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We consider the solvable Baumslag-Solitar group
BS, = (a,b | aba™" = b"),

for n > 2, and try to compute the spectrum of the associated
Markov operators Ms, either for the oriented Cayley graph (S =
{a,b}), or for the usual Cayley graph (S = {a™',b¥'}). We
show in both cases that Sp Ms is connected.

For S = {a, b} (nonsymmetric case), we show that the intersec-
tion of Sp Ms with the unit circle is the set C,,_ of (n—1)-st roots
of 1, and that Sp Mg contains the n — 1 circles

{zeC:|z- %w| = %}, forw € Ch_;,
together with the n + 1 curves given by

(4 = ) (b =

2
wherew € C,,1, 0 € [0,1].

)\) — %exp 47if = 0,

Conditional on the Generalized Riemann Hypothesis (actually
on Artin’s conjecture), we show that Sp Mg also contains the cir-
cle {z € C : |z| = 1}. This is confirmed by numerical compu-
tations forn = 2, 3, 5.

For S = {a*!,b®'} (symmetric case), we show that SpMs =

[—1, 1] for n odd, and Sp Mg = [—%/ 1] for n = 2. For n even, at
least 4, we only get Sp Ms = [r,, 11, with
mn

—1 <r, < —sin? )
2n+ 1)

We also give a potential application of our computations to the
theory of wavelets.

1. INTRODUCTION

Let I' be a finitely generated group. Fix a finite,
generating, not necessarily symmetric subset S in
I'. To these data we associate the oriented Cayley
graph (or Cayley digraph) G(T', S), whose vertex set
is ', and whose set of oriented edges is {(z,xs) :
x e€Tl,se S} If Sis symmetric (S = S71), it is
customary to replace a pair of opposite edges by a
single, nonoriented edge.
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On §(T', S), consider the simple random walk, in
which a particle jumps from x to xs with a prob-
ability of \_}9| Denote by p™ (z,y) the probability
of a transition in n steps from z to y.

expressed by means of the Markov operator Mg on

02(T), defined by

It can be

1

(Msé)(z) = E

> &(ws), for e P(T),zeT.

seS

Indeed p™(z,y) = (M26,/6,), where (3,).cr is the
canonical basis of ¢*(T).

The operator Mg is a contraction (||Ms| < 1)
on ¢*(T); its spectrum Sp My is therefore a closed
nonempty subset of the unit disk in C. A number
of results, going back to Kesten [1959] in the sym-
metric case, and to Day [1964] in the general case,
exhibit a close relationship between the properties of
Sp M and those of the pair (', S). Here is a sample;
we denote by T the multiplicative group of complex
numbers of modulus 1, and by C,, the group of n-th
roots of 1 in C.

Theorem 1.1. 1. I' is amenable if and only if 1 €
SpMs

2. If T is amenable, then (Sp Ms) N'T is a closed
subgroup of T; moreover, for z € T, the following
statements are equivalent:

a. z € Sp Mg;
b. Sp Mg is invariant under multiplication by z;
c. there exists a homomorphism x : I' = T such

that x(S) = {z}.

3. Sp Mg = C, if and only if T ~ Z /nZ and |S| = 1;
and Sp Ms =T if and only if ' ~7Z and |S| = 1.

For proofs, see respectively [Day 1964; de la Harpe
et al. 1993, Proposition III; de la Harpe et al. 1994,
Proposition 3].

Gromov has asked which properties of Sp(Ms) are
invariant under quasi-isometries, pointing out that
the Kesten—Day result mentioned above provides
an example (since amenability is a quasi-isometry
invariant). To attack Gromov’s question, one dif-
ficulty lies with the lack of examples of explicitly
computed spectra of Markov operators. The aim
of this paper is to present a class of solvable, non
virtually nilpotent groups, for which some explicit
calculations are possible.

In this paper we deal with the solvable Baumslag-
Solitar groups, a family of one-relator groups defined
by the presentations

BS, = (a,b | aba™ ' =),

for n > 2. These groups belong to a two-parameter
family of one-relator groups introduced by Baum-
slag and Solitar [1962]. There has been recent ac-
tivity around the groups BS,,; for example, here is a
remarkable result by B. Farb and L. Mosher [1998]:

Theorem 1.2. The following statements are equiva-
lent:

1. The groups BS,, and BS,, are quasi-isometric.

2. The groups BS,, and BS,, are commensurable.

3. There exists an integer r > 2 such that m and n
are powers of r.

C. Pittet and L. Saloff-Coste [1999] have determined
the isoperimetric profile and the rate of decay of the
heat kernel on BS,,.

Our goal is to study the spectrum of the Markov
operator Mg, where we take either S = {a,b} or
S = {a*',b*'} as generating subset of BS,. Our
results are as follows:

e We show in Section 2 that Sp Mg is always con-
nected.

e For S = {a,b} (nonsymmetric case), we show in
Section 3 that (SpMs) N'T = C,_;, and that
Sp Mg contains the n — 1 circles

{zeC:|z—ilw|=3}, forweC,y,

together with the n + 1 curves given by
(%wk — )\) (lwfk — )\) — iexp 4mif = 0,

2

where w € Cyyq1, 0 € [0,1] (and also their im-
ages under the action of the symmetry group of
Sp Mg, which turns out to be the dihedral group
D,,_, of order 2n —2). Assuming the Generalized
Riemann Hypothesis— or just Artin’s conjecture
[Murty 1988] — we show that Sp M also contains
the circle {z € C : |z| = ;}. This is confirmed by
numerical computations for n = 2,3, 5.

e For S = {a*!,b*'} (symmetric case), we show in
Section 4 that

Sp Mg = { =1,1]

[, 1]

if n is odd,

if n is even,
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where
—1<7r, <—sin? ™
"= 2(n+1)
(notice that lim,, ,, 7, = —1). For n = 2, we get
the exact value rp = —2.

e In Section 5, we give a potential application of
our study to the theory of wavelets (see, for in-
stance, [Daubechies 1992]); to explain the link,
notice that BS, is isomorphic to the subgroup
of the affine group of the real line, generated by
translation by 1 and dilation by 2: these are ex-
actly the two transformations used in multireso-
lution analysis.

All of our computations rest on the following lemma,
useful in constructing points of Sp M.

Lemma 1.3. Let " be a finitely generated amenable
group. Define

1
- = .
hs |S| seC

seSs

For every unitary representation w of I', one has
Spm(hs) C Sp Ms.

Proof. Denoting by p the right regular representation
of T on £*(T"), one has Ms = p(hs). For a group
I', we shall denote by C*T' the reduced C*-algebra
of T', i.e. the C*-algebra generated by p(I') (notice
that Mg € C*T"). When I is amenable, any unitary
representation 7 of I' extends to CI', hence defines
a quotient of C'T". But passing to a quotient only
decreases the spectrum. O

For this reason we are interested in finding families
of representations of CI', and especially separat-
ing families. Our interest in separating families lies
in the fact that, at least for self-adjoint elements
in C!T, they “approximate” well the spectrum (see
formula (3-1) and the proof of Theorem 4.4). We
construct several of them in this paper.

2. CONNECTEDNESS OF SPECTRA

We begin by realizing BS,, in a more concrete way.

For a commutative, unital ring A, we denote by
Aff;(A) the affine group of A (or “ax + b” group):
this is the semidirect product of the additive group
of A by the multiplicative group. It is easy to check
that BS,, can be identified with the subgroup of

Aff;(Q) generated by the dilation a :  +— nx and
the translation b : z — x + 1.

Lemma 2.1. Every element of C¥ BS,, has a connected
spectrum.

Proof. The proof is in the same spirit as that of
[Béguin et al. 1997, Proposition 1]; the statement
to be proved is equivalent to the conjecture of idem-
potents for C BS,,. Recall that, for a torsion-free
group I' (notice that BS,, is a torsion-free group),
the conjecture of idempotents for I' says that the
only idempotents in C*(T") are 0 and 1. This in
turn is a consequence of the Baum—Connes conjec-
ture for I', which says that the analytical assembly
map (or index map) uy : RKo(BT) — Ko(Cr(T))
is an isomorphism; here RK,(BI') denotes the K-
homology with compact support of the classifying
space BT, and K(C}(I')) denotes the Grothendieck
group of finite type projective modules over C(I")
(see [Baum et al. 1994; Valette 1989]). There are at
least 3 different proofs of the Baum—Connes conjec-
ture for BS,,.

e Kasparov et Skandalis [1991] have shown that
the Baum—Connes conjecture is true for every
torsion-free discrete subgroup of Aff;(K;) x - --x
Aff,(K,,), where the K;’s are local fields. Then
one may appeal to an arithmetic realization of
BS,.: if p1,...,ps is the list of prime divisors of
n, the diagonal embedding

BS, — Aff1(Q,,) x --- x Aff;(Q,,) x Aff;(R)

has discrete image.

e The Baum—Connes conjecture has been proved
for torsion-free one-relator groups [Béguin et al.
1999].

e Higson and Kasparov [1997] proved the Baum-—
Connes conjecture for all torsion-free amenable
groups, in particular for all torsion-free solvable
groups. O

3. THE NONSYMMETRIC CASE

In this section, we set S = {a,b}. We may al-
ready deduce some qualitative informations about
the spectrum of Ms.

Theorem 3.1. Sp Mg is a connected subset of the
closed unit disk of C, such that:
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1. SpMs)NT =C,_y;

2. the symmetry group of Sp Ms is D, _1, the dihe-
dral group of order 2n — 2;

3. Sp Mg contains the n — 1 circles

{zeC:lz—tw|=3}, forweCph.

4. Sp Mg contains the n+ 1 curves given by
(%wk — )\) (%w_k — )\) — iexp4m’9 =0,
where w € Cy 41, 0 € [0,1].

Proof.

1. From the presentation BS,, = (a,b | aba™! = b"),
it is clear that any homomorphism § from BS,
to an abelian group satisfies 3(b)" ! = 1; on the
other hand, for any w € C,_; one may define
a homomorphism S, : BS,, — C,_; by 8,(a) =
B.(b) = w. The result then follows from Theorem
1.1.2.

2. For every group I' and every finite generating
subset S, the spectrum of Mg is symmetric with
respect to the real axis in C [de la Harpe et al.
1994, Proposition 4(ii)]. So the result is a conse-
quence of part 1 and Theorem 1.1.2.

3. Define an epimorphism
Bap :BSy = Z xZ)(n—1)Z

by Bus(a) = (1,0) and B,,(b) = (0,1). The Pon-
tryagin dual of Z x Z/(n —1)Z is T x C,,_1, and
C*(Z xZ/(n—1)Z) is identified via the Fourier
transform with the algebra of continuous func-
tions on T x C,_;. The Fourier transform of
Bab(hs) is the function

z4+w

TxC,1—-C:(z,w)— 5

The spectrum of (,,(hg) is the range of this func-
tion, i.e. the union of n — 1 circles appearing in
the theorem. By Lemma 1.3, these circles are
contained in Sp Ms.

4. Consider the epimorphism of BS, onto (a,b |
aba~! = b1, b""! = 1). This group can be identi-
fied with the semidirect product Z/(n+1)Z x,Z
(where the action is given by ., (k) = (—1)"k).
It contains the normal subgroup Z/(n+1)Z x 27Z.

So by Mackey theory, the irreducible representa-
tions of the semidirect product, which are ob-
tained by inducing the characters of the normal
abelian subgroup, are given by

0 627”'0
kag(a) = (ezm'e 0 >

wk 0
Tro(b) = ( 0 wk)?

where w = e=it; k = 1,...,n+1; 0 € 0, 1].
Now, by computing the spectra of my ¢(hs), we
obtain the curves appearing in the theorem, and
again we conclude by Lemma 1.3. O

and

In fact, part 3 follows from 2 and 4. Indeed,

U Sp(miro(hs)) = {2 € C: [z - 3] = 3},

0€[0,1]

and by using part 2 of the theorem, we get part 3.
It is easy to check that (3, is just the abelianization
homomorphism of BS,, (that is, ker 3, is the com-
mutator subgroup of BS,,). In other words, Theo-
rem 3.1.3 describes the contribution to Sp My of the
abelianized group of BS,,.

To proceed, we clearly need other representations
which do not factor through the abelianization of
BS,, and through the group

{(a,b| aba ' =b" 1 p" =1).

We now construct a family of such representa-
tions, viewing BS,, as an “arithmetic” group.

For a prime p, we denote by I, the field with p
elements, and by ¢3(F,) the orthogonal complement
of the constants in £?(F,). We begin by recalling the
representation theory of the finite group Aff(F,).

Lemma 3.2. The group Aff,(F,) has p irreducible rep-
resentations, namely:

e the p—1 characters xo,...,Xp—2 coming from the
epimorphism Affy(F,) — F;

e one representation T, of degree p—1, on the space
0 (F,), associated with the action of Aff,(F,) on
F

e
Proof. A standard exercise in the representation the-

ory of finite groups; see, for example, [Robert 1983,
pp. 159-160]. O
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Let us come back to the group BS,,. From the de-
scription as a subgroup of Aff;(Q), it follows that
BS,, is in fact a subgroup of Aff;(Z[1]), where Z [ ]
is the subring of Q generated by %

If p is a prime not dividing n, reduction modulo
p from Z [%] onto F,, induces a homomorphism

a, : BS, — Affy(F,).
Denote by p,, the regular representation of Aff,(F,).

Proposition 3.3. For every infinite set S of primes not
dividing n, the family of representations (p,o ay)pes
is separating for C* BS,,.

Proof. We show that the regular representation pgg,
of BS,, is weakly equivalent (in the sense of [Dixmier
1977, 3.4.5]) to @,cg pp © . The latter is weakly
contained in pps,, because of amenability of BS,,.
For the converse, for p € S let us denote by d, the
characteristic function of the identity of Aff,(F,),
viewed as a vector in ¢?(Aff,(F,)); consider the pos-
itive definite function ¢, on BS,,, defined by

@p(g) = <pp(ap(g))5p|5p>a
with g € BS,,. Clearly

{1 if g € ker o,

90,,(9)— 0 otherwise.

Since any element g € BS,, —{e} belongs to a finite
number of subgroups ker o,, we have
lim  ¢,(9) =0,

o Jm_ = (p(9)el0c);

by [Dixmier 1977, 18.1.4], this shows that pgps, is
weakly contained in ®p€ s Pp© 0y, and concludes the
proof. O

For a fixed prime p, the homomorphism «,, is onto
if and only if n is a primitive root modulo p, i.e. is
a generator of the multiplicative group of F,. Set
a, = a,(a) and b, = a,(b).

Proposition 3.4. Let p be an odd prime. Ifn is a
primitive root modulo p, then Sp m,(a,+b,) consists
of 0 and the (p—1)-st roots of 1, distinct from 1.

Proof. In fact we shall determine Spm,(a,' +b,"),
which is the image of the desired spectrum under
complex conjugation, and which will turn out to be

invariant under complex conjugation. Set w =e'» .
We work in the basis of characters of ¢5(FF,,):

(i=1,...,p—1;j €F,).

ei(j) = w"

Clearly e; is an eigenvector of m,(b, "), with eigen-
value w’. On the other hand m,(a,")(e;) = en;. The
assumption allows us to re-arrange the basis of e;’s
according to powers of n; thus we work in the basis

€1,€n,€En2,...,Eu—2. Then:
w 0 0 - 0 1
1 w" 0 0
0 1 w” :
mp(a, '+, ") = :
nP—3 0
0 0 1 o

To compute the characteristic polynomial of this
matrix, we develop the determinant according to the
first row, and get (since p is odd):

2

S|
|

det(m,(a,* +b,1)=2) = [J(w" =) -
i=0
p—1
=] - -1
j=1
_1=aP B A(1=Ar1)
-\ 1=
where the second equality follows from the assump-
tion on n. The result is now clear. ]

The preceding proposition is false when n is not a
primitive root modulo p; this is clearly visible on
Figure 1, which shows, for n = 2,3, 5, the union of
the sets Sp 7, (3(a,+b,)) for p running over the first
300 primes.

Corollary 3.5. Let p be an odd prime. If n is a primi-
tive root modulo p, the spectrum of p,(c,(hs)) con-
sists of :

o 0 with multiplicity p;
° (1 +exp 27”3) with multiplicity 1, for j =0, ...,
z(p—1);

with multiplicity p — 1, for k =1,

— 2 distinct from
o L eXp 27r1k

—2

Proof. Notice that a,(hs) = 3(a, + by,). Let xo, -,
Xp—2 be the characters of Aff;(F,) (see Lemma 3.2).
In view of the assumption, x; is determined by its

value on a,, and we may assume x;(a,) = exp(Z© 2mily,
so that

X;(3(ap +by)) = 5(1 +exp 2).
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L

FIGURE 1. For n = 2 (left), n = 3 (middle) and n = 5 (right), the graphs show the union of Sp (% (a, + b,)) for
p running over the first 300 primes.

The regular representation p, decomposes into m,
(with multiplicity p — 1) and the x;’s (each with
multiplicity 1). The result follows from this and the
previous proposition. [l

Remark. For p = 7, there are some coincidences be-
tween eigenvalues of the second and third kind in
Corollary 3.5. The reader will have no difficulty to
compute the correct multiplicities.

The previous proposition and corollary raise a nat-
ural question: how many primes p are there, such
that n is a primitive root modulo p? It turns out
that this is an open problem in number theory! For
n > 2, denote by P, the set of primes p such that n
is a primitive root modulo p. Artin’s conjecture for
the integer n is the following statement:

Conjecture 3.6. The set P, is infinite.

For an excellent introduction to Artin’s conjecture,
see [Murty 1988]. We collect in the theorem below
some striking results on Artin’s conjecture. Part 1
is due to Hooley [1967], and parts 2 and 3 to Heath-
Brown [1986].

Theorem 3.7. 1. Artin’s conjecture for any n follows
from the Generalized Riemann Hypothesis (the
statement that the Dedekind (-function of any
number field K satisfies the Riemann Hypothe-
s18).

2. Artin’s conjecture holds for prime n, with at most
two possible exceptions.

3. Artin’s conjecture holds for square-free n, with at
most three possible exceptions.

Since spectra are closed subsets of C, it follows im-
mediately from Corollary 3.5 (together with Lemma
1.3):

Theorem 3.8. If Artin’s conjecture holds for n, then

SpMs D {zeC:|z| =1}

We will apply Proposition 3.3 and Theorem 3.7 to
a classical problem in operator theory, namely the
description of the spectrum of a direct sum of op-
erators. Indeed, if A is a C*-algebra and (7;);er
is a separating family of representations of A, the
equality

Spz = U Spmi(z)

iel

3-1)

holds provided that z is a normal element in A (e.g.,
a self-adjoint element). The classical example, show-
ing that this equality fails in general, is given in
[Halmos 1967, solution to Problem 81]. Here we get
new examples of the same situation.

Corollary 3.9. For at least one n € {2,3,5}, the fam-
ily (pp © p)pep, s separating for C} BS,, but the
inclusion

U Sp(,Op 0 ap)(hs) C Sp My

pEP,
18 strict.

Proof. By Theorem 3.7.2, the set P, is infinite for
at least one n € {2,3,5}; for this n, the family of
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representations (p,0a,),cp, is separating for C* BS,,
(Proposition 3.3). By Corollary 3.5, we have

U Sp(p, 0 @) (hs)
pEP,
={zeC:|z|=L1u{zeC:|z-i =1}

But a glance at Figure 1 shows that, in every case,
Sp Mg contains points outside of the union of these
two circles.! For n = 3, 5, we may also appeal to the
fact that Sp Ms contains —1 (by Theorem 3.1.3). O

4. THE SYMMETRIC CASE

In this section we set S = {a*',b*'}. The following

result is analogous to Theorem 3.1.
Theorem 4.1.
[_15 1]
Sp Ms =

[rn, 1]

if n is odd,
if n is even,

where
, TN

2(n+1)

Proof. Amenability guarantees that the spectrum is
[rn, 1] for some 7, > —1 (Theorem 1.1.1 and Lemma
2.1).

The case of n odd is trivial. Indeed Sp(Msg) =
[—1,1] if and only if there is a homomorphism £ :
BS,, — Cy = {1,—1} mapping a and b to -1 (Theo-
rem 1.1.2); and such a homomorphism exists if and
only if the relation in the group is of even length
(i.e. n is odd).

Now assume that n is even. The preceeding re-
mark shows immediatly that r, > —1. To get the
upper bound on r,, we use the representations 7y o
defined in the proof of Theorem 3.1.4. The spectrum
of i e(hs) is 3(cos % + cos27#) and is contained
in Sp(Mg) (Lemma 1.3). For k = % and 6 = 0, we
get the minimal value

1 ™ .9 TN

§<c0sn+1—1>——s1n m O
Note that the contribution to Sp Mg of the abelian-
ized group of BS,, (by considering (3,;(hs)) does not
improve the upper bound for 7,.

—-1<r, <—sin

! The subtlety here is that formula (3-1) does not hold for every
element in a C*-algebra. Pretending that it does leads to a quick
disproof of the Generalized Riemann Hypothesis, just by glancing
at Figure 1; the second author used this as the basis of an April
fool’s joke (a la Bombieri).

The description of BS,, as a subgroup of Aff; Z [%]
makes it clear that BS,, is actually a semidirect prod-
uct:

BS, = Z[1] x, Z.

We are going to counsider representations of BS,, in-
duced from characters of the normal subgroup Z [%] .
For 6 € R, we denote by x4 the character of the real
line defined by x4 (z) = €29 for z € R.

Lemma 4.2. The family of representations

BS, Z[1/n
(Indz[l/n} RestR[ / ]XQ)GER

is separating on C) BS,,.

Proof. Since the dual group of R is dense in the dual
group of Z [ﬂ, the family of characters

(ReStﬂZR[l/n} X9) 0€R

is weakly equivalent to the regular representation
pzpi/n) of Z[1]. By continuity of weak containment
with respect to induction, the family

BS, Z[1/n
(Indz[l/n} ReStR[ / ] XO)QER

is weakly equivalent to IndZB[Sf}n] Pzii/m] = PBS,. U

Using the semidirect product decomposition of BS,,,
we see that the representation

o =: IndZB[Sl’}n} Rest2"/™ yq

is canonically realized on £*(Z); in that picture, the
generator a acts by the bilateral shift on ¢(7Z), while
the generator b acts by

(mo(b)E) (k) = €™ "£(k),
for (2(Z), k € Z. Therefore my(hs) is a tridiagonal
operator:
(Wo(hs)f)(k)
= 1(&(k —1) + £(k + 1) + 2 cos(2mon*)¢(k)).
To estimate the spectrum of a tridiagonal operator,

one may appeal to the following remarkable result
by R. Szwarc [1998]:

Proposition 4.3. Let J be the operator on (*(Z) defined
by
JE(k) = Apa&(k + 1) + Br€(k) + Mé(k — 1),

where (By)rez, (Ax)rez are real, bounded sequences,
with Ay > 0 for all k. Let m be such that m <
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infrez Bi. Assume there exists a sequence (hy)rez
in 10, 1[ such that

Ak
(m — Br—1)(m — B)
for every k € Z.. Then Sp J C [m, +o0].

< hi(1 — hy_1)

From this we deduce:

Theorem 4.4. Forn = 2 and S = {a*!,b*'}, the spec-
trum of the Markov operator Ms on BS, is Sp Mg =

[_%al]'

Proof. We begin by showing that —% belongs to the
spectrum of Mg. For this, we consider the prime p =
3 and the representation w3, of degree 2, appearing
in Lemma 3.2. From the formulae in the proof of
Proposition 3.4, it is clear that

31

1
The spectrum of this 2 X 2 matrix is {—— —}, and it

B = N

ms(as(hs)) = (_i

2
is contained in Sp Mg by Lemma 1.3. To show the
converse inclusion, we find a sequence (h,),ez C
10, 1] satisfying

1
< h,(1—=h,—
(3+2c0os27 (" D)(3 +2cos27p) — n( n—1);

where ¢ = 2760. By Proposition 4.3, this will imply
that Sp(4my(hs)) C [-3,00], for all § € R.
If we define

1 Qay,
hp==+-——"7-——7-—
2 3+4+2cos2 "p

for all n € Z, we have to search for a sequence
(Qn )nez such that

(2 +cos2 " Vo —a, 1) (2 +cos2"p+a,) >1
and
—% —cos2 "p<ay, < % + cos2 .

A candidate is a,, = (2 "¢), where f is defined on
[0,27] by

0 if z € [0, %]U[%,%r],
fl@)=qw(z) ifzelf FIU]F, 5]
w(e) itoelz ]
with

uy () = —(%—{-cos x)+ (%—i—cos %)71,

o -1
us(z) := —(%—i—cosx)—i—(S—l—ZCos%_(g+cos f) 1) .

Next extend f to be periodic of period 2.
To show that (2 + cosz — f(z))(2 + cos2z +
f(2z)) > 1 we must verify several conditions:

o (2+cosz)(%+cos2z)—1>0forze[0,Z]U
[”T”, 27r]. This follows from simple trigonome-
try estimates and is clear from the graph of the
function on the left-hand side of the inequality:

11w 2w

6

olN

o (34cosz)(2+cos2z+u(2z)) —1>0forz e
[%, %] U [%”, HT”] The definition of u; was cooked
up exactly so that this is satisfied.

o (34cosz—ui(2))(2+cos2z +uy(2z)) —1>0
for x € [%, %’r] U [%’r, %’r] Again, this comes from
the definition of wus.

o (3+cosz—uy(z))(2+cos2z+u,(2z))—1 > 0 for
z e [Z, U, &]. A slightly tedious compu-
tation shows that this is equivalent to uy(xz) <0
for the same range of x, and again this is clear

from the graph of u,:

3 4+ cosz — (3 + cos2z) ™!

U2

27

+ cosz — us(z)) (2 + cos2z) — 1 >0 for z €
x Tx]. This is equivalent to us(z) < 2 +cosz —
(% + cos 23:)7 for the same range of x (see pre-
ceding graph).

3
2
Sm
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Finally, each u;, for ¢ = 1,2, satisfies —% —cosx <
ui(z) < 2+ cosx for x € [0, 2n]:

% + cosx
2
1
U2
27
-1 U1
-2
—(3 + cosx)
This implies that —% —cos27p < a, < g +
cos 2 "y, and the result follows. O

The value —% in Theorem 7 was discovered exper-
imentally, by computing numerically the spectrum
of m,(5(ap +a,* + b, + b, ') for small primes p.

For n larger than 2 and less than 28, we also ap-
proximated the smallest value of

Sp(my (3 (ap +a,* +b,+b,1)))

by numerical computations for p running over the
first 300 primes, but that does not improve the up-
per bound in Theorem 6.

5. AN APPLICATION TO WAVELET THEORY

As observed, the connection with wavelet theory
comes from the fact that BS, is isomorphic to the
subgroup of Aff;(R) generated by translation by 1
and dilation by 2. These are exactly the two trans-
formations used in multiresolution analysis [Daube-
chies 1992; Bultheel 1995]; for this reason, we think
that BS, deserves to be called the wavelet group.

We recall some notations from wavelet theory. On
L?*(R), define the unitary operators

(T:6)(z) = &(z — 1),
forr € R, £ € L?*(R), and
1 T

for s > 0, £ € L*(R). Setting w(a) = D,, and 7(b) =
T, then defines a unitary representation 7 of BS,, on

L*(R).

Theorem 5.1. The map 7w extends to a faithful repre-
sentation of C* BS,,.

Proof. We have to show that 7 is weakly equivalent
to pps,. Once more, weak containment of 7 in ppg,
follows from amenability of BS,,. To prove the con-
verse, define a function ¢ € L*(R) by

\/g on [0, %[,
Y(r) =4 — on [%, %[,
0 otherwise.
Clearly ||1]|s = 1; note that, for n = 2, the function
1 is just the Haar wavelet. For k,m € Z, set

Vem(2) = (Do Truth) (z) = n~31h(n" "z — m).

The 9 ,’s are orthonormal (but not a basis for
n > 2): indeed, considerations of supports show
that two ¢y ,,,’s of the same scale (same value of k)
never overlap; on the other hand, if £ < k’, then
the support of 9y ., lies totally in a region where
Yyr e is constant, so that (g .,|¢k m) = 0. For
g € BS,,, the operator m(g) can be written uniquely
m(g) = D,iT,, with j € Z and r € Z[%] For k € N,

(m(9)—k0ltV—k,0) = (Dni Dys T, D, =p|1))
= <anTTn’°¢|¢'>-

But, for k big enough, rn* is an integer N, so that

<7r(g)wfk,0|¢fk,0> = <¢j,N|¢> = 58,97

by orthonormality of the 1)y ,’s. This shows that
pBs, is weakly contained in 7, so the proof is com-
plete. O

D3

Remark. In the case n = 2, we used in the above proof
the Haar wavelet, but any wavelet basis would do as
well.

From this result and the connectedness of spectra in
Cr BS,, (see Lemma 2.1), we immediately deduce:

Corollary 5.2. On L*(R), operators of the form

(with cx,m € C, only finitely many nonzero ¢y m’s),
have connected spectra.

In particular, this applies to the operators
> enDyTn
meZ

appearing in the two-scale relation (or dilation equa-
tion) in multiresolution analysis [Bultheel 1995, § 5].
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