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We give a constructive proof of a theorem of Tate, which states

that (under Stark’s Conjecture) the field generated over a totally

real field K by the Stark units contains the maximal real abelian

extension of K. As a direct application of this proof, we show

how one can compute explicitly real abelian extensions of K.

We give two examples.

In a series of important papers, H. M. Stark [1971;1975; 1976; 1980] developed a body of conjecturesrelating the values of Artin L-functions at s = 1(and hence, by the functional equation, their leadingterms at s = 0) with certain algebraic quantities at-tached to extensions of number �elds. For example,in the case of abelian L-functions with a �rst-orderzero at s = 0; the conjectural relation is betweenthe �rst derivative of the L-functions and the loga-rithmic embedding of certain units in ray class �eldsknown as Stark units, which are predicted to exist.The use of these conjectures to provide explicitgenerators of ray class �elds, and thus to answerHilbert's famous Twelfth Problem was one of theoriginal motivations for their formulation. It hasbeen noticed by several people (including Stark him-self [1976]) that they could provide a new way toconstruct ray class �elds of totally real �elds.In particular, if K is a totally real �eld, the �eldextension generated over K by the Stark units (seebelow for details) contains the maximal real abelianextension of K. This result is a direct consequenceof [Tate 1984, Chapter IV, Proposition 3.8].Using the ideas given in [Stark 1976], we give inSection 2 a constructive proof of this result; that is,for each �nite real abelian extension L=K we con-struct explicit generators of L over K using Starkunits. This proof has a direct application since wecan use it to explicitly compute real class �elds ofa totally real �eld. This is discussed in Section 3.Since this construction is based on a conjecture, we
c
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also explain in that section how to check the cor-rectness of the result. Finally, we end the paper bygiving two examples of such a construction.
1. THE ABELIAN RANK-ONE STARK CONJECTUREThe main reference for Stark's conjectures is [Tate1984].LetN=K be an abelian extension of number �elds,and let G and f denote respectively its Galois groupand its conductor.For m an admissible modulus for N=K (that is,m is a multiple of f), we let IK(m) be the group offractional (non-zero) ideals of K coprime to m, andPK(m) the group of fractional (non-zero) principalideals which have a generator multiplicatively con-gruent to 1 modulo m. The ray class group modulom is then given by ClK(m) = IK(m)=PK(m). Thenorm group of N=K modulo m is de�ned as the sub-group of IK(m) generated by the norms from N toK of the fractional ideals of N coprime to mON andthe group PK(m). Let NN=K(m) denote this normgroup, it is known from Class Field Theory thatIK(m)=NN=K(m) �= G by the Artin isomorphism.Thus, for a given admissible modulus m, the normgroup NN=K(m) de�nes N uniquely.Let S be a �xed �nite set of places ofK containingthe in�nite places of K and the �nite places rami�edin N=K.To an element � 2 G, one associates the partialzeta function de�ned for a complex number s withRe s > 1 by the Dirichlet series�S(s; �) = X(a;S)=1�a=� Na�s;
where a runs through the integral ideals of K notdivisible by any (�nite) prime ideal contained in Sand such that the Artin symbol �a is equal to �.To a character � over G, one associates the ArtinL-function de�ned for a complex number s withRe s > 1 by the Euler productLS(s; �) =Yp=2S(1� �(p)Np�s)�1
where p runs through the (�nite) prime ideals of Knot contained in S. (Here and in the sequel, byabuse of notation we consider that the character �is not only de�ned on the Galois group G but also

on the ray class group ClK(f) and the group IK(f)of the non-zero fractional ideals of K coprime to the�nite part of f.)These functions can be analytically continued tomeromorphic functions on the whole complex plane(L-functions can even be continued to holomorphicfunctions if the character � is non-trivial). As iswell-known, they are also related to partial zetafunctions by the two equivalent identities�S(s; �) = 1[N : K]X�2 bGLS(s; �)�(�);LS(s; �) =X�2G �S(s; �)�(�):Let � be a character of G. If � is the trivial char-acter 1 we set r(1) = CardS � 1, otherwise r(�) isthe number of places v 2 S such that the decom-position group Dv of v in N=K is contained in thekernel of �, in other words such that �jDv = 1. Thefollowing result can be found in [Martinet 1977] or[Tate 1984].
Proposition 1.1. The order of vanishing at s = 0 ofthe Artin L-function LS(s; �) is equal to r(�).We now assume that there exists an in�nite place vwhich is totally split in N=K and we �x w, a placeof N dividing v. We also assume that CardS � 2.It follows from Proposition 1.1 that LS(0; �) = 0 forevery character, thus the partial zeta functions �Sare all zero at s = 0.
Conjecture 1.2 (Stark). Let m be the number of roots ofunity contained in N . There exists an S-unit " 2 Nsuch that for every � 2 Glog j�(")jw = �m� 0S(0; �);or equivalentlyL0S(0; �) = � 1mX�2G�(�) log j�(")jwfor any character � over G. Furthermore N( mp")=Kis an abelian extension and if CardS � 3 then " isa unit .
Remark 1.3. We denote by "(N=K;S;w) the unit "appearing in the Conjecture if it exists (this is anabuse of language since this unit may not be unique,but in what follows the place w will be a real placeand we make "(N=K;S;w) unique by assuming that
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w("(N=K;S;w)) > 0). When the set S is chosen tobe minimal|that is, S is the set of in�nite places ofK together with the �nite places rami�ed inN=K|we simply write "(N=K;w).
2. APPLICATION TO HILBERT’S TWELFTH PROBLEMLet K be a totally real �eld distinct from Q and letv be a �xed in�nite place of K. We identify K withits image v(K) in R . From now on, we assume thatConjecture 1.2 is true for any �nite abelian exten-sions N=K in which v is totally split and any choiceof the place w of N dividing v.Let KStark be the sub�eld of C generated over Kby all the units "(N=K;w) where N=K runs throughthe �nite abelian extensions of K in which v is to-tally split, and w runs through the in�nite places ofN dividing v. Then, we have the following
Theorem 2.1. The maximal real abelian extension ofK is contained in KStark.Equivalently , for any �nite real abelian extensionL=K, there exist Stark units "1; : : : ; "r such that L �K("1; : : : ; "r).
Remark 2.2. As mentioned in the introduction, thistheorem is a consequence of [Tate 1984, Chapter IV,Proposition 3.8].We will prove the theorem by proving the secondassertion. For that purpose, we will construct theunits "1; : : : ; "r. In fact, we will prove a little moresince these units will verifyL = Q ("1 + "�11 ; : : : ; "r + "�1r ): (2–1)For a prime ideal p of K we de�ne an integerrp as follows. If p does not divide 2 then rp = 2,otherwise rp = np + 2 where np is the degree of thelocal extension Kp=Q 2.
Proposition 2.3. Let L=K be a �nite abelian extensionof totally real �elds . Let v be a in�nite place ofK and let T be a �nite set of prime ideals of Ksuch that for each prime p in T , the 2-rank of thedecomposition group Dp of p in L=K is strictly lessthan rp.Then there exists a quadratic extension N=L ver-ifying these three conditions :(A) The extension N=K is abelian.

(B) All the in�nite places of K except v become com-plex in N ,(C) The prime ideals of L above T do not split inN=L.
Remark 2.4. The maximal value for the 2-rank of thedecomposition group Dp of a prime ideal p in anyabelian extension of K is rp.
Remark 2.5. Conditions (A){(C) are very importantfor the construction. Conditions (A) and (B) allowus to apply Conjecture 1.2 to the extension N=K.Condition (C) is necessary to ensure that L0S(0; �) isnot going to vanish for too many characters �, andso make sure that the Stark unit that we obtain isa generator of N (see below).
Proof. Let p be a prime ideal in T and �x a primeideal P in L dividing p. Let sp denote the 2-rankof the decomposition group of p in L=K. Then Ga-lois Theory tells us that the number of quadraticextensions of Kp contained in LP is 2sp � 1. On theother hand, Kummer Theory tells us that the num-ber of quadratic extensions of Kp is 2rp � 1. Sincesp < rp, there exists (at least) one quadratic exten-sion, say Ep=Kp, such that Ep is not contained in LPand thus a p-adic integer in Kp, say {p, such thatEp = Kp(p{p). In particular, {p is not a square inLP.For each prime ideal p 2 T , choose such an ele-ment {p and letmp = vP({p) + vP(2) + 1;where vP denotes the valuation associated to P (ob-serve that mp does not depend on the choice of Psince {p is an element of Kp). By the Approxima-tion Theorem, one can �nd an algebraic integer {in K such that
1. v({) > 0,
2. v0({) < 0 for any in�nite place v0 of K distinctfrom v,
3. { � {p (mod pmp) for any prime ideal p 2 T .Then I claim that N = L(p{) satis�es the proper-ties (A){(C). First, it is clear that N=K is abeliansince it is the compositum of the two abelian exten-sions L=K and K(p{)=K, so (A) is satis�ed. Sec-ond, since pv0({) is a complex number for v0 6= vwhereas pv({) is real, it follows that v is the onlyin�nite place of K which remains real in N=K and
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this gives (B). Third, let p be a prime ideal in T andsuppose that p splits in N=L. Denote by P and ~P aprime ideal in L and N , respectively, dividing p andsuch that ~P j P. Then the local �elds N ~P and LPare the same and thus { is a square in LP. Now,consider the quadratic polynomial X2�{p with co-e�cients in LP. This polynomial has a simple rootmodulo Pmp , namely p{, and thus it follows byHensel's Lemma that it has a root in LP. But thisis impossible since we know that {p is not a squarein LP and thus p cannot split in N=L and (C) is alsosatis�ed. �We now prove Theorem 2.1. Assume �rst that L=Kis a cyclic extension. We want to construct a quad-ratic extension N=L satisfying conditions (A){(C),and such that not too many derivatives of L-func-tions associated to this extension vanish at s = 0since, otherwise, Conjecture 1.2 would be useless.Looking at the formulae for r(�) before Proposition1.1, one way to do this is to ensure that no primeideals in S split in N=L. Now, with our choice ofS as minimal, the prime ideals in S are exactly theprime ideals that ramify in N=K. Let p be such aprime ideal. If p is not rami�ed in L=K, then p mustbe rami�ed in N=L and thus is not split. If p is ram-i�ed in L=K, then we want to make sure that it isnot going to split in N=L, so we let p be an elementof T . Hence, we choose T be the set of the prime ide-als of K which are rami�ed in L=K. For each primeideal p in T , the 2-rank of its decomposition groupin L=K is equal to 1, so we can apply Proposition2.3 and obtain a quadratic extension N=L verifyingconditions (A){(C). We �x an in�nite place w in Ndividing v and let " = "(N=K;w).Let � denote the unique non-trivial automorphismof the quadratic extensionN=L, and let p be a primeideal in S. Since p does not split in N=L, Dp con-tains � . In particular, if � is a character of G suchthat �(�) 6= 1 then r(�) = 1 and we deduce fromProposition 1.1 thatL0S(0; �) 6= 0:Finally, we apply [Stark 1976, Theorem 1], whichwe restate in our situation with our notations forthe sake of completeness.
Theorem 2.6 (Stark). Assume Conjecture 1.2 is true.Let � be the quotient group G=f1; �g, so that � is

the Galois group of L=K. Assume that for everycharacter  of G not induced by a character of �one has L0(0;  ) 6= 0. Then, N = Q (") andL = Q ("�1 + "):When L=K is not cyclic, we can split L=K as thecompositum of cyclic extensions L1=K, . . . , Lr=Kand apply to each of these cyclic extensions theabove construction to obtain quadratic extensionsNi=Li and in�nite places wi such that"i = "(Ni=K;wi)satis�es Li = K("i + "�1i ). Assertion (2{1) followssince L is generated over K by the elements "i+"�1i ,proving the theorem.
Remark 2.7. Note that conditions (A){(C) on the ex-tension N=K of Proposition 2.3 (with T contain-ing the set of prime ideals rami�ed in L=K) areenough to prove the theorem, and that we may ob-tain an extension N=L verifying those conditions byother means than those given in the proof of theproposition which constructs N as the compositumof the extension L=K with the quadratic extensionK(p{)=K (see last section for such an example).We end this section with a very useful lemma.
Lemma 2.8. The Stark unit " appearing in the aboveconstruction is a unit (and not merely an S-unit)and satis�es j"jw0 = 1for any in�nite place w0 of N which does not dividev (that is , for any in�nite complex place w0 of N).
Proof. To prove the �rst assertion, it su�ces to provethat CardS � 3 and the result will follow from Con-jecture 1.2. Since S must contain the in�nite placesof K, the case CardS < 3 can only happen whenK is a real quadratic �eld and N=K is unrami�edat all the �nite places. But this is possible only ifN is the Hilbert Class Field or the Narrow HilbertClass Field of K; in the �rst case, no in�nite placesof K are rami�ed in N=K, in the second the two in-�nite places of K are rami�ed in N=K, and neitherof these cases apply here since exactly one in�niteplace must be rami�ed in N=K.The proof of the second assertion can be found in[Stark 1976, p. 74] in a slightly di�erent form. �
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3. AN OVERVIEW OF THE COMPUTATIONAL ASPECTSIn this section we will brie
y describe how one canuse the proof of Theorem 2.1 to compute real class�elds of a totally real ground �eld (see [Roblot 1997]for a complete exposition). Similar computations forchecking Stark's Conjecture over a real cubic �eldcan be found in [Dummit et al. 1997]. In a morespecialized case, namely when K is a real quadratic�eld and L its Hilbert Class Field, it is possible toobtain a much more powerful algorithm; see [Cohenand Roblot 2000] for details.Let K be a totally real �eld of degree N � 2 anddiscriminant dK , let L be a �nite real abelian ex-tension of K of conductor m (hence m is an integralideal of K). Assume for the sake of simplicity thatthere exist quadratic extensions N=L verifying con-ditions (A){(C) of Proposition 2.3 (e.g., if L=K iscyclic, or more generally if for every prime ideal pof K which divides m, one has sp < rp with thenotations of Proposition 2.3).First, we need to compute a quadratic extensionN=L verifying conditions (A){(C). Of course, theproof of Proposition 2.3 gives us a direct way todo this, but, as quoted in Remark 2.7, we cannotobtain by this method all the quadratic extensionsN=L verifying (A){(C). Furthermore, heuristics andnumerical evidences seem to show that the Starkunit tends to grows more or less like the exponentialof the square root of the discriminant times the normof the conductor of N=K and thus we want to lowerthis norm as much possible. The best way to �ndN is then to construct explicitly the class group ofconductor f0f1 where f0 = am and a runs throughthe integral ideals of K by increasing norm and f1contains all the in�nite places of K but one, andlook for the �rst one of these class groups whichcontains a subgroup de�ning a suitable extensionN=L. These computations involve only class groupsand can be done using the tools of [Cohen et al.1998].Assume we have found such a suitable extensionN=L, let f be the conductor of N=K, G its Galoisgroup, v the only unrami�ed in�nite place, and let" = "(N=L;w) denote the corresponding Stark unit.We want to compute ", or more precisely the element� = "+"�1 satisfying L = K(�). Thanks to Lemma2.8, we know that � is in fact an algebraic integer.

Now, we need to compute the values of � 0S(0; �)for � 2 G to high precision. In fact, it is simplerto compute the values of L0S(0; �) and deduce fromthem the values of � 0S(0; �) using the formulae givenin the �rst section. Let � be a character of G; usingProposition 1.1, it is easy to prove that L0S(0; �) = 0if �(�) = 1 (recall that � is a generator of Gal(N=L))and this term does not contribute to the computa-tion of � 0S(0; �). Thus we assume that �(�) = �1.Let L(s; �) denote the primitive L-function associ-ated to � which is de�ned byL(s; �) =Yp (1� �(p)Np�s)�1;
where p runs through all the prime ideals of K andwhere �(p) is set to be equal to zero whenever pdivides the conductor f(�) of �. We haveL0S(0; �) = A(�)L0(0; �)where A(�) =Ypjf (1� �(p)):
The value of the �rst derivative of L(s; �) at s = 0can be easily determined thanks to the functionalequation. Let �(s; �) be the \enlarged" L-functiongiven by�(s; �) = C(�)s�� s2��� s+12 �N�1L(s; �)where C(�) =p��NdKNf(�). Then for any s 2 C�(1� s; �) =W (�)�(s; ��):The constantW (�) is a complex number of modulusone, the so-called Artin Root Number (see [Martinet1977] for a complete exposition of these results in themore general case of Artin L-functions). Letting stends to zero in this functional equation yields therelation L0S(0; �) = A(�) �(1; ��)2p�N�1W (��)where A(�) is the constant de�ned above.Thus the computation of L0S(0; �)|and hence of� 0S(0; �)|boils down to the computation of threequantities: A(�), W (��) and �(1; ��). The computa-tion of A(�) is direct using the methods of [Cohenet al. 1998] and one can use explicit formulae tocompute W (��); see [Dummit and Tangedal 1998],for example. However, the computation of �(1; ��)
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requires much more work. We use a result from[Friedman 1988]:
Theorem 3.1 (Friedman). Let L(s; �) =Pn�1 an(�)n�sbe the expression for L(s; �) as a Dirichlet series forRe s > 1. Then�(1; �) =Xn�1�an(�)f(C(�)=n; 1)+W (�)an(��)f(C(�)=n; 0)�;wheref(x; t) = 12i� Z �+i1��i1 xz�� z2��� z+12 �N�1z � t dzfor any real number � > Re t.There exist various methods to compute these in-tegrals. One was developed by E. Tollis [1997]. Aquite similar method is used in [Dummit et al. 1997].One of the most time consuming part of the algo-rithm is the computation of the coe�cients an(�).We explain brie
y how to do this. Assume that theprime ideals of K have been ordered in a sequence(pi)i�1 such that Npi+1 � Npi, and set p0 = OK . LetIn;h(�) denote the set of all integral ideals in K ofnorm n, prime with f(�) and divisible only by primeideals pi with i � h. We setan;h(�) = Xa2In;h(�)�(a):Then it is clear that an(�) = limh!1 an;h(�), andeven more an(�) = an;h(�) if Nph > n. Now, thecoe�cients an;h(�) are computed using a sieve andthe following lemma.
Lemma 3.2. We have a1;0(�) = 1 and an;0(�) = 0 forn � 2, and for h � 1an;h(�) = mn;hXk=0 an=qhk;h�1(�)�(ph)k;where qh = Nph and mn;h is the largest integer msuch that qmh j n.
Proof. This is a direct application of the Euler prod-uct formulaXn�1 an(�)n�s =Yh>1 �1� �(ph)=Np�sh ��1 : �
Once we have computed the value �(1; �) for allcharacters � such that �(�) = �1, we obtain thevalues of L0S(0; �) and the values of � 0S(0; �) for all

� 2 G. In order to deduce from these values the con-jugates of ", we need to remove the absolute valueappearing in Conjecture 1.2. Since we have alreadyassumed that w(") > 0, it is a direct consequenceof the second assertion of the conjecture (namelyN(p")=K is Galois) that all the others conjugatesof " over K are also positive at w. Hence, we canapproximate the irreducible polynomial of � over Kby writing~P (X) =Y� �X � (e�2Z� + e2Z�)�;
where � runs through a system of representativesof G=h�i (which is isomorphic to Gal(L=K)) andZ� denotes the approximation of � 0S(0; �) which hasbeen computed (note that Z� = �Z��).We need to recognize the coe�cients of ~P (X) asthe v-embedding of algebraic integers of K. For theother embeddings, Lemma 2.8 gives us j�jw0 � 2for any in�nite place w0 of N which does not di-vide v, and thus provides bounds on the embeddingsof these coe�cients at the others in�nite places ofK. Now there exist �nitely many algebraic integersof a given degree such that all their conjugates arebounded, and thus �nitely many algebraic integersin K which are very close to a given real number atthe in�nite place v and bounded at all the others,and we can list them (in fact, if the precision is sharpenough, we obtain only one candidate for each coef-�cient). Once we have recognized all the coe�cientsof ~P , we obtain a polynomial P (X) 2 OK [X].Finally, we need to prove that P is indeed theirreducible polynomial of a generating element ofL. It is quite easy to prove that P is irreducible.If so, let ~L denote the �eld it de�nes. It is alsoeasy to check that the �eld ~L is totally real andto compute the relative discriminant of ~L=K (see[Cohen et al. 1996] for algorithms to perform thesetasks). Once all these checks have been done, westill need to prove that the extension ~L=K is abelianand that its norm group is the same as the one ofL=K. Although this can be done quite easily whenthe degree of the extension is small, it is a di�culttask in general and we will not go into details here(see [Roblot 1997]). However, under the GeneralizedRiemann Hypothesis (GRH), it is possible to �nd analgorithm which at the same time proves that theextension is abelian and computes its norm group.
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We just quote the key result here (which rely on thetheorem of Bach and Sorenson [1996]), and we referthe interested reader to [Roblot 1997].
Theorem 3.3. Assume GRH is true. Let ~L=K be a�nite extension of totally real number �elds , and letd, d denote respectively the absolute discriminant of~L, and the relative discriminant of ~L=K. SetC = �4 log d+ 52 [ ~L : Q ] + 5�2;and let S denote the set of prime ideals of K ofdegree 1, unrami�ed in ~L=K, and of absolute normsmaller than C. Then ~L=K is an abelian extensionif and only if(i) all prime ideals P in ~L dividing p 2 S have thesame residual degree fp, and(ii) the group N generated by pfp , as p ranges throughS, and PK(d) has index [ ~L : K] in IK(d).Furthermore, if these two conditions are satis�ed ,N is the norm group of ~L=K.
4. TWO EXAMPLESThis method has been used to compute the HilbertClass Field of totally real �elds of degrees 2, 3, and4 and various ray class �elds (see [Roblot 1997]) us-ing PARI [Batut et al. 1999]. At the address http://www.math.u-bordeaux.fr/~roblot/resources/hilb.gpone can �nd a table of the Hilbert Class Field ofall real quadratic �elds of discriminant less than10 000, real cubic �elds of discriminant less then150 000 and real quartic �elds of discriminant lessthan 600 000|a total of 3303 non-principal �elds.We now give two examples of the construction ofreal abelian extensions of a totally real �eld usingTheorem 2.1. Similar use of Stark's Conjectures toconstruct class �elds can be found in [Cohen andRoblot 2000; Dummit et al. 1997; Stark 1976; 1980].One can also use Kummer Theory to compute class�elds; see for example [Daberkow and Pohst 1995;Fieker 2000].These two examples where computed with the lat-est version of GP/PARI (version 2.0.13 alpha) on aDEC Alpha 2100 300MHz with 512Mb of memory.Computation times are provided at the end of eachexample.

Example 4.1. Let K be the real quadratic �eld gen-erated over Q by a square root ! of 82. The dis-criminant is 328, and f1; !g forms a Z -basis of thering of integers OK . The �eld we wish to constructis L = HK , the Hilbert Class Field of K, that is,the maximal abelian extension of K unrami�ed ev-erywhere, which is a cyclic extension of degree 4 ofK.A quadratic extension N=L verifying conditions(A){(C) and with minimal (norm of) conductor isgiven by the ray class �eld modulo f = p3v1 wherep3 = 3OK + (2! � 1)OKis a prime ideal dividing 3, and v1 is the real placesending ! to the negative square root of 82 in R .The extension N=K is a cyclic extension of degree8, so this extension cannot be constructed using theproof of Proposition 2.3. In fact, the �rst extensionthat one can construct using Proposition 2.3 has aconductor of norm 16, and it is certainly more ef-�cient not to use this one but the former (see nextremark).Let G denote the Galois group of N=K, let � bea generator of G and let � = �4 be the unique el-ement of order 2 (� generates the Galois group ofN=L). It is easy to prove that all characters � ofG such that �(�) = �1 have conductor f, henceLS(s; �) = L(s; �) for any such character. We com-pute the values of L0(0; �) and obtain the values ofthe derivatives of partial zeta functions, as follows.(The computations have been made with much moreprecision than given in this paper.)� 0S(0; 1) = �1:855345769803922 : : : ;� 0S(0; �) = �� 0S(0; �);� 0S(0; �) = �0:811399495928109 : : : ;� 0S(0; ��) = �� 0S(0; �);� 0S(0; �2) = �1:056128108731457 : : : ;� 0S(0; ��2) = �� 0S(0; �2);� 0S(0; �3) = 0:597654704583391 : : : ;� 0S(0; ��3) = �� 0S(0; �3):
Remark 4.2. The logarithmic height of " (see [Lang1983] for a de�nition) is2�j� 0S(0; 1)j+ j� 0S(0; �)j+ j� 0S(0; �2)j+ j� 0S(0; �3)j�= 8:64105615809373 : : :
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(since we know that the other conjugates of " havean absolute value of 1 by Lemma 2.8). If instead,we had used the class �eld of conductor 16 for thisconstruction, the logarithmic height of " would havebeen 16:985931238837 : : :, that is to say nearly 2times larger (the heuristics quoted at the beginningof section 3 givep16=3 � 2:3). This illustrates whywe need to �nd a suitableN with minimal conductorto speed up the computations.The polynomial ~P (with the above notation) isX4 � 58:16615541441224X3+ 799:4369460780463X2� 3980:184730390231X+ 6515:938649729469;and we \recognize" this polynomial as the embed-ding of the following polynomial of OK [X]:P (X) = X4 � (3! + 31)X3 + (44! + 401)X2� (220! + 1988)X + (360! + 3256):Although the discriminant of this polynomial is farfrom trivial (its norm is 28312732), it neverthelessde�nes an unrami�ed extension of K of degree 4.Thus, to prove that this extension is indeed theHilbert Class Field of K, it remains to prove thatit is abelian. For that purpose, it su�ces to provethat it is Galois since the only Galois groups of order4 of quartic extensions are abelian groups (namelythe cyclic group of order 4 and the Klein group).There are various way to prove this. One way isto compute an absolute (and in this case reduced)polynomial over Q de�ning the same �eld and tocompute its Galois group. In our case, we obtainthe polynomialX8 � 4X7 � 14X6 + 56X5 + 49X4� 196X3 + 28X2 + 80X � 25;whose Galois group is the dihedral group of order 8which proves that the �eld it de�nes is abelian overK and thus is the Hilbert Class Field of Q (p82).This example was computed in 4 seconds. Thecomputation of the polynomial P (X) took 3 sec-onds, and the veri�cation (computation of the rela-tive discriminant, and of the Galois group) took lessthan one second.

Example 4.3. Let K be the �eld generated over Q bya root � of the polynomialX3 � 4X � 1:This is a real cubic �eld of discriminant 229 andwith ring of integers OK = Z [�]. Let m denote theprime ideal above 37 de�ned bym = 37OK + (8 + �)OK ;we want to construct the ray class �eld L of K mod-ulo m. This is an abelian extension of K of degreethree.Using the proof of Proposition 2.3, one can choosefor N the �eld generated over L by a square root of{ = �. This yields an abelian extension of K ofdegree 6 and conductor mv1v2 where v1 and v2 arethe in�nite places sending � to �1:860805 : : : and�0:254101 : : :, respectively. Here, it is clear that Nis of minimal norm. As usual, we denote by G theGalois group ofN=K, by � the non-trivial element ofGal(N=L) and by � a generator of G. Let � denotethe character of G such that �(�) = exp(2i�=6).This is a generator of the group of characters of G.The characters of G which are non-trivial on �are �, �3 and �5, since �(�) = �1. For these, wecompute the Artin root numbersW (�) = �0:367664745 : : : � 0:92995840 : : : i;W (�3) = 1; W (�5) =W (�);and the corrective factorsA(�) = 1; A(�3) = 2; A(�5) = 1:This gives us the following values for the partialzeta functions:� 0S(0; 1) = 1:96011188229224 : : : ;� 0S(0; �) = �� 0S(0; 1);� 0S(0; �) = 1:57294437150264 : : : ;� 0S(0; ��) = �� 0S(0; �);� 0S(0; �2) = 0:72454531436117 : : : ;� 0S(0; ��2) = �� 0S(0; �2);and the polynomialX3 � 78:20893338606214X2+ 1505:492174458384X� 5276:952425687298;
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which can be seen to be very close to the polynomialP (X) = X3 � (9�2 + 17�+ 2)X2+ (160�2 + 338�+ 75)X� (560�2 + 1185�+ 266):One can check that the �eld extension L generatedby a root of this polynomial is a totally real �eldof degree 9 and that its relative discriminant is m2.Since this is a square and since L=K is a cubic ex-tension, it follows from Galois Theory that it is anabelian extension (Galois group of cubic extensionsare S3 or A3 ' C3, and the latter occurs if andonly if the discriminant is a square). Since L=Kis an abelian extension of prime degree l = 3, theF�uhrerdiskriminantenproduktformel tells us that itsdiscriminant is equal to its conductor raised to thepower l � 1 = 2. Thus, m is the conductor of L=K,and that �nishes the proof that this is indeed the�eld L that we wanted. For completeness, we give areduced polynomial that de�nes L over Q :X9 + 2X8 � 9X7 � 11X6 + 28X5 + 18X4� 34X3 � 8X2 + 13X � 1:This example was computed in 24 seconds. Thecomputation of the polynomial P (X) took 23 sec-onds, and the veri�cation (computation of the rela-tive discriminant) took less than one second.
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