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We give a constructive proof of a theorem of Tate, which states
that (under Stark’s Conjecture) the field generated over a totally
real field K by the Stark units contains the maximal real abelian
extension of K. As a direct application of this proof, we show
how one can compute explicitly real abelian extensions of K.
We give two examples.

In a series of important papers, H. M. Stark [1971;
1975; 1976; 1980] developed a body of conjectures
relating the values of Artin L-functions at s = 1
(and hence, by the functional equation, their leading
terms at s = 0) with certain algebraic quantities at-
tached to extensions of number fields. For example,
in the case of abelian L-functions with a first-order
zero at s = 0, the conjectural relation is between
the first derivative of the L-functions and the loga-
rithmic embedding of certain units in ray class fields
known as Stark units, which are predicted to exist.

The use of these conjectures to provide explicit
generators of ray class fields, and thus to answer
Hilbert’s famous Twelfth Problem was one of the
original motivations for their formulation. It has
been noticed by several people (including Stark him-
self [1976]) that they could provide a new way to
construct ray class fields of totally real fields.

In particular, if K is a totally real field, the field
extension generated over K by the Stark units (see
below for details) contains the maximal real abelian
extension of K. This result is a direct consequence
of [Tate 1984, Chapter IV, Proposition 3.8].

Using the ideas given in [Stark 1976], we give in
Section 2 a constructive proof of this result; that is,
for each finite real abelian extension L/K we con-
struct explicit generators of L over K using Stark
units. This proof has a direct application since we
can use it to explicitly compute real class fields of
a totally real field. This is discussed in Section 3.
Since this construction is based on a conjecture, we
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also explain in that section how to check the cor-
rectness of the result. Finally, we end the paper by
giving two examples of such a construction.

1. THE ABELIAN RANK-ONE STARK CONJECTURE

The main reference for Stark’s conjectures is [Tate
1984].

Let N/K be an abelian extension of number fields,
and let G and f denote respectively its Galois group
and its conductor.

For m an admissible modulus for N/K (that is,
m is a multiple of f), we let Ix(m) be the group of
fractional (non-zero) ideals of K coprime to m, and
Py (m) the group of fractional (non-zero) principal
ideals which have a generator multiplicatively con-
gruent to 1 modulo m. The ray class group modulo
m is then given by Clx(m) = Ix(m)/Px(m). The
norm group of N/K modulo m is defined as the sub-
group of I (m) generated by the norms from N to
K of the fractional ideals of N coprime to mOy and
the group Px(m). Let My, x(m) denote this norm
group, it is known from Class Field Theory that
Ix(m)/Ny/k(m) = G by the Artin isomorphism.
Thus, for a given admissible modulus m, the norm
group Ny, (m) defines N uniquely.

Let S be a fixed finite set of places of K containing
the infinite places of K and the finite places ramified
in N/K.

To an element o € (G, one associates the partial
zeta function defined for a complex number s with
Res > 1 by the Dirichlet series

Z Na™?,

(a,5)=1

oq=0

where a runs through the integral ideals of K not
divisible by any (finite) prime ideal contained in S
and such that the Artin symbol o, is equal to o.

To a character x over (G, one associates the Artin
L-function defined for a complex number s with
Res > 1 by the Euler product

Ls(s,x) = [J(1 = x(»)Np )

p¢S

where p runs through the (finite) prime ideals of K
not contained in S. (Here and in the sequel, by
abuse of notation we consider that the character y
is not only defined on the Galois group G but also

on the ray class group Clk(f) and the group Ix(f)
of the non-zero fractional ideals of K coprime to the
finite part of f.)

These functions can be analytically continued to
meromorphic functions on the whole complex plane
(L-functions can even be continued to holomorphic
functions if the character x is non-trivial). As is
well-known, they are also related to partial zeta
functions by the two equivalent identities

(s(s,0) = [N iy ZGLSSX)X( o),

X) =Y (s(s,0)x(o

ceG

Let x be a character of G. If x is the trivial char-
acter 1 we set 7(1) = Card S — 1, otherwise () is
the number of places v € S such that the decom-
position group D, of v in N/K is contained in the
kernel of x, in other words such that x|p, = 1. The
following result can be found in [Martinet 1977] or
[Tate 1984].

Proposition 1.1. The order of vanishing at s = 0 of
the Artin L-function Lg(s,x) is equal to r(x).

We now assume that there exists an infinite place v
which is totally split in N/K and we fix w, a place
of N dividing v. We also assume that Card S > 2.
It follows from Proposition 1.1 that Lg(0, x) = 0 for
every character, thus the partial zeta functions (g
are all zero at s = 0.

Conjecture 1.2 (Stark). Let m be the number of roots of
unity contained in N. There exists an S-unite € N
such that for every c € G

log|o(e)l,, = —m(s(0,0),

or equivalently

Ls(0, x) ———Zx

ceG

for any character x over G. Furthermore N( ¥/e)/K
1s an abelian extension and if Card S > 3 then € is
a unit.

)log|o(e)l,

Remark 1.3. We denote by ¢(N/K, S, w) the unit ¢
appearing in the Conjecture if it exists (this is an
abuse of language since this unit may not be unique,
but in what follows the place w will be a real place
and we make ¢(N/K, S, w) unique by assuming that



w(e(N/K,S,w)) > 0). When the set S is chosen to
be minimal —that is, S is the set of infinite places of
K together with the finite places ramified in N/K —
we simply write e(N/K, w).

2. APPLICATION TO HILBERT’S TWELFTH PROBLEM

Let K be a totally real field distinct from Q and let
v be a fixed infinite place of K. We identify K with
its image v(K) in R. From now on, we assume that
Conjecture 1.2 is true for any finite abelian exrten-
sions N/K in which v is totally split and any choice
of the place w of N dividing v.

Let K5t he the subfield of C generated over K
by all the units e(N/K,w) where N/K runs through
the finite abelian extensions of K in which v is to-
tally split, and w runs through the infinite places of
N dividing v. Then, we have the following

Theorem 2.1. The mazimal real abelian extension of
K is contained in K5tk

Equivalently, for any finite real abelian extension
L/K, there exist Stark units ey, ..., &, such that L C
K(ey,...,e).

Remark 2.2. As mentioned in the introduction, this
theorem is a consequence of [Tate 1984, Chapter IV,
Proposition 3.8].

We will prove the theorem by proving the second
assertion. For that purpose, we will construct the
units €q,...,¢&,. In fact, we will prove a little more
since these units will verify

L=Q(e;+¢7t,...,er+e ). (2-1)

For a prime ideal p of K we define an integer
ry as follows. If p does not divide 2 then r, = 2,
otherwise r, = n, + 2 where n, is the degree of the
local extension K, /Q,.

Proposition 2.3. Let L/ K be a finite abelian extension
of totally real fields. Let v be a infinite place of
K and let T be a finite set of prime ideals of K
such that for each prime p in T, the 2-rank of the
decomposition group D, of p in L/K is strictly less
than ry.

Then there ezists a quadratic extension N/L ver-
ifying these three conditions:

(A) The extension N/K is abelian.
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(B) All the infinite places of K except v become com-
plex in N,

(C) The prime ideals of L above T do not split in
N/L.

Remark 2.4. The maximal value for the 2-rank of the
decomposition group D, of a prime ideal p in any
abelian extension of K is r,.

Remark 2.5. Conditions (A)—(C) are very important
for the construction. Conditions (A) and (B) allow
us to apply Conjecture 1.2 to the extension N/K.
Condition (C) is necessary to ensure that L's(0, x) is
not going to vanish for too many characters x, and
so make sure that the Stark unit that we obtain is
a generator of N (see below).

Proof. Let p be a prime ideal in 7" and fix a prime
ideal P in L dividing p. Let s, denote the 2-rank
of the decomposition group of p in L/K. Then Ga-
lois Theory tells us that the number of quadratic
extensions of K, contained in Lg is 2°* — 1. On the
other hand, Kummer Theory tells us that the num-
ber of quadratic extensions of K, is 2> — 1. Since
sy < 1y, there exists (at least) one quadratic exten-
sion, say F,/K,, such that E, is not contained in Ly
and thus a p-adic integer in K, say s, such that
E, = K,(,/7%). In particular, 5, is not a square in
L.

For each prime ideal p € T, choose such an ele-
ment s, and let

my = vp(34,) +vp(2) + 1,

where vy denotes the valuation associated to P (ob-
serve that m, does not depend on the choice of ‘P
since 7, is an element of K,). By the Approxima-
tion Theorem, one can find an algebraic integer s
in K such that

1. v(s) > 0,
2. v'(») < 0 for any infinite place v' of K distinct
from v,

3. »# = s, (mod p™) for any prime ideal p € T

Then I claim that N = L(y/) satisfies the proper-
ties (A)—(C). First, it is clear that N/K is abelian
since it is the compositum of the two abelian exten-
sions L/K and K(y/5)/K, so (A) is satisfied. Sec-
ond, since /v’(3) is a complex number for v’ # v
whereas /v(») is real, it follows that v is the only

infinite place of K which remains real in N/K and
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this gives (B). Third, let p be a prime ideal in T" and
suppose that p splits in N/L. Denote by P and B a
prime ideal in L and N, respectively, dividing p and
such that P | B. Then the local fields Ny and Ly
are the same and thus s is a square in Ly. Now,
consider the quadratic polynomial X? — 3, with co-
efficients in Lg. This polynomial has a simple root
modulo P, namely /5, and thus it follows by
Hensel’s Lemma that it has a root in Lg. But this
is impossible since we know that s, is not a square
in Ly and thus p cannot split in N/L and (C) is also
satisfied. O

We now prove Theorem 2.1. Assume first that L/K
is a cyclic extension. We want to construct a quad-
ratic extension IN/L satisfying conditions (A)—(C),
and such that not too many derivatives of L-func-
tions associated to this extension vanish at s = 0
since, otherwise, Conjecture 1.2 would be useless.
Looking at the formulae for r() before Proposition
1.1, one way to do this is to ensure that no prime
ideals in S split in N/L. Now, with our choice of
S as minimal, the prime ideals in S are exactly the
prime ideals that ramify in N/K. Let p be such a
prime ideal. If p is not ramified in L/ K, then p must
be ramified in N/L and thus is not split. If p is ram-
ified in L/K, then we want to make sure that it is
not going to split in N/L, so we let p be an element
of T'. Hence, we choose T be the set of the prime ide-
als of K which are ramified in L/K. For each prime
ideal p in T', the 2-rank of its decomposition group
in L/K is equal to 1, so we can apply Proposition
2.3 and obtain a quadratic extension N/L verifying
conditions (A)—(C). We fix an infinite place w in N
dividing v and let ¢ = ¢(N/K, w).

Let 7 denote the unique non-trivial automorphism
of the quadratic extension N/L, and let p be a prime
ideal in S. Since p does not split in N/L, D, con-
tains 7. In particular, if x is a character of G such
that x(7) # 1 then r(x) = 1 and we deduce from
Proposition 1.1 that

Ls(0,x) # 0.

Finally, we apply [Stark 1976, Theorem 1], which
we restate in our situation with our notations for
the sake of completeness.

Theorem 2.6 (Stark). Assume Conjecture 1.2 is true.
Let T' be the quotient group G/{1,7}, so that T is

the Galois group of L/K. Assume that for every
character ¢ of G not induced by a character of T’
one has L'(0,v) # 0. Then, N = Q(¢) and

L=Q(e " +e¢).
When L/K is not cyclic, we can split L/K as the
compositum of cyclic extensions L, /K, ..., L./K

and apply to each of these cyclic extensions the
above construction to obtain quadratic extensions
N;/L; and infinite places w; such that

E; = E(NI/K,/LU,L)

satisfies L; = K(g; +¢;'). Assertion (2-1) follows
since L is generated over K by the elements &, +¢; ',
proving the theorem.

Remark 2.7. Note that conditions (A)—(C) on the ex-
tension N/K of Proposition 2.3 (with 7' contain-
ing the set of prime ideals ramified in L/K) are
enough to prove the theorem, and that we may ob-
tain an extension N/L verifying those conditions by
other means than those given in the proof of the
proposition which constructs IV as the compositum
of the extension L/K with the quadratic extension
K (y/#)/K (see last section for such an example).

We end this section with a very useful lemma.

Lemma 2.8. The Stark unit € appearing in the above
construction is a unit (and not merely an S-unit)
and satisfies

|E|w/ = ]_

for any infinite place w' of N which does not divide
v (that is, for any infinite complex place w' of N).

Proof. To prove the first assertion, it suffices to prove
that Card S > 3 and the result will follow from Con-
jecture 1.2. Since S must contain the infinite places
of K, the case Card S < 3 can only happen when
K is a real quadratic field and N/K is unramified
at all the finite places. But this is possible only if
N is the Hilbert Class Field or the Narrow Hilbert
Class Field of K; in the first case, no infinite places
of K are ramified in N/K, in the second the two in-
finite places of K are ramified in N/K, and neither
of these cases apply here since exactly one infinite
place must be ramified in N/K.

The proof of the second assertion can be found in
[Stark 1976, p. 74] in a slightly different form. O



3. AN OVERVIEW OF THE COMPUTATIONAL ASPECTS

In this section we will briefly describe how one can
use the proof of Theorem 2.1 to compute real class
fields of a totally real ground field (see [Roblot 1997]
for a complete exposition). Similar computations for
checking Stark’s Conjecture over a real cubic field
can be found in [Dummit et al. 1997]. In a more
specialized case, namely when K is a real quadratic
field and L its Hilbert Class Field, it is possible to
obtain a much more powerful algorithm; see [Cohen
and Roblot 2000] for details.

Let K be a totally real field of degree NV > 2 and
discriminant dg, let L be a finite real abelian ex-
tension of K of conductor m (hence m is an integral
ideal of K). Assume for the sake of simplicity that
there exist quadratic extensions N/L verifying con-
ditions (A)—(C) of Proposition 2.3 (e.g., if L/K is
cyclic, or more generally if for every prime ideal p
of K which divides m, one has s, < r, with the
notations of Proposition 2.3).

First, we need to compute a quadratic extension
N/L verifying conditions (A)-(C). Of course, the
proof of Proposition 2.3 gives us a direct way to
do this, but, as quoted in Remark 2.7, we cannot
obtain by this method all the quadratic extensions
N/L verifying (A)—(C). Furthermore, heuristics and
numerical evidences seem to show that the Stark
unit tends to grows more or less like the exponential
of the square root of the discriminant times the norm
of the conductor of N/K and thus we want to lower
this norm as much possible. The best way to find
N is then to construct explicitly the class group of
conductor fofo where f; = am and a runs through
the integral ideals of K by increasing norm and f.,
contains all the infinite places of K but one, and
look for the first one of these class groups which
contains a subgroup defining a suitable extension
N/L. These computations involve only class groups
and can be done using the tools of [Cohen et al.
1998|.

Assume we have found such a suitable extension
N/L, let f be the conductor of N/K, G its Galois
group, v the only unramified infinite place, and let
e = ¢(N/L,w) denote the corresponding Stark unit.
We want to compute €, or more precisely the element
a = e+¢e ! satisfying L = K (a). Thanks to Lemma
2.8, we know that « is in fact an algebraic integer.
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Now, we need to compute the values of (%(0,0)
for ¢ € G to high precision. In fact, it is simpler
to compute the values of L5(0, x) and deduce from
them the values of (%(0, o) using the formulae given
in the first section. Let x be a character of G; using
Proposition 1.1, it is easy to prove that L5(0,x) =0
if x(7) = 1 (recall that 7 is a generator of Gal(N/L))
and this term does not contribute to the computa-
tion of (5(0,x). Thus we assume that x(7) = —1.
Let L(s,x) denote the primitive L-function associ-
ated to x which is defined by

L(87X) = H(l o X(p)Npis)ilv
P
where p runs through all the prime ideals of K and
where x(p) is set to be equal to zero whenever p
divides the conductor f(x) of x. We have

Ls(0,x) = A(x)L'(0, x)
where

A =[] = x(p)).
plf
The value of the first derivative of L(s,x) at s =0
can be easily determined thanks to the functional
equation. Let A(s,x) be the “enlarged” L-function
given by

A(s,x) = COOT(5)T (%) L(s,x)
where C'(x) = /7 NdgNf(x). Then for any s € C
A(l -5 X) = W(X)A(87 X)

The constant W () is a complex number of modulus
one, the so-called Artin Root Number (see [Martinet
1977] for a complete exposition of these results in the
more general case of Artin L-functions). Letting s
tends to zero in this functional equation yields the
relation

)Nfl

! A(17 >_<)
LS(07X) A(X)2\/7mw(>_<)
where A(y) is the constant defined above.

Thus the computation of L5(0, x) — and hence of
¢5(0,0) —Dboils down to the computation of three
quantities: A(x), W(x) and A(1, ). The computa-
tion of A(x) is direct using the methods of [Cohen
et al. 1998] and one can use explicit formulae to
compute W(Y); see [Dummit and Tangedal 1998],
for example. However, the computation of A(1, )
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requires much more work. We use a result from
[Friedman 1988|:

Theorem 3.1 (Friedman). Let L(s, x) = >_,~, an(X)n"°
be the expression for L(s, x) as a Dirichlet series for
Res > 1. Then

A1) =Y (a0 F(C(x) /1)

"2 W (a0 (C(0)/n,0)),
where
o+ico (2 (2Ll Nt
fl,t) = i/{s_ - (Q)z(—Qt) o

for any real number § > Ret.

There exist various methods to compute these in-
tegrals. One was developed by E. Tollis [1997]. A
quite similar method is used in [Dummit et al. 1997].

One of the most time consuming part of the algo-
rithm is the computation of the coefficients a,,(x).
We explain briefly how to do this. Assume that the
prime ideals of K have been ordered in a sequence
(p;)i>1 such that Np, 1 > Np;, and set py = Og. Let
I, 1(x) denote the set of all integral ideals in K of
norm n, prime with f(y) and divisible only by prime
ideals p; with ¢ < h. We set

an.n(X) = Z x(a).

acln n(x)

Then it is clear that a,(x) = limy e an.n(x), and
even more a,(x) = ann(x) if Np, > n. Now, the
coefficients a,, ,(x) are computed using a sieve and
the following lemma.

Lemma 3.2. We have a1,0(x) =1 and a,o(x) =0 for
n > 2, and for h > 1

Mn,h

ann(Xx) = Z an/qh’“,h—l(X)X(ph)ka
k=0

where g, = Npj, and m,,;, is the largest integer m
such that g | n.

Proof. This is a direct application of the Euler prod-
uct formula
1

> a,(on =[] (0= x(en)/Np;®) . O

n>1 h>1

Once we have computed the value A(1,x) for all
characters x such that x(7) = —1, we obtain the
values of L(0,x) and the values of (5(0,0) for all

o € G. In order to deduce from these values the con-
jugates of €, we need to remove the absolute value
appearing in Conjecture 1.2. Since we have already
assumed that w(e) > 0, it is a direct consequence
of the second assertion of the conjecture (namely
N(y/e)/K is Galois) that all the others conjugates
of € over K are also positive at w. Hence, we can
approximate the irreducible polynomial of o over K
by writing

P(X) = [[(X — (2% + %)),

o

where o runs through a system of representatives
of G/(r) (which is isomorphic to Gal(L/K)) and
Z, denotes the approximation of (5(0, ) which has
been computed (note that Z, = —Z,,).

We need to recognize the coefficients of P(X) as
the v-embedding of algebraic integers of K. For the
other embeddings, Lemma 2.8 gives us |af, < 2
for any infinite place w’ of N which does not di-
vide v, and thus provides bounds on the embeddings
of these coefficients at the others infinite places of
K. Now there exist finitely many algebraic integers
of a given degree such that all their conjugates are
bounded, and thus finitely many algebraic integers
in K which are very close to a given real number at
the infinite place v and bounded at all the others,
and we can list them (in fact, if the precision is sharp
enough, we obtain only one candidate for each coef-
ficient). Once we have recognized all the coefficients
of P, we obtain a polynomial P(X) € Ox[X].

Finally, we need to prove that P is indeed the
irreducible polynomial of a generating element of
L. Tt is quite easy to prove that P is irreducible.
If so, let L denote the field it defines. It is also
easy to check that the field L is totally real and
to compute the relative discriminant of L/K (see
[Cohen et al. 1996] for algorithms to perform these
tasks). Once all these checks have been done, we
still need to prove that the extension L/K is abelian
and that its norm group is the same as the one of
L/K. Although this can be done quite easily when
the degree of the extension is small, it is a difficult
task in general and we will not go into details here
(see [Roblot 1997]). However, under the Generalized
Riemann Hypothesis (GRH), it is possible to find an
algorithm which at the same time proves that the
extension is abelian and computes its norm group.



We just quote the key result here (which rely on the
theorem of Bach and Sorenson [1996]), and we refer
the interested reader to [Roblot 1997].

Theorem 3.3. Assume GRH is true. Let L/K be a
finite extension of totally real number fields, and let
d, 0 denote respectively the absolute discriminant of
L, and the relative discriminant of L/K. Set

O = (4logd + 3[L: Q] +5)",

and let & denote the set of prime ideals of K of
degree 1, unramified in E/K, and of absolute norm
smaller than C. Then E/K 1s an abelian extension
if and only if

(i) all prime ideals B in L dividing p € & have the
same residual degree f,, and

(ii) the group M generated by p’» | as p ranges through
S, and Px(0) has index [L : K] in Ix(0).

Furthermore, if these two conditions are satisfied,
N is the norm group of L/ K.

4. TWO EXAMPLES

This method has been used to compute the Hilbert
Class Field of totally real fields of degrees 2, 3, and
4 and various ray class fields (see [Roblot 1997]) us-
ing PARI [Batut et al. 1999]. At the address http://
www.math.u-bordeaux.fr /~roblot/resources/hilb.gp
one can find a table of the Hilbert Class Field of
all real quadratic fields of discriminant less than
10000, real cubic fields of discriminant less then
150000 and real quartic fields of discriminant less
than 600000 — a total of 3303 non-principal fields.

We now give two examples of the construction of
real abelian extensions of a totally real field using
Theorem 2.1. Similar use of Stark’s Conjectures to
construct class fields can be found in [Cohen and
Roblot 2000; Dummit et al. 1997; Stark 1976; 1980].
One can also use Kummer Theory to compute class
fields; see for example [Daberkow and Pohst 1995;
Fieker 2000].

These two examples where computed with the lat-
est version of GP/PARI (version 2.0.13 alpha) on a
DEC Alpha 2100 300MHz with 512Mb of memory.
Computation times are provided at the end of each
example.
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Example 4.1. Let K be the real quadratic field gen-
erated over Q by a square root w of 82. The dis-
criminant is 328, and {1,w} forms a Z-basis of the
ring of integers Og. The field we wish to construct
is L = Hp, the Hilbert Class Field of K, that is,
the maximal abelian extension of K unramified ev-
erywhere, which is a cyclic extension of degree 4 of
K.

A quadratic extension N/L verifying conditions
(A)—(C) and with minimal (norm of) conductor is
given by the ray class field modulo §f = p3v; where

is a prime ideal dividing 3, and v, is the real place
sending w to the negative square root of 82 in R.
The extension N/K is a cyclic extension of degree
8, so this extension cannot be constructed using the
proof of Proposition 2.3. In fact, the first extension
that one can construct using Proposition 2.3 has a
conductor of norm 16, and it is certainly more ef-
ficient not to use this one but the former (see next
remark).

Let G denote the Galois group of N/K, let o be
a generator of G and let 7 = ¢* be the unique el-
ement of order 2 (7 generates the Galois group of
N/L). It is easy to prove that all characters x of
G such that x(7) = —1 have conductor f, hence
Ls(s,x) = L(s, x) for any such character. We com-
pute the values of L'(0, x) and obtain the values of
the derivatives of partial zeta functions, as follows.
(The computations have been made with much more
precision than given in this paper.)

¢4(0,1) = —1.855345769803922.. . .,

Cg(oa T) = _C.,S'(Oa U):
C'S(O,a) = —0.811399495928109.. .,
C,/S(Oa TU) = _C,,S(Oa 0)7
¢5(0,0%) = —1.056128108731457 . . .,
4:9(07 7—02) = _Cg(ov 02)7
gg(o, 03) = 0.597654704583391 ...,
¢5(0,70%) = —(5(0,0%).

Remark 4.2. The logarithmic height of ¢ (see [Lang
1983] for a definition) is

2(1¢5(0,1)] +[¢5(0,0)] + [¢6(0, %) + [¢5(0,0°)])
= 8.64105615809373 ...
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(since we know that the other conjugates of € have
an absolute value of 1 by Lemma 2.8). If instead,
we had used the class field of conductor 16 for this
construction, the logarithmic height of € would have
been 16.985931238837..., that is to say nearly 2
times larger (the heuristics quoted at the beginning
of section 3 give \/16/3 ~ 2.3). This illustrates why
we need to find a suitable N with minimal conductor
to speed up the computations.

The polynomial P (with the above notation) is

X* —58.16615541441224 X3
+ 799.4369460780463 X
— 3980.184730390231.X
+ 6515.938649729469,

and we “recognize” this polynomial as the embed-
ding of the following polynomial of O [X]:

P(X)=X"— (3w +31)X® + (44w + 401)X>
— (220w + 1988) X + (360w + 3256).

Although the discriminant of this polynomial is far
from trivial (its norm is 283'273?), it nevertheless
defines an unramified extension of K of degree 4.
Thus, to prove that this extension is indeed the
Hilbert Class Field of K, it remains to prove that
it is abelian. For that purpose, it suffices to prove
that it is Galois since the only Galois groups of order
4 of quartic extensions are abelian groups (namely
the cyclic group of order 4 and the Klein group).
There are various way to prove this. One way is
to compute an absolute (and in this case reduced)
polynomial over Q defining the same field and to
compute its Galois group. In our case, we obtain
the polynomial

X% —4X" - 14X +56X° +49X*
—196X°3 + 28X? + 80X — 25,

whose Galois group is the dihedral group of order 8
which proves that the field it defines is abelian over
K and thus is the Hilbert Class Field of Q(1/82).

This example was computed in 4 seconds. The
computation of the polynomial P(X) took 3 sec-
onds, and the verification (computation of the rela-
tive discriminant, and of the Galois group) took less
than one second.

Example 4.3. Let K be the field generated over Q by
a root « of the polynomial

X? —4X — 1.

This is a real cubic field of discriminant 229 and
with ring of integers Ox = Z[a]. Let m denote the
prime ideal above 37 defined by

m =370k + (8 + a)0Ok;

we want to construct the ray class field L of K mod-
ulo m. This is an abelian extension of K of degree
three.

Using the proof of Proposition 2.3, one can choose
for N the field generated over L by a square root of
» = «. This yields an abelian extension of K of
degree 6 and conductor mwv,v, where v; and v, are
the infinite places sending o to —1.860805... and
—0.254101.. ., respectively. Here, it is clear that N
is of minimal norm. As usual, we denote by G the
Galois group of N/K, by 7 the non-trivial element of
Gal(N/L) and by o a generator of G. Let x denote
the character of G such that x(o) = exp(2in/6).
This is a generator of the group of characters of G.

The characters of G which are non-trivial on 7
are x, x° and x°, since x(7) = —1. For these, we
compute the Artin root numbers

W(x) = —0.367664745 ... — 0.92995840. . . 4,

W) =1, WK’ =W(),
and the corrective factors
Alx) =1, A(X’) =2 AKX’ =1

This gives us the following values for the partial
zeta functions:

¢5(0,1) = 1.96011188229224 . . . ,
(s(0,7) = —(5(0,1),
C5(0,0) = 1.57294437150264 . . . ,
(s(0,70) = —(5(0,0),
¢5(0,0%) = 0.72454531436117 .. .
(5(0,70%) = —(5(0,0?),
and the polynomial
X3 — 78.20893338606214.X >
+ 1505.492174458384 X
— 5276.952425687298,



which can be seen to be very close to the polynomial
P(X)=X?- (9" + 17Ta+2)X?
+ (160a” + 338a + 75) X
— (5600 + 1185 + 266).

One can check that the field extension L generated
by a root of this polynomial is a totally real field
of degree 9 and that its relative discriminant is m2.
Since this is a square and since L/K is a cubic ex-
tension, it follows from Galois Theory that it is an
abelian extension (Galois group of cubic extensions
are S3 or A; ~ (5, and the latter occurs if and
only if the discriminant is a square). Since L/K
is an abelian extension of prime degree [ = 3, the
Fiihrerdiskriminantenproduktformel tells us that its
discriminant is equal to its conductor raised to the
power | — 1 = 2. Thus, m is the conductor of L/K,
and that finishes the proof that this is indeed the
field L that we wanted. For completeness, we give a
reduced polynomial that defines L over Q:

X% 4+2X% —9X7 —11X°% 4+ 28X° + 18X*
— 34X -8X%+ 13X — 1.

This example was computed in 24 seconds. The
computation of the polynomial P(X) took 23 sec-
onds, and the verification (computation of the rela-
tive discriminant) took less than one second.
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