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We define the regular immersed projective solution space for
a triangulated 3-manifold, and completely determine it for the
figure-8 knot complement. We show that there is a close rela-
tionship between vertices of this polytope and normal surfaces
of a particularly simple form immersed in the manifold.

1. INTRODUCTION

Immersed normal surface theory has been the sub-
ject of considerable interest recently, as a means
of extending the techniques and results of “clas-
sical” (embedded) normal surface theory to non-
Haken manifolds. However, progress has been lim-
ited by a dearth of examples and results. This pa-
per, which builds on the work in [Rannard 1999], de-
termines the “large-scale” distribution of immersed
normal surfaces in a particular example, the figure-8
knot complement, using methods that apply to arbi-
trary manifolds. For another approach to immersed
normal surface theory see [Letscher 1997].

2. NORMAL SURFACE THEORY FOR THE FIGURE-8
KNOT COMPLEMENT

We begin by describing normal surface theory as ap-
plied to the figure-8 knot complement. We refer the
reader to [Hemion 1992; Jaco and Tollefson 1995]
for the theory in its full generality.

Let Mg be the figure-8 knot complement, and T
be the canonical ideal triangulation of Mg given in
[Thurston 1997]. We can form T by taking two
tetrahedra 7, and T, and identifying the faces so
as to match the edges as shown in Figure 1, and
then deleting the single vertex:

We see that T has two edges and four faces. We
may view Mg as a hyperbolic manifold with a single
cusp. The link of the deleted vertex of T is a torus.

(© A K Peters, Ltd.

1058-6458/2000 $0.50 per page
Experimental Mathematics 9:2, page 221



222 Experimental Mathematics, Vol. 9 (2000), No. 2

FIGURE 1. Ideal triangulation of the figure-8 knot
complement.

Any incompressible surface in a given triangu-
lated manifold may be isotoped (or homotoped in
case of an immersed incompressible surface) to meet
the triangulation in a set of disks of a special type
called normal disks. For more detailed discussions
on the theory of normal surfaces, see [Hemion 1992].

Definition 2.1. A normal arc in a tetrahedron 7T is
an arc properly embedded on a face of T whose two
endpoints are on distinct edges of the face. A normal
disk in T is a disk properly embedded in T that
intersects each face of T in at most one normal arc.

It is easy to see that a normal disk in 7 is either

1. a triangle cutting off a vertex, or
2. a quadrilateral separating a pair of vertices

whose boundary edges are normal arcs. Normal
disks of the first type are called T-disks, and those
of the second are called Q-disks.

Definition 2.2. A normal surface in a triangulated 3-
manifold M is an immersed surface that meets each
tetrahedron in a set of normal disks. (A normal
surface need not be connected or orientable.)

FIGURE 2. Normal disks in Msg.

Some edges of one tetrahedron T may actually be
the same edge in M after the faces of the tetrahedra
are identified (e.g., in Mjg, there are only two distinct
edges). This may cause some normal arcs to begin
and end on the same edge after the identification (as
seen in Myg). Similarly, it is possible that a normal
disk is not embedded but two of its edges are glued
together. These phenomena do not affect our theory.

The normal disks for My are shown in Figure 2.
There are 7 such disks in each tetrahedron, making
14 in total. To each normal surface, we associate
the vector

!/

(t17t27t37t45 d1,42, Q37t117t127tl3’t£17Q17QQ7qz%) € Zl4

where t; (¢;) is the number of normal disks of type
T; (Q;). The first seven belong to T, and the last
seven to T,. Each 14-tuple with nonnegative integer
entries is called a class.

Suppose we try to reverse this operation, and ask
what classes can correspond to surfaces in Mg. The
class must satisfy some equations, called the match-
ing equations: for each normal arc on each face of T,
the number of normal disks meeting the face in that
arc must be equal on each side of the face. (This
is true even if a face of a tetrahedron 7 is glued to
another face of T; the matching equations still give
a necessary condition.) In Mg, there are 12 match-
ing equations, defining a cone of Z"*, which we call
the solution space. For Mg, this is the intersection of
the positive coordinate half-planes and the subspace
spanned by the vectors

A=(1,1,1,1, 0,0,0, 1,1,1,1, 0,0,0),

B =(0,0,0,0, 1,1,1, 0,0,0,0, 1,1,1),

C: (0707 ]"1’ 17072’ 0707 17 ]" 17072)7

D=(1,1,1,1, 0,0,0, 0,0,0,0, 1,1,1).
Given a vector v = (vy,...,v14) in the solution

space, we define the projectivization of v to be the
vector

[U] = T(Ula cee 7014)-
Geometrically, this corresponds to projecting the

vector v onto the codimension 1 hyperplane defined
by the equation

$1+“‘+.'L'14:1.
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The set of all vectors that project to the same pro-
jectivized vector is called a projective class. The set
of all projective classes is called the projective so-
lution space and denoted P. We can visualize P as
the intersection of the normal solution space with
the codimension 1 hyperplane z; + - - - + 14 = 1.

This projection both simplifies the space we seek
and eliminate redundancy; for example, doubling a
surface (making a parallel copy of a given surface)
does not change the projective class while the class
itself gets doubled. Clearly the projective solution
space has dimension one less than the normal so-
lution space; in this case it has dimension 3. Jaco
and Rubinstein [1987] showed in that, for immersed
surfaces in Mg, P is the three-dimensional solid oc-
tahedron with vertices the classes [4], [B], [C], [C"],
[D], [D'], where C’ and D’ are defined in the next
lemma (shown in Figure 3 and described below).
The idea is as follows: clearly, [A] and [B] are inde-
pendent, so pick two distinct points in R* arbitrar-
ily. [C] and [C’] must then be chosen such that they
satisfy the identity C' + C' = A + 2B. This means
that the midpoint between [C] and [C’] must be the
point on the segment from [A] and [B] that repre-
sents the class A 4+ 2B (which, by the way, is not
two-thirds of the way from A to B because of the
projectivization). In other words, [4], [B], [C], and
[C'] are coplanar and generates a symmetric quadri-
lateral. The points [D] and [D’] are not on this
plane but need to be chosen so that the equation
D+ D" = A+ B holds. So the segment between [D]
and [D’] passes through a point close to the center of
the quadrilateral created by [A], [B], [C], and [C"].
Now, the symmetries between [C] and [C’] and be-
tween [D] and [D’] must be reflected in this object
P, so the space is a symmetric octahedron in the
3-dimensional space, as claimed above. The sym-
metry group of P, then, is isomorphic to Z, ® Z,,
with one generator flipping [C] and [C’], the other
flipping [D] and [D’].

A wvertex solution is a vector V in the solution
space that projects to a vertex of P. The follow-
ing result from [Jaco and Tollefson 1995] gives an
algebraic characterization of vertex solutions.

Lemma 2.3. If a vector V is a vertex solution, then
the only solutions A, B to the equation mV = A+ B
are such that A and B are themselves multiples of V.

[B]
FIGURE 3. The projective solution space P.

The vertices of P are the projectivizations of the
classes

A =(1,1,1,1, 0,0,0, 1,1,1,1, 0,0,0),
B =(0,0,0,0, 1,1,1, 0,0,0,0, 1,1,1),
¢ =(0,0,1,1, 1,0,2, 0,0,1,1, 1,0,2),
c'=(1,1,0,0, 1,2,0, 1,1,0,0, 1,2,0),
D =(1,1,1,1, 0,0,0, 0,0,0,0, 1,1,1),
D' =(0,0,0,0, 1,1,1, 1,1,1,1, 0,0,0).

These may be interpreted geometrically as fol-
lows:

e A consists of one each of all the T-disks. It is the
link of the vertex, the torus neighborhood of the
figure-8 knot.

e B consists of one each of all the Q-disks.

e (C and C' are related by an involution o; of Mjg
that respects the triangulation.

e D consists of one each of the T-disks in the first
tetrahedron together with one each of the Q-disks
in the second tetrahedron. D and D’ are related
by a second involution oy of Mg that respects T.

These vectors are linearly dependent, with the iden-
tities mentioned in the description of the shape of
P: six vectors are required because no negative co-
ordinates are allowed in these solution vectors.

We can picture P standing in R* with [A] as the
top vertex, [B] as the bottom vertex (and these two
are on the z-axis), and [C] and [C'] extending to
the y-direction and [D] and [D'] on the z-axis (see
Figure 3). This space has natural symmetries (invo-
lutions) with respect to the x, z-plane and the y, z-
plane. Note that we do not say that [C] and [C'] are
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on the y-axis because P is not a regular octahedron
and these two vertices are actually slightly “lower”
than [D] and [D']. We will make this concept more
precise in Section 6.

The notion of projective solution spaces has been
extensively studied; it proved to be a very powerful
tool in [Jaco and Oertel 1984]; it is further discussed
in [Tollefson and Wang 1996; Jaco and Tollefson
1995], and, more recently, [Tollefson 1998], in which
the theory was developed using only the Q-disks.
These papers suggest the importance of the vertices
of P in normal surface theory.

Note that, while one can add two proper classes
(say V and V') simply as vectors, the sum of two
projective classes [V] and [V'] is not defined. Rather,
all the points on P between [V] and [V'] are de-
scribed in the form k[V] + (1 — k)[V’] for some k €
(0,1)N@Q. The set of all such points on P will be re-
ferred to as the open segment between [V] and [V’]
on P and denoted VV’. One must also remember
that, since these 6 “basis” vectors do not have the
same number of disks, the projection is not “linear”
in general, i.e.,

[mV +nV'] £ —~ n

AVt VT
As real vectors, [A] = $A, [B] = :B, [C] = C,

)
and so forth. Hence, for instance, [A + B] is not the
midpoint of [A] and [B], but [A+ B] = 3[A] + 2[B].
Similarly, it is easy to verify that
[5D+D'] = 2[A+2D] + 2[B+2D],

1([C+3D] + [C"+3D)) = L[A+2D] + 2[B+2D.
In particular, these equations show the following,
which will be used later (see Figure 4).

Lemma 2.4. On the projective solution space P, the
points [A+2D], [B+2D], and [5D+D’] are collinear,
and these points are coplanar with [C + 3D] and
[C" +3D].

3. THE REGULAR PROJECTIVE SOLUTION SPACE

Every vector in the solution space may be repre-
sented as a collection of normal disks glued together,
but this 2-dimensional structure is not necessarily
an immersed surface. If a vector represents the set
of normal disks produced when an immersed surface
meets the tetrahedra of Mg, then it is called regular.

[A+2D]

5D+ D] [C +3D]

(B + 2D)]

FIGURE 4. Around vertex [D] of P.

Irregular vectors correspond to collections of normal
disks that cannot be glued together to give a surface.
Irregular vectors exist in the solution space of Msg,
and the central focus of this paper is to determine
exactly which points of P represent regular classes.

At this point, it is helpful to introduce the dual
structure of a 2-complex (X,5) determined by a
class X of normal disks (in the solution space) and a
given gluing G. Pick the center point of each normal
disk of X, and join two such points via a line seg-
ment (called a dual edge) if and only if the two nor-
mal disks share a common edge (i.e., glued together
by §). See Figure 5, which shows this structure for
Msy. If one begins at the center point p of some nor-
mal disk D (Q, in the figure) of X, proceeds to one

Qe

edge | disk .|

FIGURE5. An edge disk. A dual loop (the thick solid
line) is made up of 6 dual edges. The vertical dashed
line is an edge of the triangulation.
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FIGURE 6. A typical branch point of order 2.

of the two adjacent normal disks sharing a vertex
qof D (i.e., T, or T}) and continues to move along
the dual edge surrounding g, eventually one returns
to p, but perhaps after going around ¢ more than
once. The resulting path, a loop about g, is called a
dual loop, and the compact polygon bounded by it is
called a dual disk. (Hence, (X,G) can be thought of
as a union of these dual disks glued together along
the dual edges.) This leads to the following defini-
tion.

Definition 3.1. If a dual loop goes around a vertex ¢
of (X, 9) exactly once, then the corresponding dual
disk is called an edge disk; otherwise, ¢ is called a
branch point of (X, G).

Figure 6 shows a typical branch point of order 2.
Clearly, the 2-complex (X, §) is an immersed normal
surface if and only if every dual disk is an edge disk
(see Figure 5). Note that an edge disk need not be
embedded in the manifold, as before. The number
of sides of this polygon obviously coincides with the
degree of the edge, so it is possible to have a 1-gon
or a 2-gon as an edge disk (although this does not
happen in Mjs since all edges have degree 6). Also
observe that each normal disk of X is now subdi-
vided into 3 or 4 quadrilaterals (3 for a T-disk, 4 for
a Q-disk), each corresponding to a “corner” of the
original T- or Q-disk. It is convenient to refer to
these corners as T-corners and Q-corners, respec-
tively, as we will see in the lemma below.

An example of an irregular vector is D, consisting
of four T-disks of different types in one tetrahedron
and three Q-disks of different types in the other.

One can easily verify (see the remark after the fol-
lowing lemma) that there is only one way to glue the
7 normal disks of D together, which forces the disks
to meet each edge of My at a single point. In fact,
it is evident that both of these points are branch
points of order 2.

More generally:

Lemma 3.2 [Aitchison et al. 1998]. If S is a normal
surface immersed in a triangulated manifold, viewed
as the pre-image of the immersion (thus decomposed
into T-disks and Q-disks), then each vertex of S has
an even number of Q-corners around it.

Note that we cannot say an “even number of Q-
disks” since they may be different corners of one
Q-disk.

For the class D (and all its multiples), since the
first tetrahedron can supply only T-disks and the
second only Q-disks, as one goes around an edge
(of the triangulation) to construct a dual disk, the
T- and the Q-disks must alternate. But since the
degree is 6, one gets exactly 3 disks of each type,
which shows why D is irregular (as well as why every
vertex of this 2-complex is a branch point as asserted
above).

Definition 3.3. A projective class [V] is regular if
there is some regular class that projects to [V]. Oth-
erwise, it is said to be irreqular. The reqular projec-
tive solution space R is the set of all regular projec-
tive classes in P.

The regular projective solution space R is a con-
vex sub-polytope of the projective solution space P,
since any linear combination of two regular classes
represents a set of disconnected immersed surfaces.
Note that points on the boundary of R need not a
priori be in R itself. However, we will show that, at
least for My, R is a compact space.

Section 5 deals with finding the shape of R. Be-
cause of the two symmetries mentioned in Section 2,
we need to consider only the subpolytope enclosed in
the tetrahedron with vertices A, B, C', and D. The
vertices A, B, and C are all regular [Rannard 1999,
but as noted above, D projects to an irregular point.
Since R is convex, there will be “critical points” on
the edges connecting [D] with the other three ver-
tices of P marking the closest point a vector can
be to [D] without losing regularity. It is this ques-
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tion of “truncation” around [D] (and [D’]) that is
central to determining the shape of R for immersed
surfaces in Mg. In the following sections, we will in-
troduce various techniques in search of the solution
to this problem. First, in Section 4, we introduce an
alternative normal surface theory dual to the stan-
dard theory described in Section 2. In Section 5
we give our main result —the complete description
of R for the figure-8 knot complement— which we
obtained by applying the theories of Sections 2 and
4 using a computer. The last two sections of this
paper present some geometric interpretations of the
positions of the vertices.

4. DUAL NORMAL SURFACE THEORY

Since a regular surface meets the 1-skeleton of Mg
only in edge disks, it is natural to reverse the pro-
cess and try to construct normal surfaces out of
edge disks, instead of normal disks. We call this
approach dual normal surface theory and develop it
analogously to the standard normal surface theory.

First, we construct all the possible edge disks.
The following lemma suggests the large number of
possibilities we must consider.

Lemma 4.1. There are 128 possible edge disks for Msg,
64 about each edge.

Proof. Pick an edge e of Mg and picture 6 tetrahe-
dra around e, as in the universal cover of Mg. Fix
one of the tetrahedra as 74 and label the others as
To, T3, ..., Tg, i0 order (say counterclockwise). Now,
in 7y, there are two T-disks and two Q-disks that
intersect e. This yields 4 possibilities in 7; for an
edge disk around e. Now, any one of these 4 disks
gives rise to a normal arc in the face of 7 glued to
71, along which either a unique Q-disk or a unique
T-disk in 75 can be glued. Once this is fixed, the
same is true for 73,74, and 75. So we have counted
4x2* = 64 possible edge disks around e. Since every
edge disk must have an even number of Q-corners,
these 5 disks (or more precisely, the 5 corners) de-
termine whether the corner in 74 must be a Q-corner
or a T-corner. Hence, there is only one choice for
Te, yielding 64 possible edge disks around e. Do the
same with the other edge of Mg. Hence, there are
128 edge disks in total. O

FIGURE 7. A normal surface viewed simultaneously
as a set of normal disks glued together (solid lines)
and as a set of edge disks glued together (dashed
lines).

This list of 128 edge disks was first created by hand
by the first author and later verified by a program
written by the second author. Once the complete
set of edge disks was generated, each edge disk was
assigned a number.

When a regular surface is split up into a collec-
tion of edge disks, we see that two adjacent edge
disks meet in a pair of normal disks (if a face of
a tetrahedron is glued to another face of the same
tetrahedron, an edge disk may join to itself~but this
does not happen in Mg) sharing a common edge.
See Figures 7 and 8.

Arc of
intersection

Normal of edge disks

T-disks

Center of
edgedisk T

FIGURE 8. Two adjacent edge disks meeting in an
arc. The boundary of the edge disks are drawn with
dashed lines.
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Moreover, for each such pair of normal disks, the
number of edge disks coming from one side must
equal the number coming from the other. We obtain
a set of equations, the dual matching equations, as
a necessary condition for the surface to exist. Each
pair of adjacent normal disks (normal disks which
share a common edge) produces a dual matching
equation, analogously to the way each normal arc
gives rise to a matching equation in standard normal
surface theory.

As in the standard normal surface theory, we iden-
tify each type of edge disk with a coordinate of a
vector space over R, so the dual matching equations
define a subspace. The set of vectors in this sub-
space with all coordinates nonnegative is the dual
solution space. Unfortunately, not every vector in
the dual solution space need correspond to a regu-
lar surface, as shown below.

Since every regular surface is represented by a vec-
tor in both the standard normal solution space and
the dual normal solution space, the question arises
as to the relationship between these two vectors as
well the two spaces. There is a natural linear map
U from the dual solution space to the standard solu-
tion space that answers part of this question, given
as follows. Fach edge disk e; is composed of cor-
ners of a fixed set of normal disks, say w;,,...,w;,-
The image of e; under the linear map is the vector
representing

d—1w1+"'+d—qwq,
where d; = 3 if w; is a T-disk and d; = 4 if w; is a
Q-disk, as shown in Figure 9.
We extend this to a map U on the whole dual
solution space by linearity, which we call the dual-
to-standard map.

|
I
1
I
1

N/
-

The image of the dual solution space under the
dual-to-standard map is a cone, which we may con-
vert into a polytope by intersecting the image of the
dual solution space with the same hyperplane as in
standard normal surface theory. We shall examine
methods of computing this polytope in a subsequent
section.

Another natural linear map derives from the fol-
lowing. Suppose an edge disk is described as

[L17L27L3a L47 L57 Lﬁ]a

where the L; represent particular normal disk types
(whose corners make up the edge disks). We can
replace each L; by either a “Q” or “I” depend-
ing on whether it represents a Q-disk or a T-disk.
In other words, one goes around the edge disk and
writes down a “Q” if one comes to a Q-corner and
a “T” if a T-corner. An example of such a nota-
tion is QQQTQT. Two edge disks are combinatori-
ally equivalent if their symbols are the same up to
rotation and reflection. For immersed surfaces in
Mg, there are 8 equivalance classes; see [Aitchison
et al. 1998]. These 8 possible combinatorial types for
edge disks are referred to as vertex types in [Aitchi-
son et al. 1998], but we shall call them edge disk
types here. We say a normal surface S is homo-
geneous if all its edge disks are of the same edge
type (combinatorially equivalent), and a point in
R (i.e., a projectivized normal surface) is a homo-
geneous class if a homogeneous surface projects to
it. As before, we can associate each combinatorial
equivalence class of edge disks with a coordinate of
a (8-dimensional) vector space, and construct the
canonical projection. The image of the dual solu-
tion space under this map is a cone, which we may
convert once again into a polytope by intersecting

OV
VIS,

+

FNQRYN

FIGURE 9. The action of the “dual-to-standard” map U on an edge disk.
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this image with a hyperplane as in standard normal
surface theory. Homogeneous surfaces clearly corre-
spond to vertices of this polytope. For the figure-8
knot complement, the vertices of this polytope have
a strong connection with the vertices of the regular
solution space, as outlined in Section 6. This poly-
tope seems to be an interesting object, but we will
not study it in detail in this paper; however, the fol-
lowing remarks seem appropriate to conclude this
section.

We mentioned previously that not every vector in
the dual solution space need correspond to a regu-
lar surface. It may happen that a set of edge disks
match up along their boundaries, but the corners of
the edge disks (corresponding to normal disks) don’t
match up to give a disk. This situation is analogous
to the formation of branch points in the standard
normal surface theory, so we call it a dual branch
point. At a dual branch point a normal disk is re-
placed by some branched cyclic cover of the normal
disk over its center.

An example of a case where a dual branch point
must occur is the following. In [Aitchison et al. 1998]
it is shown that the edge disk type QTTQTT can-
not have homogeneous surfaces. However, there is
a solution to the dual matching equations involv-
ing only edge disks of this type. As this solution
cannot correspond to a normal surface, dual branch
points will occur whenever the edge disks of the so-
lution are glued together. The same is true for the
edge disk type QQQQTT. Curiously, however, in
each case the image of the dual solution under the
map to the normal solution space is a regular class.
This implies that the edge disks can be cut up along
normal arcs and reglued to give a regular surface.
In other words, although this map U is very useful
for practical computations (as we shall see in the
following section), some nontrivial information gets
lost by this map as well.

5. DETERMINING THE REGULAR PROJECTIVE
SOLUTION SPACE R FOR THE FIGURE-8 KNOT
COMPLEMENT

To determine R, we first find a set of points known
to be regular, and then show that all points outside
the convex hull of this set are irregular. We make
great use of the fact that R is convex.

The first step is accomplished by referring to the
results in [Rannard 1999], the results of a computer
search for regular surfaces using the Magma compu-
tational algebra system [Bosma et al. 1997]. From
this we know that the classes [4], [B], [C], [A+2D],
[B + 2D] and [C + 2D] are regular. The classes
[C'], [A+2D’], [B+2D'], [C+2D'], [C' +2D], and
[C" + 2D'] are then regular by symmetry.

To show that points outside the convex hull are
irregular, we use the fact that all regular vectors
must lie inside the image of the dual solution space
under U.

We now show how to compute this image. One
potential method is to consider the standard nor-
mal solution space as a subspace of the dual solu-
tion space, and write the dual-to-standard map as
the product of a bijective linear map with a pro-
jection onto this subspace. Then we could deter-
mine the image by using Fourier-Motzkin elimina-
tion on the dual matching equations and the in-
equalities x; > 0, where the z; are the dual coordi-
nates. However, for (Mg, T') the difference in dimen-
sion between the normal solution space and the dual
solution space was very large (4-dimensional versus
101-dimensional) and the number of intermediate
vertices generated by Fourier—-Motzkin elimination
rises beyond the storage capacity of our computers,
making this method infeasible. Instead we proceed
by converting the question into a linear program-
ming problem.

As noted in Section 3, R is obtained from P by
truncating the vertices [D] and [D’]. Knowing that
R is convex, we can determine the truncation by
finding the maximum value of the rational parame-
ter ¢ such that [V +tD] is regular, for various classes
[V]. Our method is to view ¢ as the objective func-
tion in a linear programming problem.

The dual solution space and the dual-to-standard
map are both linear. We can form the vector space

vector space vector space one-dim.

spanned by | x | spanned by | X | vector space

edge disks normal disks representing ¢

The dual matching equations can be written as
a set of linear equations relating the variables from
the first factor, and the normal matching equations
can be written as a set of linear equations among the
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variables of the second factor. The dual-to-standard
map can be written as a set of linear equations relat-
ing the variables in the first and second factors. The
equation V(t) = [X + tD] can be written as a set of
linear equations relating the second and third fac-
tors, with some constants. The whole set of linear
equations can be gathered together and written

My=z y=>0

where y and z are vectors, and ¢ occurs only as a
linear factor. Our problem, as illustrated in Figure
10, can now be formulated as:

Mazximize t subject to the constraints My = z,
y>0.

\ image of dual
\.solution space

standard projective solution space

FIGURE 10. Finding the value of ¢ for which [X 4¢D)]
moves out of the image of the dual solution space
under the dual-to-standard map.

To implement this method, we have written a
Mathematica file containing the following data:

e A list of 143 variables, labelled z1,...,z143. The
first 128 variables x4, ...,z correspond to the
edge disks for (Mg, T'), the next 14 variables 2129,

.., T149 correspond to the 14 normal disks, and
the final variable x43 represents the parameter ¢
to be maximized;

e The dual matching equations, expressed as a set
of linear equations in xq, ..., Tq2s;

e The normal matching equations, expressed as a
set of linear equations in Xz, ..., T142;

e The dual-to-standard map, expressed as a set of
equations giving each of a9, ..
combination of x, ..., Tis;

e A set of equations giving each of x199,. .., 2142 in
terms of z143 and constants, representing the fact
that we are looking for the vector [X + ¢D)].

., T142 as a linear

To calculate the image of the dual solution space un-
der the dual-to-standard map we use the LinearPro-
grammaing function in Mathematica, which solves
the linear programming problem above. The ob-
jective function is xq43, which is maximized subject
to the linear equations in the file. All the variables
are kept nonnegative automatically. Coeflicients are
given as integers or fractions and all arithmetic is
exact, avoiding roundoff errors or approximations.
In general the resulting values for zy,...,x43 will
be nonintegral rational numbers, which become so-
lution vectors after multiplying by a suitable large
integer. This is not a problem since such vectors still
project to points in the projective solution space.
The results are as follows:

Theorem 5.1. The regular projective solution space R
is the convex hull of the points [A], [B], [C], [C'],
[A+2D], [B+2D], [A+2D'], [B+2D'], [C+2D],
[C+2D’], [C"+2D], and [C"+2D’].

Proof. We use the method outlined above. Note first
that of the six vertices of P only [D] and [D’] are
irregular. Using the process described above, we
find that the classes [A+tD], [B+tD], and [C' +tD]
are irregular for ¢ > 2. The same process shows the
class [D' + tD] is irregular for ¢t > 5, and hence by
Lemma 2.4 the entire segment between [A + 2D]
and [B + 2D] is in the boundary of R. Finally, the
class [A+ B + C + tD] is found to be irregular for
t > 6. We know [A + B + C + 6D] is regular since
A+B+C+6D = (A+2D)+(B+2D)+(C+2D).
The result then follows by the convexity of R, the
symmetries of R and the regularity of the vertices
[A], [B] and [C]. O

The regular projective solution space R is shown in
Figure 11.

A few questions naturally arise from this result.
First, one can ask whether or not the regular pro-
jective solution space is strictly smaller than the im-
age of the dual-to-standard map. In other words, is
there a solution V' to the dual matching equations
such that U(V') does not satisfy the normal match-
ing equations? As explained above, our method
combines and solves the two sets of matching equa-
tions simultaneously and thus does not address this
question in particular. We stated, at the end of
Section 4, that there are solutions to the dual equa-
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[4]
[A+2D]
[A+2D']
[C'4+2D C'+2D]
[C+2D C+2D']
[B+2D] [B+2D'|
[B]

FIGURE 11. The regular projective solution space of
the triangulated manifoled (Mg, T).

tions that we know are irregular; however, these are
mapped by U to regular classes.

Another, perhaps more important, question is the
following: is the regular projective solution space
of a given triangulated manifold completely deter-
mined (as in the case of Mg) by the intersection of
the image under the map U of the dual solution
space with the projective solution space? These two
systems of equations give a lot of information, so
certainly this is a possibility.

One by-product we obtain from the theorem is the
following rather interesting result on what is referred
to as virtually regular classes in [Rannard 1999).

Definition 5.2. A class is called virtually regular if
some integer multiple of that class is regular.

Obviously the set of regular classes is a subset of the
set of virtually regular classes.

Corollary 5.3. If V is a virtually reqular class in Msg,
then its double 2V is regular.

Proof. Suppose V is a virtually regular vector. Using
the identities C+C' = A+ 2B and D+ D' = A+ B,
we can write V in one of four forms: V = v A +
V9B + v3C + v4D, V = vjA + v,B + v3C + v, D',
V=viA4+v,B+vC'"+v,D,0or V=vA+v,B+
v3C" + v, D'. By symmetry we need show the result
only with one form; here we use the first.

Doubling both sides of the equation gives 2V =
201 A + 2v,B + 2v3C' + 2v,D. We proceed to col-
lect multiples of A + 2D. If 2v; > vy, the result is
clearly the sum of two regular vectors, so we can glue
the normal disks of 2V together to give the (discon-
nected) sum of (at least) two regular surfaces. Oth-
erwise, we have the equation 2V = 2v,B + 2v3C +
2(vy — 2v1)D + 2v,(A 4 2D).

We now repeat the process for 2(B + 2D) and
2(C + 2D). If vy is even, we obtain

2V = 2(v4 —2(v; +vo+v3)) D + (something regular).

The restriction on the shape of the regular projective
solution space R means vy < 2(v; + vy +v3). If vy is
odd, the result may contain the term 2D; however,
if this occurs, the inequalities defining R imply there
will always be a term 2B or 2C present. As we know
(2B + 2D) and (2C + 2D) are both regular from
[Rannard 1999], we conclude that 2V is regular. [J

6. HOMOGENEOUS SURFACES AND VERTICES OF R

There is a close relationship between the vertices of
R and homogeneous surfaces in the standard solu-
tion space. In this section we examine this relation-
ship more closely, and offer some alternative proofs
of parts of Theorem 5.1 that illuminate the geom-
etry of the situation and give more information on
the surfaces in various classes.

Definition 6.1. Let V' be a regular class, and let |Qv/|
and |Ty| be the numbers of Q-disks and T-disks in
V', respectively. Define the vertex angle ratio of V
to be
= 3|Tv|
4|Qv|’

which is the ratio of the number of T-corners to the
number of Q-corners. We set ry = oo if |Qv| = 0.

Note that this ratio is well-defined on the projective
class, so we may write ry to mean rpy. It is easy
to observe that this ratio monotonically increases
from 0 to oo as the class moves from [B] up to [A].
In other words, we have defined a “height function”
r:P — R* U {oo}. The inverse image of some pos-
itive rational number under r is a flat “horizontal”
surface through P. This map can be generalized
to the solution space of any cell complex, as three-
quarters of the ratio of the total number of Q-disks
to the total number of T-disks.
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Since each edge disk of an immersed normal sur-
face must have an even number of Q-corners, i.e., 6,
4, 2, or 0, it is easy to see the following;:

Lemma 6.2. If V is a homogeneous class, then ry
must be 0, %, 2, or oo.

Hence, all homogeneous surfaces occur at the ex-
treme points [A], [B], and at only two levels (2 and
3) of P.

We will now use this result to find homogeneous
classes. We begin with the vertices of . We already
know [D] and [D’] are not regular. On the other
hand,

rp = 0, %7

so C' and C' could be homogeneous. Indeed, it
is shown in [Aitchison et al. 1998] that they are.
The computer program of [Rannard 1999] has ver-
ified that the proper class C' has 13 surfaces alto-
gether, and one of them (57 of the type QQTQQT
in [Aitchison et al. 1998]) is homogeneous.

Next, we look at the classes of the form m[V;] +
(1 —=m)[Va], m € (0, 1) N Q, where the V; are the 6
vertices of P (the open segment V;V3).

It is straightforward to check that on the open seg-
ment AB, there are only two homogeneous classes.
This follows from the fact that if [V] = [mA + nB],
where m, n > 1, then ry = 1 only when [V] =
[A+2B], and ry = 2 only when [V] = [2A+ B]. The
fact that they are homogeneous is shown in [Aitchi-
son et al. 1998]. Similarly, on AC, [34 + 2C] is the
only possible homogeneous class (with ry = 2), but
no surface has been explicitly found in this class.

Since [A], [B], [C] and [C’] are known to be reg-
ular, the above mentioned classes do not contribute
to finding new vertices of R. To determine the trun-
cation around [D] and [D’], we now look at the edges
involving [D].

ra = OO, ro=Trcg =

Theorem 6.3. The following is true concerning P.

1. On the open segment AD, [A + 2D] is the only
homogeneous class.

2. On the open segment BD, only [B + 2D) is ho-
mogeneous.

Proof. For part 1, suppose [V] = [mA + nD], where
m,n > 1. Then,
~ 3-4(2m +n)

= = =1+ —.
v 4-3n n + n

Hence, ry cannot be 1 but is 2 if and only if m/n =
:. Thus, [V] = [A + 2D] is the only possible class,
and this class contains Thurston’s surface S3 [Aitchi-
son et al. 1998] of the type QTQTTT and thus is
homogeneous.

The proof of part 2 is exactly the same. Fig-
ure 12 shows a regular surface (found by the second
author’s program) in the proper class 2(B + 2D),
making [B + 2D] a homogeneous class. O

Here is an interpretation of the position of two of
the vertices of R.

Theorem 6.4. The point [0A + §D] is regular if and
only if «/d > L. The point [3B + 6D] is regular if
and only if 3/6 > 1.

Proof. Let S be a regular surface that projects to
the class [@A + 6D]. In each edge disk of S there
can be either 0 or 2 Q-corners, since all the Q-disks
are in a single tetrahedron. Clearly the ratio «/d
will be least when all the edge disks have exactly 2
Q-corners. Let t denote the number of T-disks and
q the number of Q-disks. Then

t=8a+46 and ¢g=36

from the definitions of the classes A and D. If there

are e edge disks, there are 4e T-corners and 2e Q-

corners; since each T-disk has 3 corners and each
Q-disk has 4, we find

B8a+46 S 4e/3 8

36 g 2ji 3

and hence
o
= >
52

N —

The class A 4+ 2D corresponds to the case a/d =
%, known to be regular from the program, and by
taking sums of this class with A we may construct
a regular class corresponding to any rational value
ald > 3.

We use the same argument for classes [6B + D).
If S is a regular surface in such a class, we know
each edge disk of S can have either 4 or 6 Q-corners
following the reasoning above, and the ratio % is
minimized if all edge disks have 4 Q-corners (i.e., of
the type QQQTQT since all T-disks come from a
single tetrahedron). Defining ¢, ¢ and e as above,
we have

t=45, q=68+36.
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There are 2e T-corners and 4e Q-corners, so

45 t _2e/3 2

63+35 q 4e/4 3’
by which we obtain

>

@
N =

The equality holds for the class 2B + 4D. As we
mentioned in Theorem 6.3, there is a (homogeneous)
surface (Figure 12) in this class, so the result follows.

O

Remark 6.5. This argument actually shows more than
the regularity: it implies that any surface in [A+2D]
and in [B + 2D] must be homogeneous, of the type
QTQTTT and the type QQQTQT, respectively.

Another curious fact is that, while the proper class
2B+4D is regular, B+2D is known to be irregular;
see [Rannard 1999]. It is interesting to investigate
how and why the regularity varies among proper
classes projecting to the same point in P.

FIGURE 12. Homogeneous surface in 2(B + 2D).

There are no homogeneous classes in the open seg-

ment C'D since ry is never 2 or % in this segment.

In other words, while homogeneity gave a nice in-
terpretation of the vertices of R on AD and BD, it
will not help us understand the vertex on C'D.

7. SYMMETRIC CLASSES IN P

In order to study the regularity of classes near [D]
and [D'], we examine the 8 edge disk types a little
more carefully (see Section 4). The following defini-
tion gives a way of understanding how the character
of the edge disks of a surface close to [D] differs from
those of a surface in the plane containing [A4], [C],
[B] and [C"].

Definition 7.1. Let v be an edge disk of a normal
surface immersed in Mjg. The edge disk type of v
is said to be symmetric if the number of Q-corners
at v coming from T, (i.e., @1, R, and Q3) is equal
to the number of Q-corners coming from T, (i.e.,

1,Q%, and Qf). Otherwise, the edge disk type is
nonsymmetric.

It is easy to see that we could use the number of
T-corners in the definition instead. It is also trivial
to verify that, of the 8 edge disk types possible, all
but the types QQQTQT and QTQTTT are sym-
metric. Hence, if all edge disks of a surface S are
of the 6 symmetric types, the number of Q-disks
from T is equal to the number of Q-disks from Ty,
and the same holds for the number of T-disks. This
observation gives us the following:

Lemma 7.2. Let S be a normal surface immersed in
Msg. If all the edge disks of S are of symmetric types,
then S belongs to a class that is a linear combination
of A, B, C, and C'.

Proof. As noted above, such a surface S has the same
number of Q-disks (and T-disks) coming from each
T,;. If the class (say V') containing S must have D
or D', these two numbers will not be equal since

D=(11110000000 111),
D'=(00001111111000).

This proves the lemma. Note that V' may have the
same number of D and D', but then the identity D+
D' = A+ B allows V to be written as a combination
of A, B, C, and C". O

For convenience, we introduce some notation. First,
we count the number of nonsymmetric edge disks of
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a surface. Let «; be the number of edge disks of
the type Q'QQ'TQ'T, where the prime (') indicates
that these Q-disks come from T,, and the others
from T;. Let as be the number of edge disks of the
type QQ'QT'QT’. Similarly, let 5; be the number
of edge disks of the type Q'T'Q"TT'T, and (3, the
number of edge disks of the type QT'QT"TT’. For
1t = 1,2, define ¢; to be the number of Q-corners
from T;, and ¢; to be the number of T-corners from
T;. Note the following facts.

Lemma 7.3. Let |Q| (and |T'|) be the number of Q-
disks (and T-disks) in a class V. Then |Q| = (¢ +
g2) and |T| = %(tl“rtg). Moreover, gg—q1 = ti—ty =
0 if and only if V is a linear combination of A, B, C,
and C' only.

Proof. The values of |@Q| and |T'| are obvious. For the
last statement, first suppose V is a linear combina-
tion of A, B,C, and C'. Each of these classes has
the properties that ¢; = ¢, and t; = t,, so the class
V' also has these properties. Conversely, if ¢; = ¢
and t; = ty (actually one of these suffices), then
clearly V' cannot have D or D’ (unless, as before,
V contains D + D', which can be written as A + B
instead). O

We can now express the number of edge disks as
4QI+3IT] _ qi+ @+ttt
6 6 '
Lemma 7.4. The identity
@ —q =t —ty =2((q — @) + (61 — B2))

holds for any surface S immersed in Msy.

VI =

Proof. As said before, the difference ¢, — ¢; comes
from nonsymmetric edge disks only. For each edge
disk of the type Q'QQ'TQ'T, q, is increased by 3
while ¢, is increased by 1. Similarly, each occur-
rence of QQ'QT'QT' increases ¢, by 1 and ¢; by 3.
Finally, each occurrence of Q'TQ'TT'T increases g,
by 2 while QT'QT"TT’ increases q; by 2. As other
edge disks are irrelevant, we have
@ — ¢ = (3o + o+ 261) — (04 + 3o +20)
=201 — 20 + 20, — 23,
= 2((a1 —ay) + (B — ﬂ2))

A similar calculation shows that

t1—ty = 2((c1 — a2) + (61 — B2)).- [

These lemmas give some insight into the shape of
the regular projective solution space R for Ms.

Theorem 7.5. Let V be the class expressed as V =
mD 4+ nD', where m, n are positive integers. If V
is regular, then m/n < 5.

Proof. Suppose V is regular, and S is a surface in
mD + nD’. By the definitions of D and D', we get
¢ = 12n, o = 12m, t; = 12m, t, = 12n, and
|V| = 4m + 4n. Therefore,

@ —q =12m — 12n = 2((o1 — a2) + (61 — B2)),
from which we get
6m — 6n = (a; — ag) + (61 — B2) < 4m + 4n.

Hence,
2m < 10n, or m/n <5. O

Remark 7.6. The equality holds when
V=5D+D'=(D+D')+4D =(A+ B)+4D
=(A+2D)+ (B+2D).

We know that [A+2D] and [B +2D] are regular, so
the theorem shows that [5D+ D’] is the sharp bound
on this segment between [D] and [D’]. In addition,
any surface in [5D + D’] has the property that every
edge disk is of the type Q'QQ'TQ'T or Q'TQ'TT'T
and both types must occur.

The same type of argument shows the following; we
omit the proof, which is very similar to the proof
above.

Theorem 7.7. Let V be the class expressed as V =
mC +nD, where m, n are positive integers. If V is
regular, then n/m < 3.

Of course, we already know this by Theorem 5.1,
which says that V' is regular if and only if » < 2.
The reason we state it here is that this kind of ar-
gument gives many properties of prospective sur-
faces in these classes and often enables us to deter-
mine the regularity without solving a large system of
equations by computer. (We eventually determined
by hand that [C' + 3D] is irregular.) In fact, be-
cause of this last theorem and the fact that [C' +3D]
and [C" + 3D] are coplanar with the known vertices
[A+2D], [D' +5D], and [B +2D] (Lemma 2.4), we
had once conjectured that these two points are the
missing vertices of R. In this context, it is very in-
teresting and surprising that [C'+2D], not [C'+3D],
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is the vertex between [C] and [D]. Perhaps this is
due to the fact that [C + 2D], [C 4 2D'], [A + 2D]
and [B+2D)] lie on an affine plane parallel to the ho-
mogeneous plane containing [A], [C], [B] and [C"].
Since the plane is affine, the convexity arguments
used above fail.
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