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We consider the solvable Baumslag–Solitar group

BSn = ha, b j aba�1 = bni,
for n � 2, and try to compute the spectrum of the associated

Markov operators MS, either for the oriented Cayley graph (S =fa, bg), or for the usual Cayley graph (S = fa�1, b�1g). We

show in both cases that Sp MS is connected.

For S = fa, bg (nonsymmetric case), we show that the intersec-

tion of Sp MS with the unit circle is the set Cn�1 of (n�1)-st roots

of 1, and that Sp MS contains the n � 1 circlesfz 2 C : jz � 1
2
!j = 1

2
g, for ! 2 Cn�1,

together with the n + 1 curves given by�
1
2
wk � ��� 1

2
w�k � ��� 1

4
exp 4�i� = 0,

where w 2 Cn+1, � 2 [0, 1].

Conditional on the Generalized Riemann Hypothesis (actually

on Artin’s conjecture), we show that Sp MS also contains the cir-

cle fz 2 C : jzj = 1
2
g. This is confirmed by numerical compu-

tations for n = 2, 3, 5.

For S = fa�1, b�1g (symmetric case), we show that Sp MS =

[�1, 1] for n odd, and Sp MS = [� 3
4
, 1] for n = 2. For n even, at

least 4, we only get Sp MS = [rn, 1], with�1 < rn � � sin2 �n

2(n + 1)
.

We also give a potential application of our computations to the

theory of wavelets.

1. INTRODUCTIONLet � be a �nitely generated group. Fix a �nite,generating, not necessarily symmetric subset S in�. To these data we associate the oriented Cayleygraph (or Cayley digraph) G(�; S), whose vertex setis �, and whose set of oriented edges is f(x; xs) :x 2 �; s 2 Sg. If S is symmetric (S = S�1), it iscustomary to replace a pair of opposite edges by asingle, nonoriented edge.
c
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On G(�; S), consider the simple random walk, inwhich a particle jumps from x to xs with a prob-ability of 1jSj . Denote by p(n)(x; y) the probabilityof a transition in n steps from x to y. It can beexpressed by means of the Markov operator MS on`2(�), de�ned by
(MS�)(x) = 1jSjXs2S �(xs); for � 2 `2(�); x 2 �:

Indeed p(n)(x; y) = hMnS �xj�yi, where (�x)x2� is thecanonical basis of `2(�).The operator MS is a contraction (kMSk � 1)on `2(�); its spectrum SpMS is therefore a closednonempty subset of the unit disk in C . A numberof results, going back to Kesten [1959] in the sym-metric case, and to Day [1964] in the general case,exhibit a close relationship between the properties ofSpMS and those of the pair (�; S). Here is a sample;we denote by T the multiplicative group of complexnumbers of modulus 1, and by Cn the group of n-throots of 1 in C .
Theorem 1.1. 1. � is amenable if and only if 1 2SpMS.
2. If � is amenable, then (SpMS) \ T is a closedsubgroup of T ; moreover , for z 2 T , the followingstatements are equivalent :

a. z 2 SpMS;
b. SpMS is invariant under multiplication by z;
c. there exists a homomorphism � : � ! T suchthat �(S) = fzg.

3. SpMS = Cn if and only if � ' Z =nZ and jSj = 1;and SpMS = T if and only if � ' Z and jSj = 1.For proofs, see respectively [Day 1964; de la Harpeet al. 1993, Proposition III; de la Harpe et al. 1994,Proposition 3].Gromov has asked which properties of Sp(MS) areinvariant under quasi-isometries, pointing out thatthe Kesten{Day result mentioned above providesan example (since amenability is a quasi-isometryinvariant). To attack Gromov's question, one dif-�culty lies with the lack of examples of explicitlycomputed spectra of Markov operators. The aimof this paper is to present a class of solvable, nonvirtually nilpotent groups, for which some explicitcalculations are possible.

In this paper we deal with the solvable Baumslag{Solitar groups, a family of one-relator groups de�nedby the presentationsBSn = ha; b j aba�1 = bni;for n � 2. These groups belong to a two-parameterfamily of one-relator groups introduced by Baum-slag and Solitar [1962]. There has been recent ac-tivity around the groups BSn; for example, here is aremarkable result by B. Farb and L. Mosher [1998]:
Theorem 1.2. The following statements are equiva-lent :
1. The groups BSm and BSn are quasi-isometric.
2. The groups BSm and BSn are commensurable.
3. There exists an integer r � 2 such that m and nare powers of r.C. Pittet and L. Salo�-Coste [1999] have determinedthe isoperimetric pro�le and the rate of decay of theheat kernel on BSn.Our goal is to study the spectrum of the Markovoperator MS, where we take either S = fa; bg orS = fa�1; b�1g as generating subset of BSn. Ourresults are as follows:� We show in Section 2 that SpMS is always con-nected.� For S = fa; bg (nonsymmetric case), we show inSection 3 that (SpMS) \ T = Cn�1, and thatSpMS contains the n� 1 circlesfz 2 C : jz � 12!j = 12g; for ! 2 Cn�1;together with the n+ 1 curves given by� 12wk � ��� 12w�k � ��� 14exp 4�i� = 0;where w 2 Cn+1, � 2 [0; 1] (and also their im-ages under the action of the symmetry group ofSpMS , which turns out to be the dihedral groupDn�1 of order 2n�2). Assuming the GeneralizedRiemann Hypothesis|or just Artin's conjecture[Murty 1988]|we show that SpMS also containsthe circle fz 2 C : jzj = 12g. This is con�rmed bynumerical computations for n = 2; 3; 5.� For S = fa�1; b�1g (symmetric case), we show inSection 4 thatSpMS = � [�1; 1] if n is odd,[rn; 1] if n is even,
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where �1 < rn � � sin2 �n2(n+ 1)(notice that limn!1 rn = �1). For n = 2, we getthe exact value r2 = � 34 .� In Section 5, we give a potential application ofour study to the theory of wavelets (see, for in-stance, [Daubechies 1992]); to explain the link,notice that BS2 is isomorphic to the subgroupof the a�ne group of the real line, generated bytranslation by 1 and dilation by 2: these are ex-actly the two transformations used in multireso-lution analysis.All of our computations rest on the following lemma,useful in constructing points of SpMS.
Lemma 1.3. Let � be a �nitely generated amenablegroup. De�ne hS = 1jSjXs2S s 2 C �:
For every unitary representation � of �, one hasSp�(hS) � SpMS.
Proof. Denoting by � the right regular representationof � on `2(�), one has MS = �(hS). For a group�, we shall denote by C�r� the reduced C*-algebraof �, i.e. the C*-algebra generated by �(�) (noticethat MS 2 C�r�). When � is amenable, any unitaryrepresentation � of � extends to C�r�, hence de�nesa quotient of C�r�. But passing to a quotient onlydecreases the spectrum. �For this reason we are interested in �nding familiesof representations of C�r�, and especially separat-ing families. Our interest in separating families liesin the fact that, at least for self-adjoint elementsin C�r�, they \approximate" well the spectrum (seeformula (3{1) and the proof of Theorem 4.4). Weconstruct several of them in this paper.
2. CONNECTEDNESS OF SPECTRAWe begin by realizing BSn in a more concrete way.For a commutative, unital ring A, we denote byA�1(A) the a�ne group of A (or \ax + b" group):this is the semidirect product of the additive groupof A by the multiplicative group. It is easy to checkthat BSn can be identi�ed with the subgroup of

A�1(Q ) generated by the dilation a : x 7! nx andthe translation b : x 7! x+ 1.
Lemma 2.1. Every element of C�r BSn has a connectedspectrum.
Proof. The proof is in the same spirit as that of[B�eguin et al. 1997, Proposition 1]; the statementto be proved is equivalent to the conjecture of idem-potents for C�r BSn. Recall that, for a torsion-freegroup � (notice that BSn is a torsion-free group),the conjecture of idempotents for � says that theonly idempotents in C�r (�) are 0 and 1. This inturn is a consequence of the Baum{Connes conjec-ture for �, which says that the analytical assemblymap (or index map) ��0 : RK0(B �) ! K0(C�r (�))is an isomorphism; here RK0(B �) denotes the K-homology with compact support of the classifyingspace B �, and K0(C�r (�)) denotes the Grothendieckgroup of �nite type projective modules over C�r (�)(see [Baum et al. 1994; Valette 1989]). There are atleast 3 di�erent proofs of the Baum{Connes conjec-ture for BSn.� Kasparov et Skandalis [1991] have shown thatthe Baum{Connes conjecture is true for everytorsion-free discrete subgroup of A�1(K1)�� � ��A�1(Km), where the Ki's are local �elds. Thenone may appeal to an arithmetic realization ofBSn: if p1; : : : ; pk is the list of prime divisors ofn, the diagonal embeddingBSn ,! A�1(Q p1)� � � � �A�1(Q pk)�A�1(R )has discrete image.� The Baum{Connes conjecture has been provedfor torsion-free one-relator groups [B�eguin et al.1999].� Higson and Kasparov [1997] proved the Baum{Connes conjecture for all torsion-free amenablegroups, in particular for all torsion-free solvablegroups. �
3. THE NONSYMMETRIC CASEIn this section, we set S = fa; bg. We may al-ready deduce some qualitative informations aboutthe spectrum of MS .
Theorem 3.1. SpMS is a connected subset of theclosed unit disk of C , such that :
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1. (SpMS) \ T = Cn�1;
2. the symmetry group of SpMS is Dn�1, the dihe-dral group of order 2n� 2;
3. SpMS contains the n� 1 circlesfz 2 C : jz � 12!j = 12g; for ! 2 Cn�1:
4. SpMS contains the n+ 1 curves given by� 12wk � ��� 12w�k � ��� 14exp 4�i� = 0;where w 2 Cn+1, � 2 [0; 1].
Proof.

1. From the presentation BSn = ha; b j aba�1 = bni,it is clear that any homomorphism � from BSnto an abelian group satis�es �(b)n�1 = 1; on theother hand, for any ! 2 Cn�1 one may de�nea homomorphism �! : BSn ! Cn�1 by �!(a) =�!(b) = !. The result then follows from Theorem1.1.2.
2. For every group � and every �nite generatingsubset S, the spectrum of MS is symmetric withrespect to the real axis in C [de la Harpe et al.1994, Proposition 4(ii)]. So the result is a conse-quence of part 1 and Theorem 1.1.2.
3. De�ne an epimorphism�ab : BSn ! Z � Z =(n� 1)Zby �ab(a) = (1; 0) and �ab(b) = (0; 1). The Pon-tryagin dual of Z � Z =(n� 1)Z is T �Cn�1, andC�r (Z � Z =(n� 1)Z ) is identi�ed via the Fouriertransform with the algebra of continuous func-tions on T � Cn�1. The Fourier transform of�ab(hS) is the functionT � Cn�1 ! C : (z; !) 7! z + !2 :The spectrum of �ab(hS) is the range of this func-tion, i.e. the union of n � 1 circles appearing inthe theorem. By Lemma 1.3, these circles arecontained in SpMS.
4. Consider the epimorphism of BSn onto ha; b jaba�1 = b�1; bn+1 = 1i. This group can be identi-�ed with the semidirect product Z =(n+1)Z o�Z(where the action is given by �m(k) = (�1)mk).It contains the normal subgroup Z =(n+1)Z�2Z .

So by Mackey theory, the irreducible representa-tions of the semidirect product, which are ob-tained by inducing the characters of the normalabelian subgroup, are given by�k;�(a) = � 0 e2�i�e2�i� 0 �
and �k;�(b) = �wk 00 w�k � ;where w = e 2�in+1 ; k = 1; : : : ; n + 1; � 2 [0; 1].Now, by computing the spectra of �k;�(hS), weobtain the curves appearing in the theorem, andagain we conclude by Lemma 1.3. �In fact, part 3 follows from 2 and 4. Indeed,[�2[0;1]Sp(�n+1;�(hS)) = �z 2 C : ��z � 12 �� = 12	;

and by using part 2 of the theorem, we get part 3.It is easy to check that �ab is just the abelianizationhomomorphism of BSn (that is, ker�ab is the com-mutator subgroup of BSn). In other words, Theo-rem 3.1.3 describes the contribution to SpMS of theabelianized group of BSn.To proceed, we clearly need other representationswhich do not factor through the abelianization ofBSn and through the groupha; b j aba�1 = b�1; bn+1 = 1i:We now construct a family of such representa-tions, viewing BSn as an \arithmetic" group.For a prime p, we denote by F p the �eld with pelements, and by `20(F p) the orthogonal complementof the constants in `2(F p). We begin by recalling therepresentation theory of the �nite group A�1(F p).
Lemma 3.2. The group A�1(F p) has p irreducible rep-resentations , namely :� the p�1 characters �0; : : : ; �p�2 coming from theepimorphism A�1(F p)! F �p ;� one representation �p of degree p�1, on the space`20(F p), associated with the action of A�1(F p) onF p.
Proof. A standard exercise in the representation the-ory of �nite groups; see, for example, [Robert 1983,pp. 159{160]. �
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Let us come back to the group BSn. From the de-scription as a subgroup of A�1(Q ), it follows thatBSn is in fact a subgroup of A�1(Z � 1n�), where Z � 1n�is the subring of Q generated by 1n .If p is a prime not dividing n, reduction modulop from Z � 1n� onto F p, induces a homomorphism�p : BSn ! A�1(F p):Denote by �p the regular representation of A�1(F p).
Proposition 3.3. For every in�nite set S of primes notdividing n, the family of representations (�p ��p)p2Sis separating for C�r BSn.
Proof. We show that the regular representation �BSnof BSn is weakly equivalent (in the sense of [Dixmier1977, 3.4.5]) to Lp2S �p � �p. The latter is weaklycontained in �BSn , because of amenability of BSn.For the converse, for p 2 S let us denote by �p thecharacteristic function of the identity of A�1(F p),viewed as a vector in `2(A�1(F p)); consider the pos-itive de�nite function 'p on BSn, de�ned by'p(g) = h�p(�p(g))�pj�pi;with g 2 BSn. Clearly'p(g) = � 1 if g 2 ker�p,0 otherwise.Since any element g 2 BSn�feg belongs to a �nitenumber of subgroups ker�p, we havelimp!1; p2Pn 'p(g) = �g;e = h�(g)�ej�ei;by [Dixmier 1977, 18.1.4], this shows that �BSn isweakly contained inLp2S �p��p, and concludes theproof. �For a �xed prime p, the homomorphism �p is ontoif and only if n is a primitive root modulo p, i.e. isa generator of the multiplicative group of F p. Setap = �p(a) and bp = �p(b).
Proposition 3.4. Let p be an odd prime. If n is aprimitive root modulo p, then Sp�p(ap+ bp) consistsof 0 and the (p�1)-st roots of 1, distinct from 1.
Proof. In fact we shall determine Sp�p(a�1p + b�1p ),which is the image of the desired spectrum undercomplex conjugation, and which will turn out to beinvariant under complex conjugation. Set ! = e 2�ip .We work in the basis of characters of `20(F p):ei(j) = !ij (i = 1; : : : ; p� 1; j 2 F p):

Clearly ei is an eigenvector of �p(b�1p ), with eigen-value !i. On the other hand �p(a�1p )(ei) = eni. Theassumption allows us to re-arrange the basis of ei'saccording to powers of n; thus we work in the basise1; en; en2 ; : : : ; enp�2 . Then:
�p(a�1p +b�1p ) =

0BBBBBBB@
! 0 0 � � � 0 11 !n 0 � � � � � � 00 1 !n2 ...... . . . ...... !np�3 00 � � � � � � 0 1 !np�2

1CCCCCCCA:
To compute the characteristic polynomial of thismatrix, we develop the determinant according to the�rst row, and get (since p is odd):
det(�p(a�1p + b�1p )��) = p�2Yi=0(!ni��)� 1

= p�1Yj=1(!j��)� 1
= 1��p1�� � 1 = �(1��p�1)1�� ;where the second equality follows from the assump-tion on n. The result is now clear. �The preceding proposition is false when n is not aprimitive root modulo p; this is clearly visible onFigure 1, which shows, for n = 2; 3; 5, the union ofthe sets Sp�p� 12(ap+bp)� for p running over the �rst300 primes.

Corollary 3.5. Let p be an odd prime. If n is a primi-tive root modulo p, the spectrum of �p(�p(hS)) con-sists of :� 0 with multiplicity p;� 12�1+exp 2�ijp�1 � with multiplicity 1, for j = 0, . . . ,p� 2 distinct from 12(p� 1);� 12 exp 2�ikp�1 with multiplicity p� 1, for k = 1, . . . ,p� 2.
Proof. Notice that �p(hS) = 12(ap + bp). Let �0, . . . ,�p�2 be the characters of A�1(F p) (see Lemma 3.2).In view of the assumption, �j is determined by itsvalue on ap, and we may assume �j(ap) = exp( 2�ijp�1 ),so that �j� 12(ap + bp)� = 12�1 + exp 2�ijp�1 �:
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FIGURE 1. For n = 2 (left), n = 3 (middle) and n = 5 (right), the graphs show the union of Sp�p�12 (ap + bp)� forp running over the �rst 300 primes.The regular representation �p decomposes into �p(with multiplicity p � 1) and the �j 's (each withmultiplicity 1). The result follows from this and theprevious proposition. �
Remark. For p = 7, there are some coincidences be-tween eigenvalues of the second and third kind inCorollary 3.5. The reader will have no di�culty tocompute the correct multiplicities.The previous proposition and corollary raise a nat-ural question: how many primes p are there, suchthat n is a primitive root modulo p? It turns outthat this is an open problem in number theory! Forn � 2, denote by Pn the set of primes p such that nis a primitive root modulo p. Artin's conjecture forthe integer n is the following statement:
Conjecture 3.6. The set Pn is in�nite.For an excellent introduction to Artin's conjecture,see [Murty 1988]. We collect in the theorem belowsome striking results on Artin's conjecture. Part 1is due to Hooley [1967], and parts 2 and 3 to Heath-Brown [1986].
Theorem 3.7. 1. Artin's conjecture for any n followsfrom the Generalized Riemann Hypothesis (thestatement that the Dedekind �-function of anynumber �eld K satis�es the Riemann Hypothe-sis).
2. Artin's conjecture holds for prime n, with at mosttwo possible exceptions .
3. Artin's conjecture holds for square-free n, with atmost three possible exceptions .

Since spectra are closed subsets of C , it follows im-mediately from Corollary 3.5 (together with Lemma1.3):
Theorem 3.8. If Artin's conjecture holds for n, thenSpMS � fz 2 C : jzj = 12g:We will apply Proposition 3.3 and Theorem 3.7 toa classical problem in operator theory, namely thedescription of the spectrum of a direct sum of op-erators. Indeed, if A is a C*-algebra and (�i)i2Iis a separating family of representations of A, theequality Spx =[i2I Sp�i(x) (3–1)

holds provided that x is a normal element in A (e.g.,a self-adjoint element). The classical example, show-ing that this equality fails in general, is given in[Halmos 1967, solution to Problem 81]. Here we getnew examples of the same situation.
Corollary 3.9. For at least one n 2 f2; 3; 5g, the fam-ily (�p � �p)p2Pn is separating for C�r BSn, but theinclusion [p2Pn Sp(�p � �p)(hS) � SpMS
is strict .
Proof. By Theorem 3.7.2, the set Pn is in�nite forat least one n 2 f2; 3; 5g; for this n, the family of
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representations (�p��p)p2Pn is separating for C�r BSn(Proposition 3.3). By Corollary 3.5, we have[p2Pn Sp(�p � �p)(hS)= fz 2 C : jzj = 12g [ �z 2 C : jz � 12 j = 12	:But a glance at Figure 1 shows that, in every case,SpMS contains points outside of the union of thesetwo circles.1 For n = 3; 5, we may also appeal to thefact that SpMS contains �1 (by Theorem 3.1.3). �
4. THE SYMMETRIC CASEIn this section we set S = fa�1; b�1g. The followingresult is analogous to Theorem 3.1.
Theorem 4.1.SpMS = � [�1; 1] if n is odd ,[rn; 1] if n is even,where �1 < rn � � sin2 �n2(n+ 1) :
Proof. Amenability guarantees that the spectrum is[rn; 1] for some rn � �1 (Theorem 1.1.1 and Lemma2.1).The case of n odd is trivial. Indeed Sp(MS) =[�1; 1] if and only if there is a homomorphism � :BSn ! C2 = f1;�1g mapping a and b to -1 (Theo-rem 1.1.2); and such a homomorphism exists if andonly if the relation in the group is of even length(i.e. n is odd).Now assume that n is even. The preceeding re-mark shows immediatly that rn > �1. To get theupper bound on rn, we use the representations �k;�de�ned in the proof of Theorem 3.1.4. The spectrumof �k;�(hS) is 12(cos 2�kn+1 � cos 2��) and is containedin Sp(MS) (Lemma 1.3). For k = n2 and � = 0, weget the minimal value12�cos �nn+ 1 � 1� = � sin2 �n2(n+ 1) : �Note that the contribution to SpMS of the abelian-ized group of BSn (by considering �ab(hS)) does notimprove the upper bound for rn.1 The subtlety here is that formula (3{1) does not hold for everyelement in a C�-algebra. Pretending that it does leads to a quickdisproof of the Generalized Riemann Hypothesis, just by glancingat Figure 1; the second author used this as the basis of an Aprilfool's joke (�a la Bombieri).

The description of BSn as a subgroup of A�1 Z � 1n�makes it clear that BSn is actually a semidirect prod-uct: BSn = Z [ 1n ]oa Z :We are going to consider representations of BSn in-duced from characters of the normal subgroup Z � 1n�.For � 2 R , we denote by �� the character of the realline de�ned by ��(x) = e2�i�x, for x 2 R .
Lemma 4.2. The family of representations�IndBSnZ[1=n]RestZ[1=n]R ����2Ris separating on C�r BSn.
Proof. Since the dual group of R is dense in the dualgroup of Z � 1n�, the family of characters�RestZ[1=n]R ����2Ris weakly equivalent to the regular representation�Z[1=n] of Z � 1n�. By continuity of weak containmentwith respect to induction, the family�IndBSnZ[1=n]RestZ[1=n]R ����2Ris weakly equivalent to IndBSnZ[1=n] �Z[1=n] ' �BSn . �Using the semidirect product decomposition of BSn,we see that the representation�� =: IndBSnZ[1=n]RestZ[1=n]R ��is canonically realized on `2(Z ); in that picture, thegenerator a acts by the bilateral shift on `2(Z ), whilethe generator b acts by(��(b)�)(k) = e2�i�n�k�(k);for `2(Z ), k 2 Z . Therefore ��(hS) is a tridiagonaloperator:(��(hS)�)(k)= 14��(k � 1) + �(k + 1) + 2 cos(2��n�k)�(k)�:To estimate the spectrum of a tridiagonal operator,one may appeal to the following remarkable resultby R. Szwarc [1998]:
Proposition 4.3. Let J be the operator on `2(Z ) de�nedby J�(k) = �k+1�(k + 1) + �k�(k) + �k�(k � 1);where (�k)k2Z; (�k)k2Z are real , bounded sequences ,with �k > 0 for all k. Let m be such that m <
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infk2Z �k. Assume there exists a sequence (hk)k2Zin ]0; 1[ such that�2k(m� �k�1)(m� �k) � hk(1� hk�1)for every k 2 Z . Then SpJ � [m;+1[.From this we deduce:
Theorem 4.4. For n = 2 and S = fa�1; b�1g, the spec-trum of the Markov operator MS on BS2 is SpMS =[� 34 ; 1].
Proof. We begin by showing that � 34 belongs to thespectrum ofMS . For this, we consider the prime p =3 and the representation �3, of degree 2, appearingin Lemma 3.2. From the formulae in the proof ofProposition 3.4, it is clear that�3(�3(hS)) = �� 14 1212 � 14 � :The spectrum of this 2�2 matrix is �� 34 ; 14	, and itis contained in SpMS by Lemma 1.3. To show theconverse inclusion, we �nd a sequence (hn)n2Z �]0; 1[ satisfying 1(3 + 2 cos 2�(n�1)')(3 + 2 cos 2�n') � hn(1�hn�1);where ' = 2��. By Proposition 4.3, this will implythat Sp(4��(hS)) � [�3;1[, for all � 2 R .If we de�nehn = 12 + �n3 + 2 cos 2�n'for all n 2 Z , we have to search for a sequence(�n)n2Z such that� 32 + cos 2�(n�1)'� �n�1�� 32 + cos 2�n'+ �n� � 1and � 32 � cos 2�n' < �n < 32 + cos 2�n':A candidate is �n = f(2�n'), where f is de�ned on[0; 2�] by

f(x) = 8><>: 0 if x 2 [0; �3 ] [ [ 5�3 ; 2�];u1(x) if x 2 ��3 ; 2�3 � [ �4�3 ; 5�3 �;u2(x) if x 2 [2�3 ; 4�3 ],withu1(x) := �( 32+cosx)+�32+cos x2��1;u2(x) := �( 32+cosx)+�3+2 cos x2��32+cos x4��1��1:

Next extend f to be periodic of period 2�.To show that �32 + cosx � f(x)��32 + cos 2x +f(2x)� � 1 we must verify several conditions:� � 32 + cosx�� 32 + cos 2x� � 1 � 0 for x 2 �0; �6 � [�11�6 ; 2��. This follows from simple trigonome-try estimates and is clear from the graph of thefunction on the left-hand side of the inequality:

�6 11�6 2�12
34
5

� � 32 + cosx��32 + cos 2x+ u1(2x)�� 1 � 0 for x 2��6 ; �3 �[�5�3 ; 11�6 �. The de�nition of u1 was cookedup exactly so that this is satis�ed.� � 32 + cosx� u1(x)��32 + cos 2x+ u2(2x)�� 1 � 0for x 2 ��3 ; 2�3 �[� 4�3 ; 5�3 �. Again, this comes fromthe de�nition of u2.� � 32+cosx�u2(x)��32+cos 2x+u1(2x)��1 � 0 forx 2 � 2�3 ; 5�6 �[� 7�6 ; 4�3 �. A slightly tedious compu-tation shows that this is equivalent to u2(x) � 0for the same range of x, and again this is clearfrom the graph of u2:

2�3 5�6 7�6 4�3 2�
�2
�1
1
2

u2
32 + cosx� �32 + cos 2x)�1

� � 32 + cosx � u2(x)�� 32 + cos 2x� � 1 � 0 for x 2[ 5�6 ; 7�6 ]. This is equivalent to u2(x) � 32 +cosx�� 32 + cos 2x��1 for the same range of x (see pre-ceding graph).
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Finally, each ui, for i = 1; 2, satis�es �32 � cosx �ui(x) � 32 + cosx for x 2 [0; 2�]:

2�
�2�1
12 u2u1

32 + cosx

�( 32 + cosx)This implies that � 32 � cos 2�n' < �n < 32 +cos 2�n', and the result follows. �The value � 34 in Theorem 7 was discovered exper-imentally, by computing numerically the spectrumof �p� 14(ap + a�1p + bp + b�1p )� for small primes p.For n larger than 2 and less than 28, we also ap-proximated the smallest value ofSp��p� 14(ap + a�1p + bp + b�1p )��by numerical computations for p running over the�rst 300 primes, but that does not improve the up-per bound in Theorem 6.
5. AN APPLICATION TO WAVELET THEORYAs observed, the connection with wavelet theorycomes from the fact that BS2 is isomorphic to thesubgroup of A�1(R ) generated by translation by 1and dilation by 2. These are exactly the two trans-formations used in multiresolution analysis [Daube-chies 1992; Bultheel 1995]; for this reason, we thinkthat BS2 deserves to be called the wavelet group.We recall some notations from wavelet theory. OnL2(R ), de�ne the unitary operators(Tr�)(x) = �(x� r);for r 2 R , � 2 L2(R ), and(Ds�)(x) = 1ps��xs�;for s > 0, � 2 L2(R ). Setting �(a) = Dn and �(b) =T1 then de�nes a unitary representation � of BSn onL2(R ).
Theorem 5.1. The map � extends to a faithful repre-sentation of C�r BSn.

Proof. We have to show that � is weakly equivalentto �BSn . Once more, weak containment of � in �BSnfollows from amenability of BSn. To prove the con-verse, de�ne a function  2 L2(R ) by
 (x) = 8<:

pn2 on [0; 1n [,�pn2 on [ 1n ; 2n [,0 otherwise.Clearly k k2 = 1; note that, for n = 2, the function is just the Haar wavelet. For k;m 2 Z , set k;m(x) = (DnkTm )(x) = n�k2 (n�kx�m):The  k;m's are orthonormal (but not a basis forn > 2): indeed, considerations of supports showthat two  k;m's of the same scale (same value of k)never overlap; on the other hand, if k < k0, thenthe support of  k;m lies totally in a region where k0;m0 is constant, so that h k;mj k0;m0i = 0. Forg 2 BSn, the operator �(g) can be written uniquely�(g) = DnjTr, with j 2 Z and r 2 Z � 1n�. For k 2 N ,h�(g) �k;0j �k;0i = hDnjDnkTrDn�k j i= hDnjTrnk j i:But, for k big enough, rnk is an integer N , so thath�(g) �k;0j �k;0i = h j;N j i = �e;g;by orthonormality of the  k;m's. This shows that�BSn is weakly contained in �, so the proof is com-plete. �
Remark. In the case n = 2, we used in the above proofthe Haar wavelet, but any wavelet basis would do aswell.From this result and the connectedness of spectra inC�r BSn (see Lemma 2.1), we immediately deduce:
Corollary 5.2. On L2(R ), operators of the formXk;m2Z ck;mDnkTm
(with ck;m 2 C , only �nitely many nonzero ck;m's),have connected spectra.In particular, this applies to the operatorsXm2Z cmD 12Tmappearing in the two-scale relation (or dilation equa-tion) in multiresolution analysis [Bultheel 1995, x 5].
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