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This paper presents a computational method to find good, con-

jecturally optimal coverings of an equilateral triangle with up to

36 equal circles. The algorithm consists of two nested levels: on

the inner level the uncovered area of the triangle is minimized

by a local optimization routine while the radius of the circles is

kept constant. The radius is adapted on the outer level to find

a locally optimal covering. Good coverings are obtained by ap-

plying the algorithm repeatedly to random initial configurations.

The structures of the coverings are determined and the coordi-

nates of each circle are calculated with high precision using a

mathematical model for an idealized physical structure consist-

ing of tensioned bars and frictionless pin joints. Best found cov-

erings of an equilateral triangle with up to 36 circles are dis-

played, 19 of which are either new or improve on earlier pub-

lished coverings.

1. INTRODUCTIONDuring the last few decades, packing circles in var-ious shapes in the plane or on a sphere has been apopular research subject of discrete geometry. Onetries to �nd a con�guration of n equal nonoverlap-ping circles inside the area so that the radius of thecircles is maximized. For example, packings havebeen searched in a square, in an equilateral trian-gle, in a circle, and on a sphere; see [Croft et al.1991; Melissen 1997b] for references. In the searchescomputers often play an important role.On the other hand, the dual problem of determin-ing good coverings of an area with n equal circles sothat the radius of the circles is as small as possiblehas received much less attention. Covering problemsare intriguing mathematical problems, but they alsohave a few interesting practical applications. Exam-ples include �nding good locations of sprinklers oncultivated ground (to minimize the di�erences be-tween the amount of watering), �nding locations of
c
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oor drains on a garage 
oor (to minimize the alti-tude di�erence on the 
oor), or even placing n piecesof jalape~no on a pizza so that the distance from anypoint on the pizza to the nearest piece of jalape~nois minimal (there are no empty-looking areas on thepizza).Early results in the literature on coverings of geo-metrical shapes concern mostly the problem of cov-ering a sphere by circles (circular caps); see [Hardinet al. n.d.; Melissen 1997b] and their references. Re-cently, however, there has been a growing interestin studying good coverings of several other shapes,mainly in the plane.The earliest computer results for circle coveringsin the plane were obtained by Zahn [1962], whosearched for good coverings of a circle by smaller,equal circles. Zahn made the problem discrete bydividing the big circle into small cells and then ap-plying local optimization methods to cover as manyof these cells as possible while keeping the radius ofthe small circles constant.The �rst computational results on coverings of asquare appeared in [Tarnai and G�asp�ar 1995], withup to 10 circles. The authors found locally opti-mal coverings by simulating systems consisting ofshrinking, tensioned bars and pin joints. Melissenand Schuur [1996] improved the coverings with 6and 8 circles and presented a new covering with 11circles. Their approach is based on a simulated an-nealing algorithm using the Voronoi tessellation ofthe square with respect to the centers of the circles.Extending the work of [Tarnai and G�asp�ar 1995],Lengyel and Veres [1996] presented coverings of asquare with up to 23 circles. Their coverings with12 to 21 circles were later surpassed by Nurmela and�Osterg�ard [2000], who also gave new coverings with24 to 30 circles. Coverings of a rectangle have beenpublished with up to 7 circles [Heppes and Melissen1997; Melissen and Schuur 2000].Coverings of an equilateral triangle with up to 18circles (including optimality proofs in the smallestcases) were presented in [Melissen 1997a; 1997b];this work extends those results. A recent surveyon circle coverings can be found in [Melissen 1997b,Chapter 5].In Section 2 we present our algorithm for �ndinggood circle coverings of an equilateral triangle. Amethod for numerically determining the structure of

a covering is presented in Section 3. Using these al-gorithms, in Section 4 we improve the previous cov-ering of a triangle with 13 circles and present new,conjecturally optimal coverings with 19 to 36 circles.All the (conjecturally) optimal coverings with 2 to36 circles are depicted to show the structure of eachcovering.
2. COVERING ALGORITHMS USEDIn this work we use the algorithm in [Nurmela and�Osterg�ard 2000] with only minor changes. We givehere a brief description of the algorithm.The algorithm consists of two nested levels: on theinner level, the radius of the circles is constant anda local optimization routine is used to minimize theuncovered area of the triangle by moving the circles.We use the SUMSL subroutine of [Gay 1983], animplementation of the BFGS secant method, withanalytically calculated �rst partial derivatives.The outer level of the algorithm adjusts the radiusof the circles. We start from a random initial cir-cle con�guration and try to cover the triangle usingthe BFGS routine and a �xed radius r. Dependingwhether or not a covering is found we decrease orincrease the radius r, respectively, and restart theBFGS routine from the best covering found duringthis run of the algorithm, or from the random initialcon�guration if no coverings have yet been found.The control of the radius r is not trivial, becausewe have to make compromises in the convergencecriteria: the BFGS routine may stop with a partialcovering even though a covering would be obtain-able with some extra iterations. That is, failure in�nding a covering does not imply that a coveringwith equal or smaller radius cannot be found later,after additional BFGS runs and adjustments of r.We get a series of radii, r1, r2, . . . . After the ithBFGS run with radius ri we calculate the next ra-dius ri+1 according to the following two alternatives(using control parameters �1; �2; : : : ):
1. Covering with ri was found: ri+1 = �iri; let�i+1 = max(�2i ; 0:9):
2. Covering with ri was not found: let j be thelargest integer such that j < i and a coveringwith rj was found. Now ri+1 = 12(ri + rj). Let�i+1 = 12 + 12(ri=ri+1).
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By selecting those radii that produced a covering(alternative 1), we get a monotonically decreasingseries of radii corresponding to a series of coveringswith gradually shrinking circles. These coveringsapproximate a locally optimal covering.The �rst radius, r1, is selected so that it is slightlylarger than the radius in the best known covering.A suitable value for �1 is for example 0.9, if r1 is notvery close to the radius in the conjecturally optimalcovering. Note that if the �rst BFGS run with r1does not produce a covering, we can reject this ini-tial con�guration and stop this run of the algorithm(it is probable that the algorithm will converge to apoor local optimum). Furthermore, if at any stageof the algorithm a BFGS run converges to only apartial covering when the radius r is clearly largerthan in the best currently known covering, we canstop the run (we are close to a local optimum di�er-ent from the global optimum). This greatly speedsup the search procedure, because we can often veryfast reject initial solutions leading to a poor localoptimum.Another way to speed up the algorithm is to limitthe number of iterations in the BFGS routine in theearly stages of the algorithm. Namely when r is not(yet) very accurate, it is unnecessary to calculatethe local optimum in the BFGS routine with highprecision.A successful optimization run with n � 36 that�nds a covering not exceeding the prescribed valueof r takes at most a few minutes of CPU-time on acurrent Pentium PC running Linux operating sys-tem when the following stopping criterion is used:we stop optimization when a cover with ri is notfound and rj�ri < 10�7, where rj corresponds to thebest covering found during this optimization run. Ifthe initial solution is poor, so that the optimizationalgorithm is likely to converge to a covering inferiorto the best known covering, then the run can in mostcases be ended in a couple of seconds.To �nd good coverings we simply apply the algo-rithm repeatedly starting from random initial con-�gurations and selecting the best covering found.This is a simple stochastic global optimization al-gorithm called the multistart algorithm. The qual-ity of the results depends on the distribution of theinitial solutions and on the number of optimizationruns performed.

3. FINDING THE STRUCTURE OF A COVERINGThe covering algorithm of the previous section canprovide the coordinates of a covering only with anaccuracy limited by the precision of the computa-tions. It is necessary to compute the positions of thecircles with high precision to validate the assumedstructure of the covering. To �nd the coordinatesof a locally optimal covering with greater accuracy,we identify the points where at least three circles(or two circles and the triangle boundary, or onecircle and a corner of the triangle) appear to inter-sect. By inserting edges between these points andthe centers of the circles, we get the graph of thecovering. By requiring that each edge of the graphhas length equal to r we get a system of nonlinearequations, which has a solution at a locally opti-mal covering. However, this system of equations isusually underdetermined and the value of r cannotbe determined from the underlying graph alone, see[Melissen 1997b; Nurmela and �Osterg�ard 2000].In order to obtain a system with a unique solutionin the locally optimal covering we use a mathemat-ical model for an idealized physical structure withtensioned bars and frictionless pin joints; compare[Nurmela and �Osterg�ard 2000; Tarnai and G�asp�ar1995]. Each edge in the graph of the covering cor-responds to a bar and each vertex corresponds to apin joint. Now if each bar is tensioned, the systemstarts to move towards a locally optimal covering,provided that the tensions are adjusted dynamicallyso that all bars have equal length. In a con�gurationcorresponding to a locally optimal covering, all pinjoints (and the triangle) are in rest while most (butnot necessarily all) bars have positive tension.We write down the equations of motion for eachpin joint and the triangle and add these equationsto the system of equations formed earlier. We nowalso have new variables corresponding to the ten-sions in the bars. At no stage do we impose sym-metry constraints on the solution of the system; anysymmetries are investigated only after the system issolved numerically.The total tension of the structure is not deter-mined, so we arbitrarily set the tension of a suitablyselected bar equal to a constant. The optimizationalgorithm in Section 2 provides us with very goodinitial values for the coordinates of the pin joints,
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but the tensions in the bars are not known. Theinitial tensions are solved in a separate step beforesolving the whole system (this requires �nding anapproximate solution to an overdetermined linearsystem of equations [Nurmela and �Osterg�ard 2000]).In the numerical solution we use the modi�edNewton{Raphson method of [Ben-Israel 1966],whichworks even when the system is overdetermined. Allsystems in this paper were solved with such an ac-curacy that the maximal error in the equations wasless than 10�100 (in the computations the side ofthe triangle was equal to 1 and one of the tensionswas �xed equal to 1), using Mathematica. It is notnecessary to perform all the calculations with highprecision [Nurmela and �Osterg�ard 2000]; this makesthe computations much faster.The largest system of equations in this paper has383 variables (the covering with 36 circles). Thatcovering is similar to the optimal packing of 36 cir-cles. From the structure of the optimal packing it iseasy to construct a system of 108 equations, whichhas a unique solution in a �nite neighborhood of theoptimal packing. Since the number of equations isso much smaller in the packing problem (compare[Nurmela and �Osterg�ard 1997; 2000]), one may sug-gest that a covering problem with n circles is in somesense more di�cult than the corresponding packingproblem with the same number of circles.In order to determine whether the solution foundis unique in a �nite neighborhood of the initial solu-tion we solve the system several times with slightlyperturbed initial solutions; compare [Graham et al.1998]. Since in all the coverings in this work thesolution converged each time to the same solution(within the high precision used), we conclude thatthe coverings with presented structure exist and aretrue (at least locally) optimal coverings with highprobability. We now also have very accurate nu-merical values for the corresponding values of r.
4. RESULTSFor completeness we show all the best known cover-ings for 2 � n � 36 in Figures 1{4, since the struc-tures of the coverings have not been shown explicitlybefore. In these �gures each pin joint is denoted bya black dot (center of a circle) or a small circle (in-tersection). Each bar is denoted by a line segment. FIGURE 1. Coverings for n = 2 to n = 6.
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n = 13

FIGURE 2. Coverings for n = 7 to n = 16.
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FIGURE 3. Coverings for n = 17 to n = 26.
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FIGURE 4. Coverings for n = 27 to n = 36.
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The optimal covering for n = 1 is of course thecircumscribed circle. The coverings for 2 � n � 12and 14 � n � 18 appear in [Melissen 1997b], whereit is also shown that those with 2, 3, 4, 5, 6, 9, and 10circles are optimal [Melissen 1997b]. The coveringwith 13 circles in Figure 2 improves on the coveringgiven in [Melissen 1997b]. The remaining coveringsfor 19 � n � 36 are new.For each n � 34 where the optimal covering is notknown we applied the algorithm in Section 2 with in-dependent random initial con�gurations (with uni-form distribution of the circle centers within the tri-angle) until the best covering had been found 80times. This required 300000 initial con�gurationsfor n = 18. For other values of n, fewer con�gura-tions su�ced (computation times for one initial con-�guration of course increase when n is increased).For n = 35 the algorithm was run 50000 times,which produced the best covering 3 times. It seemsthat over a million initial con�gurations would beneeded to �nd 80 times the covering, which is be-yond our computational resources. However, sincethe structure of the covering with 35 circles is very

similar to that with 20 circles (and resembles thoseof 14 and 27), we think it is probable that the cov-ering with 35 circles is optimal.Only 10000 runs were performed for n = 36, butsince 36 is a triangular number it seems probablethat the obvious covering is the best possible. Nosearches were performed for n > 36, although|withsmaller probability of �nding true global optima|the algorithm can be used also for larger n. Thecomputer search for the coverings in this paper tooka total of about two months of CPU time on a cur-rent Pentium PC.Table 1 shows some data relative to the conjec-turally optimal coverings of Figures 1{4: the radiusof the circles, the radius normalized with respect tocoverings by triangular numbers of circles, and thesymmetry group.When n is a triangular number n = k(k+1)=2,where k = 1; 2; : : : , it seems very probable that theobvious covering|a piece of the hexagonal latticein the plane| is the best possible; see also [Melis-sen 1997b]. However, proofs for n = 3, 6, and 10 in[Melissen 1997b] cannot be generalized for triangular
n radius norm. rad. G n radius norm. rad. G1 0.5773502691896257645 1 D3 19 0.1061737927289732618 1.04540 C12 0.5 1.35234 D1 20 0.1032272183417310354 1.04493 D13 0.2886751345948128823 1 D3 21 0.0962250448649376274 1 D34 0.2679491924311227065 1.10098 D1 22 0.0951772351261450917 1.01418 C15 0.25 1.16981 D1 23 0.0937742911094478264 1.02338 C16 0.1924500897298752548 1 D3 24 0.0923541375945022204 1.03115 D17 0.1852510855786008545 1.05080 C1 25 0.0906182448311340175 1.03414 C18 0.1769926664029649641 1.08250 C1 26 0.0887829248953373781 1.03467 D19 0.1666666666666666667 1.08888 C3 27 0.0868913397937031505 1.03325 C110 0.1443375672974064411 1 D3 28 0.0824786098842322521 1 D311 0.1410544578570137366 1.03027 C1 29 0.0818048133956910115 1.01056 C112 0.1373236156889236662 1.05236 C1 30 0.0808828500258641436 1.01737 C113 0.1326643857765088351 1.06239 C1 31 0.0798972448089536737 1.02265 C114 0.1275163863998600644 1.06348 C1 32 0.0788506226168764215 1.02643 C115 0.1154700538379251529 1 D3 33 0.0776371221483728244 1.02728 C116 0.1137125784440782042 1.02002 C1 34 0.0763874538343494465 1.02688 C117 0.1113943099632405880 1.03269 D1 35 0.0751604548962267707 1.02603 D118 0.1091089451179961906 1.04333 C3 36 0.0721687836487032206 1 D3

TABLE 1. Properties of the coverings. For the (conjecturally) optimal cover by n circles we give the radius ofthe circles, the normalized radius, and the symmetry group. Normalization means multiplying the radius by thefactor p3 k, where n = k(k+1)=2; thus the normalized radius is 1 whenever n is a triangular number, and thesmaller the normalized radius, the more e�cient the cover. The symmetry group G is either Cn, the cyclic groupof order n, or Dn, the dihedral group of order 2n.
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numbers n > 10. Other in�nite families of possiblyoptimal coverings are not known, although in viewof the results in this paper it seems that an in�nitefamily of possibly optimal coverings could also beconstructed for n = k(k+1)2 � 1circles when k = 6; 8; 10; : : : and maybe also whenk = 5; 7; 9; : : : . The coverings of these two fami-lies would have one loose circle (a circle that is notpart of the rigid structure of the covering), whichwould give in�nitely many (possibly) optimal cov-erings with at least one loose circle. This contrastswith coverings of a square, where not a single conjec-turally optimal covering with loose circles is knownso far [Nurmela and �Osterg�ard 2000]. Note alsoin Figures 1{4 the orderly arrangement of the cir-cles in the coverings for n = k(k+1)=2 + 1, fork = 2; 3; 4; : : : ; this is yet another candidate for anin�nite family of optimal coverings.The radius can be calculated symbolically for someof the best known coverings [Melissen 1997b]. How-ever, in addition to the smallest few coverings, thesymbolic values can usually be calculated only forvery regular coverings.In the coverings for n = 2, 4, 5, and 9 the circlecenters that appear to lie on the triangle boundarydo indeed coincide with the boundary. However, forn = 7, 8, 11, 16, 22, and 29 this does not hold;the centers that seem to lie on the boundary areactually slightly o� the boundary line (for examplein the covering with 8 circles the distance betweenthe boundary and the center of the leftmost circle isabout 4:1 � 10�5).In view of our results it seems probable that foroptimal coverings of an equilateral triangle the ra-dius is a strictly decreasing function of the numberof circles. This is in contrast to the correspondingpacking problem; for example, an optimal packingof �ve equal circles in an equilateral triangle is ob-tained by removing one of the circles in the optimalpacking of six circles [Melissen 1993].
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