement.

Finally, if the tr(g;) and tr(g;g;) are all algebraic
integers, P, and @), are also. Therefore tr(g;g;9x)
and tr(g;gxg;), being roots of a monic polynomial
with algebraic integer coefficients, are again integral.
The same induction argument then shows that all
traces of k—fold products of the g; are in the ring of
integers of Kj. 0

Theorem 4.2 enables us to compute the trace field
of I' = (¢1,...,9n). There is no particularly obvi-
ous set of generators for ['® which we can use to
compute the invariant trace field of I'. Fortunately,
Corollary 3.2 of [Hilden et al. 1992] tells us that
Q(trI'@) = Q(tr'S?) where I'? = (g2,...,4?), as
long as tr(g;) #0, fori=1,...,n.

Snap computes trace fields and invariant trace
fields in much the same way that it computes a field
containing all the shape parameters. It first com-
putes high precision numeric expressions for a set
of generators for the group of covering transforma-
tions of a manifold. Then it uses LLL to find a
primitive element in terms of which the appropriate
set of traces can be expressed.

For example: (6,1)-Dehn filling on the figure 8
knot complement yields a closed hyperbolic 3-mani-
fold with volume 1.284485300468.... Its group of
covering transformations is (g;, ¢g»), where g; and g,
are given respectively by

—1.135368 + 0.5722914 0.0
0.702328 +0.354014¢  —0.702328 — 0.3540147 )’

—1.226699 +1.467712¢  2.689343 + 1.705870¢
—0.265154 + 0.168189¢ 0.0 '
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Snap prints the invariant trace field as follows:

Invariant trace field

minumum polynomial: x"3 + 2*x — 1

root number: 2

numeric value of root:
-0.2266988257582018 +

1.467711508710224%1
signature: [1, 1]
discriminant: -59

It also gives exact expressions for the traces used to
generate this field:

Invariant trace field generators

tr(gl”2) =Mod(-x"2-x-1, x"3+ 2xx - 1)
tr(g2°2) = Mod(x"2 - 2%x - 1, x"3 + 2*x - 1)
tr(gl~2g272) = Mod(-x + 2, x"3 + 2*x - 1)

This is all very well but there is not much point in
computing invariants, like the invariant trace field,
if we cannot compare two and decide whether they
are the same. Simple invariants of a number field
include its degree (dimension over QQ), which is equal
to the degree of the minimum polynomial of any
primitive element, and its signature (r{,r,), where
ry 18 the number of real roots, and r, is the number
of conjugate pairs of non-real roots of a minimum
polynomial.

We also have the discriminant, defined as follows.
The algebraic integers of a number field Q(7) form
a free Z—submodule of Q(7) of rank [Q(7) : Q]. The
bilinear map (z,y) — tr(zy) gives a nondegenerate
inner product on Q(7) as a Q-vector space. Given
any basis of the ring of integers we form the matrix
of inner products of basis elements, taken pairwise.
The determinant of this is in Z and is independent
of the choice of basis. It is called the discriminant
of the number field.

In fact we can construct a canonical minimum
polynomaial which is a complete isomorphism invari-
ant for number fields. The so-called T3 norm of a
number field is given by the the inner product

(z,y) — Z oi(2)0i(y),

where oy,...,0, are the embeddings of the num-
ber field Q(7) into C, and the bar denotes ordinary
complex conjugation. This gives a positive definite

inner product on Q(7), and we can enumerate in-
tegers of Q(7) in order of their T, norm. The set
of integers of smallest norm that generate Q(7) is
canonical. Their minimum polynomials include one
which is lexicographically first, and this serves as a
canonical minimum polynomial. See [Cohen 1993]
for further discussion.

The trace fields we compute are not just abstract
number fields, they are actually subfields of C. Com-
plex conjugate subfields arise from complex conju-
gate representations in PSL(2, C) of the same funda-
mental group, and just correspond to reversing the
orientation of a hyperbolic 3-manifold. Otherwise
different subfields mean essentially different values
of the invariant. Since several roots of the canonical
minimum polynomial might generate the same sub-
field of C, we sort the roots into some fixed order
and take the first which gives the required subfield.
This gives us a canonical root number for the sub-
field.?

For example: in [Hodgson and Weeks > 2000]
the closed hyperbolic 3-manifolds m010(—1,3) and
$594(—4,3) have isomorphic invariant trace fields,
with canonical minimum polynomial z* + 2% — x +
1, but they have different canonical root numbers,
namely 1 and 2 respectively. Therefore their invari-
ant trace fields differ and they are not commensu-
rable.

4B. The Invariant Quaternion Algebra

Let K be a field of characteristic zero. A quater-
nion algebra over K is a simple central algebra of
dimension 4 over K. These are discussed in detail
in [Vignéras 1980]. Let (a,b) be a pair of nonzero el-
ements of K. Up to isomorphism, there is a unique
quaternion algebra A containing elements i, j satis-
fying i = a, j> = b, and ij = —ji, and such that
{1,1,7,ij} form a basis for A as a K-vector space.
Such a pair (a,b) is called a Hilbert symbol for A.

2 In fact, we make an ordered list of the real roots followed by the
complex roots having positive imaginary part; these are arranged
in increasing order of real part and increasing absolute value of
imaginary part (if real parts are equal). We then try each real root
in turn (if the field is real) or each complex root followed by its
complex conjugate (if the field is non-real). Finally, we assign the
root a number: if the root has non-negative real part we give its
position in the list, otherwise we give the negative of the number
for its conjugate.
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Every quaternion algebra over K has a Hilbert sym-
bol, but the symbol is far from being unique.
A is a division algebra if and only if the equation

aX?*+bY* - 27Z°=0

has no non-trivial solutions for X,Y,Z € K. If
A is not a division algebra, it is isomorphic with
M (2, K), the algebra of all 2 by 2 matrices over K
(and conversely, the latter is not a division algebra
for any K). Over R there are just two quaternion
algebras: the “usual” Hamiltonian quaternion al-
gebra, which has Hilbert symbol (—1,—1) and is a
division algebra, and M(2,R). Over C there is just
M(2,C).

As before, let M = H?/T be a finite volume,
orientable hyperbolic 3-manifold. Denote by I'?)
the preimage in SL(2,C) of the group generated by
squares of elements of I' C PSL(2,C). The invariant
quaternion algebra A(T') of I, is the k—subalgebra of
M (2,C) generated by ['®, where k denotes the in-
variant trace field of I.

Theorem 4.3 [Hilden et al. 1992]. Let g,h be non-
commuting elements of T'®) with tr(g) # £2. Then
A(T) has Hilbert symbol

(tr(gz) - 27 tr([gu h]) - 2)7
where [g, h| denotes the commutator ghg=*h™".

Snap computes a Hilbert symbol for the invariant
quaternion algebra of a 3-manifold by finding g, h €
I'® as above, and computing exact expressions for
tr(¢g?) — 2 and tr([g, h]) — 2. The non-uniqueness of
the Hilbert symbol means that this is not, by itself,
enough to tell us whether or not two 3-manifolds
have the same quaternion algebra.

The remainder of this section describes how the
classification of quaternion algebras over a number
field gives a complete invariant which we can com-
pute. We fix a number field K, and quaternion al-
gebra A over K with Hilbert symbol (a, b).

Theorem 4.4 [Vignéras 1980]. Let K and A be as
above. The isomorphism class of A is determined
by the (finite) set of real and finite places of K at
which A is ramified. The total number of places,
real and finite, at which A ramifies, is even.

Recall that a place of a number field K is an equiv-
alence class of absolute values |- | : K — R. A place

is called real or complex if the completion of K with
respect to || is isomorphic with R or C, respec-
tively. The real places of K are in one-to-one cor-
respondence with embeddings o : K — R; likewise
the complex places of K correspond to conjugate
pairs of non-real embeddings o : K — C.

A place is called finite if it arises from a valuation
v:K* =K —{0} = Z, i.e., there is a real number
A € (0,1) such that |z| = A" for all z € K*. These
valuations, in turn, are in one-to-one correspondence
with prime ideals of Zy, the ring of integers of K:
if p is a prime ideal of Zg, then for each z € K*,
let v, (x) = r where r is the unique integer such that
= pr _ pr+1‘

For a fixed place of K, let o : K — K denote the
embedding of K into its completion. Then A®, K is
a quaternion algebra over K. A is said to be ramified
at o if A®, K is a division algebra. In general, over
a complete field with absolute value (e.g. R), there
exists at most one quaternion division algebra.

Computing the real ramification of A is straight-
forward: A ®, R has Hilbert symbol (o(a),o(b)).
Therefore A is ramified at o if and only if both o(a)
and o(b) are negative.

For the remainder of this section we consider the
problem of computing the finite ramification of A.
Slightly different notation is convenient. Let p C Zy
be a prime ideal and let K, denote the correspond-
ing completion of K. We regard K as a subfield of
K,, omitting any explicit mention of an embedding.
Finally, we write A, for A ® K,.

Proposition 4.5. Let K, A and (a,b) be as above. Let
p [ 2 be a prime ideal of Zx. Then A, is a divi-
ston algebra if and only if none of a,b and —ab are
squares i K,. If a,b and —ab all have even p-adic
valuation, at least one of them is a square.

Proof. See [Vignéras 1980, Lemma I1.1.10 and subse-
quent table]. (Note that Vignéras uses the notation
{a, b} for our Hilbert symbol (a,b).) O

This proposition has two useful consequences. First,
that the finite ramification of A is restricted to the
finite set of primes p dividing 2ab. Secondly, for
primes p not dividing 2, the question of whether A
is ramified reduces to determining whether certain
¢ € K are squares in K,. Proposition 4.7 settles
this question for us. The proof uses Hensel’s Lemma
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[Lang 1986, page 42], which is valid for any prime
p C Zgk, and corresponding absolute value || =
A\ (@) Here, Zy refers to the closure of Zx in K,.

Lemma 4.6 (Hensel). Let f(X) be a polynomial in
Zk|X]. Let xy be an element of Zy such that

| (o) < [f'(0)?,

where f' denotes the formal derivative of f. Then f
has a root x in Ly such that |x — xo| < 1.

Proposition 4.7. For each ¢ € K* and prime p C
Zy there ewists w € K* such that cw? € Zg and
vy(cw?®) € {0,1}. Suppose now p f 2. Then c is
a square in K, if and only if v,(cw?®) = 0 and cw?
projects to a square in the finite field Zy /p.

Proof. Let w; € Z g be the denominator of ¢. Then
cw? € L. By the Chinese Remainder Theorem, we
can find an element v € K* such that v,(u) = —1
while vg(u) > 0 for all prime ideals q # p. Then
w = wyu™, where m is the integer part of v, (cw?)/2,
has the required property.

Let ¢ = cw?. Let f(X)=X?—-¢. Ifu,(c) =0
and ¢ projects to a square in Zg/p we can lift a
square root to obtain xy € Zg such that f(xzg) € p
while f'(z¢) = 229 € p. Lemma 4.6 then implies
that ¢’ is a square in K.

Conversely, if ¢ = z? for some = € K, v,(c') =0
and x projects to a square root of the projection of
c in Zg/p. O

We turn now to the case p | 2. Recall that A, is a di-
vision algebra if and only if the equation a X?4bY?—
Z? = 0 has no non-trivial solution for X,Y, Z € K,.
Denote by ¢ > 0 the p-adic valuation of 2, i.e.,
e = v,(2), or equivalently, |2| = A°. (This e is in fact
the ramification index of the field extension K/Q at
p.) We omit the easy proof of the following lemma.

Lemma 4.8. Let X, X' € K, and suppose | X| < 1
and | X — X'| <\ for some non-negative integer k.
Then |X2 _ X/2| < )\min{k—l—eﬂk}'

Multiplying a and b by suitable squares if necessary,
by the first part of Proposition 4.7, we can assume
a,b € Zg and vy(a), v, (b) € {0,1}.

Proposition 4.9. Let a,b € Z be such that

vp(a), vy (b) € {0, 1}.

Let R be a finite set of representatives for the ring
L [peT?, where e = v,(2). The equation

aX?+bY? -7 =0 (4-1)

has a solution for X,Y,Z € K,, if and only if there
exist elements X' Y', Z' € R such that

|aX"? +0Y"? — Z'%] < \2et3
and max{|X'|,|Y"|,|Z'|} = 1.

Proof. Let (X,Y,Z) be a solution of (4-1) in K,.
After multiplying through, if necessary, by a suitable
power of a uniformizing element 7 with v, (7) = 1,
we can assume X,Y,Z € Zy and

max{| X[, [Y],|Z]} = L.

Since Zy is dense in Zy, and R is A°t3-dense in
Zy, we can choose X' Y' Z' € R such that each of
|IX — X'|, |Y = Y'], |Z — Z'| is at most A\°t3. By
Lemma 4.8, [aX'? 4+ bY"* — Z'*| < A2¢+3,

Conversely, let X',Y’, Z' € R be such that |aX"*+
bY'? — Z'%] < X*3 and max{|X'|,|Y"|,|Z'|} = 1. If
|X'| =1 then |[2aX'| > A°*!, and therefore

laX"” +bY"? — 27| < |2aX')?.

Regarding aX'* 4+ bY"* — Z'* as a polynomial in X'
alone, by Lemma 4.6 there exists X € Zy such that
aX?+bY"* —Z'* = 0. The same argument applies if
|Y'| =1 or |Z'| = 1. Since at least one of the three
cases must hold, the result follows. O

Propositions 4.5, 4.7 and 4.9 reduce the task of com-
puting the finite ramification of a quaternion alge-
bra over a number field to a finite number of steps.
We remark that the details of these computations
are readily handled by Pari. In particular, Pari has
functions for factoring algebraic numbers and ide-
als into primes, and for computing valuations. The
uniformizing element and the element u, invoked in
the proof of Proposition 4.7, are constituent parts
of Pari’s way of representing a prime ideal (and are
thus readily available).

Remark 4.10. For an invariant quaternion algebra
A = A("), the calculation of finite ramification can
sometimes be simplified by using the following ob-
servation from [Gehring et al. 1997]. Assume that
all traces of elements in [' are algebraic integers,
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and let g, h be non-commuting loxodromic elements
of I'®. Then any prime p which ramifies the quater-
nion algebra A must divide tr([g, h]) —2, where [g, h]
denotes the commutator ghg=*h=1!.

4C. Arithmeticity

Finally we describe the “arithmetic” construction
of Kleinian groups of finite co-volume. Let A be a
quaternion algebra over a number field K. The in-
tegers of A, i.e., elements of A which have a monic
minimum polynomial with integral coefficients over
K, do not in general form a subring of A. The anal-
ogous role in A, to that of Zx in K, is now played
by an order of A. An order O of A is a rank 4
Z -submodule of the set of integers of A, contain-
ing 14, and closed as a subring of A. Orders always
exist but are not generally unique. The units O of
O form a multiplicative subgroup. For each real or
complex place o of K, o induces a map of A into H,
M(2,R) or M(2,C). If K has precisely one complex
place, and every real place is ramified (i.e., maps A
into H), then the image of O! in M(2,C) is a dis-
crete subgroup of SL(2,C) of finite co-volume. This
group is said to be derived from a quaternion alge-
bra. A subgroup I' of SL(2,C) is arithmetic if it is
commensurable with one derived from a quaternion
algebra. The K and A of the construction can be
recovered as the invariant trace field, and invariant
quaternion algebra respectively, of I'.

Remark 4.11. This is not really the definition of arith-
meticity; there is a much more general definition in
the context of lattices in semi-simple Lie groups. It
is a result of Borel that the above construction yields
all the arithmetic subgroups of SL(2,C).

A result of Reid [1987] (see also [Takeuchi 1975;
Hilden et al. 1992]), shows that a discrete subgroup
I' of SL(2,C) is arithmetic if and only if the follow-
ing conditions are satisfied:

1. The invariant trace field k = Q(tr '®), has ex-
actly one complex place.

2. A(T) is ramified at every real place of k.

3. I has integer traces (equivalently, tr '® C Z,).

This enables us to determine whether or not hyper-
bolic 3-manifolds are arithmetic. See Tables 2 and
3 for some examples.

Arithmetic subgroups of SL(2,C) are commensu-
rable if and only if they have the same invariant
quaternion algebra. Therefore the arithmetic mani-
folds grouped together in Table 3 are commensu-
rable. Non-arithmetic manifolds with the same in-
variant trace field, quaternion algebra and integral-
ity or otherwise of traces, may still be incommensu-
rable. It is work in progress to find a computable,
complete commensurability invariant for the non-
arithmetic case.

Example 4.12. Betley, Przytycki and Zukowski de-
scribe in [Betley et al. 1987] an interesting family
of hyperbolic “twins” — pairs of non-homeomorphic
closed hyperbolic 3-manifolds with the same vol-
ume. These examples are obtained by Dehn filling
on the manifold denoted m009 in SnapPea’s nota-
tion; this is the once-punctured torus bundle over
S* with monodromy given by the matrix [ ?]. We
use the geometric choice of basis for homology of
the boundary torus consisting of shortest geodesic
and next shortest independent geodesic on a horo-
spherical torus cross section. Then the Dehn fillings
m009(p, ¢) and m009(—p, q) give non-homeomorphic
closed manifolds of equal hyperbolic volume, for each
pair of relatively prime integers (p,q), except for
the 8 non-hyperbolic Dehn fillings (£3,1), (£2,1),
(£1,1), (0,1), and (1,0).

Pzrzytycki asks in [Kirby 1997, Problem 3.60(H)]
if these pairs are commensurable. Using Snap, we
find that these pairs of manifolds generally have the
isomorphic invariant trace fields, but have differ-
ent invariant quaternion algebras so are not com-
mensurable. However, there is one pair, m009(5, 1)
and m009(—>5,1), of arithmetic manifolds of volume
1.8319311883544380. .. having the same invariant
quaternion algebra, and hence commensurable. Ta-
ble 1 shows some arithmetic data for the lowest vol-
ume twins. (See Section 8 on page 145 for the inter-
pretation of the last three columns.)

5. THE CHERN-SIMONS AND ETA INVARIANTS

The eta-invariant n(M) and the Chern—Simons in-
variant cs(M ) are geometrically defined invariants of
an hyperbolic 3-manifold M. These invariants often
take rational values, but are conjecturally “usually”
transcendental; see [Neumann and Yang 1995b] for a
precise conjecture. Snap computes these invariants
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Manifold Volume Homology Invariant trace field Quaternion algebra Int/Ar
m009(4, 1) 1.4140610441653916 Z/6 23 —x? +1[1,1)(2) (5,z—2)[1] Y/Y
m009(—4,1) 1.4140610441653916 Z/10 3 —z?+1[1,1](-2) (19,z-3)[1] Y/Y
m009(5,1) 1.8319311883544380 Z/2+Z/4 x*+1[0,1](1) (2,z+1)(5,2+2)[] Y/Y
m009(—5,1) 1.8319311883544380 Z/2+Z/6 x?+1[0,1](1) (2,z+1)(5,z+2)[] Y/Y
m009(—1,2) 1.8435859723266779 Z/6 2% =20t - 223 +42? —x+1[3,1](-4) (2,2 +2+1)(5,z+1)[1,2] Y/N
m009(1,2) 1.8435859723266779 Z/2 25 =22t — 223 +42? — 2 +1[3,1](4) [1,2] Y/N
m009(—3,2) 1.9415030840274678 Z/10 x° —a* 223 — 2?4 22+2[3, 1](4) (2,2)(19,2+2)[2, 3] Y/N
m009(3,2)  1.9415030840274678 7 /2 o —at 203 — 2?2+ 20+ 2[3,1](-4)  (2,2)(2,2*+22+1)[2,3]  Y/N
m009(—6,1) 2.0624516259038381 Z/14 2° —at +a® +22% - 22 +1[1,2](2) (2,14x)[1] Y/N
m009(6, 1) 2.0624516259038381 7 /10 2P —at+ a3 +202 22 +1[1,2](-2)  (2,2+1)(19,z+9)

(2,23 +2%+1)[1] Y/N
m009(—5,2) 2.1340163368014022 Z/14 x5 — 323 — 227+ 22+ 1[3,1](4) (71,z—11)[1, 3] Y/N
m009(5,2) 2.1340163368014022 Z/6 25 =32 =227+ 22+ 1[3,1](—4) (2)(5,z—2)[1, 3] Y/N

TABLE 1. A family of pairs of closed manifolds with equal volume. See Section 8 on page 145 for discussion.

to high precision. The Chern—Simons invariant is
also computed (to lower precision) by SnapPea. In
the following two subsections we say in more detail
what these invariants are and how Snap computes
them.

There are two commonly used normalizations of
Chern—Simons invariant in the literature, related
by cs(M) = (M). (Although the invariants
are usually defined for compact M, we allow cusps;
see below.) In the versions we consider, the eta-
invariant (M) is a real invariant while the Chern-
Simons invariant cs(M) is defined modulo . More-
over, the Chern—Simons invariant is determined by
the eta-invariant: cs(M) is simply 27(M) (mod ).

Why do we bother with cs(M), given that it is
immediately determined by n(M)? A first reason
is that cs(M) is somewhat easier to compute. Sec-
ondly, cs(M) also has algebraic significance; it is
closely tied to the Bloch invariant, an algebraic and
number-theoretic invariant which we describe in the
next section.

A less significant reason is that cs(M) multiplies
by degree in coverings, so it is a tool for commensu-
rability questions. However, the behaviour of n(M)
for coverings is also well understood (and related to
other interesting invariants; see [Atiyah et al. 1975;
Neumann 1978], for example).

5A. The Chern-Simons Invariant

The Chern-Simons invariant cs(M) is defined for
any compact (4k—1)-dimensional Riemannian mani-

fold M and is an obstruction to conformal immer-
sion of M in Euclidean space [Chern and Simons
1971]. It is the integral of a certain (4k — 1)-form
that is defined in terms of curvature. (More gen-
erally, the Chern—Simons invariant is an invariant
of a connection on a manifold and our cs(M) is the
Chern—Simons invariant for the Riemannian connec-
tion on the tangent bundle of M).

For hyperbolic 3-manifolds Meyerhoff [1986] ex-
tended the definition of cs(M) to allow M to have
cusps. The point is that if M’ is a compact mani-
fold obtained by Dehn filling M then cs(M’) is nat-
urally the sum of a term that varies analytically on
hyperbolic Dehn filling space and a discontinuous
summand (—3- times the sum of torsions of the
geodesics added by Dehn filling); see [Neumann and
Zagier 1985; Yoshida 1985]. So one defines cs(M)
as the value of the analytic term at the complete
hyperbolic structure on M.

This leads to an invariant cs(M) of a hyperbolic
3-manifold M in R/$Z. If M is closed the Chern—
Simons invariant is well defined modulo 1, but Snap
and SnapPea still only compute modulo % This
is no real loss, since the Chern—Simons invariant of
a closed manifold M modulo 1 can also be com-
puted from the first homology of M together with
the eta-invariant n(M), both of which Snap can also
compute.

Another significance of ¢s(M) for a hyperbolic 3-
manifold is that it has natural analytic relation to
vol(M). In fact vol(M) + 2w?ics(M) is a natural
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complexification of vol(M) and the formulae one
uses to compute cs(M) give vol(M) as well.

The method of computation used by Snap and
SnapPea is as follows. Recall that these programs
compute using ideal triangulations. Let M be a
cusped hyperbolic 3-manifold with ideal triangula-
tion and M (p, q) the result of hyperbolic Dehn sur-
gery on some chosen cusp of M, triangulated by
deformed versions of the original tetrahedra. Neu-
mann [1992] gave a formula for cs(M(p,q)) + «,
where « is a constant, in terms of the simplex pa-
rameters of these deformed ideal tetrahedra. The
constant « is unknown, but it does not depend on
p or q. Thus if the exact Chern—Simons invariant is
known for just one of the manifolds M(p, q) then «
can be deduced, so cs(M(p, q)) can be computed for
all the M(p,q). As one computes cs(M) for more
manifolds one has more reference points to compute
new families of values. Using this “bootstrapping”
procedure Weeks and Hodgson computed cs(M) for
the data-bases of manifolds in SnapPea. The com-
puted values are included in SnapPea so that they
are available for further Dehn surgeries.

In fact the constant « is always an integer multiple
of 1/24 in the version of the formula that Snap uses
(this was conjectured in [Neumann 1992] but has
since been proved; see [Neumann > 2000] or the
announcement in [Neumann 1998]). Thus Snap can
compute the high precision value of cs(M) up to
a multiple of 1/24 and this multiple can then be
determined from SnapPea’s lower precision value.
An improved formula that computes cs(M) exactly
is now known (loc. cit.). This avoids the need of
the bootstrapping procedure and will eventually be
implemented in Snap.

5B. The Eta-Invariant

The eta-invariant (M) is also defined for any closed
oriented Riemannian (4k — 1)-manifold. It was ini-
tially defined by Atiyah, Patodi and Singer as a
measure of the “asymmetry” of the spectrum of the
Laplacian on M, but they proved [Atiyah et al. 1975]
that it can also be given by the formula

n(M) ::/XL—sign(X),

where

e X is any Riemannian 4k-manifold with 0X = M
such that the metric on some collar neighbour-
hood of 90X is isometric to the product metric on
M x[0,¢), and

e L is the Hirzebruch L-class as a 4k-form on X,
defined in terms of curvature as in [Milnor and
Stasheff 1974, Appendix], for example.

The Hirzebruch index theorem tells one that the
above formula gives zero for a closed manifold X
and it is then a standard argument to see that it
gives an invariant of M that does not depend on
the choice of X when X has boundary M as above.
If £ > 1 then M may not be the boundary of any
X, but the disjoint union 2M of 2 copies of M is
a boundary, so this formula can be used to define
n(2M), and hence define (M) as 1n(2M).

The relation of n(M) to cs(M) for a compact 3-
manifold M is

3n(M)=2cs(M)+7 (mod 2)

(see [Atiyah et al. 1975]), where 7 is the number of 2-
primary summands of H,(M;Z). Thus n(M) com-
pletely determine cs(M) if M has known homology.
There is also a cusped version of this: Meyerhoff
and Ouyang [1997] extended the definition of n(M)
to cusped M for which one has chosen a basis of
homology at each cusp.

A formula for n(M(p,q)) in terms of ideal trian-
gulations for manifolds M (p, q) as described above
was given in [Meyerhoff and Neumann 1992], where
it was proved “locally” (i.e., in a neighbourhood of
the complete structure M in analytic Dehn filling
space). It was proved globally in [Ouyang 1997].
The formula is a modification of Neumann’s Chern—
Simons formula by the addition of certain arithmetic
terms. Again, there is an undetermined constant
that is independent of p and ¢. Thus the above
bootstrapping procedure, which will no longer be
needed for computing Chern—Simons invariant, is
still needed to compute n(M) through the tables
maintained by Snap and SnapPea. For a mani-
fold M that has not yet been linked by a sequence
of hyperbolic Dehn fillings and drillings (removal
of closed curves) to a manifold with known eta-
invariant, Snap cannot compute n(M). This still
applies to most of the knot and link complements in
the standard knot and link tables, for example.
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It is conjectured that the bootstrapping procedure
will always work. That is:

Conjecture 5.1. Any two hyperbolic 3-manifolds are
related by a sequence of hyperbolic drillings and fill-
ings.

Snap and SnapPea provide good facilities for search-
ing for such sequences, so there is much experimen-
tal evidence for the conjecture. The emphasis here
is hyperbolic drilling and filling: that is, each drilling
or filling should move between points in the appro-
priate analytic Dehn filling space. Without this re-
striction the conjecture is easy, since every 3-mani-
fold is obtainable by Dehn surgery on some link in
the 3-sphere.

Remark 5.2. The formula mentioned earlier for cs(M)
actually computes the Chern—Simons invariant for
the natural flat connection on the associated princi-
pal PSL(2,C)-bundle over M rather than the Rie-
mannian connection. It was shown by Dupont and
Kamber [1993] that these are the same in R/Z[].
In that paper they were considering a more general
situation and not aiming for best denominators, and
Dupont informs us that their proof works without
introducing denominators in the 3 dimensional case
that we are interested in.

The equality of the Riemannian and flat Chern-
Simons invariants also follows if one assumes the
conjecture above. Indeed, in [Yoshida 1985] the for-
mula we use to compute Chern-Simons is proved
in the context of the Riemannian Chern—Simons in-
variant and in [Neumann > 2000] it is proved for
the flat Chern—Simons invariant. Thus we have two
formulae that differ at most by the unknown con-
stant they contain, valid over the analytic Dehn fill-
ing space for M. Thus the difference of Riemannian
and flat Chern—Simons is constant on any analytic
Dehn filling space. It is zero for some examples, so if
the bootstrapping conjecture is true, the bootstrap-
ping procedure shows the difference is always zero.

6. BLOCH INVARIANT AND PSL-FUNDAMENTAL
CLASS

For details on what we discuss here see [Neumann
> 2000; Neumann and Yang 1995a; 1999] or the
expository article [Neumann 1998].

6A. The PSL-Fundamental Class

We first describe the “PSL-fundamental class” of an
hyperbolic 3-manifold M. This is a homology class
[M]psy, in the homology group H;(PSL(2,C);Z),
where we are taking homology of PSL(2,C) as a dis-
crete group. If M has cusps, [M]pgy, is only defined
up to an element of order 2 in H3(PSL(2,C);Z). We
describe how we compute this invariant numerically
later.

Let M = H? /T be a compact hyperbolic 3-mani-
fold. Then H.(I';Z) = H.(M;Z), since M is a
K(T',1)-space. Thus H3(I';Z) ~ Z with a natural
generator given by the fundamental class of M. The
inclusion I' — PSL(2, C) induces a map H3(I'; Z) —
Hy(PSL(2,C); Z).

Definition 6.1. The PSL-fundamental class [M]psy, €
H;(PSL(2,C);Z) is the image of the natural gener-
ator of H3(T';Z) under the above map.

If M is non-compact the PSL-fundamental class is
harder to define, and we postpone it. It lies in
H;(PSL(2,C);Z)/Cs, where C, is a cyclic subgroup
of H3(PSL(2,C);Z) of order 2. This cyclic subgroup
exists and is unique by the next theorem. In our no-
tation we will ignore this Cy ambiguity and speak of
[M]pst, € H3(PSL(2,C); Z).

Note that we can conjugate I' to lie in a subgroup
PSL(2, K) of PSL(2,C), where K is a number field,
and [M]psy, is then defined in H3(PSL(2, K); Z) (this
has only been proved modulo torsion in the cusped
case). Usually, the smallest K for which one can
do this will be a quadratic extension of the trace
field of T (and there are infinitely many such fields
which work). The following theorem tells us that if
we work modulo torsion then we can actually use
the invariant trace field.

This theorem summarises results of various peo-
ple; see [Neumann and Yang 1999] for more details.

Theorem 6.2. 1. H3(PSL(2,C);Z) is the direct sum
of its torsion subgroup, which is isomorphic to
Q/Z, with an infinite dimensional Q vector space
(conjectured to be countable).

2. If k C C is a number field then H3(PSL(2,k);Z)
is the direct sum of its torsion subgroup with 7."*,
where 1o 15 the number of conjugate pairs of com-
plex embeddings of k. Moreover, the map

H3(PSL(2,k); Z) — H;(PSL(2,C); Z)
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3. If k s the wnvariant trace field of M then some
positive multiple of [M]psy, is in the image of
H;(PSL(2,k);Z) — H3(PSL(2,C); Z).

In fact, one can show that, after possibly adding
a torsion element, 2°T'[M]pg;, is in the image of
H;(PSL(2,k);Z) — H3(PSL(2,C);Z), where b =
rank H,(T'; Z/2). Moreover, the coefficient 2°™! can
be replaced by 1 if M has cusps.

6B. Invariants of the PSL-Fundamental Class

There is a homomorphism
¢: Hy(PSL(2,C);Z) — C/27°Z

called the “Cheeger—Simons class” ([Cheeger and Si-
mons 1985]) whose real and imaginary parts give
Chern-Simons invariant and volume:

¢([M]psy) = 27 es(M) + i vol(M) .

(cs(M) is here appearing as the Chern-Simons in-
variant of the flat connection, as discussed in Re-
mark 5.2). We therefore denote the homomorphisms
given in the obvious way by the real and imaginary
parts of ¢ by
cs: Hy(PSL(2,C);Z) — R/Z,
vol : H3(PSL(2,C);Z) — R.

Conjecture 6.3. The Cheeger—Simons class is injec-
tive. That is, volume and Chern—Simons invariant
determine elements of H3(PSL(2,C);Z) completely.
(This is a special case of a general conjecture of Ra-

makrishnan in algebraic K-theory; see [Neumann
1998] for a discussion.)

If k£ is an algebraic number field and oy,...,0,, :
k — C are its different complex embeddings up to
conjugation then denote by vol; the composition

vol; = volo(o;). : H3(PSL(2,k); Z) — R.
The map
Borel := (voly,...,vol,,) : H3(PSL(2,k);Z) — R™
is called the Borel regulator.
Theorem 6.4. The Borel requlator maps

H;(PSL(2,k);Z)/ Torsion

injectively onto a full sublattice of R™.

It is known that cs is injective on the torsion sub-
group of H3(PSL(2,C);Z). Thus, by Theorems 6.2
and 6.4, cs(M) € R/Z and Borel([M]ps,) € R™®
determine the PSL-fundamental class

[M]ps, € H3;(PSL(2,C);Z)

completely, where k is the invariant trace field of M.
Snap computes

Borel(M) := Borel([M]psL).

To describe how, it helps to introduce the “Bloch
Group” B(C). In the next subsection we give this
group a geometric description, but in fact, by a re-
sult of Bloch and Wigner and others, it is naturally
the quotient of H3(PSL(2,C);Z) by its torsion sub-
group Q/Z.

We can now explain how a cusped 3-manifold has
a PSL-fundamental class in H3(PSL(2,C);Z) mod-
ulo an order 2 ambiguity. We shall see that it has
a natural class in the Bloch group, which can be
thought of as a PSL-fundamental class modulo tor-
sion, and the Meyerhoff definition of Chern—Simons
invariant then pins down the PSL-fundamental class
up to the stated ambiguity. It would be nice to find
a more direct definition that gives a fundamental
class in H3(PSL(2, K);Z) (modulo a similar ambi-
guity to the above) when I' C PSL(2, K), but the
above definition does not do this.

6C. The Bloch Group
There are several different definitions of the Bloch
group in the literature. They differ at most by tor-

sion and they agree with each other for algebraically
closed fields. We shall use the following.

Definition 6.5. Let k£ be a field. The pre-Bloch group
P(k) is the quotient of the free Z-module Z(k —
{0,1}) by all instances of the relations

|+ H:i] =0 (6-1)

1—zt

-+ [ - (12

and
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The first of these relations is usually called the five
term relation. The Bloch group B(k) is the kernel of
the map

Plk) — k* Ay k', [2] = 2(z A (1 — 2)).

For k = C, relation (6-2) says that P(C) may be
thought of as being generated by isometry classes of
ideal hyperbolic 3-simplices. The five-term relation
(6-1) says that in this group we can replace an ideal
simplex on four ideal points by the cone of its bound-
ary to a fifth ideal point. As is shown in [Neumann
and Yang 1999, Appendix], the effect is that P(C)
is a group generated by ideal polyhedra with ideal
triangular faces modulo the relations generated by
cutting and pasting along such faces.

6D. The Bloch Invariant

Suppose we have an ideal triangulation of an hyper-
bolic 3-manifold M using ideal hyperbolic simplices
with cross ratio parameters zy,...,2,. This ideal
triangulation can be a genuine ideal triangulation
of a cusped 3-manifold, or a deformation of such
a one as used by Snap and SnapPea to study Dehn
filled manifolds, but it may be of much more general
type; see [Neumann and Yang 1999].

Definition 6.6. The Bloch invariant F(M) is the el-
ement Y \[z;] € P(C). If the z;’s all belong to a
subfield K C C, we may consider 3(M) as an ele-
ment of P(K).

Theorem 6.7 [Neumann and Yang 1999]. If 5(M) can
be defined as above in P(K) then it actually lies in
B(K) C P(K) and is independent of triangulation.

In these terms, the Borel regulator Borel(M) can
also be thought of as an invariant of the Bloch in-
variant #(M) and can be computed as follows. The
invariant trace field k of M will always be contained
in the field K generated by the simplex parameters
zi, © = 1,...,n. The j-th component vol;([M]psr,)
of Borel(M) is

Borel(M),; = Z Dy(75(24)),

where 7; : K — C is any complex embedding that
extends o; : k — C. Here D, is the “Wigner dilog-
arithm function”

D, (z) = Imlny(2) + log |z| arg(1l — 2),

where z ranges over C — {0, 1} and In,(2) is the clas-
sical dilogarithm function. D,(z) is also the volume
of the ideal simplex with parameter z.

As described earlier, Snap specifies the invariant
trace field k as a subfield of C by giving the mini-
mal polynomial of a “canonical” primitive element
together with the position of the this primitive ele-
ment in a list of the roots of this polynomial. Snap
numbers the roots with non-negative imaginary part
using real roots first in order of size, say ¢; < ¢y <
... < ¢, and then non-real roots in lexicographic
order of size of real and imaginary parts, ¢, +1, - .,
Cr+4ry- Finally, roots with negative imaginary part
have negative indices: c_; = ¢;. The “canonical el-
ement” is the first complex root in the list ¢, .1,
Cri+1, Cri+2, Cryt2, .. that generates the correct
subfield of C.

In printing Borel(M) Snap uses the complex em-
beddings given by the complex roots ¢, 11, Cr 42, - - -
above. The effect is that, according as the canonical
element is ¢, 1; or c_(,4j), the j-th component of
the Borel regulator is vol(M) or —vol(M). In the
latter case — more generally, whenever k # k — the
Borel regulator Borel(—M) is simply — Borel(M).
However, if k = k then Snap’s printout of Borel(M)
and Borel(—M) refer to the same embedding of k
(both times given by the same canonical element),
so the relation is given by the action of conjugation
on B(k), which is a bit more subtle.

It can be shown that £vol(M) is, in fact, the
component with largest absolute value in the Borel
regulator; [Neumann and Yang 1999].

Some interesting examples with invariant trace

field
Q)/(z* +2° —x+1)

are discussed in [Neumann and Yang 1999]. We list
all examples with this invariant trace field from the
closed and cusped censuses in Table 5.

To compare the Bloch invariants of manifolds with
different trace fields we must compute in the Bloch
group of a common field. We close this section with
interesting examples which illustrate this.

Example 6.8. The manifold of conjecturally smallest
volume is the so-called Weeks manifold Wks, called
m003(—3, 1) in the closed census. Its invariant trace
field is

(2% —2* + 1, =2],



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 143

by which we mean the subfield of C generated by the
complex conjugate of the second root of the polyno-
mial z® — 2% + 1 (the first root is the real root).
This field has one complex embedding, so the Borel
regulator has just one component, which, by the pre-
ceding discussion, will be minus the volume:

Borel(Wks) =[—0.9427073627769277209212996031].

The manifold of conjecturally third smallest vol-
ume is called m007(3,1) in the closed census. It is
an arithmetic manifold of exactly half the volume of
the figure eight knot complement, i.e., its volume is
the volume 1.0149416 ... of a regular ideal simplex.
Call this manifold Vol3 for short. Its invariant trace
field is

[2? — 2 + 1, 1]

and its Borel regulator is thus
[1.014941606409653625021202554].

However, we can ask Snap to compute the Borel
regulator in the field k(Wks) = [2® — 2* + 1, —2] of
the Weeks manifold instead. Snap complains that
this field does not contain our invariant trace field,
and then proceeds to compute the join of the two
fields and gives us the answer in that field:

[2° —2® + 2t —22° + 27 + 1, -2],

[ 1.014941606409653625021202554,
—1.014941606409653625021202554,
—1.014941606409653625021202554].

From this we see that the joined field K is degree 6,
as expected, and that it has three complex embed-
dings and they restrict on k(Vol3) once to the given
embedding and twice to its conjugate.

Computing with the Weeks manifold in this same
field we get a Borel regulator:

[0,
—0.9427073627769277209212996031,
0.9427073627769277209212996031]

(which tells us that the first complex embedding of
our degree 6 field restricts to the real embedding of
k(Wks) and the next two complex embedding re-
stricts to the complex embedding of k(Wks) and its
conjugate).

It has been asked if the Bloch group can be gener-
ated by Bloch invariants of 3-manifolds (a positive
answer would imply the “Rigidity Conjecture”; see

[Neumann and Yang 1999; Neumann 1998], for ex-
ample). If so, one might guess that a “random”
3-manifold with invariant trace field equal to the
above degree 6 field K is likely to have Borel reg-
ulator linearly independent of the above two Borel
regulators, since the Bloch group has rank 3. There
turn out to be just two manifolds in the closed cen-
sus with this invariant trace field (as far as has
been computed). They are called v2274(—3,2) and
—v2274(3,2), and both have the same Borel regula-
tor, namely

[ 2.029883212819307250042405108,
—4.858005301150090412806303917,
0.7982388755114759127214937007].

It turns out that this is, at least numerically, equal
to

3 Borel(Wks) + 2 Borel(Vol3).

Other interesting examples are given by surgeries
on the census manifold v3066, as discussed in [Neu-
mann and Yang 1999]. This manifold gives some of
the most interesting examples of the “twins” phe-
nomenon discussed in Example 4.12. The four surg-
eries v3066(+p, q) and v3066(+2¢,p/2) all have the
same volume for each p,q.

Example 6.9. The manifolds M; = v3066(6,1) and
M, = v3066(—6,1) have invariant trace fields

(27 — 207 —52° +122° + 82" + 152° +-42° +- 22 — 1, —2]
and

[2° — 22" — 525 +122° + 82" + 152° + 42 + 22— 1, -5
respectively. The join of these fields is

Kis = [#"® —62'° — 42" +82" + 62" + 192"
+162"" 4322 — 842 —1042® + 5227
+672% —82° + 302t —282% + 822 — 22+ 1,
_1]7
with 9 complex embeddings, and the Borel regula-
tors of the above two manifolds, computed in this
join, are respectively
ﬁl = [_Zal_a% —ay, 2a1+a27 a; +as, 07
—a2, 4 +a27 —ay, aZ]
52 = [_2a1_a27 Az, G1, A +a27 —a; —dasy,

ay, 07 —2(11 —Aas, a2]7
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where
a; = 2.568970600936708884920674169,
as = 0.6083226776636170914331534552.

The automorphism group of the field K5 is order 6.
Each of 8, and [, is fixed by an involution in this
automorphism group, since they come from degree
9 subfields. Nevertheless, we can find three Galois
conjugates of each of #; and [, so we might hope
to generate up to a rank 6 subgroup of B(K;g). But
in fact, we only generate a rank 3 subgroup.
The Galois conjugates of §; are 3; and

!
ﬁl = [_a’la Az, —Qy, 0, —a; —az, 2a; +ax,
—a; —Aasy, —2a1 — a2, —az],

"
1 — [a27 _2a1_a27 Ay, —A1 — A2, a1+a27

a1, 0, az, —2aq —(12]
and we find that
Ba = %(251 + 28, — B7).

Various 3-manifolds can be found in the census
with invariant trace fields contained in K;g. So far
they all have Bloch invariant in the above rank 3
subgroup of B(K;g). For example, the field [2* +
2z — 1, 2] is the fixed field of Aut(Kig). It oc-
curs as the invariant trace field of various mani-
folds, for example v3066(1,2), and they all have
Borel regulator computed in K3 proportional to
Borel(v3066(1,2) = 2(6, + 8] + 7). The field [2° —
x? +x + 1, ] occurs as a subfield of Kz for each
of its three embeddings ¢+ = 1,2, —2. The real em-
bedding (i = 1) is in fact the real subfield of K.
The complex embedding and its conjugate occur for
many census manifolds and leads to Borel regulators
in K5 that are integer multiples of 23, — 3] — 3} or
its Galois conjugate 23 — 3; — 3, depending on ori-
entation. The third Galois conjugate 23] — 3 — 3,
must belong to the embedding [2* — 2? +z + 1, 1],
i.e., to the real subfield of K;5. We will use this fact
in the next section.

In addition to three embeddings of the degree 9
field already mentioned, the only other subfields of
K5 are Q(1/—11) and two degree 6 fields (the joins
of Q(v/—11) with the degree three subfields above;
one of these degree 6 fields is Galois over Q). None
of these degree 2 and 6 fields have been found so far
in the census. One must, however, be careful about

making premature guesses from these data: arith-
metic manifolds exist for any imaginary quadratic
field —for Q(1/—11) they have just not been found
in the census. The Bloch invariant for these arith-
metic manifolds will lie outside the above rank three
subgroup of B(Kg).

7. SCISSORS CONGRUENCE

The scissors congruence group P(H?) is the abelian
group generated by congruence classes of hyperbolic
polyhedra of finite volume modulo all relations of
the form: P = P, +---+ P, if the polyhedra P, ...,
P, can be glued along faces to create the polyhedron
P. Dupont and Sah [1982] showed that one obtains
the same group whether one allows ideal polyhedra
or not. (For an exposition and references for the
material of this section see [Neumann 1998].)
The Dehn invariant is the map

§:P(H) - RR/7

defined on generators of P(H?) as follows. If P is

a compact polyhedron then §(P) =) . I(E) ® 0(E)
where the sum is over the edges E of P and [(E)
and O(F) are length and dihedral angle. For an ideal
polyhedron one first truncates the ideal vertices by
horocycles and then uses the same definition, sum-
ming only over edges that do not bound one of the
horocycle faces of the truncated polyhedron. The
kernel of the Dehn invariant will be denoted

D(H?) :=ker(d : P(H*) — R @ R/m).

If one subdivides an hyperbolic 3-manifold M into
polyhedra then the sum of these polyhedra defines
an element [,(M) in the scissors congruence group
P(H?) and it is an easy exercise to see that in fact
Bo(M) is in D(H?).

This group D(H?) is closely related to the Bloch
group. Since B(C) is a Q-vector space, it splits as
the direct sum

B(C) = B, (C) & B_(C)

of its +1 and —1 eigenspaces under the action of
conjugation. Dupont and Sah [1982] showed:

Theorem 7.1. The Dehn invariant kernel D(H?) is
naturally isomorphic to B_(C). In fact the natural
map of the pre-Bloch group P(C) to P(H?), defined



Coulson, Goodman, Hodgson, and Neumann: Computing Arithmetic Invariants of 3-Manifolds 145

by mapping a class [z] to the ideal simplex with pa-
rameter z, induces a surjection B(C) — D(H?) with

kernel B (C). The Bloch invariant 3(M) is taken
to the scissors congruence class By(M) by this map.

In particular, this implies that the scissors congru-
ence class (M) is orientation-insensitive. In fact,
it was first pointed out by Gerling in a letter to
Gauss that any polyhedron is scissors congruent to
its mirror image. Neumann [1998] discusses to what
extent one may think of the Bloch group as giving an
orientation-sensitive version of scissors congruence,
and [Neumann and Yang 1999] gives an explicit in-
terpretation in terms of scissors congruence allowing
only cut-and-paste along ideal triangles. However,
the geometric interpretation of this for 3(M) needs
care — for instance the manifold Vol3 discussed ear-
lier appears to have no subdivision into ideal tetra-
hedra at all.

Note that if two manifolds have the same scissors
congruence class, say (o(M;) = (o(M,), this means
a prior: only that M; and M, are stably scissors
congruent; that is, there is some polyhedron () such
that M; + @ can be cut-and-pasted to form M, + Q.
However, one can show that if M; and M, are either
both compact or both non-compact then adding @
is unnecessary: M, can be cut into polyhedra that
can be reassembled to form M,.

Theorem 7.2. Suppose M, and M, both have invariant
trace field contained in the field K. The following
statements are equivalent:

1. M, and M, are stably scissors congruent; that is,
ﬁo(Ml) Zﬁo(Mz)- .

2. Computed over a field containing K and K, we
have Borel(M,;) + Borel(—M,) = Borel(M,) +
Borel(—M,).

3. Borel(M,;) — Borel(M,) is proportional to some
Borel(z) with v € B(K NR).

Proof. The equivalence of the first two conditions
follows because 3(—M) = —3(M) and the map = —
+(x — ) defines the projection B(C) — B_(C).
Denote B(K)g the image of B(K)®Q in B(C)®
Q = B(C) (recall B(C) is a Q-vector space). In
[Neumann and Yang 1995a] it is shown that the
B(K)py NBL(C) = B(KNR)g. This is thus the
kernel of the map B(K) — P(H?), proving equiva-
lence of the third condition. g

Example 7.3. Returning to the manifolds M; and M,
of Example 6.9, we find that they are scissors con-
gruent. Indeed,

Borel(M, ) —Borel(M,)
= [0, —a1—a3, a1 +as, 0, a; +as,
—ay— g, @1 +az, —a; —az, 0]

=326, —67 = B),

and we pointed out in Example 6.9 that this Borel
regulator comes from the real subfield of Kis.

The following conjecture has been made by many
people. It is, as discussed in [Neumann 1998], also
a consequence of Conjecture 6.3 and hence of the
Ramakrishnan conjecture.

Conjecture 7.4. The map vol : D(H?) — R is injec-
tive.

Snap provides many examples like the above which
give evidence for this conjecture.

8. SOME TABLES

The tables in this section list some arithmetic and
numerical invariants of hyperbolic 3-manifolds com-
puted using Snap. Much more extensive tables of
results are available; see [Goodman et al. 1998].

In the column “Invariant trace field” we list the
canonical minimal polynomial p defining the field,
the signature [ry, 7], and the canonical root number
as described in footnote 2 on page 134.

In the column “Quaternion algebra” we list the
finite ramification (giving generators for the corre-
sponding prime ideals), then real ramification of the
invariant quaternion algebra (giving the root num-
ber for the corresponding real field embeddings).
The Int column indicates whether all traces are in-
tegral and the Ar column whether the manifold is
arithmetic. Manifolds are named using SnapPea no-
tation; * denotes the mirror image of a manifold.

Table 2 lists invariants for the first 12 closed hy-
perbolic 3-manifolds in the Hodgson-Weeks census
[> 2000]. These are conjectured to be the 12 hyper-
bolic 3-manifolds of smallest volume.

Table 3 includes examples of closed manifolds cho-
sen to illustrate phenomena such as

e manifolds with the same invariant trace field but
different invariant quaterion algebras,
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Manifold Eta invariant

Volume Chern-Simons (mod 1)
m003(-3,1) 0.04002871111915143667
0.94270736277692772092  0.06004306667872715501
m003(—2,3) 0.71802545350918014836
0.98136882889223208809  0.07703818026377022254
m007(3,1) 0.00000000000000000000
1.01494160640965362502  —0.50000000000000000000
m003(—4,3) 0.92390622935375341671
1.26370923865804365588  0.38585934403063012507
m004(6, 1) 1.04528778231990871951
1.28448530046835444246  0.06793167347986307927
m004(1,2) —0.83107150176717910541
1.39850888415080664050  —0.24660725265076865812
m009(4,1) 0.38440137776571728943
1.41406104416539158138  0.07660206664857593414
m003(—3,4) 0.41217915554349506721
1.41406104416539158138  0.11826873331524260081
m003(—4,1) —0.25828989863587927861
1.42361190029282524980 —0.38743484795381891791
m004(3,2) —0.49337380630786866586
1.44069900672736487528  0.25993929053819700120
m004(7,1) 1.37374457756475854543
1.46377664492723877337  0.06061686634713781814
m004(5,2) —0.15641491224094610942

1.52947732943002626282

—0.23462236836141916413

Invariant trace field Int Ar

Quaternion algebra

23— 22 +1[1,1](-2) Y Y
(5,2—2)[1]

zt—z—1[2,1](3) Y Y
[1,2]

22 —z+1[0,1](1) Y Y
2)3,z+1)[]

zt -3+ +1—-1[2,1](-3) Y Y
[1,2]

3 +2x—1[1,1](2) Y Y

(2, 2% +z+1)[1]

x7 —22°% —32° 4+ 32 + 523 — 2% — 3z + 1[5, 1](6) Y N

[27 37 47 5]

w3 —2?+1[1,1](2) Y Y
(57 'T_Z)[]']

3 =22 +1[1,1](2) Y Y
(19,z-3)[1]

2P —ad—2?+x+1[1,2](2) Y N
(13,z+5)[1]

28 — 2% — 22 =323 + 322+ 32— 2[4, 1](5) Y N
(2,z)[1,3,4]

28— P+ 2t +22% — 422+ 32— 1[2,2](3) Y N
[1,2]

z7 —a%— 225 +52* —62% +x+ 1[5, 1](6) Y N
[2,3,4,5]

TABLE 2. Arithmetic invariants for the first 12 manifolds from the Hodgson—Weeks closed census.

e closed manifolds with the full matrix algebra as
invariant quaternion algebra (i.e., no ramifica-
tion),

e arithmetic and non-arithmetic manifolds with the
same invariant quaterion algebra,

e manifolds with the same abstract invariant trace
field, but different complex embeddings,

e manifolds with the same invariant quaternion al-
gebra, but not commensurable (distingushed by
integrality of traces).

For cusped manifolds, the invariant quaternion alge-
bra is always the full matrix algebra over the invari-
ant trace field. For non-arithmetic cusped mani-
folds with one cusp, we list another useful com-
mensurability invariant: the density of a maximal
embedded horoball cusp (see [Neumann and Reid
1992b]). A similar invariant can be defined for mul-
ticusped cusped non-arithmetic manifolds, provided

that there is a finite sheeted covering where all cusps
are equivalent under the symmetry group. In this
case, we compute the cusp density by taking equal
volume horoballs at all the cusps.

Table 4 includes examples of cusped manifolds
chosen to ilustrate phenomena such as

e arithmetic and non-arithmetic manifolds with the
same invariant quaterion algebra,

e non-arithmetic manifolds with the same invariant
quaternion algebra but different cusp densities,

e manifolds with the same abstract invariant trace
field, but different complex embeddings.

This table includes some familiar knot complements:
m004, m015, m016, m032 are the complements of
knots 41, 55, the —2, 3, 7-pretzel, and knot 6, respec-
tively. A table of arithmetic invariants computed
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Invariant trace field Quaternion algebra Int Ar Manifolds
22 +1[0,1](1) (2,z+1)(3)[] Y Y m304(5,1) m336(—1,3) s942(—2,1) s960(—1,2)
(2,2+1)(5,2—2)[ ] Y Y m293(4,1) s297(—1,3) s572(1,2)
$645(—1,2) s682(—3,1) s775(—1,2)
s778(—3,1) v3213(—1, 3) v3216(4,1)
(2,z4+1)(5,z+2)[ ] Y Y m006(1,3) m009(—5,1) m009(5,1) m010(—2,3)
m294(4, 1) m312(—1,3) s296(5, 1) s350(—4, 1)
s495(1,2) s595(3,1) s775(—3, 1) s779(2,1)
v3217( 1,3) v3412(5,1)
[] N N m239(—2,3) s254(—3,2)
x2—z+2[0,1](1) (2,2)(7,2+3)[ ] Y Y ml40(—4,1) v3110(3,1) v3147(—3,1)
N N v3377(-3,1) v3378(—3,1) v3390(3,1)
r3+22—1[1,1](2) (2,22 +x+1)[1] Y Y m004(6,1) m160(1,2) m306(—5,1) m307(—1,3)
$554(3,1) s594(—3,2)* v2642(5,1) v2643(—2, 3)
(2,z+3)(2,z%+z+1)[] Y N ml36(1,2) v2920(—1,2)* v3066(1,2) v3528(3,1)
3 +x—1[1,1](2) [] Y N s772(-5,2) s772(3,2)* s775(—5,2) s775(3,2)*
s7T78(—5,2) s778(3,2)* s779(—5,2) s779(3,2)*
s787(—5,2) s787(3,2)*
x®—x—2[1,1](2) (2,z+1)[1] N N m293(-2,3)* m390(3,1)*
Y Y m307(-5,1)" m369(—1,3) m371(1,3)*
$298(5, 1) s594(1,2)* s594(2,1)
(2,z+1)(2,2)[ ] Y N s235(—4,3) s595(1,2)

zt+2?—z+10,2](2) [] Y N s594(—3,4)" s594(—4,3)
N N v2050(4,1)* v3404(1,3)
PR .1.[(.]; 2]( ) ......... [ ] ........................ A 6'1'0'('—“ ., .3.). ;1;36‘81(14‘ .1.). I'r'léé'g'('g', .1.) ...............
m370(—4,1)* s313(—2,3)* s554(1,3)
..33.5.._;._%1.,.2.].(.2.) .............. (2m+x ';L'i)'[ij .......... 'Y”'”1\'1””\,'3,'2'2'1'(1”2')\}3'2'2}3'( ...... s
..33.5.._;._%1.,.2.].(.3.) .............. (2a:+:62—|—1)[1]v3100(13) ......................................

TABLE 3. Arithmetic invariants of some selected manifolds from the Hodgson—Weeks closed census.

using Snap for the complements of knots with up to ~ The table also includes examples of the following

8 crossings is given in [Callahan and Reid 1998]. phenomena:
Table 5 lists Borel regulators and arithmetic in-

variants for all the closed and cusped census mani- e manifolds with same Borel regulator but different
folds for which the invariant trace field has been invariant quaternion algebras,

computed to be z* + 22 — x + 1. Some of these ex- o closed and cusped manifolds with the same Borel
amples are discussed in [Neumann and Yang 1999]. regulator,

Note that the first two Borel regulators are propor- e manifolds v2050(4,1) and v3404(1,3) with the
tional for the field with root 2, while all three Borel same arithmetic invariants (invariant trace field,

regulators are proportional for the field with root 1. invariant quaternion algebra, non-integral traces)
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Invariant trace field Int Ar Cusp density Manifolds
22 +1[0,1](1) Y Y m001 m124 m125 m126 m127 m128 m129 m130 m131 m132 m133
m134 m135 m136 m139 m140 s859 v1858 v1859
0.614106035 m137 m138
z?—z+1[0,1](1) Y m000 m002 m003 m004 m025 m202 m203 m204 m205 m206 m207

m208 m405 m406 m407 m408 m409 m410 m411 m412 m413 m414

3 -2+ z+1[1,1](2)

0.568850725

N/A
0.558071819
0.620079799

0.511270966
0.524808681
0.539001522
0.545958189
0.575271908
0.604035858
0.612276793
0.697799972
0.711685428

N/A
0.616691512
0.623017665
0.645539037
0.646337229
0.652161114
0.675735988
0.717278605
0.726163222

0.614493011
0.631076941
0.662737952

0.595110801
0.630681177
0.686680170

5118 5119 5594 5595 $596 5955 5956 5957 5958 5959 5960
v2873 v2874 v3551

mO009 mO010 s772 s773 s774 s775 s776 sT77 sT78 s779 s780
s781 s782 s784 s786 s787

s785
s783
s788 s789 v1539 v1540

s898 v2202* v2203
v3428*

v3429*

v0769

s420*

v3426 v3427

v2204* v2205*

mO015* m017* s899 s900
m016* s897

v3220 v3223*

v3224*

m035 m037 m039* m040* v3218 v3222* v3225* v3227*
m376*

m036* m038 v3214 v3215* v3216 v3217*

v3226

5448

v3207 v3208 v3209 v3210

v3219 v3221 v3228*

v3211 v3212 v3213*

m032* m033*
s435% s436*

TABLE 4. Arithmetic invariants of some selected manifolds from the Hildebrand—Weeks cusped census.
notation N/A under “Cusp density” indicates that there are inequivalent cusps.)



Invariant trace field Borel regulator Quaternion algebra Int Ar Manifolds Chern—Simons (mod %)

a2’ —z+1(2) {—1.41510489726556334068] (2,243)(13, z+6)[ ] Y N ml40(5,2)* 0.17735631658981817209
3.16396322888314398399 | (2, x+3)(2,23+22+1)[] Y N ml36(5,2)* 0.21902298325648483876
(2,2+3)(233,z4+72)[] Y N ml40(-5,2) —0.23931035007684849456
[] Y N m032* —0.15597701674351516123
m033* 0.09402298325648483876
—2.12265734589834501103]  [] Y N 5435 0.05770114155139392481
4.74594484332471597598 s436* —0.19229885844860607518
{—0.21181355280835614147] (2,243)(19, 5—5)[ ] Y N s855(3,2) —0.24238579181095171467
4.39667280193249561612] 1] Y N s594(—3,4)* 0.00761420818904828532
$594(—4, 3) —0.24238579181095171467
5235 0.13261420818904828532
N N v2050(4,1)* —0.20071912514428504800
B TR
N N v3404(1 —0.16212790021172160144

5.62938237498184724825 | L] v3404(1,3) 0
a2 —z+1(1) 1.91084379308998886955 [] Y N m010(-1,3) —0.09574639997098769384

| —0.34927204139222035986 |

3.82168758617997773911  (2,z+3)(29,z—14)[] Y N m294(4,3)* —0.02482613327530872102

| —0.69854408278444071973 | m293(—4,1) 0.22517386672469127897
[] Y N m368(4,1) m369(3,1)* 0.14184053339135794563

m370(—4, 1)* s554(1,3) 0.14184053339135794563

ml160 m161* —0.19149279994197538769

m159* 0.05850720005802461230

5.73253137926996660866 [] Y N s919* —0.16223919991296308154

—1.04781612417666107959

TABLE 5. Bloch invariants of some closed and cusped manifolds with invariant trace field z*+ 22—z +1.
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but not commensurable as their Borel regulators
are not proportional.

ADDENDUM

The referee raised the concern that the numerical so-
lutions that Snap uses in proving a hyperbolic struc-
ture might be spurious —i.e., although the minimal
polynomial evaluated at the given “numerical root”
is vanishingly small, there may nevertheless actu-
ally be no root of the minimal polynomial near the
given “numerical root”. This is not an issue. To
quote from the manual for the Pari libraries: “The
algorithm used is a modification of A. Schonhage’s
remarkable root-finding algorithm, due to and im-
plemented by X. Gourdon. Barring bugs, it is guar-
anteed to converge and to give the roots to the de-
sired accuracy.” See [Schonhage 1987] for a discus-
sion.
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