Conjecturally Optimal Coverings
of an Equilateral Triangle with Up to 36 Equal Circles

Kari J. Nurmela

CONTENTS

1. Introduction

2. Covering Algorithms Used

3. Finding the Structure of a Covering
4. Results

References

Supported by the Academy of Finland and the Finnish Cultural
Foundation

This paper presents a computational method to find good, con-
jecturally optimal coverings of an equilateral triangle with up to
36 equal circles. The algorithm consists of two nested levels: on
the inner level the uncovered area of the triangle is minimized
by a local optimization routine while the radius of the circles is
kept constant. The radius is adapted on the outer level to find
a locally optimal covering. Good coverings are obtained by ap-
plying the algorithm repeatedly to random initial configurations.

The structures of the coverings are determined and the coordi-
nates of each circle are calculated with high precision using a
mathematical model for an idealized physical structure consist-
ing of tensioned bars and frictionless pin joints. Best found cov-
erings of an equilateral triangle with up to 36 circles are dis-
played, 19 of which are either new or improve on earlier pub-
lished coverings.

1. INTRODUCTION

During the last few decades, packing circles in var-
ious shapes in the plane or on a sphere has been a
popular research subject of discrete geometry. One
tries to find a configuration of n equal nonoverlap-
ping circles inside the area so that the radius of the
circles is maximized. For example, packings have
been searched in a square, in an equilateral trian-
gle, in a circle, and on a sphere; see [Croft et al.
1991; Melissen 1997b] for references. In the searches
computers often play an important role.

On the other hand, the dual problem of determin-
ing good coverings of an area with n equal circles so
that the radius of the circles is as small as possible
has received much less attention. Covering problems
are intriguing mathematical problems, but they also
have a few interesting practical applications. Exam-
ples include finding good locations of sprinklers on
cultivated ground (to minimize the differences be-
tween the amount of watering), finding locations of
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floor drains on a garage floor (to minimize the alti-
tude difference on the floor), or even placing n pieces
of jalapeno on a pizza so that the distance from any
point on the pizza to the nearest piece of jalapeno
is minimal (there are no empty-looking areas on the
pizza).

Early results in the literature on coverings of geo-
metrical shapes concern mostly the problem of cov-
ering a sphere by circles (circular caps); see [Hardin
et al. n.d.; Melissen 1997b] and their references. Re-
cently, however, there has been a growing interest
in studying good coverings of several other shapes,
mainly in the plane.

The earliest computer results for circle coverings
in the plane were obtained by Zahn [1962], who
searched for good coverings of a circle by smaller,
equal circles. Zahn made the problem discrete by
dividing the big circle into small cells and then ap-
plying local optimization methods to cover as many
of these cells as possible while keeping the radius of
the small circles constant.

The first computational results on coverings of a
square appeared in [Tarnai and Gaspéar 1995], with
up to 10 circles. The authors found locally opti-
mal coverings by simulating systems consisting of
shrinking, tensioned bars and pin joints. Melissen
and Schuur [1996] improved the coverings with 6
and 8 circles and presented a new covering with 11
circles. Their approach is based on a simulated an-
nealing algorithm using the Voronoi tessellation of
the square with respect to the centers of the circles.
Extending the work of [Tarnai and Gaspar 1995],
Lengyel and Veres [1996] presented coverings of a
square with up to 23 circles. Their coverings with
12 to 21 circles were later surpassed by Nurmela and
Ostergard [2000], who also gave new coverings with
24 to 30 circles. Coverings of a rectangle have been
published with up to 7 circles [Heppes and Melissen
1997; Melissen and Schuur 2000].

Coverings of an equilateral triangle with up to 18
circles (including optimality proofs in the smallest
cases) were presented in [Melissen 1997a; 1997b];
this work extends those results. A recent survey
on circle coverings can be found in [Melissen 1997Db,
Chapter 5].

In Section 2 we present our algorithm for finding
good circle coverings of an equilateral triangle. A
method for numerically determining the structure of

a covering is presented in Section 3. Using these al-
gorithms, in Section 4 we improve the previous cov-
ering of a triangle with 13 circles and present new,
conjecturally optimal coverings with 19 to 36 circles.
All the (conjecturally) optimal coverings with 2 to
36 circles are depicted to show the structure of each
covering.

2. COVERING ALGORITHMS USED

In this work we use the algorithm in [Nurmela and
Ostergard 2000] with only minor changes. We give
here a brief description of the algorithm.

The algorithm consists of two nested levels: on the
inner level, the radius of the circles is constant and
a local optimization routine is used to minimize the
uncovered area of the triangle by moving the circles.
We use the SUMSL subroutine of [Gay 1983], an
implementation of the BFGS secant method, with
analytically calculated first partial derivatives.

The outer level of the algorithm adjusts the radius
of the circles. We start from a random initial cir-
cle configuration and try to cover the triangle using
the BFGS routine and a fixed radius r. Depending
whether or not a covering is found we decrease or
increase the radius r, respectively, and restart the
BFGS routine from the best covering found during
this run of the algorithm, or from the random initial
configuration if no coverings have yet been found.

The control of the radius r is not trivial, because
we have to make compromises in the convergence
criteria: the BFGS routine may stop with a partial
covering even though a covering would be obtain-
able with some extra iterations. That is, failure in
finding a covering does not imply that a covering
with equal or smaller radius cannot be found later,
after additional BFGS runs and adjustments of r.
We get a series of radii, ry, ry, .... After the ith
BFGS run with radius r; we calculate the next ra-
dius 7;4; according to the following two alternatives
(using control parameters ay, as, ... ):

1. Covering with r; was found: r;,1 = a,r;; let
a1, = max(af,0.9).

2. Covering with r; was not found: let j be the
largest integer such that j < ¢ and a covering
with r; was found. Now r;y; = $(r; +7;). Let

g1 = 5+ 5(ri/ri1).
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By selecting those radii that produced a covering
(alternative 1), we get a monotonically decreasing
series of radii corresponding to a series of coverings
with gradually shrinking circles. These coverings
approximate a locally optimal covering.

The first radius, 71, is selected so that it is slightly
larger than the radius in the best known covering.
A suitable value for «; is for example 0.9, if r; is not
very close to the radius in the conjecturally optimal
covering. Note that if the first BFGS run with r;
does not produce a covering, we can reject this ini-
tial configuration and stop this run of the algorithm
(it is probable that the algorithm will converge to a
poor local optimum). Furthermore, if at any stage
of the algorithm a BFGS run converges to only a
partial covering when the radius r is clearly larger
than in the best currently known covering, we can
stop the run (we are close to a local optimum differ-
ent from the global optimum). This greatly speeds
up the search procedure, because we can often very
fast reject initial solutions leading to a poor local
optimum.

Another way to speed up the algorithm is to limit
the number of iterations in the BFGS routine in the
early stages of the algorithm. Namely when r is not
(yvet) very accurate, it is unnecessary to calculate
the local optimum in the BFGS routine with high
precision.

A successful optimization run with n < 36 that
finds a covering not exceeding the prescribed value
of r takes at most a few minutes of CPU-time on a
current Pentium PC running Linux operating sys-
tem when the following stopping criterion is used:
we stop optimization when a cover with r; is not
found and r;—r; < 1077, where r; corresponds to the
best covering found during this optimization run. If
the initial solution is poor, so that the optimization
algorithm is likely to converge to a covering inferior
to the best known covering, then the run can in most
cases be ended in a couple of seconds.

To find good coverings we simply apply the algo-
rithm repeatedly starting from random initial con-
figurations and selecting the best covering found.
This is a simple stochastic global optimization al-
gorithm called the multistart algorithm. The qual-
ity of the results depends on the distribution of the
initial solutions and on the number of optimization
runs performed.

3. FINDING THE STRUCTURE OF A COVERING

The covering algorithm of the previous section can
provide the coordinates of a covering only with an
accuracy limited by the precision of the computa-
tions. It is necessary to compute the positions of the
circles with high precision to validate the assumed
structure of the covering. To find the coordinates
of a locally optimal covering with greater accuracy,
we identify the points where at least three circles
(or two circles and the triangle boundary, or one
circle and a corner of the triangle) appear to inter-
sect. By inserting edges between these points and
the centers of the circles, we get the graph of the
covering. By requiring that each edge of the graph
has length equal to » we get a system of nonlinear
equations, which has a solution at a locally opti-
mal covering. However, this system of equations is
usually underdetermined and the value of r cannot
be determined from the underlying graph alone, see
[Melissen 1997b; Nurmela and Ostergard 2000].

In order to obtain a system with a unique solution
in the locally optimal covering we use a mathemat-
ical model for an idealized physical structure with
tensioned bars and frictionless pin joints; compare
[Nurmela and Ostergard 2000; Tarnai and Géspér
1995]. Each edge in the graph of the covering cor-
responds to a bar and each vertex corresponds to a
pin joint. Now if each bar is tensioned, the system
starts to move towards a locally optimal covering,
provided that the tensions are adjusted dynamically
so that all bars have equal length. In a configuration
corresponding to a locally optimal covering, all pin
joints (and the triangle) are in rest while most (but
not necessarily all) bars have positive tension.

We write down the equations of motion for each
pin joint and the triangle and add these equations
to the system of equations formed earlier. We now
also have new variables corresponding to the ten-
sions in the bars. At no stage do we impose sym-
metry constraints on the solution of the system; any
symmetries are investigated only after the system is
solved numerically.

The total tension of the structure is not deter-
mined, so we arbitrarily set the tension of a suitably
selected bar equal to a constant. The optimization
algorithm in Section 2 provides us with very good
initial values for the coordinates of the pin joints,
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but the tensions in the bars are not known. The
initial tensions are solved in a separate step before
solving the whole system (this requires finding an
approximate solution to an overdetermined linear
system of equations [Nurmela and Ostergard 2000]).

In the numerical solution we use the modified
Newton—-Raphson method of [Ben-Israel 1966],which
works even when the system is overdetermined. All
systems in this paper were solved with such an ac-
curacy that the maximal error in the equations was
less than 107!%° (in the computations the side of
the triangle was equal to 1 and one of the tensions
was fixed equal to 1), using Mathematica. It is not
necessary to perform all the calculations with high
precision [Nurmela and Ostergard 2000]; this makes
the computations much faster.

The largest system of equations in this paper has
383 variables (the covering with 36 circles). That
covering is similar to the optimal packing of 36 cir-
cles. From the structure of the optimal packing it is
easy to construct a system of 108 equations, which
has a unique solution in a finite neighborhood of the
optimal packing. Since the number of equations is
so much smaller in the packing problem (compare
[Nurmela and Ostergard 1997; 2000]), one may sug-
gest that a covering problem with n circles is in some
sense more difficult than the corresponding packing
problem with the same number of circles.

In order to determine whether the solution found
is unique in a finite neighborhood of the initial solu-
tion we solve the system several times with slightly
perturbed initial solutions; compare [Graham et al.
1998]. Since in all the coverings in this work the
solution converged each time to the same solution
(within the high precision used), we conclude that
the coverings with presented structure exist and are
true (at least locally) optimal coverings with high
probability. We now also have very accurate nu-
merical values for the corresponding values of r.

4. RESULTS

For completeness we show all the best known cover-
ings for 2 < n < 36 in Figures 1-4, since the struc-
tures of the coverings have not been shown explicitly
before. In these figures each pin joint is denoted by
a black dot (center of a circle) or a small circle (in-
tersection). Each bar is denoted by a line segment.

FIGURE 1. Coverings for n = 2 to n = 6.
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The optimal covering for n = 1 is of course the
circumscribed circle. The coverings for 2 < n < 12
and 14 < n < 18 appear in [Melissen 1997b|, where
it is also shown that those with 2, 3, 4, 5, 6, 9, and 10
circles are optimal [Melissen 1997b]. The covering
with 13 circles in Figure 2 improves on the covering
given in [Melissen 1997b]. The remaining coverings
for 19 < n < 36 are new.

For each n < 34 where the optimal covering is not
known we applied the algorithm in Section 2 with in-
dependent random initial configurations (with uni-
form distribution of the circle centers within the tri-
angle) until the best covering had been found 80
times. This required 300000 initial configurations
for n = 18. For other values of n, fewer configura-
tions sufficed (computation times for one initial con-
figuration of course increase when n is increased).

For n = 35 the algorithm was run 50000 times,
which produced the best covering 3 times. It seems
that over a million initial configurations would be
needed to find 80 times the covering, which is be-
yond our computational resources. However, since
the structure of the covering with 35 circles is very

similar to that with 20 circles (and resembles those
of 14 and 27), we think it is probable that the cov-
ering with 35 circles is optimal.

Only 10000 runs were performed for n = 36, but
since 36 is a triangular number it seems probable
that the obvious covering is the best possible. No
searches were performed for n > 36, although—with
smaller probability of finding true global optima—
the algorithm can be used also for larger n. The
computer search for the coverings in this paper took
a total of about two months of CPU time on a cur-
rent Pentium PC.

Table 1 shows some data relative to the conjec-
turally optimal coverings of Figures 1-4: the radius
of the circles, the radius normalized with respect to
coverings by triangular numbers of circles, and the
symmetry group.

When n is a triangular number n = k(k+1)/2,
where kK = 1,2,..., it seems very probable that the
obvious covering—a piece of the hexagonal lattice
in the plane —is the best possible; see also [Melis-
sen 1997b]. However, proofs for n = 3, 6, and 10 in
[Melissen 1997b] cannot be generalized for triangular

n radius norm. rad. G n radius norm. rad. G
1 0.5773502691896257645 1 Ds 19 0.1061737927289732618 1.04540 C,
2 0.5 1.35234 D, 20 0.1032272183417310354 1.04493 D,
3 0.2886751345948128823 1 Ds 21 0.0962250448649376274 1 Ds
4 0.2679491924311227065 1.10098 D, 22 0.0951772351261450917 1.01418 C,
5 0.25 1.16981 D, 23 0.0937742911094478264 1.02338 Cy
6 0.1924500897298752548 1 D3 24 0.0923541375945022204 1.03115 D,
7 0.1852510855786008545 1.05080 Cy 25 0.0906182448311340175 1.03414 4
8 0.1769926664029649641 1.08250 Cy 26 0.0887829248953373781 1.03467 D,
9 0.1666666666666666667 1.08888 Cs 27 0.0868913397937031505 1.03325 C,
10 0.1443375672974064411 1 D3 28 0.0824786098842322521 1 Ds
11 0.1410544578570137366 1.03027 Cy 29 0.0818048133956910115 1.01056 C,
12 0.1373236156889236662 1.05236 C, 30 0.0808828500258641436 1.01737 C,
13 0.1326643857765088351 1.06239 C, 31 0.0798972448089536737 1.02265 C,
14 0.1275163863998600644 1.06348 Cy 32 0.0788506226168764215 1.02643 Cy
15 0.1154700538379251529 1 D3 33 0.0776371221483728244 1.02728 4
16 0.1137125784440782042 1.02002 Cy 34 0.0763874538343494465 1.02688 C,
17 0.1113943099632405880 1.03269 D, 35 0.0751604548962267707 1.02603 D,
18 0.1091089451179961906 1.04333 Cs 36 0.0721687836487032206 1 Ds

TABLE 1. Properties of the coverings. For the (conjecturally) optimal cover by n circles we give the radius of
the circles, the normalized radius, and the symmetry group. Normalization means multiplying the radius by the
factor v/3 k, where n = k(k+1)/2; thus the normalized radius is 1 whenever n is a triangular number, and the
smaller the normalized radius, the more efficient the cover. The symmetry group G is either C,,, the cyclic group

of order n, or D,,, the dihedral group of order 2n.
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numbers n > 10. Other infinite families of possibly
optimal coverings are not known, although in view
of the results in this paper it seems that an infinite
family of possibly optimal coverings could also be
constructed for

circles when k£ = 6,8,10,... and maybe also when
k = 5,7,9,.... The coverings of these two fami-
lies would have one loose circle (a circle that is not
part of the rigid structure of the covering), which
would give infinitely many (possibly) optimal cov-
erings with at least one loose circle. This contrasts
with coverings of a square, where not a single conjec-
turally optimal covering with loose circles is known
so far [Nurmela and Ostergard 2000]. Note also
in Figures 1-4 the orderly arrangement of the cir-
cles in the coverings for n = k(k+1)/2 + 1, for
k =2,3,4,...; this is yet another candidate for an
infinite family of optimal coverings.

The radius can be calculated symbolically for some
of the best known coverings [Melissen 1997b]. How-
ever, in addition to the smallest few coverings, the
symbolic values can usually be calculated only for
very regular coverings.

In the coverings for n = 2, 4, 5, and 9 the circle
centers that appear to lie on the triangle boundary
do indeed coincide with the boundary. However, for
n = 17,8, 11, 16, 22, and 29 this does not hold;
the centers that seem to lie on the boundary are
actually slightly off the boundary line (for example
in the covering with 8 circles the distance between
the boundary and the center of the leftmost circle is
about 4.1-1075).

In view of our results it seems probable that for
optimal coverings of an equilateral triangle the ra-
dius is a strictly decreasing function of the number
of circles. This is in contrast to the corresponding
packing problem; for example, an optimal packing
of five equal circles in an equilateral triangle is ob-
tained by removing one of the circles in the optimal
packing of six circles [Melissen 1993].

REFERENCES

[Ben-Israel 1966] A. Ben-Israel, “A Newton-Raphson
method for the solution of systems of equations”, J.
Math. Anal. Appl. 15 (1966), 243-252.

[Croft et al. 1991] H. T. Croft, K. J. Falconer, and R. K.
Guy, Unsolved problems in geometry, Springer, New
York, 1991.

[Gay 1983] D. M. Gay, “Algorithm 611: Subroutines
for unconstrained minimization using a model/trust-
region approach”, ACM Trans. Math. Software 9:4
(1983), 503-524.

[Graham et al. 1998] R. L. Graham, B. D. Lubachevsky,
K. J. Nurmela, and P. R. J. Ostergard, “Dense

packings of congruent circles in a circle”, Discrete
Math. 181:1-3 (1998), 139-154.

[Hardin et al. n.d.] R. H. Hardin, N. J. A. Sloane, and
W. D. Smith, “Spherical codes”. In preparation.

[Heppes and Melissen 1997] A. Heppes and H. Melissen,
“Covering a rectangle with equal circles”, Period.
Math. Hungar. 34:1-2 (1997), 65-81.

[Lengyel and Veres 1996] A. Lengyel and I. A. Veres,
“Egységnégyzet lefedése egybevags korokkel (Cover-
ing the unit square with congruent circles)”, competi-
tion essay, Technical University Budapest, 1996.

[Melissen 1993] H. Melissen, “Densest packings of
congruent circles in an equilateral triangle”, Amer.
Math. Monthly 100:10 (1993), 916-925.

[Melissen 1997a] H. Melissen, “Loosest circle coverings of
an equilateral triangle”, Math. Mag. 70 (1997), 119-
125.

[Melissen 1997b] H. Melissen, Packing and covering
with circles, Ph.D. thesis, Universiteit Utrecht, the
Netherlands, 1997.

[Melissen and Schuur 1996] J. B. M. Melissen and P. C.
Schuur, “Improved coverings of a square with six and
eight equal circles”, Electron. J. Combin. 3:1 (1996),
R32.

[Melissen and Schuur 2000] J. B. M. Melissen and P. C.
Schuur, “Covering a rectangle with six and seven
circles”, Discrete Appl. Math. 99:1-3 (2000), 149-156.

[Nurmela and Ostergard 1997] K. J. Nurmela and
P. R. J. Ostergard, “Packing up to 50 equal circles
in a square”, Discrete Comput. Geom. 18:1 (1997),
111-120.

[Nurmela and Ostergard 2000] K. J. Nurmela and
P. R. J. Ostergérd, “Covering a square with up to
30 equal circles”, Research Report A62, Laboratory
for Theoretical Computer Science, Helsinki Univer-
sity of Technology, 2000. See http://www.tcs.hut.fi/
Publications/reports/A62abstract.html.



250 Experimental Mathematics, Vol. 9 (2000), No. 2

[Tarnai and Gdaspar 1995] T. Tarnai and Z. Géspar, [Zahn 1962] C. T. Zahn, Jr., “Black box maximization of
“Covering a square by equal circles”, Elem. Math. 50:4 circular coverage”, J. Res. Nat. Bur. Standards Sect.
(1995), 167-170. B 66B (1962), 181-216.

Kari J. Nurmela, Department of Computer Science and Engineering, Helsinki University of Technology,
P.O. Box 5400, FIN-02015 HUT, Finland (Kari.Nurmela@hut.fi)

Received August 12, 1998; accepted May 6, 1999



