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Bestvina and Handel have introduced an effective algorithm that
determines whether a given homeomorphism of an orientable,
possibly punctured surface is pseudo-Anosov. We present a Java
software package that realizes this algorithm for surfaces with
one puncture. It allows the user to define homeomorphisms in
terms of Dehn twists, and in the pseudo-Anosov case it generates
images of train tracks in the sense of Bestvina—Handel.

1. INTRODUCTION

The fundamental group of a surface S of genus g
with one puncture is a free group F' on 2¢g genera-
tors. A homeomorphism of S induces an outer au-
tomorphism O of F', and we can represent O as a
homotopy equivalence f : G — G of a finite graph
G C S homotopy equivalent to S.

plus Imu A homotopy equivalence f:G— G is
said to be a train track map if for every n > 1 and for
every edge e of G, the restriction of f™ to the interior
of e is an immersion. Bestvina and Handel [1992]
have given an effective algorithm that takes a ho-
motopy equivalence f:G — G representing an outer
automorphism O and attempts to find a train track
representative f': G’ — G’ of O, where G, like G, is
embedded in and homotopy equivalent to S. If O is
irreducible the algorithm will always succeed. (See
[Bestvina and Handel 1995] for a definition of irre-
ducibility. For our purposes, it is sufficient to know
that an outer automorphism induced by a pseudo-
Anosov homeomorphism of a surface with one punc-
ture will always be irreducible.) If O is reducible, the
algorithm will either find a train track representa-
tive, or it will conclude that O is reducible.

Given a train track representative f : G — G of
an outer automorphism induced by a surface homeo-
morphism ¢ : S — S, Bestvina and Handel [1992]
construct a train track 7, which can be thought
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of as being embedded in S. (Note that their no-
tion of train tracks is slightly different from that of
Thurston, as defined in [Thurston 1979; Fathi et al.
1979].) Using 7, one can effectively decide whether
@ is pseudo-Anosov. Furthermore, in the pseudo-
Anosov case one can extract from 7 and f

e the growth rate of ¢, and

e the structure of the stable and unstable foliations
of , and in particular singular points of the fo-
liations and their indices.

The software package implements this theory in the
case of surfaces of genus at least two with exactly
one puncture. The motivation behind this restric-
tion is that pseudo-Anosov homeomorphisms of sur-
faces with one puncture induce irreducible automor-
phisms of the fundamental group. This is not true
for surfaces with more than one puncture, and han-
dling this case would require the implementation of
a more complicated algorithm. However, the the-
ory developed in [Bestvina and Handel 1992] works
in full generality (including the case of closed sur-
faces, which can be reduced to the case of punctured
surfaces by removing the orbit of a periodic point).
The package consists of three main parts:

e The first part takes a surface homeomorphism
@ : 8 — S defined by a sequence of Dehn twists
and turns it into a homotopy equivalence of a
graph.

e The second part takes a homotopy equivalence
of a graph and either finds a reduction or a train
track representative.

e The third part constructs a train track 7 from a
train track representative and generates an image
of 7 embedded in the surface S.

The output of the second and third part combined
contain all the information about ¢ listed above. In
particular, they decide whether ¢ is pseudo-Anosov.

The package is highly modular, and the three
parts can be used independently. For example, the
handling of Dehn twists has applications beyond
the scope of this paper, and the second part also
works for nongeometric outer automorphisms of free
groups (see [Bestvina and Handel 1995]). Moreover,
each of the three parts falls into several functional
units, many of which (such as computations and

graphics in the hyperbolic plane) may be used in
other contexts.

The software is available free of charge (see section
on Electronic Availability at the end of this paper).

2. RELATED ALGORITHMS AND IMPLEMENTATIONS

There are at three least other implementations of
the Bestvina—Handel algorithm, each with an em-
phasis different from the implementation described
here.

e T. White’s FOLDTOOL software [1990] is an im-
plementation of the train track algorithm from
[Bestvina and Handel 1995] for free groups. Au-
tomorphisms are entered and displayed as homo-
topy equivalences of graphs.

e B. Menasco and J. Ringland [1996] implemented
the Bestvina—Handel algorithm in the case of au-
tomorphisms of punctured spheres. Homeomor-
phisms can be entered as braid words or as ho-
motopy equivalences of graphs. Results are dis-
played as homotopy equivalences of graphs.

e T. Hall’'simplementation [1996] handles arbitrary
punctured surfaces. Homeomorphisms are input
as homotopy equivalences of graphs, as horseshoe
maps according to Smale, or as braid words. Re-
sults are displayed as homotopy equivalences of
graphs.

A common characteristic of all implementations is
a program realizing some part of the theory devel-
oped in [Bestvina and Handel 1995; 1992]. The main
distinguishing characteristic of the implementation
discussed here is that homeomorphisms of surfaces
with one puncture can be entered as compositions
of Dehn twists, and results can be displayed as pic-
tures of graphs embedded in surfaces, which signifi-
cantly facilitates the generation of examples as well
as the interpretation of results. Hence, the software
described here provides a powerful yet easy-to-use
environment for mathematical experimentation.

Finally, we note that independent approaches to
train tracks have been found by other authors; see,
for example, [Lustig 1992; Los 1993; Franks and
Misiurewicz 1993]. In the first of these references,
train tracks are used to study automorphisms of free
groups, while the other two papers are concerned
with homeomorphisms of punctured spheres.
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3. DEHN TWISTS

The software contains a class with two methods for
handling Dehn twists: One of them is extremely
easy to use and allows the user to define surface
homeomorphisms as a composition of Dehn twists
with respect to a fixed set of curves (see Figure 1).
The Dehn twists with respect to this set of curves
generate the mapping class group [Lickorish 1964].
This set of generators is not minimal; rather, it was
chosen with the user’s convenience in mind.

FIGURE 1. Generators of the mapping class group.

The other method for handling Dehn twists re-
moves the restriction to a fixed set of curves, which
results in a slightly more complicated input format.
This method is the part of the package that pro-
vides the link between surface homeomorphisms and
homotopy equivalences of graphs; the method de-
scribed in the previous paragraph merely generates
input for the second one.

When computing Dehn twists, we adopt the fol-
lowing convention: We equip the surface with an
outward pointing normal vector field. When twist-
ing with respect to a curve ¢, we turn right when-
ever we hit ¢. (The notion of turning left or right

is defined with respect to the chosen normal vector
field.)

4. EXAMPLES

Figures 2-5 were generated by the software package.
Each shows a train track belonging to a pseudo-
Anosov homeomorphism of a once punctured sur-
face of genus 2 or 3. The identification pattern on
the boundary of the polygons is given by matching
labels of edges intersecting the boundary, and the
puncture corresponds to the vertices of the polygon.

Singularities of the stable or unstable foliation of
the pseudo-Anosov map in question correspond ei-
ther to the puncture or to shaded areas containing

at least three edges. If a shaded area contains k > 3
edges, it gives rise to a singularity of index 1 — g
For the proofs of these statements, see [Bestvina and
Handel 1992].

Since the sum of the indices of all singularities
equals the Euler characteristic of the surface with
the puncture closed, we can compute the index of
the singularity at the puncture, if any. Moreover,
the singularities of the two foliations are fixed points
or periodic points of the pseudo-Anosov homeomor-
phism in question. There are more periodic points
than just the singularities of the foliations —in fact,
the set of periodic points of a pseudo-Anosov homeo-
morphism is dense, see [Fathi et al. 1979, exposé 9,
proposition 18].

In the following examples, S, is a surface of genus
g with one puncture, and D, denotes the Dehn twist
with respect to a curve ¢, which will always be one
of the curves from Figure 1. All the results in the
following paragraphs were computed by the software
package, the only input being the genus of the sur-
face and a sequence of Dehn twists.

Example 4.1 (maximal index ). Consider the map h :
Sy — Sy given by

h = D, D, D4, Do, Dy, D.,.

By using the algorithm from [Bestvina and Handel
1992], the software concludes that h is a pseudo-
Anosov homeomorphism with growth rate

A~ 1.722084.

A train track for A is shown in Figure 2. None of
the shaded areas gives rise to a singularity of the
stable or unstable foliation, so the puncture is the
only singularity, and its index is —2.

Example 4.2 (maximal index II). Let A : S — Sy be
given by
h =D, Dy D_"'Dy,.

Then h is a pseudo-Anosov homeomorphism with
growth rate A ~ 4.390257. Figure 3 shows the cor-
responding train track. The unique shaded area in
Figure 3 contains six edges, so it gives rise to a sin-
gularity p of index —2. We conclude that there is
no singularity at the puncture.

Example 4.3 (minimal index). Let the homeomorphism
h: S, — S, be given by h = D, D_'Dy,D;". Then



238 Experimental Mathematics, Vol. 9 (2000), No. 2

¥

LA

FIGURE 2. Train track for Example 4.1.

FIGURE 3. Train track for Example 4.2.

h is a pseudo-Anosov homeomorphism with growth
rate A = 2.015357. Figure 4 shows the correspond-
ing train track. The shaded areas labeled 0, 1, 3, 4
give rise to singularities of index —%, which shows
that there is no singularity at the puncture. The sin-
gularities 0 and 4 as well as 1 and 3 are exchanged

by h.
Example 4.4 (genus 3). Let h : S3 — S5 be given by
h == Ddo -Dco _Dd1 _DCl Ddz DC_21

FIGURE 4. Train track for Example 4.3.

Then h is a pseudo-Anosov homeomorphism with
growth rate A ~ 2.042491. Figure 5 shows the cor-
responding train track. The shaded areas labeled
0, 2 give rise to singularities of index —2, and they
are exchanged by h. There is no singularity at the
puncture.

4
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FIGURE 5. Train track for Example 4.4.
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Example 4.5 (a reducible example). Finally, consider
h: Sy — Sy defined by

h - Ddg Dco Dd1 .

Then h is reducible since the complement of the
curves dy, co, and d; is not a (punctured) disc, and
in fact the software reaches the same conclusion.

5. IMPLEMENTATION

The complete online documentation of the software
package, including a user manual and the source
code, is available with the software (see last sec-
tion, on Electronic Availability). Here we restrict
ourselves to a brief discussion of the main imple-
mentation issues. For the most part, we take the
point of view of mathematics rather than that of
computer science.

5A. Encoding of Embeddings

For the rest of this discussion, it will be advanta-
geous to think of punctures as being distinguished
points of closed surfaces. Given a closed surface
S with a distinguished point p and a finite graph
G C S homotopy equivalent to S — {p}, we need an
efficient way of encoding the embedding of G in S.
To this end, consider a loop p’ around p. p’ is homo-
topic to a closed edge path p in G that crosses every
edge of G twice, once for each direction (assuming
that G has no vertices of valence one). Conversely,
given G and p, we can reconstruct S: We simply take
a polygon P with 2n sides, where n is the number
of edges of G, and interpret p as an identification
pattern on the boundary of P. Moreover, we can
triangulate P (and hence S) by fixing a point p in
the interior of P and connecting p to all the vertices
in the boundary of P. Hence, we see that G and p
give us an efficient way of encoding the embedding
of G in S along with a triangulation of S.

5B. Finding a Metric

Now, given a triangulation 7 of S, we want to find
a hyperbolic metric on S with the property that the
edges of 7 are geodesic segments. There are vari-
ous ways to accomplish this; see [Colin de Verdiere
1991], for example. Our method of choice is a special
case of Thurston’s circle packing [Thurston 1979
Given a surface S with a hyperbolic metric y and

with a triangulation 7 whose edges are geodesic seg-
ments, there is a collection of circles centered at
the vertices of 7 such that no two circles intersect
transversally and two vertices of 7 are connected by
an edge if and only if their corresponding circles are
tangent. For each triangulation, there exists exactly
one such set of circles, and their radii can be com-
puted numerically. Moreover, they uniquely deter-
mine u. Hence, circle packing gives us an effective
way of drawing S as a polygon (with identifications
on the boundary) in the hyperbolic plane.

5C. Philosophy

The package takes advantage of many features of
the object-oriented paradigm, such as data encap-
sulation and reusability. For example, the class that
implements maps of graphs does not allow direct ac-
cess to its contents; the other parts of the package
operate on such maps through a small and well de-
fined set of methods, which results in ease of main-
tenance and great flexibility.

The mathematical part of the package consists
of 16 classes, reflecting increasing levels of special-
ization. Some of them, like the implementation of
the train track algorithm from [Bestvina and Han-
del 1995], will only be used in the context of this
package. Others, like the collection of methods for
computations and drawings in the hyperbolic plane,
have been designed with other uses in mind. In fact,
the package presented here does not even use all the
methods defined in this collection.

Finally, the classes and methods handling maps
of graphs may be useful beyond the context of this
article. For example, the author has already used
them for a tentative implementation of some of the
algorithms in [Stallings 1983].
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ELECTRONIC AVAILABILITY

The software package, written in Java, is available
free at http://www.math.utah.edu/~brinkman. An
older version of the package, written in ANSI-C,
is also available. Both versions are portable and
should run on most systems.
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