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We consider the question of existence of embedded doubly pe-

riodic minimal surfaces in R 3 with Scherk-type ends, surfaces

that topologically are Scherk’s doubly periodic surface with han-

dles added in various ways. We extend the existence results of

H. Karcher and F. Wei to more cases, and we find other cases

where existence does not hold.

1. INTRODUCTIONH. Karcher [1991] proved the existence of the �rstcomplete, embedded, doubly periodic minimal sur-face to be found since H. Scherk's classical example,which dates from 1835. We denote Karcher's surfaceby M1 (see Figure 1, left). Following this discovery,Wei [1992] constructed an embedded, doubly peri-odic surface of genus two by adding a handle to M1(Figure 1, center). We describe a new embedded,genus two surface that results from adding a dif-ferent type of handle to M1 (Figure 1, right), andoutline the di�erences between these two genus twosurfaces. In addition, we construct three collectionsof new, embedded surfaces of genus three that re-sult from adding either two handles of the same type(see Figure 2) or two handles of di�erent type (seeFigure 3).Using a technique discovered by Karcher and Pol-thier [1993] to reduce the number of periods to beconsidered, we are able to add ends to the fun-damental piece of each surface presented withoutincreasing the dimension of the period problems,thereby producing countably many di�erent familiesof new, embedded examples for each of the handletypes shown in Figures 1 and 2.The existence proofs for the genus two surfaces re-quire solving one-dimensional period problems, andthe existence proofs for the genus three surfaces re-quire solving either one-dimensional or two-dimen-sional period problems, depending on the types ofhandles we choose. When the period problem is one-
c
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FIGURE 1. Fundamental pieces of Karcher's surface M1 (left), Wei's surface M�1 (center), and the surface M+1 .dimensional (as for the surfaces in Figures 1 and 2),we use the intermediate value theorem to solve it.When it is two-dimensional (as for the surfaces inFigure 3), we achieve a solution by using a mappingdegree argument, a kind of generalization of the in-termediate value theorem.We �nd that in the two cases of genus three sur-faces with four ends and handles of the same typethe period problems have no solution. In these ex-ceptional cases we demonstrate a natural geometricobstruction to existence, an obstruction that disap-pears when more ends are added to the surfaces.
2. OVERVIEW OF THE CONSTRUCTIONKarcher's original surfaces M1 are highly symmet-ric; they have three mutually perpendicular planesof symmetry and contain four vertical straight lines

(Figures 1, left and 5, left). The three planes dividethe surface into eight pieces. Each piece is boundedby planar geodesic curves, and has one end. Sinceall the surfaces we will discuss here share these pla-nar symmetries we will focus on one eighth of thesesurfaces and draw sketches of this portion only.The �rst modi�cation of M1 was made by F. Wei[1992], who constructed a one-parameter family ofgenus two examples M�1 by adding a single han-dle over one of the two saddle points of M1 (seeFigures 1, center and 5, center). Recently it wasdiscovered by Karcher and Polthier [1993] (and thesecond author independently) that another modi�-cation of M1 was possible. This new surface M+1results from adding a handle to M1 in a di�erentdirection, thereby producing another doubly peri-odic, embedded minimal surface of genus two. SeeFigures 1, right and 5, right.



Rossman, Thayer, and Wohlgemuth: Embedded, Doubly Periodic Minimal Surfaces 199

FIGURE 2. Fundamental pieces of M��3 and M++3 .

FIGURE 3. Fundamental pieces of M+�1 (left) and M+�2 (right).
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FIGURE 4. M1, M�1 , and M+1 projected onto the x1-x2 plane.
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FIGURE 5. Sketches of one eighth of M1(left), M�1 (center), and M+1 (right).
Remark on Notation. In order to distinguish the twogenus two surfaces, we view M1 from above, imag-ining that M1 projects into the black squares of anin�nite, black and white checkerboard pattern, withthe vertical straight lines projecting onto the cornersof these squares (see Figure 4). From this perspec-tive, the handles added byWei project into the blackregions while the new handles project into the whiteones. In both cases, the additional handles modifythe checker board pattern into a tiling made up ofrectangular regions as is indicated in Figure 4. Wedenote the handles over the black squares with a su-perscript `�', and those over the white squares witha superscript `+'. Hence, in this notation, Wei'sgenus two surface is referred to as M�1 , and the newsurface discussed in Section 5 is M+1 . (Each sur-

face discussed in this paper lies in a one-parameterfamily of embedded surfaces. Since we are inter-ested in the topological qualities of these surfaces,our notation thoughout the paper will not re
ect thespeci�c surface in the family. The subscript indexesthe number of ends on each eighth of the surface.)Both M+1 and M�1 have smaller symmetry groupsthan Karcher's original surface; in particular, thevertical straight lines of M1 are eliminated. Thequestion \Is it possible to add handles to M1 andpreserve the original symmetries?" is a natural one.We might, for example, want to add either a `+' ora `�' type handle and preserve the vertical straightlines. Rotation about these lines (see Theorem 3.1)places another handle over the other saddle point
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of M1. This would result in a genus three sur-face with four Scherk ends. It is easy to imaginesuch a surface for either type of handle. Indeed,the suggested conjugate contour of one eighth of ei-ther surface supports a Plateau solution that is aJenkins{Serrin graph [Jenkins and Serrin 1966]. Soa minimal surface with boundary exists with the de-sired shape, but we only know that certain boundingplanar curves lie in parallel planes. We then mustsolve the one-dimensional period problem or, equiv-alently, show that the parallel planes coincide. Wewill prove that neither of these period problems aresolvable, and we do so by �nding natural obstruc-tions on the corresponding conjugate surfaces. Un-derstanding these obstructions, we realize it is possi-ble to overcome them by adding more ends to eachsurface. Because of the desired symmetries, eacheighth of these surfaces must have an odd numberof ends. Indexing by this number, we show the pe-riod problems are never solved on M��1 and M++1 ,and that for k � 1 the period problems associatedto M��2k+1 and M++2k+1 are solvable. The superscriptindicates the types of handles added to M1. SeeFigure 2.With the addition of each new end, there is anew associated period. In Section 4, we describe atechnique found by Karcher and Polthier [1993] thatshows that one may simultaneously solve these endperiods. Speci�cally, they observed that a certainsimple restriction on the conjugate contours ensuresthese end periods are all zero. Moreover, this re-striction leaves an ample number of parameters freeto allow us to adjust the other periods associatedwith the new handles.Instead of adding two handles of the same type toM1, we may also consider surfaces which have twohandles of di�erent types. This produces a fam-ily of genus three surfaces that no longer have thestraight line symmetries of M1. Without this addi-tional symmetry, the period problem resulting fromthe new handles is two-dimensional. The third au-thor's experience with two-dimensional period prob-lems [Wohlgemuth 1997] suggested that these periodproblems may be solvable. We prove in Section 9that M+�1 with four Scherk-type ends exists. Gen-eralizing the examples M+�1 to have 4k Scherk-typeends for k � 2, numerical evidence suggests the ex-istence of M+�k for k � 2 (see Figure 3).

3. BACKGROUND RESULTS NEEDED FOR THE
CONSTRUCTIONWe consider only connected and properly immersedminimal surfaces. To establish notation we state thefollowing description of the Weierstrass Representa-tion.

Theorem and Notation (Weierstrass–Representation). LetM be a minimal surface in R 3 and R the underlyingRiemann surface of M . Then M can be expressed ,up to translations , in terms of a meromorphic func-tion g on R, the so-called Gauss map (since g will bestereographic projection of the oriented normal vec-tor of M), and a holomorphic di�erential � on Rby F (p) = ReZ pp0 ('1; '2; '3); (3–1)where p0 2 R is �xed and('1; '2; '3) = ��1g � g��; i�1g + g��; 2�� : (3–2)Conversely , let R be a Riemann surface, g a mero-morphic function on R, and � a holomorphic di�er-ential on R. Then the two preceding equations de�nea conformal minimal immersion F : R ! R 3, pro-vided the poles and zeros of order l of g coincide withthe zeros of order l of �, and ('1; '2; '3) has no realperiods , that is ,Period('1;'2;'3)(
) = Z
('1; '2; '3) 2 iR (3–3)for all closed curves 
 on R.We call (R; g; �) the Weierstrass data of the mini-mal surface M . Denoting the universal cover of Rby ~R, the minimal immersion F � : ~R ! R 3 withthe Weierstrass data (R; g; i�) is called the conju-gate surface to M , and is denoted by M�. It isknown that any curve of R which is mapped by Fto a nonstraight planar geodesic of M is mapped byF � to a straight line in M�. Furthermore, since theGauss map g and the �rst fundamental form are thesame for both M and M�, it follows that the pla-nar geodesic in M will lie in a plane perpendicularto the corresponding line in M� and that the pla-nar geodesic in M will have the same length as theline inM�. We will use these properties extensively.The following known results are also central to thearguments we will be making.



202 Experimental Mathematics, Vol. 9 (2000), No. 2

Theorem 3.1 (Schwarz reflection principle). Suppose aminimal surface M � R 3 contains in its boundary acurve C that is either a straight line or a nonstraightplanar geodesic. Then M can be extended smoothlyacross C by respectively rotation about C or re
ectionthrough the plane containing C.
Theorem 3.2 [Dierkes et al. 1992]. If an embeddedminimal surface F : B ! R 3, B = fw 2 C : jwj <1g can be written as a graph over a convex domainin a plane, then the conjugate surface F � : B ! R 3is also a graph over a domain in the same plane.
Theorem 3.3 [Jenkins and Serrin 1966]. Let D bea bounded convex domain such that @D containstwo sets of �nite numbers of open straight segmentsfAig; fBjg with the property that no two segmentsAi and no two segments Bj have a common end-point . Let the remaining portion of @D consist of a�nite number of open arcs fCkg, and of endpointsof Ai, Bj , and Ck. Let P denote a simple closedpolygon whose vertices are chosen from among theendpoints of the Ai and Bj . Let� = XAi�P lengthAi;

� = XBj�P lengthBj ;
 = length of perimeter of P:Then if fCkg 6= ?, there exists a solution of theminimal surface equation in D which assumes thevalue +1 on each Ai, �1 on each Bj , and anyassigned bounded continuous data on each open arcCk if and only if2� < 
 and 2� < 
for each polygon P chosen as above. Moreover , thesolution is unique when it exists .
Remark 3.4. In Theorem 3.3, we allow the possibil-ity that two di�erent Ck have a common endpoint.We may have jump discontinuities in the boundarydata at the points where two di�erent Ck meet. Itfollows from the arguments in [Jenkins and Serrin1966] that, for D as in Theorem 3.3, if u1 and u2 aretwo solutions of the minimal surface equation suchthat u1 = u2 = +1 on each Ai and u1 = u2 = �1on each Bj and u1 � u2 on each Ck, then u1 � u2in the interior of D.

4. THE EXAMPLES MkAn immediate application of Theorems 3.2 and 3.3is to prove that one can add more ends to Karcher'sgenus one surface M1, thereby creating the surfacesMk.
Theorem 4.1. For each k � 2, there exists a one-parameter family Mk of embedded , doubly periodicminimal surfaces of genus one with 4k Scherk-typeends .
Proof. Fix k. The conjugate boundary of one eighthof Mk is a graph over a rectangular domain withthree sides at height zero and the fourth edge sub-divided into k segments with heights alternating be-tween +1 and �1. Theorem 3.3 yields a Plateausolution with this boundary. Then Theorem 3.2,together with Theorem 3.1 and the maximum prin-ciple, gives the embedded surfacesMk from these so-lutions. The period problems associated to the ends,which equal the residues at the end punctures on thecompact Riemann surface, are solved by choosingthe Ai and Bj to all be of the same length. Varyingthe length of the opposing zero height sides of therectangular domain yields a one-parameter family ofsurfaces. �On the other hand, we immediately have:
Corollary 4.2. Mk is a k{fold covering of M1.
Proof. Schwarz re
ection (Theorem 3.1) about linesegments on the bounding conjugate contour forM1produces the bounding conjugate contour forMk forany k. The uniqueness of the minimal graphs inTheorem 3.3 completes the proof. �We included these examples Mk because the tech-nique used to solve the k{dimensional period prob-lem arising from the additional ends is used through-out the paper. In particular:
Lemma 4.3. Each collection of surfaces , M+k , M�k ,M++2k+1, M��2k+1, M+�k , results from adding ends andhandles to M1, and the period problems arising fromthe additional ends are all solved as above, that is ,by requiring " = lengthAi = lengthBjto be constant for all i; j.
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A proof of this lemma is contained in the appendixof this paper.The observation that this restriction on the con-jugate contour solves all the periods arising fromadditional ends demonstrates that these periods areindependent of the periods arising from additionalhandles. This restriction enables us to eliminate allbut one or two periods in these surfaces, so we mayfocus only on the periods arising from the new han-dles.
5. THE EXAMPLES M+

kThe sketch in Figure 6, top is of a contour suggestiveof a `+' type handle in an even ended surface whichwe will use to motivate the discussion. Taking itsconjugate contour produces the contour in Figure6, middle, which is bounded by line segments as la-belled in the �gure. This contour bounds a Jenkins{Serrin graph over the front face of the box and hencesupports a solution to the Plateau problem. Let�j = lengthBj = lengthB�j for j = 2; 3; 4; 5. Thesymmetries of M+k imply there are k periods, k � 1of these resulting from the ends, and one arisingfrom the new handle. Lemma 4.3 implies that if werestrict the conjugate contours so that the lengthsof the segments over which the boundary contour isunbounded are equal, then k�1 of these periods arezero. Let " = �3=k be this common length.The remaining period is shown to change sign as�4 varies, so the intermediate value theorem implies:
Theorem 5.1. For each k > 0, there exists a one-parameter family M+k of embedded , doubly periodicminimal surfaces of genus two with 4k Scherk typeends .We give the argument only for the case k = 2, as theargument is essentially identical for all k. Choosingthe curves B�2 and B�3 to lie at the zero level, theheight of B�5 is +�4, with the end E�1 at height +1and E�2 at �1 as indicated in Figure 6, bottom.
Proof. All that remains to be shown is that as �4 isvaried, the period �(�4) = Re R V4S1 '2 changes signs.Note that this period measures the distance betweenthe planes containing the curves B4 and C.Let �2 > " and consider the two cases of �4 largeand �4 small:
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FIGURE 6. Sketches of the boundaries of one eighthof M+2 and its conjugate (top and middle), and thegraph dimensions and heights over the front face ofthe bounding box for the conjugate contour.
(a) Let �4 ! 0. The limiting surface is M2 and theembeddedness ofM2 implies the point V4 lies behindthe symmetry plane of C; so �(�4) < 0 for �4 nearzero.
(b) For large �4, we claim that the distance betweenthe planes containing B4 and B6 is �2� � > ", sincethe Gauss map approaches a constant along B5. Tosee this, use the barrier surface given as a Jenkins{Serrin graph over the back face of the box in Figure6, middle, with height +1 over the edge B�5 andthe same heights as the contour for M+2 over allother edges. Arguments in [Jenkins and Serrin 1966]
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imply the conjugate graphs converge to the barriersurface as �4 ! 1. So in the limit, the behaviorof the ends is the same and therefore B5 approachesa straight line of length �2 which is greater than ".Hence B4 lies in front of C and �(�4) > 0 for �4large.Hence the period problem is solvable. Since �2 isonly bounded below this shows the period problemcan be solved for each �2 > " and therefore there ex-ists a one-parameter family of these surfaces. The-orem 3.2 implies each eighth of any one of thesesurfaces is embedded and, by Theorem 3.1, extendsto an embedded minimal surface. �
Weierstrass Data for M+

kSince M+k is invariant under an order-two normalsymmetry about the x3-axis, with six �xed points,the quotient is a sphere minus 2k points. The mero-morphic function g2, where g is the Gauss map,descends to the quotient. Taking z as the coordi-

FIGURE 7. Fundamental piece of M+2 .

nate on this sphere, we normalize so that z(V3) = 0,z(V2) = 1 and ek = z(Ek) = 1. De�ne vi = z(Vi)for i = 1; 4; 5 and sj = z(Sj) for j = 1; 2; : : : ; k�1,where fSjg are the vertical points lying on the pla-nar geodesics between the ends; further de�ne em =z(Em) for m = 1; : : : ; k�1. Conformality of z ordersthese values thus:0<v4<v5<1<sk�1<ek�1<sk�2< � � �<s1<e1<v1:Set
Nk(z; s1; : : : ; sk�1) := k�1Yj=1(z + (�1)k+jsj);
Dk(z; s1; : : : ; sk�1) := k�1Yj=1(z � (�1)k+jsj);
Ek(z; e1; : : : ; ek) := kYm=1(z2 � e2m);

fk(z; s1; : : : ; sk�1) := Nk(z; s1; : : : ; sk�1)Dk(z; s1; : : : ; sk�1) :Comparison of the meromorphic functions g2 and zleads to these Weierstrass data for M+k :g2 = z+v4z�v4 z+v5z�v5 z+(�1)kv1z�(�1)kv1 f2k (z; s1; : : : ; sk�1)
(5–1)and� = dz Dk(z; s1; : : : ; sk�1) Nk(z; s1; : : : ; sk�1)Ek(z; e1; : : : ; ek) :
(5–2)The conditions for embedded ends areg2(1) = g2(em) = 1 (5–3)for all m � k. For k = 2, we have the constraintsA(1 + v4)(1 + v5) = ~A(1� v4)(1� v5)B(e2 + v4)(e2 + v5) = ~B(e2 � v4)(e2 � v5);where A = (1� s1)2(1 + v1), ~A = (1 + s1)2(1� v1),B = (e1� s1)2(e1+ v1), and ~B = (e1+ s1)2(e1� v1).From this, we can derive the conditions

v4v5 = (A� ~A)(B + ~B)e1 � (A+ ~A)(B � ~B)e21(A+ ~A)(B � ~B)� (A� ~A)(B + ~B)e1
(5–4)
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andv4 + v5 = (A� ~A)(B + ~B)(e21 � 1)(A+ ~A)(B � ~B)� (A� ~A)(B + ~B)e1 ;
(5–5)and so solve for v4 and v5 as the zeros of a degree-twopolynomial.With the Weierstrass data (5{1), (5{2) and theconstraints (5{4) and (5{5) we get the image in Fig-ure 7 after choosing k = 2 and determining the cor-rect values for v1 and e1.

6. THE EXAMPLES M�
kThe periods associated to M�k arise as residues atthe punctures for the ends or from integrating alonga curve representing a nontrivial homotopy class. Asin the case of Mk, the residues at the ends are madeequal by equally distributing the straight lines lieingbetween the ends of the conjugate of one-eighth ofthe fundamental piece. The portion of the periodproblem resulting from nontrivial homotopy classesis one-dimensional due to the symmetries of M�k ,and use of the same barriers as in [Wei 1992] showsthat this period is also solvable. Hence:

Theorem 6.1. There exists a one-parameter family ofgenus two, embedded minimal surfaces M�k with 4kScherk-type ends , for all k � 1.
7. THE EXAMPLES M��

2k+1In this section, we construct the embedded mini-mal surfacesM��2k+1. Speci�cally, we construct genusthree surfaces having all the symmetries of Karcher'sgenus one surface M1, with two `�' handles and4(2k + 1) Scherk ends.F. Wei modi�ed M1 by introducing a single han-dle over one of its saddle points. In the sketches ofFigure 5, one can see that this results in a new ver-tical point over V4. In order to retain the verticalstraight lines of M1 on higher genus surfaces, one isobliged to add a handle over the other saddle point,since, by Theorem 3.1, 180� rotation about thesestraight lines are isometries of the surface. Such asurface might have a boundary like that sketchedin Figure 8, left. If this surface did exist, its con-jugate contour would be as in Figure 8, lower left.This conjugate contour meets all the conditions ofTheorem 3.3, hence it supports a solution to the

Plateau Problem, and the original surface conjugateto this solution is a minimal surface bounded by pla-nar curves with the desired symmetries.Although the conjugate surface is a minimal sur-face bounded by planar curves, it is not guaranteedthat re
ection in these planes produces an embed-ded doubly periodic surface. In particular, using thenotation of Figure 8, one does not know if the curvesB1 and B3 lie in the same plane. This brings us tothe period problem; one must insure that the planescontaining B1 and B3 coincide. Since we have as-sumed the surface contains a vertical straight line,knowing B1 and B3 lie in the same plane implies theplanes containing B5 and B7 also coincide. Shouldthis period problem be solvable, the surface in ournotation would be denoted by M��1 .In Theorem 7.1.2 we prove, by analyzing the Pla-teau solutions for the countour of Figure 8, lowerleft, that this period problem can never be solved.In contrast, by having more ends on the surface, asin Figure 8, right, we prove in Theorem 7.1.1 thatthe obstruction to solving this period problem is re-moved. These new surfaces are the surfaces M��2k+1in our notation.
Theorem 7.1. 1. For each k � 1, there exists a one-parameter family of embedded , doubly periodicminimal surfaces M��2k+1 of genus three.
2. M��1 does not exist .
Proof. Let �j = lengthBj = lengthB�j for j = 2,3, 4, 5, 6. By Lemma 4.3, all periods arising fromthe addition of ends are zero provided the lengthsof the segments over which the conjugate contoursare unbounded are equal. We assume this condi-tion, and let " be this common length, which re-mains �xed throughout the proof. Hence we needonly address the periods arising from nontrivial ho-motopy classes, that is, from the addition of newhandles. From the conjugate contour one sees that�4 = (2k + 1)" for each M��2k+1.
Proof of 2. We proceed by contradiction. SupposeM��1 does exist. Let S be one eighth of M��1 . Fig-ure 8, left shows a sketch of S. We are assuming thatthere is a vertical straight line on S passing throughthe end E, orthogonal to the plane containing B4.Rotation about this line interchanges V1 and V6, andinterchanges V2 and V5.
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FIGURE 8. Sketches of the boundary of one eighth ofM��1 (upper left) andM��3 (upper right) with the parametersfor the conjugate boundary contour viewed as a graph over the rectangular region drawn below each sketch.
Remark 7.2. The boundary contour of S� is a graphover a rectangle as drawn in Figure 8, lower left, andas a result of the symmetries, B�2 and B�6 lie at thesame height. Choosing this to be the zero heightimplies the line B�4 has height �1 < ��3 < 0, andthe end E has height +1. From Theorem 3.3, weget a minimal graph with this boundary. As a graph,it is embedded and Theorem 3.2 assures that S isembedded. Hence there exists a Plateau solution S�with the desired boundary and symmetries.
Claim 1. The distance between the planes containingB3 and B5 is always shorter than the distance be-tween the planes containing B1 and B7. Hence theperiod is always of the same sign.The planar geodesic B4 has length " and is not astraight line. Therefore the distance between thesymmetry planes containing B3 and B5 is strictlyless than �4 = ", and the curve B3 always lies to oneside of the plane containing B1. This establishes theclaim and completes the proof of (2).In summary, the period problem on M��1 is un-solvable because the distance " between the planarcurves bounding the end is equal to �4 and the pla-nar curve B4 is not straight. If one could modify the

conjugate contour so that �4 > ", then the periodproblem may be solvable. One way of achieving thisis to add more ends to the conjugate contour as inthe sketch in Figure 8, lower right. Because we wishto maintain the vertical straight lines, the contourbounded by straight lines must have a horizontalplanar symmetry. Therefore we must add an evennumber of extra ends. Figure 8, right is a sketch ofsuch a surface with three ends. The conjugate con-tour for this surface is again a Jenkins{Serrin graphover a rectangle as drawn in Figure 8, lower right.
Proof of 1. Assume �2 > �4 = (2k + 1)". Since wehave assumed the existence of a vertical straight lineon the surface passing thru Ek+1 and orthogonal toB4, we have only one period arising from a nontriv-ial homotopy class. For this period, we must showthat B1 lies in the plane containing B3. We use theintermediate value theorem to show the existence ofa value for �3 such that this period is zero. Speci�-cally, we have two cases:
(a) As �3 ! 0, M��2k+1 degenerates to M2k+1. By theembeddedness ofM2k+1, we have the point V2 movesbehind the plane containing B1, and the period isnegative.
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(b) As �3 ! 1, the curve B�4 moves away towardheight �1. Let B be the Jenkins{Serrin graph overthe rectangle as described in Figure 8, lower right,with boundary heights 0;�1; 0;+1;�1;+1 withzero heights corresponding to the edges containingthe curves B�2 and B�6 . This graph B exists, since�2 > �4, by Theorem 3.3. By the arguments in[Jenkins and Serrin 1966], the conjugate graphs con-verge to B as �3 ! 1. Therefore along B�4 theGauss map approaches a constant value, and thedisplacement along B4 in the desired direction ap-proaches (2k + 1)" = �4. Hence V2 lies in front ofthe plane containing B1 for large �3, and the periodis positive.By the intermediate value theorem, there exists avalue of �3 at which the period is zero. Thereforethe period problem is solvable on M��2k+1.Theorems 3.3 and 3.2 imply that the one eighthportion S ofM��2k+1 is embedded. Applying the clas-sical maximum principle and the maximum principleat in�nity [Meeks and Rosenberg 1990], one easilydetermines that the full fundamental piece of M��2k+1lies inside the box given by its boundary curves. Re-
ections through the faces of this box produces anembedded surface. Therefore M��2k+1 is embedded.�2 has not been used in this argument (�2 is any�xed number greater than �4), and therefore wehave a one-parameter family ofM��2k+1 for each k� 1.�
Weierstrass Data for M��

3Since M��3 is invariant under an order-two normalsymmetry about the x3-axis, with eight �xed points,the quotient surface is a sphere. The meromorphicfunction g2, where g is the stereographic projectionof the Gauss map, descends to the quotient. Takingz to be the coordinate on the sphere, we normal-ize so that z(V3) = 1, z(V4) = 0, and z(E2) = 1.With this normalization, rotation about the verti-cal straight line on M��3 corresponds to inversionthrough the unit circle. De�ne e1 = z(E1), vj =z(Vj) for j = 1; 2, and s1 = z(S1). Then z(E3) =1=e1, z(V5) = 1=v2, z(V6) = 1=v1, and z(S2) = 1=s1.Comparison of the meromorphic functions g2 and zleads to these Weierstrass data for M��3 :
g2= z�v1z+v1 z+1=v1z�1=v1 z+v2z�v2 z�1=v2z+1=v2�z�s1z+s1�2�z+1=s1z�1=s1�2

and � = dzz2 � 1 z2 � s21z2 � e21 z2 � 1=s21z2 � 1=e21 :These Weierstrass data insure that each Scherk-typeend is itself an embedded end, but one must alsoguarantee that the limit normals on the ends areantipodal so the ends do not cross each other asthey diverge. Because of our choice of orientation,this is equivalent to the conditionsg2(1) = g2(e1) = g2(1=e1) = 1:Due to the rotational symmetry, the second andthird conditions result in the same constraints, whilethe �rst is automatically satis�ed. The second con-dition places the following constraint on e1:(�+
+2�)e61+ �(�+
)(�2�1)+2(�
�2)��(�+
)�2��e41+ �2��(�+
)(�2�2)�2�(�
�2)+(�+
)�e21� 2� � (�+
) = 0; (7–1)where � = v2�1=v2, 
 = 1=v1�v1, and � = 1=s1�s1.By Theorem 7.1, there exists a solution to (7{1)in the necessary range. Using the computer to �ndthis solution and to calculate the values of the twoperiods of the Weierstrass data, we determine theappropriate values for e1, v1, and v2, given a valuefor s1. We thereby generate the image of M��3 inFigure 2.
8. THE EXAMPLES M++

2k+1As in the previous section, one might investigatewhether it is possible to construct genus three ex-amples by adding two `+' type handles to M1 whilepreserving the symmetries. The same methods asthose used in the `�' case can be used to show theexistence of a minimal disc with the desired bound-ary and symmetries, but one must again considerthe period problem. The similarities between theconjugate contours for the two `�' handles and two`+' handles allow one to observe a similar naturalobstruction to solving the period problem for theone-ended surfaces. By adding more ends to thesesurfaces, as in the previous section, this obstructionis overcome. Denoting these new surfaces by M++2k+1and using arguments similar to those used in theproof of Theorem 7.1, one has:
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FIGURE 9. Sketches of the boundary of one eighth of M++3 and its conjugate boundary graph heights over thefront face of the bounding box.
Theorem 8.1. 1. There exists a one-parameter fam-ily of embedded , doubly periodic minimal surfacesM++2k+1 of genus three, for each k � 1.
2. M++1 does not exist .
Remark 8.2. The symmetry groups for M1, M��2k+1,and M++2k+1 are identical. Hence one has two collec-tions of genus three minimal surfaces with the samesymmetries as Karcher's original genus one surface
Weierstrass Data for M++

3Using the same notation as that used for the surfaceM��3 , we can determine the Weierstrass data forM++3 ; the results areg2= z�v1z+v1 z+1=v1z�1=v1 z�v2z+v2 z+1=v1z�1=v2�z�s1z+s1�2�z+1=s1z�1=s1�2and � = dzz2 � 1 z2 � s21z2 � e21 z2 � 1=s21z2 � 1=e21 :With the same constraints for parallel ends as in(7{1) and by changing 
 to v1�1=v1 we compute theparameters used in generating the image in Figure 2.
9. THE EXAMPLES M+�

kIn this section, we consider the genus three surfacesM+�k which arise by adding both a '+' handle anda '�' handle to Mk. As in the case of M�k andM+k , the handles make it impossible to preserve thestraight line symmetries of M1, but the three mu-tually perpendicular planar re
ectional symmetriesare preserved. These symmetries reduce the number

of periods that need to be addressed in order for theperiod problem to be solved. In particular,M+�k hask + 1 periods: k � 1 of these periods arise from theresidues of the Weierstrass data at the ends; leavingonly two periods resulting from nontrivial homotopyclasses. By Lemma 4.3, the periods resulting fromthe additional ends are simultaneously zero providedthe segments over which the conjugate contours areunbounded are equal in length. As we have done inthe previous sections, we �x " to be this commonlength. Now we need only consider the two periodsthat result from nontrivial homotopy classes.Figure 10 contains sketches of the boundary of oneeighth ofM+�2 (left) andM+�3 (right), together withthe conjugate contour heights written as a graph,where �j = lengthBj for j = 2; 3; 4; 5; 6. We assume�2 > " on all contours.We now consider the case k = 1. By considerationof the two periods for M+�1 for varying values of �3and �5, we are able to use a two-dimensional degreeargument to prove:
Theorem 9.1. There exists a one-parameter family ofgenus three, embedded minimal surfaces M+�1 with4 Scherk-type ends .In particular, consider the periods along the curvesin the (�3; �5) plane given by�1 = (0; �5) for �5 2 [0; T ];�2 = (�3; T ) for �3 2 [0; S];�3 = (S; �5) for �5 2 [0; T ];�4 = (�3; 0) for �3 2 [0; S];
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FIGURE 10. Sketches of one eighth of M+�2 (upper left) and M+�3 (upper right) with the Jenkin{Serrin graphboundary heights for the conjugates of each eighth drawn below.for positive S and T , and are able to show that, withthe correct choices for �2, S, and T , these curvessurround a solution for the period problem.The conjugate contours for M+�1 associated topoints along the curves �1 and �4 degenerate to con-jugate contours for either known surfaces or surfaceswhich are known to have unsolvable period prob-lems. When the degenerate contour is known tohave a solvable period problem, we assume nothingabout the values of these periods, and in generalthe remaining un�xed parameter which we will notspecify has been shown to control this period. Weseek to use only the general shape of the degeneratecontours and not the solvability of the period prob-lems on the lower genus minimal surfaces. On eachof the degenerate surfaces, the labels we use are in-herited from the contour for M+�1 , which may di�erfrom those used previously in the text.
Proof of Theorem 9.1. Consider one-eighth of the fun-damental piece, analogous to the depictions of M+�2and M+�3 in Figure 10. This one-eighth piece isbounded by seven planar geodesics B1, . . . ,B7. B1and B7 are each of in�nite length with a single end-

point, and B2, . . . ,B6 are each �nite length curvesegments. Let �j = lengthBj for j = 2; 3; 4; 5; 6.The singular points of the boundary are Vj = Bj \Bj+1 for j = 1; : : : ; 6. (Unlike the cases when k � 2,there are no curves Cj, as in Figure 10.) We placethe surface so that g equals 1 at the single end E1and equals 0 at V1, and we de�ne the functions�1(�2; �3; �5) = ReZ V4V3 '2 = ReZ V4V2 '2;
�2(�2; �3; �5) = ReZ V6V4 '2 = ReZ V6V5 '2;where '2 is the second component of the Weierstrassmap given in equation (3{2). We will show that:

(i) �1(�j) and �2(�j) change monotonically on each�j , for j = 1; 2; 3; 4. In particular, for each �xed�2 and �5, �1(�2; �3; �5) is a strictly decreasingfunction of �3; for each �xed �2 and �3, the value�1(�2; �3; �5) is a strictly increasing function of�5; for each �xed �2 and �5, �2(�2; �3; �5) is astrictly decreasing function of �3; and for each�xed �2 and �3, �2(�2; �3; �5) is a strictly decreas-ing function of �5.
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(ii) For all �2 > ", �1(�2; 0; 0) > 0 and �2(�2; 0; 0) >0.
(iii) For any �xed �2 > ", if T is chosen su�cientlylarge, then �1(�2; 0; T ) > 0 and �2(�2; 0; T ) < 0.
(iv) There exist choices for �2 > " and S large so that�1(�2; S; 0) < 0 and �2(�2; S; 0) = 0.We consider the period map�(�2; �3; �5) = (�1(�2; �3; �5); �2(�2; �3; �5)):We choose �2, S, and T so that �1(�2; 0; T ) > 0,�2(�2; 0; T ) < 0, �1(�2; S; 0) < 0, and �2(�2; S; 0) =0. Since �2 is then a �xed value, we may consider�1 = �1(�3; �5) and �2 = �2(�3; �5) as functionsof only the two variables �3 and �5. Hence � is amap from R 2 to R 2. By the monotonic behaviorof �1 and �2 on each �j , it follows that the image of�1[�2[�3[�4 under � is a homotopically nontrivialloop in R 2 nf(0; 0)g. Thus a zero for the period map� lies in the region bounded by the curves �j . Hencethe period problem associated to M+�1 is solvable.We prove items (i){(iv) above by studying theconjugate surface of the original one-eighth portionbounded by planar geodesics B1, . . . ,B7. The con-jugate surface is a graph B with respect to the x2direction over the rectanglef(x1; 0; x3) 2 R 3 : 0 � x1 � �2; 0 � x3 � "gin the x1x3-plane, and its boundary, the conjugatecontour, consists of seven lines B�1 , . . . ,B�7 corre-sponding to the planar geodesics B1, . . . ,B7 in theboundary of the original surface. Since conjuga-tion preserves lengths, we have �j = lengthBj =lengthB�j . Thus B�1 and B�7 are each in�nite rayswith a single endpoint, and B�2 , . . . ,B�6 are each �-nite line segments. The singular points of the con-jugate contour are V �j = B�j \B�j+1 for j = 1; : : : ; 6,corresponding to the points Vj on the original sur-face. B�1 is the ray with endpoint (�2;��3; ") point-ing in the direction of the positive x2-axis. B�2 is thesegment with endpoints (�2;��3; ") and (0;��3; ").B�3 is the line segment with endpoints (0;��3; ")and (0; 0; "). B�4 is the line segment with endpoints(0; 0; ") and (0; 0; 0). B�5 is the line segment withendpoints (0; 0; 0) and (0; �5; 0). B�6 is the line seg-ment with endpoints (0; �5; 0) and (�2; �5; 0). B�7is the ray with endpoint (�2; �5; 0) pointing in thedirection of the positive x2-axis.

We denote this conjugate graph by B(�2; �3; �5),since it depends on the values of �2, �3 and �5. (Italso depends on ", but " will remain �xed, so we donot notate this dependence.)
Proof of (i). Choose nonnegative values �3, ~�3, and�5, with �3 < ~�3, and choose any �2 > ". Then theinterior of the graph B(�2; �3; �5) lies above the inte-rior of B(�2; ~�3; �5) with respect to the x2 direction,by Remark 3.4. These two graphs have the line B�4in common, and it follows that as one travels fromV �3 to V �4 along B�4 , the normal vector along B�4 ofB(�2; �3; �5) is turning ahead of the normal vectoralong B�4 of B(�2; ~�3; �5). Furthermore, by the max-imum principle these two normal vectors can neverbe equal in the interior of B�4 . This means thaton the original surfaces the normal vector along B4for �2; �3; �5 is turning strictly ahead of the normalvector along B4 for �2; ~�3; �5, with respect to arclength. Since lengthB4 = lengthB�4 = �4 = " isindependent of �3, it follows that �1(�2; �3; �5) >�1(�2; ~�3; �5).We have just shown that for each �xed �2 and �5,�1 is a strictly decreasing function of �3. Similararguments show the other parts of (i).
Proof of (ii). If �3 = �5 = 0, then V2 coincides withV3 and V4 coincides with V5. The conjugate graphof this surface is unique, by Theorem 3.3, hence thesurface is unique. Therefore it is M1. The embed-dedness of M1 implies that �2(�2; 0; 0) > 0.The surface M1 contains a vertical line, and thisline divides both M1 and B4 into two congruentpieces. Let B̂4 be the half of B4 that connects themidpoint of B4 to V3 = V2. Let M̂1 be the congruentpiece ofM1 bounded by B1, B2, B̂4, and the verticalline. Since M̂1 has a single Scherk-type end whosenormal is parallel to the x1 axis, the maximum prin-ciple implies that the x2 coordinate function on M1cannot be maximized in the interior ofM1. Further-more, as B2 is a planar geodesic in a plane parallelto the x2x3-plane, the boundary maximum principleimplies that x2 cannot be maximized on B2. Simi-larly, x2 cannot be maximized on the interior of B̂4.Therefore the value of the x2 coordinate at V2 = V3is strictly less than the value of the x2 coordinate atthe midpoint of B4. So �1(�2; 0; 0) > 0.
Proof of (iii). Fix �2 > ", and choose �3 = 0 and�5 = T � 1. Then limT!1B(�2; 0; T ) is a graph
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bounded by B�1 , B�2 , B�4 , and an in�nite ray withendpoint at V �4 pointing in the direction of the pos-itive x2-axis. This graph has a single Scherk-typeend of width p�22 + "2. (The fact that this limitingbehavior occurs follows from the arguments in [Jenk-ins and Serrin 1966]. In this proof we will considervarious limit surfaces, and in all cases the existenceof the limit graph follows from [Jenkins and Serrin1966].)The original surface corresponding tolimT!1B(�2; 0; T )via conjugation is bounded by the planar geodesicsB1, B2, B4, and an in�nite version of B5. It has asingle nonvertical Scherk-type end of widthp�22+"2.On limT!1B(�2; 0; T ), the maximum principle im-plies that its normal vector ~N along B�4 lies withina 90� geodesic arc of the unit sphere (so this is alsotrue along B4), and thus the x2 coordinate at V4 isgreater than the x2 coordinate at V2 = V3 on theoriginal surface, so limT!1 �1(�2; 0; T ) > 0. Hence�1(�2; 0; T ) > 0 for T su�ciently large.Now we consider the limiting conjugate surfacelimT!1(B(�2; 0; T )� (0; T; 0));which is a graph bounded by B�6 , B�7 , an in�niteversion of B�5 equal to the negative x2 axis, and acomplete line through (�2; 0; ") parallel to the thex2-axis. This conjugate surface has two ends ofScherk-type. One end has width " and the otherhas width p�22 + "2. The original surface that cor-responds to it via conjugation is bounded by B6,B7, an in�nite version of B5, and a complete in�niteversion of B1. It has two ends, again of width " andp�22 + "2 > ". Because of the relative widths of theends on this original surface, we see that the x2 coor-dinate at V5 is greater than the x2 coordinate at V6,so limT!1 �2(�2; 0; T ) < 0. Hence �2(�2; 0; T ) < 0for T su�ciently large. (See Figure 11.)
Proof of (iv). Choose �2 > ", �5 = 0, and �3 =S � 1. We consider the limiting conjugate sur-face limS!1B(�2; S; 0), which is a graph boundedby B�4 , B�6 , B�7 , an in�nite ray with endpoint atV �3 pointing in the direction of the negative x2-axis,and a complete line through (�2; 0; ") parallel to thethe x2-axis. This conjugate surface has two ends ofScherk-type. One end has width " and the other

B7

x1x3x2

B6\B5"
\B1"

p�22 + "2

"

-6* ����

���� ����

FIGURE 11. The original limit surface described atthe end of the proof of (iii).has width �2. The original surface that correspondsto it via conjugation is bounded by B4, B6, B7, anin�nite ray version of B3, and a complete in�niteversion of B1. It has two ends, again one of width "and the other of width �2.We now consider what happens to the originalsurface corresponding to limS!1B(�2; S; 0) as �2 &" and as �2 %1.The conjugate surface lim�2!"(limS!1B(�2; S; 0))is a graph with respect to the x2 direction over thesquare f(x1; 0; x3) 2 R 3 : 0 � x1; x3 � "g. Itis bounded by the in�nite ray B�7 with endpoint("; 0; 0) pointing in the direction of the positive x2-axis, the line segment B�6 from ("; 0; 0) to (0; 0; 0),the line segment B�4 from (0; 0; 0) to (0; 0; "), and thein�nite ray with endpoint (0; 0; ") pointing in the di-rection of the negative x2-axis. The correspondingoriginal surface in bounded by the planar geodesicsB4, B6, B7, and a complete in�nite version of B1.This original surface has two ends of Scherk-type,both of width ".Note that the graph lim�2!"(limS!1B(�2; S; 0))contains the line segment from (0; 0; 0) to ("; 0; ")and is symmetric with respect to rotation about thisline, by uniqueness in Theorem 3.3 and by Theorem3.1. The maximum principle then implies that thenormal vector ~N along each of B�4 and B�6 is con-tained in a 90� geodesic arc of the unit sphere, and
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thus the x2 coordinate at V3 is greater than the x2coordinate at V4 = V5 in the corresponding originalsurface, and the x2 coordinate at V3 equals the x2coordinate at V6. Thereforelim�2!"( limS!1�2(�2; S; 0)) = � lim�2!"� limS!1 �1(�2; S; 0)�> 0:Hence for �2 su�ciently close to " and S su�cientlylarge, we have �2(�2; S; 0) > 0.The limiting conjugate surfacelim�2!1� limS!1B(�2; S; 0)�is a portion of a helicoid (this follows from [Jenk-ins and Serrin 1966]) bounded by the positive x1-axis, the line segment B�4 from (0; 0; 0) to (0; 0; "),and an in�nite ray with endpoint (0; 0; ") pointing inthe direction of the negative x2-axis. On the corre-sponding original surface, one eighth of a catenoid,we then have that B4 is a quarter circle of radius2"=�. Thus lim�2!1(limS!1 �1(�2; S; 0)) = �2"=�.Since the original surface corresponding tolimS!1B(�2; S; 0)has two Scherk-type ends of width " and �2, it fol-lows thatlim�2!1� limS!1(�1(�2; S; 0) + �2(�2; S; 0)) )= lim�2!1("� �2) = �1:Thus for �2 and S su�ciently large, we have�2(�2; S; 0) < 0:Therefore for some large S and some value of�2 > ", we have �2(�2; S; 0) = 0. If, for this S and�2, we have �1(�2; S; 0) � 0, then the original surfacecorresponding to this �2, �3 = S, and �5 = 0 wouldcontain some point in B4 [B6 where x2 has a localmaximum and where the tangent plane is parallel tothe x1x3-plane. This contradicts the maximum prin-ciple. So, for this S and �2, we have �1(�2; S; 0) < 0.This shows (iv).This completes the proof of the solvability of theperiod problem associated to M+�1 . Note that�(�1 [ �2 [ �3 [ �4)changes continuously under continuous changes of�2, so for all �2 su�ciently close to the �2 chosenabove, �(�1 [ �2 [ �3 [ �4) is still a homotopically

nontrivial loop in R 2 n f(0; 0)g, and so the periodproblem remains solvable. Hence �2 in a small openinterval serves as a deformation parameter for thesurface, thereby yielding a one-parameter family ofthese surfaces. Since each eighth of the surface isembedded, and the maximum principle tells us thisembedded surface lies in the bounding box deter-mined by the planar curves Bj , each surface in thefamily is embedded. This completes the proof. �The proof of Theorem 9.1 cannot be directly adaptedto prove existence of M+�k for k � 2. However, nu-merical evidence suggests that the M+�k exist fork � 2 as well, so we make this conjecture (see Fig-ure 3).
Conjecture 9.2. There exists a one-parameter fam-ily of genus three, embedded minimal surfaces M+�kwith 4k Scherk-type ends , for all k � 2.Numerical evidence also suggests that there existsa wide variety of minimal surfaces with Scherk-typeends and more handles of both + and � type. (SeeFigure 12 for two genus 10 examples)
APPENDIX: A PROOF OF LEMMA 4.1The �rst part of Lemma 4.1 is intended only tobe an intuitive aid, saying that \each collection ofsurfaces results from adding ends and handles toM1". However, a rigorous proof is required for thestatement that \the period problems arising fromthe additional ends are all solved by requiring " =lengthAi = lengthBj".For each surface, we always begin by choosingone-eighth of the original fundamental piece of thesurface. This one-eighth piece is bounded by pla-nar geodesics, and its conjugate surface is boundedby portions of lines. Before we consider any periodproblems, we must �rst establish existence of thisconjugate surface, which then implies the existenceof the original one-eighth piece (without solving forperiod problems yet).The conjugate pieces exist because they are Jen-kins{Serrin graphs. In all the cases we consider,they are Jenkins{Serrin graphs over a rectangle, andthe boundary data is a �nite constant over each ofthree sides of the boundary of the rectangle. On thefourth side, the boundary data alternates between+1 and �1 along adjacent intervals. The jump



Rossman, Thayer, and Wohlgemuth: Embedded, Doubly Periodic Minimal Surfaces 213

FIGURE 12. Fundamental pieces of M9+1 (left) and M+;8�1 (right).discontinuities occur only at the corners of the rect-angle and at points along the fourth side where theboundary data changes from +1 to �1.Recall Theorem 3.3. In our case, by applying arigid motion and a homothety of R 3, we may assumewithout loss of generality thatD = f(x1; x2) 2 R 2 : 0 � x1 � �; 0 � x2 � 1gfor some positive �, that there are three Ck's whichwe de�ne as C1 = D \ f(x1; 0) 2 R 2g;C2 = D \ f(�; x2) 2 R 2g;C3 = D \ f(x1; 1) 2 R 2g;

and that there are l Ai's and Bj 's, all of length 1lalternating along D \ f(0; x2) 2 R 2g. We have al-ready incorporated the condition of Lemma 4.1, thatis, that " = lengthAi = lengthBj = 1l :Existence and uniqueness of a solution u to theminimal surface equation with the given boundarydata now follows from Theorem 3.3. (The condi-tions on the polygons P are trivially satis�ed, sinceno such P exists for the boundary conditions we areusing.) Furthermore, the results in [Jenkins and Ser-rin 1966] imply that u is �nite at every point in theinterior of D.
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LetM denote the smallest closed minimal surfacethat contains the graph u. (Here we use the word\closed" in the sense that M contains all of its ac-cumulation points.) Hence the interior of M is theinterior of the graph u, and M contains its bound-ary @M , and the image of the vertical projection ofM to the x1x2-plane isD n f(0; x2) 2 R 2 : x2 6= k=l some k 2 Z g:We now prove Lemma 4.1 in a series of eightclaims.
Claim 1. M has �nite total absolute curvature.
Proof. As in the proof in [Jenkins and Serrin 1966,p. 334], u is the limit of a subsequence of minimalgraphs fung1n=1 over �D. The minimal graphs unare determined by replacing the boundary condi-tion +1 by +n on each Ai, replacing the boundarycondition �1 by �n on each Bj , and leaving theboundary data on C1 [ C2 [ C3 unchanged.First we show that the total absolute curvatureof the graph of un is bounded above by a �nitebound independent of n, which follows easily fromthe Gauss{Bonnet formula. The boundary of un ispolygonal with at most 2l + 6 boundary line seg-ments, and at each intersection of adjacent bound-ary line segments the angle of intersection is �=2.Hence the total geodesic curvature of the boundarycurve for the graph un is at most �2 (2l + 6). TheGauss{Bonnet formula then impliesZGraph(un) jKj dA � �(l + 1) (A–1)for all n, where dA is the area form on Graph(un)induced by R 3, and K is the intrinsic Gaussian cur-vature of Graph(un).Now we claim that for any compact convex do-main D0 � �D, there exists a subsequence fnjg1j=1such that the total absolute curvature of the graphsof unj restricted to the domain D0 converges to thetotal absolute curvature of the graph of u restrictedto D0. That is, we claim thatZGraph(unj jD0 ) jKj dA! ZGraph(ujD0) jKj dA (A–2)

as nj ! 1. This follows from the fact that, asshown in [Jenkins and Serrin 1966], unjD0 convergesuniformly to ujD0 as n!1. The convergence (A{2)

is essentially known, and arguments showing it existin several places. For example, a proof is containedin the arguments proving Theorem 2 in [Meeks andYau 1982], which however are intended for more gen-eral ambient spaces; when the ambient space is R 3the arguments can be considerably simpli�ed. Asimpler argument for the R 3 case can be found in[Courant 1950, Section III.2].For completeness, in this paragraph we outlinean argument showing (A{2). We know that the unconverge uniformly to u over D0, by [Jenkins andSerrin 1966]. These graphs unjD0 (resp. ujD0) aregraphs over convex domains in the x1x2-plane andhence are the unique compact minimal surfaces withrespect to their boundaries. Hence they coincideas surfaces in R 3 with the Douglas{Rado solutionsfn : B2 := f(u; v) 2 R 2 : u2 + v2 � 1g ! R 3(resp. f : B2 ! R 3) for their boundaries. That is,the surfaces fn(B2) and f(x1; x2; un(x1; x2)) 2 R 3 :(x1; x2) 2 D0g (resp. f(B2) and f(x1; x2; u(x1; x2)) 2R 3 : (x1; x2) 2 D0g) coincide. The parametrizationsfn and f have the advantage that they are confor-mal, hence the coordinate functions f in and f i, fori = 1; 2; 3, are harmonic on B2. Using argumentssimilar to those we use later to prove Claim 6 ofthis appendix, we can see that in fact@un@x1 ! @u@x1 ; @un@x2 ! @u@x2converge uniformly over D0 as well. (This is equiva-lent to showing that the normal vectors of the graphsconverge uniformly over D0.) Once we know that�rst derivatives of un also converge uniformly, thearguments in the proof of Lemma 3.2 and the remarkfollowing it in [Courant 1950] can be applied: usingthe three-point condition as in [Courant 1950], wecan �nd a subsequence fnj of the fn which convergeuniformly to f on @B2. Since the functions f inj ; f iare harmonic, and hence the functions jf inj � f ij al-ways attain their maximums on @B2, we concludethat fnj ! f uniformly on all of B2. Uniformconvergence for harmonic functions implies that theconvergence is smooth (a basic property of harmonicfunctions; see [Gilbarg and Trudinger 1983, The-orem 2.10], for example). We conclude that theDouglas{Rado solutions fnj converge smoothly tof . Hence the total absolute curvature of the graphs
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unj jD0 converges to the total absolute curvature ofthe graph ujD0 . This shows the convergence (A{2).If the total absolute curvature of M is strictlygreater than �(l+1), then there exists some compactconvex domain D0 � �D such that the graph of ujD0has total absolute curvature strictly greater than�(l+1). However, then the convergence (A{2) con-tradicts equation (A{1). Therefore the total abso-lute curvature of M is at most �(l+1), and Claim 1is shown. �
Claim 2. The are only a �nite number of points of Mat which the tangent plane is horizontal .
Proof. The proof below is simply a modi�cation ofan argument in the proof of Theorem 3.1 of [Meeksand White 1991].Consider the Gauss mapG :M ! S2 = f(x1; x2; x3) 2 R 3 : x21+x22+x23 = 1g:M is the closure of the graph u, so M is orientable,and so G is well-de�ned. We can de�ne G so thatG(M) � S2 \ f(x1; x2; x3) 2 R 3 : x3 � 0g. Withrespect to conformal coordinates on M , G is a holo-morphic map from M to the upper hemisphere ofS2, hence G is a branched covering with boundaryinto the upper hemisphere. Furthermore, since @Mconsists of portions of lines parallel to the coordinateaxes in R 3,G(@M)�f(x1; x2; x3)2S2 :x1=0 or x2=0 or x3=0g\ f(x1; x2; x3)2R 3 :x3�0g:Therefore the covering degree of G is a constant oneach of the four setsf(x1; x2; x3) 2 S2 : x1 > 0; x2 > 0; x3 > 0g;f(x1; x2; x3) 2 S2 : x1 < 0; x2 > 0; x3 > 0g;f(x1; x2; x3) 2 S2 : x1 > 0; x2 < 0; x3 > 0g;f(x1; x2; x3) 2 S2 : x1 < 0; x2 < 0; x3 > 0g:By Claim 1, these four constant covering degrees areall �nite. If the inverse image G�1(~e3 = (0; 0; 1))were to contain in�nitely many points of M , thenat least one of these four constant covering degreeswould not be �nite. Hence G�1(~e3 = (0; 0; 1)) is a�nite set, showing Claim 2. �Let Ps = f(x1; x2; s) 2 R 3g be the horizontal planein R 3 of height s. An immediate corollary to Claim 2

is the following Claim 3. In Claim 3, by \nonsingu-lar curves of R 3", we mean curves of R 3 which are1-dimensional submanifolds with boundary.
Claim 3. There exists a constant L > 0 such that ,for all L0 > L, Ps \ M , s 2 [L;L0] (resp. s 2[�L0;�L]) is a smooth deformation (with respect tos) from PL \M to PL0 \M (resp. from P�L \Mto P�L0 \ M) through an embeddeded collection ofnonsingular curves of R 3.
Proof. A singularity in this deformation can only oc-cur at a point of M where the tangent plane is hor-izontal. By Claim 2, we can choose L large enoughthat no such horizontal points exist in f(x1; x2; x3) 2M : x3 � Lg nor in f(x1; x2; x3) 2 M : x3 � �Lg.This proves Claim 3. �Thus, by Claim 3, for any L0 > L,M\f(x1; x2; x3) 2R 3 : x3 2 [L;L0]g consists of a �nite number of com-ponents, and each component is an embedded diskbounded by two vertical lines segments, and onecurve in PL0 , and one curve in PL. We choose anycomponent Mcomp of M \ f(x1; x2; x3) 2 R 3 : x3 2[L;L0]g and extend it by rotations of � radians aboutvertical boundary lines (this can be done, and theextended surfaces are smooth, by the Schwarz re-
ection principle, Theorem 3.1). Extending Mcomp(and its extended surfaces) by these rotations a �-nite number of times results in a larger compactsurface which still has only two vertical boundaryline segments, and one boundary curve in PL0 , andone boundary curve in PL. We make these rota-tional extensions enough times so that the distancein R 3 from any point in Mcomp to the two bound-ary vertical line segments of the extended surface isgreater than 14(L0�L). We call this extended surfaceM extcomp: it is an immersed compact disk in R 3, and isnot necessarily embedded. See Figure 13. (We willlater see that M extcomp is indeed embedded for L largeenough.)
Claim 4. M extcomp is strongly stable.
Proof. The image G(Mcomp) is contained in the upperhemisphere of S2 and does not contain the northpole ~e3. SinceM extcomp is comprised of a �nite numberof pieces congruent toMcomp which are all images ofvertical rotations ofMcomp, it follows that G(M extcomp)is also contained in the upper hemisphere and does
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FIGURE 13. The construction of M extcomp.not contain ~e3. In particular, the area of G(M extcomp)in S2 is strictly less than 2�.Theorem 1.2 of [Barbosa and do Carmo 1976] tellsus that if the area of G(M extcomp) is less than 2�, thenM extcomp is stable. The map G is not required to bean injection in order for this theorem to hold, andthe minimal surface need only be an immersion|it does not need to be an embedding. Furthermore,in [Barbosa and do Carmo 1976] the word stable isused in the strong sense; that is, a minimal surface isstable if the second derivative of area for any smoothnontrivial boundary-preserving variation is strictlypositive. This shows Claim 4. �For an oriented minimal surface M � R 3 and setsA;B �M, let distM(A;B) be the intrinsic distancein M between A and B. For each point q 2 M, letKq be the Gaussian curvature of M at q, and let ~Nqbe the oriented unit normal vector of M at q. Let~e1 = (1; 0; 0), and let h � ; � i be the standard innerproduct on R 3. Let distR3(A;B) be the distance inR 3 between two sets A;B � R 3.By Corollary 4 of [Schoen 1983] there exists a uni-versal constant c such thatjKqj < cdistM(q; @M)2 ;where M is any compact stable minimal surface inR 3, and q is any point in M. This result (just likeTheorem 1.2 of [Barbosa and do Carmo 1976]) doesnot require the surfaceM to be embedded { only im-mersed. The constant c is universal in the sense that

it is independent of the choice of M. (See Theorem16.20 of [Gilbarg and Trudinger 1983] and Theorem11.1 of [Osserman 1969] for related results.)
Claim 5. On the surface M̂ :=Mcomp\f(x1; x2; x3) 2R 3 : x3 2 [ 14L0 + 34L; 34L0 + 14L]g, the Gaussian cur-vature K is uniformly bounded byjKj < 16c(L0 � L)2 :
Proof. M extcomp is a compact minimal surface in R 3,which is strongly stable by Claim 4. For all q 2 M̂ ,distMextcomp(q; @M extcomp) � (L0 � L)=4. Now we applyCorollary 4 of [Schoen 1983] and Claim 5 is proved.(See Figure 14.) �
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FIGURE 14. The location of M̂ , as de�ned in Claim 5.Assume that L0 is chosen large enough that8pc�L0 � L < 1:
Claim 6. At every point of Mcomp \ �(x1; x2; x3) 2R 3 : x3 2 [ 38L0 + 58L; 58L0 + 38L]	, we havejh ~N;~e1ij �s1� 8pc�L0 � L:
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Proof. Suppose some point p 2Mcomp\f(x1; x2; x3) 2R 3 : x3 2 [ 38L0 + 58L; 58L0 + 38L]g has normal ~Np sothat jh ~Np; ~e1ij <s1� 8pc�L0 � L:Then there is a tangent vector ~T at p such thath~T ;~e1i >q 8pc�L0�L . Assume L0 and c are chosen largeenough that L0 � L > 1 and c > 1024�2. Considera unit-speed geodesic 
(t) � M̂; t 2 [0; (L0 � L)=8]so that 
(0) = p and 
0(0) = ~T , where the primerepresents partial di�erentiation with respect to t.We de�ne t0 :=s�(L0 � L)2pc :Since L0 > L + 1 and c > 1024�2, we have thatt0 < (L0 � L)=8 and hence 
(t0) 2 M̂ . Let kg(t) bethe geodesic curvature of 
(t). SincejKqj < 16c(L0 � L)2for all q 2 M̂ by Claim 5, and since M̂ is min-imal, we have jkg(t)j < 4pc=(L0�L) for all t 2[0; (L0�L)=8]. Thus j
00(t)j < 4pc=(L0�L). Writ-ing 
(t) = (
1(t); 
2(t); 
3(t)) in terms of coordinatesin R 3, we have j
001 (t)j < 4pc=(L0�L). Then fort 2 [0; (L0�L)=8],j
01(t)� 
01(0)j = ����Z t0 
001 (s) ds����� Z t0 j
001 (s)j ds < 4pcL0 � L t;and thus 
01(t) > 
01(0)� �4pc=L0�L� t. Therefore
1(t0) � 
1(t0)� 
1(0) = Z t00 
01(t) dt> Z t00 �
01(0)� 4pcL0 � Lt� dt
= 
01(0)t0 � 2pcL0 � Lt20>s 8pc�L0 � L t0 � 2pcL0 � Lt20 = �:The �nal inequality above follows from


01(0) = h~T ;~e1i >s 8pc�L0 � L;

and the �nal equality follows from the de�nition oft0. This is a contradiction, since the vertical projec-tion to the x1x2-plane of the geodesic 
(t) � M̂ �M is contained in D. This proves Claim 6. �Now Mcomp is one component of M \ f(x1; x2; x3) 2R 3 : x3 2 [L;L0]g and thus Mcomp = Mcomp(L0) de-pends on L0. We now wish to increase Mcomp to aconnected noncompact surface ~M that is indepen-dent of L0. De�ne~M := [L0>L Mcomp(L0):
Thus Mcomp(L0) � ~M for all L0, and ~M is a diskbounded by one curve in PL and by two upward-pointing vertical rays r1; r2 with endpoints in PL.(See Figure 15.) Since L0 > L + max(1; 8pc�) wasarbitrary in the proof of Claim 6, an easy corollaryof Claim 6 is the following:
Claim 7. The normal vector ~N on ~M converges to�~e1 at the end of ~M . More precisely , for all � 2(0; 1), there exists L(�) > 0 such that at all pointsq 2 f(x1; x2; x3) 2 ~M : x3 > L(�)g, the normal ~Nqsatis�es k ~Nq � ~e1k < � or k ~Nq + ~e1k < �.
Proof. We choose s so that L0 = 2s. By Claim 6, ifL0 > L+max(1; 8pc�), thenh ~Nq; ~e1i2 � 1� 8pc�2s� Lfor every point q 2 Ps \Mcomp. De�ne~N?q := ~Nq � h ~Nq; ~e1i~e1:
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FIGURE 15. The surface ~M .
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Then k ~N?q k2 � 8pc�2s� Land ~Nq � ~e1 = (h ~Nq; ~e1i � 1)~e1 + ~N?q :By a straightforward computation, choosings > 16pc� + 3L3�2 + 1is su�cient to ensuremin k ~Nq � ~e1k < � and L0 > L+max(1; 8pc�):Claim 7 is shown. �Using Claim 7 and elementary properties of conju-gation, we now prove Lemma 4.1.Note that distR3(r1; r2)= k=l for some positiveinteger k. By Claim 7 and the original construc-tion of the boundary data (the choices we made forthe Ai; Bj) in the Jenkins{Serrin graph, we see thatk = 1. Furthermore, by Claim 7, we havedist ~M(r1; r2) = distR3(r1; r2) = 1l : (A–3)Let ~Mconj be the conjugate surface of ~M . We havethe following properties (see Figure 16):
1. Since conjugation is an isometry, ~Mconj is boundedby one smooth curve of �nite length, and twosmooth curves r̂1; r̂2 of in�nite length.
2. Since conjugation maps straight lines to planargeodesics, r̂1; r̂2 are boundary planar geodesics of~Mconj that are the images of the boundary raysr1; r2, respectively, under conjugation.
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FIGURE 16. The conjugate surface of ~M .

3. Since conjugation preserves the Gauss map andhence also ~N , the curves r̂1 and r̂2 each lie in ahorizontal plane. We call these planes P̂1 and P̂2.
4. Since the normal vector ~N is preserved underconjugation, ~N on ~Mconj converges to �~e1 at theend of ~Mconj.
5. By property 4 above,distR3(P̂1; P̂2) = dist ~Mconj(r̂1; r̂2):
6. Since conjugation is an isometry,dist ~Mconj(r̂1; r̂2) = dist ~M(r1; r2):Finally, from equation (A{3) and properties 5 and6 above, we conclude:
Claim 8. distR3(P̂1; P̂2) = 1l .On the conjugate ~Mconj of ~M � f(x1; x2; x3) 2 M :x3 � Lg, the period problem at the end is a verticaltranslation comprised of one re
ection through P̂1composed with one re
ection through P̂2. Thus theperiod problem is a vertical translation of length ex-actly 2l , by Claim 8. Likewise, the same holds forthe conjugate surface of any other components off(x1; x2; x3) 2 M : x3 � Lg and any componentsof f(x1; x2; x3) 2 M : x3 � �Lg as well, when L ischosen large enough. Since the boundary behavioralternates between +1 and �1 along the alternat-ing Ai's and Bj 's, the normal vector of the graph umust alternately approach +~e1 and �~e1 along theAi's and Bj 's. Therefore, as one travels along theline segment D \ f(0; x2) 2 R 2g, the vertical direc-tion of the translation periods at the ends of theconjugate surface of M alternates between upwardand downward translations of length 2l .Thus Lemma 4.1 is shown.
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