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We consider the question of existence of embedded doubly pe-
riodic minimal surfaces in R? with Scherk-type ends, surfaces
that topologically are Scherk’s doubly periodic surface with han-
dles added in various ways. We extend the existence results of
H. Karcher and F. Wei to more cases, and we find other cases
where existence does not hold.

1. INTRODUCTION

H. Karcher [1991] proved the existence of the first
complete, embedded, doubly periodic minimal sur-
face to be found since H. Scherk’s classical example,
which dates from 1835. We denote Karcher’s surface
by M, (see Figure 1, left). Following this discovery,
Wei [1992] constructed an embedded, doubly peri-
odic surface of genus two by adding a handle to M,
(Figure 1, center). We describe a new embedded,
genus two surface that results from adding a dif-
ferent type of handle to M; (Figure 1, right), and
outline the differences between these two genus two
surfaces. In addition, we construct three collections
of new, embedded surfaces of genus three that re-
sult from adding either two handles of the same type
(see Figure 2) or two handles of different type (see
Figure 3).

Using a technique discovered by Karcher and Pol-
thier [1993] to reduce the number of periods to be
considered, we are able to add ends to the fun-
damental piece of each surface presented without
increasing the dimension of the period problems,
thereby producing countably many different families
of new, embedded examples for each of the handle
types shown in Figures 1 and 2.

The existence proofs for the genus two surfaces re-
quire solving one-dimensional period problems, and
the existence proofs for the genus three surfaces re-
quire solving either one-dimensional or two-dimen-
sional period problems, depending on the types of
handles we choose. When the period problem is one-
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FIGURE 1. Fundamental pieces of Karcher’s surface M; (left), Wei’s surface M; (center), and the surface M; .

dimensional (as for the surfaces in Figures 1 and 2),
we use the intermediate value theorem to solve it.
When it is two-dimensional (as for the surfaces in
Figure 3), we achieve a solution by using a mapping
degree argument, a kind of generalization of the in-
termediate value theorem.

We find that in the two cases of genus three sur-
faces with four ends and handles of the same type
the period problems have no solution. In these ex-
ceptional cases we demonstrate a natural geometric
obstruction to existence, an obstruction that disap-
pears when more ends are added to the surfaces.

2. OVERVIEW OF THE CONSTRUCTION

Karcher’s original surfaces M; are highly symmet-
ric; they have three mutually perpendicular planes
of symmetry and contain four vertical straight lines

(Figures 1, left and 5, left). The three planes divide
the surface into eight pieces. Each piece is bounded
by planar geodesic curves, and has one end. Since
all the surfaces we will discuss here share these pla-
nar symmetries we will focus on one eighth of these
surfaces and draw sketches of this portion only.

The first modification of M; was made by F. Wei
[1992], who constructed a one-parameter family of
genus two examples M; by adding a single han-
dle over one of the two saddle points of M; (see
Figures 1, center and 5, center). Recently it was
discovered by Karcher and Polthier [1993] (and the
second author independently) that another modifi-
cation of M, was possible. This new surface M;"
results from adding a handle to M; in a different
direction, thereby producing another doubly peri-
odic, embedded minimal surface of genus two. See
Figures 1, right and 5, right.
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FIGURE 5. Sketches of one eighth of M; (left), M, (center), and M, (right).

Remark on Notation. In order to distinguish the two
genus two surfaces, we view M, from above, imag-
ining that M, projects into the black squares of an
infinite, black and white checkerboard pattern, with
the vertical straight lines projecting onto the corners
of these squares (see Figure 4). From this perspec-
tive, the handles added by Wei project into the black
regions while the new handles project into the white
ones. In both cases, the additional handles modify
the checker board pattern into a tiling made up of
rectangular regions as is indicated in Figure 4. We
denote the handles over the black squares with a su-
perscript ‘—’, and those over the white squares with
a superscript ‘4+’. Hence, in this notation, Wei’s
genus two surface is referred to as M; , and the new
surface discussed in Section 5 is M;". (Each sur-

face discussed in this paper lies in a one-parameter
family of embedded surfaces. Since we are inter-
ested in the topological qualities of these surfaces,
our notation thoughout the paper will not reflect the
specific surface in the family. The subscript indexes
the number of ends on each eighth of the surface.)

Both M;" and M; have smaller symmetry groups
than Karcher’s original surface; in particular, the
vertical straight lines of M, are eliminated. The
question “Is it possible to add handles to M; and
preserve the original symmetries?” is a natural one.
We might, for example, want to add either a ‘+’ or
a ‘=’ type handle and preserve the vertical straight
lines. Rotation about these lines (see Theorem 3.1)
places another handle over the other saddle point
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of M;. This would result in a genus three sur-
face with four Scherk ends. It is easy to imagine
such a surface for either type of handle. Indeed,
the suggested conjugate contour of one eighth of ei-
ther surface supports a Plateau solution that is a
Jenkins-Serrin graph [Jenkins and Serrin 1966]. So
a minimal surface with boundary exists with the de-
sired shape, but we only know that certain bounding
planar curves lie in parallel planes. We then must
solve the one-dimensional period problem or, equiv-
alently, show that the parallel planes coincide. We
will prove that neither of these period problems are
solvable, and we do so by finding natural obstruc-
tions on the corresponding conjugate surfaces. Un-
derstanding these obstructions, we realize it is possi-
ble to overcome them by adding more ends to each
surface. Because of the desired symmetries, each
eighth of these surfaces must have an odd number
of ends. Indexing by this number, we show the pe-
riod problems are never solved on M, ~— and M; ™,
and that for £ > 1 the period problems associated
to M-, and M, %, are solvable. The superscript
indicates the types of handles added to M;. See
Figure 2.

With the addition of each new end, there is a
new associated period. In Section 4, we describe a
technique found by Karcher and Polthier [1993] that
shows that one may simultaneously solve these end
periods. Specifically, they observed that a certain
simple restriction on the conjugate contours ensures
these end periods are all zero. Moreover, this re-
striction leaves an ample number of parameters free
to allow us to adjust the other periods associated
with the new handles.

Instead of adding two handles of the same type to
M, we may also consider surfaces which have two
handles of different types. This produces a fam-
ily of genus three surfaces that no longer have the
straight line symmetries of M;. Without this addi-
tional symmetry, the period problem resulting from
the new handles is two-dimensional. The third au-
thor’s experience with two-dimensional period prob-
lems [Wohlgemuth 1997] suggested that these period
problems may be solvable. We prove in Section 9
that M;"~ with four Scherk-type ends exists. Gen-
eralizing the examples M, ~ to have 4k Scherk-type
ends for k > 2, numerical evidence suggests the ex-
istence of M,"~ for k > 2 (see Figure 3).

3. BACKGROUND RESULTS NEEDED FOR THE
CONSTRUCTION

We consider only connected and properly immersed
minimal surfaces. To establish notation we state the
following description of the Weierstrass Representa-
tion.

Theorem and Notation (Weierstrass—Representation). Let
M be a minimal surface in R and R the underlying
Riemann surface of M. Then M can be expressed,
up to translations, in terms of a meromorphic func-
tion g on R, the so-called Gauss map (since g will be
stereographic projection of the oriented normal vec-
tor of M), and a holomorphic differential n on R

by

P
F(p) ZRe/ (1,92, 3), (3-1)

Po

where pg € R is fixed and

(¢1, P2, p3) = ((é - 9)77, 2(5 +g>77, 277) . (3=2)

Conversely, let R be a Riemann surface, g a mero-
morphic function on R, and 11 a holomorphic differ-
ential on R. Then the two preceding equations define
a conformal minimal immersion F : R — R®, pro-
vided the poles and zeros of order 1 of g coincide with
the zeros of order | of n, and (p1, s, p3) has no real
periods, that is,

Period g, 5,05 (7) = /(cpl,goz,cpg) ciR  (3-3)

vy
for all closed curves v on R.

We call (R, g,n) the Weierstrass data of the mini-
mal surface M. Denoting the universal cover of R
by R, the minimal immersion F* : R — R® with
the Weierstrass data (R, g,in) is called the conju-
gate surface to M, and is denoted by M*. It is
known that any curve of R which is mapped by F
to a nonstraight planar geodesic of M is mapped by
F* to a straight line in M*. Furthermore, since the
Gauss map g and the first fundamental form are the
same for both M and M*, it follows that the pla-
nar geodesic in M will lie in a plane perpendicular
to the corresponding line in M* and that the pla-
nar geodesic in M will have the same length as the
line in M*. We will use these properties extensively.
The following known results are also central to the
arguments we will be making.
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Theorem 3.1 (Schwarz reflection principle). Suppose a
minimal surface M C R® contains in its boundary a
curve C that is either a straight line or a nonstraight
planar geodesic. Then M can be extended smoothly
across C by respectively rotation about € or reflection
through the plane containing C.

Theorem 3.2 [Dierkes et al. 1992]. If an embedded
minimal surface F: B — R®, B={w € C : |w| <
1} can be written as a graph over a convexr domain
in a plane, then the conjugate surface F* : B — R?
is also a graph over a domain in the same plane.

Theorem 3.3 [Jenkins and Serrin 1966]. Let D be
a bounded convex domain such that 0D contains
two sets of finite numbers of open straight segments
{A;},{B;} with the property that no two segments
A; and no two segments B; have a common end-
point. Let the remaining portion of 0D consist of a
finite number of open arcs {Cy}, and of endpoints
of A;, B, and Cy. Let P denote a simple closed
polygon whose vertices are chosen from among the
endpoints of the A; and B;. Let

a= Z length A;,
B= ) lengthB;,
BjCT

v = length of perimeter of P.

Then if {Cy} # @, there exists a solution of the
minimal surface equation in D which assumes the
value 400 on each A;, —oo on each Bj;, and any
assigned bounded continuous data on each open arc

Cy, if and only if
200 < v and 28 < 7y

for each polygon P chosen as above. Moreover, the
solution is unique when it exrists.

Remark 3.4. In Theorem 3.3, we allow the possibil-
ity that two different C} have a common endpoint.
We may have jump discontinuities in the boundary
data at the points where two different C, meet. It
follows from the arguments in [Jenkins and Serrin
1966] that, for D as in Theorem 3.3, if u; and u, are
two solutions of the minimal surface equation such
that u; = uy = +00 on each 4; and u; = uy = —0
on each B; and u; > uy on each Cj, then u; > uy
in the interior of D.

4. THE EXAMPLES M

An immediate application of Theorems 3.2 and 3.3
is to prove that one can add more ends to Karcher’s
genus one surface M;, thereby creating the surfaces
M;,.

Theorem 4.1. For each k > 2, there exists a one-
parameter family M, of embedded, doubly periodic
minimal surfaces of genus one with 4k Scherk-type
ends.

Proof. Fix k. The conjugate boundary of one eighth
of M, is a graph over a rectangular domain with
three sides at height zero and the fourth edge sub-
divided into k segments with heights alternating be-
tween +00 and —oo. Theorem 3.3 yields a Plateau
solution with this boundary. Then Theorem 3.2,
together with Theorem 3.1 and the maximum prin-
ciple, gives the embedded surfaces M}, from these so-
lutions. The period problems associated to the ends,
which equal the residues at the end punctures on the
compact Riemann surface, are solved by choosing
the A, and B; to all be of the same length. Varying
the length of the opposing zero height sides of the
rectangular domain yields a one-parameter family of
surfaces. O

On the other hand, we immediately have:
Corollary 4.2. M, is a k—fold covering of M.

Proof. Schwarz reflection (Theorem 3.1) about line
segments on the bounding conjugate contour for M,
produces the bounding conjugate contour for M} for
any k. The uniqueness of the minimal graphs in
Theorem 3.3 completes the proof. [l

We included these examples M, because the tech-
nique used to solve the k—dimensional period prob-
lem arising from the additional ends is used through-
out the paper. In particular:

Lemma 4.3. Each collection of surfaces, M, M, ,
ML, My=,, M, results from adding ends and
handles to My, and the period problems arising from
the additional ends are all solved as above, that is,

by requiring
¢ = length A; = length B,

to be constant for all i, j.
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A proof of this lemma is contained in the appendix
of this paper.

The observation that this restriction on the con-
jugate contour solves all the periods arising from
additional ends demonstrates that these periods are
independent of the periods arising from additional
handles. This restriction enables us to eliminate all
but one or two periods in these surfaces, so we may
focus only on the periods arising from the new han-
dles.

5. THE EXAMPLES M]

The sketch in Figure 6, top is of a contour suggestive
of a ‘+’ type handle in an even ended surface which
we will use to motivate the discussion. Taking its
conjugate contour produces the contour in Figure
6, middle, which is bounded by line segments as la-
belled in the figure. This contour bounds a Jenkins—
Serrin graph over the front face of the box and hence
supports a solution to the Plateau problem. Let
B; = length B; = length B} for j = 2,3,4,5. The
symmetries of M," imply there are k periods, k — 1
of these resulting from the ends, and one arising
from the new handle. Lemma 4.3 implies that if we
restrict the conjugate contours so that the lengths
of the segments over which the boundary contour is
unbounded are equal, then k£ — 1 of these periods are
zero. Let € = 33/k be this common length.

The remaining period is shown to change sign as
(B, varies, so the intermediate value theorem implies:

Theorem 5.1. For each k > 0, there exists a one-
parameter family M," of embedded, doubly periodic
minimal surfaces of genus two with 4k Scherk type
ends.

We give the argument only for the case k = 2, as the
argument is essentially identical for all k. Choosing
the curves B; and Bj to lie at the zero level, the
height of B? is +f,, with the end E7} at height +o0
and EJ at —oo as indicated in Figure 6, bottom.

Proof. All that remains to be shown is that as 3, is
varied, the period 7(3;) = Re fs‘? o changes signs.
Note that this period measures the distance between
the planes containing the curves B, and C.

Let B, > ¢ and consider the two cases of 8, large
and (3, small:

AP B, .
. Vi
B P
1 H
5
>
53 X :
Sy
* 86
V3
B, c
-
g
\% £ : .
4 By 1 Vg
+0
+ B2 ’
400 4
C
+0 > /

+B4

FIGURE 6. Sketches of the boundaries of one eighth
of My and its conjugate (top and middle), and the
graph dimensions and heights over the front face of
the bounding box for the conjugate contour.

(a) Let B4 — 0. The limiting surface is M, and the
embeddedness of M, implies the point Vj lies behind
the symmetry plane of C; so m(3;) < 0 for 8, near
Z€ro.

(b) For large (3, we claim that the distance between
the planes containing B, and Bg is 8, — d > €, since
the Gauss map approaches a constant along Bs. To
see this, use the barrier surface given as a Jenkins—
Serrin graph over the back face of the box in Figure
6, middle, with height +o00 over the edge BZ and
the same heights as the contour for M, over all
other edges. Arguments in [Jenkins and Serrin 1966]
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imply the conjugate graphs converge to the barrier
surface as B, — oo. So in the limit, the behavior
of the ends is the same and therefore Bs approaches
a straight line of length (5, which is greater than e.
Hence B, lies in front of C and w(84) > 0 for (4
large.

Hence the period problem is solvable. Since (3, is
only bounded below this shows the period problem
can be solved for each 3, > ¢ and therefore there ex-
ists a one-parameter family of these surfaces. The-
orem 3.2 implies each eighth of any one of these
surfaces is embedded and, by Theorem 3.1, extends
to an embedded minimal surface. O

Weierstrass Data for M;,

Since M," is invariant under an order-two normal
symmetry about the xj-axis, with six fixed points,
the quotient is a sphere minus 2k points. The mero-
morphic function g*, where g is the Gauss map,
descends to the quotient. Taking z as the coordi-

FIGURE 7. Fundamental piece of M, .

nate on this sphere, we normalize so that z(V3) = 0,
z2(V3) = oo and e, = z(Ey) = 1. Define v; = 2(V;)
for i = 1,4,5 and s; = 2(95;) for j = 1,2,...,k—1,
where {S;} are the vertical points lying on the pla-
nar geodesics between the ends; further define e, =
2(E,,) form =1,...,k—1. Conformality of z orders
these values thus:

0<’U4<U5<1<3k,1<€k,1<8k,2<‘"<31<€1<1)1.
Set

k—1

Nk(zasla" s Sk 1) - H(Z+( 1)k+J8 )
j=1
k—1

Dy(2,81,...,8621) == [ [(z = (=1)"s)),
j=1

k
Er(z,e1,...,6,) = 1_[(,22 —e2),

m=1
Nk(zasla"'ask—l)

fk(Z, S1geery Sk—l) = Dk(z, 51000 Sk_l) .

Comparison of the meromorphic functions ¢ and z
leads to these Weierstrass data for M’ :

o ZHvs z+vs 2+ (—1)*v

— 1 r2
g = Z—vy Z2—vs Z—(—l)kvl fk(zasla L 78k71)
(5-1)
and
n= dz Dk(za S1,--+5 Sk—l) Nk(Z, 8154+, Sk—l) )
Sk(z, €1,y... ,ek)
(5-2)
The conditions for embedded ends are
g*(1) = ¢*(em) = 1 (5-3)

for all m < k. For k = 2, we have the constraints

= A(1 —v,)(1 — v5)

= B(ez - U4)(€2 - 7)5)7

A(1+ vy)(1 + vs)
B(es + v4)(e2 + v5)

where A = (1 —s1)?(1+ vl),fi = (14 51)*(1 —vy),
B = (e, —s1)*(e1 +v1), and B = (e; + s1)%(e1 — vy).
From this, we can derive the conditions

(4 )(B+B)61 (A + A)(B — B)et

U = AV B - B) = (A= A)B+ B

(5-4)
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and
(A— A)(B+ B)(e2 —1)
(A+ A)(B—-B)—(A—A)(B+ Be;’
(5-5)
and so solve for v; and vs as the zeros of a degree-two
polynomial.

With the Weierstrass data (5-1), (5—2) and the
constraints (5—4) and (5-5) we get the image in Fig-
ure 7 after choosing k = 2 and determining the cor-
rect values for v; and e;.

Vg + U5 =

6. THE EXAMPLES M

The periods associated to M, arise as residues at
the punctures for the ends or from integrating along
a curve representing a nontrivial homotopy class. As
in the case of M, the residues at the ends are made
equal by equally distributing the straight lines lieing
between the ends of the conjugate of one-eighth of
the fundamental piece. The portion of the period
problem resulting from nontrivial homotopy classes
is one-dimensional due to the symmetries of M, ,
and use of the same barriers as in [Wei 1992] shows
that this period is also solvable. Hence:

Theorem 6.1. There exists a one-parameter family of
genus two, embedded minimal surfaces M, with 4k
Scherk-type ends, for all k > 1.

7. THE EXAMPLES M;,

In this section, we construct the embedded mini-
mal surfaces M, ,. Specifically, we construct genus
three surfaces having all the symmetries of Karcher’s
genus one surface M;, with two ‘—’ handles and
4(2k + 1) Scherk ends.

F. Wei modified M; by introducing a single han-
dle over one of its saddle points. In the sketches of
Figure 5, one can see that this results in a new ver-
tical point over V. In order to retain the vertical
straight lines of M; on higher genus surfaces, one is
obliged to add a handle over the other saddle point,
since, by Theorem 3.1, 180° rotation about these
straight lines are isometries of the surface. Such a
surface might have a boundary like that sketched
in Figure 8, left. If this surface did exist, its con-
jugate contour would be as in Figure 8, lower left.
This conjugate contour meets all the conditions of
Theorem 3.3, hence it supports a solution to the

Plateau Problem, and the original surface conjugate
to this solution is a minimal surface bounded by pla-
nar curves with the desired symmetries.

Although the conjugate surface is a minimal sur-
face bounded by planar curves, it is not guaranteed
that reflection in these planes produces an embed-
ded doubly periodic surface. In particular, using the
notation of Figure 8, one does not know if the curves
B; and Bj; lie in the same plane. This brings us to
the period problem; one must insure that the planes
containing B; and Bj coincide. Since we have as-
sumed the surface contains a vertical straight line,
knowing B; and Bj lie in the same plane implies the
planes containing Bs and B; also coincide. Should
this period problem be solvable, the surface in our
notation would be denoted by M; .

In Theorem 7.1.2 we prove, by analyzing the Pla-
teau solutions for the countour of Figure 8, lower
left, that this period problem can never be solved.
In contrast, by having more ends on the surface, as
in Figure 8, right, we prove in Theorem 7.1.1 that
the obstruction to solving this period problem is re-
moved. These new surfaces are the surfaces M, ,
in our notation.

Theorem 7.1. 1. For each k > 1, there exists a one-
parameter family of embedded, doubly periodic
minimal surfaces My, , of genus three.

2. My~ does not exist.

Proof. Let 3; = length B; = length B} for j = 2,
3, 4,5, 6. By Lemma 4.3, all periods arising from
the addition of ends are zero provided the lengths
of the segments over which the conjugate contours
are unbounded are equal. We assume this condi-
tion, and let € be this common length, which re-
mains fixed throughout the proof. Hence we need
only address the periods arising from nontrivial ho-
motopy classes, that is, from the addition of new

handles. From the conjugate contour one sees that
B4 = (2k + 1)e for each M,, .

Proof of 2. We proceed by contradiction. Suppose
M~ does exist. Let S be one eighth of M, ~. Fig-
ure 8, left shows a sketch of S. We are assuming that
there is a vertical straight line on S passing through
the end FE, orthogonal to the plane containing B,.
Rotation about this line interchanges V; and Vi, and
interchanges V, and Vj.
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0

0
D S— PP
o
_[33 -0
o
sI +00
0

FIGURE 8. Sketches of the boundary of one eighth of M, ~ (upper left) and M; ~ (upper right) with the parameters
for the conjugate boundary contour viewed as a graph over the rectangular region drawn below each sketch.

Remark 7.2. The boundary contour of S* is a graph
over a rectangle as drawn in Figure 8, lower left, and
as a result of the symmetries, By and B lie at the
same height. Choosing this to be the zero height
implies the line B has height —co < —(33 < 0, and
the end E has height +00. From Theorem 3.3, we
get a minimal graph with this boundary. As a graph,
it is embedded and Theorem 3.2 assures that S is
embedded. Hence there exists a Plateau solution S*
with the desired boundary and symmetries.

Claim 1. The distance between the planes containing
B; and Bs is always shorter than the distance be-
tween the planes containing B, and By;. Hence the
period is always of the same sign.

The planar geodesic B, has length ¢ and is not a
straight line. Therefore the distance between the
symmetry planes containing Bz and Bjy is strictly
less than (3, = ¢, and the curve Bjs always lies to one
side of the plane containing B,. This establishes the
claim and completes the proof of (2).

In summary, the period problem on M; = is un-
solvable because the distance € between the planar
curves bounding the end is equal to (B, and the pla-
nar curve B, is not straight. If one could modify the

conjugate contour so that G, > e, then the period
problem may be solvable. One way of achieving this
is to add more ends to the conjugate contour as in
the sketch in Figure 8, lower right. Because we wish
to maintain the vertical straight lines, the contour
bounded by straight lines must have a horizontal
planar symmetry. Therefore we must add an even
number of extra ends. Figure 8, right is a sketch of
such a surface with three ends. The conjugate con-
tour for this surface is again a Jenkins—Serrin graph
over a rectangle as drawn in Figure 8, lower right.

Proof of 1. Assume (3, > (8, = (2k + 1)e. Since we
have assumed the existence of a vertical straight line
on the surface passing thru Fj,; and orthogonal to
By, we have only one period arising from a nontriv-
ial homotopy class. For this period, we must show
that Bj lies in the plane containing B3;. We use the
intermediate value theorem to show the existence of
a value for (5 such that this period is zero. Specifi-
cally, we have two cases:

(a) As B3 — 0, M,,, degenerates to My;,;. By the
embeddedness of M, 1, we have the point V; moves
behind the plane containing B;, and the period is
negative.
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(b) As B3 — oo, the curve B; moves away toward
height —oo. Let B be the Jenkins—Serrin graph over
the rectangle as described in Figure 8, lower right,
with boundary heights 0, —o0, 0, 400, —00, +00 with
zero heights corresponding to the edges containing
the curves B; and Bg. This graph B exists, since
B2 > B4, by Theorem 3.3. By the arguments in
[Jenkins and Serrin 1966], the conjugate graphs con-
verge to B as 33 — oo. Therefore along Bj the
Gauss map approaches a constant value, and the
displacement along B, in the desired direction ap-
proaches (2k 4+ 1)e = (4. Hence V5 lies in front of
the plane containing B, for large (33, and the period
is positive.

By the intermediate value theorem, there exists a
value of (3 at which the period is zero. Therefore
the period problem is solvable on M,, .

Theorems 3.3 and 3.2 imply that the one eighth
portion S of M,, , is embedded. Applying the clas-
sical maximum principle and the maximum principle
at infinity [Meeks and Rosenberg 1990], one easily
determines that the full fundamental piece of M, ,
lies inside the box given by its boundary curves. Re-
flections through the faces of this box produces an
embedded surface. Therefore M,, ", is embedded.

B2 has not been used in this argument (3, is any
fixed number greater than (3,), and therefore we
have a one-parameter family of M~ , for each k> 1.

O

Weierstrass Data for M; ~

Since M, ~ is invariant under an order-two normal
symmetry about the z3-axis, with eight fixed points,
the quotient surface is a sphere. The meromorphic
function g%, where g is the stereographic projection
of the Gauss map, descends to the quotient. Taking
z to be the coordinate on the sphere, we normal-
ize so that z(V3) = oo, 2(Vy) = 0, and z(E,) = 1.
With this normalization, rotation about the verti-
cal straight line on M5~ corresponds to inversion
through the unit circle. Define e; = z(E,), v; =
z(V;) for j = 1,2, and s; = 2(S1). Then z(E3) =
1/e1, z(Vs) = 1/vg, 2(Vs) = 1/vy, and 2(S2) = 1/s4.
Comparison of the meromorphic functions g and z
leads to these Weierstrass data for M; ~:

s 2=V 2+1/vy 24y 2—1/vy (2—8; 2 z+1/s; 2
g = z4vy z—1 /vy z2—vy 241 /vp \ 2+8; z—1/s;

and
2 _ 2.2 2
dz 2*—siz*—1/s%

2 2 2 2 2
22—122—¢€22—1/e}

1”:

These Weierstrass data insure that each Scherk-type
end is itself an embedded end, but one must also
guarantee that the limit normals on the ends are
antipodal so the ends do not cross each other as
they diverge. Because of our choice of orientation,
this is equivalent to the conditions

92(1) = 92(61> = 92(1/61) = 1.

Due to the rotational symmetry, the second and
third conditions result in the same constraints, while
the first is automatically satisfied. The second con-
dition places the following constraint on e;:

(§+7+2v)el
+ ((6+7) (P —=1)+2(6y—2)v—(6+7)—2v) e}
+ (2v—(6+7)(*—2)—2v(6v—2)+(0+7)) €F

—2v—(6+v) =0, (7-1)

where § = vo—1/v9, v =1/v1—vy,and v = 1/s1—31.

By Theorem 7.1, there exists a solution to (7-1)
in the necessary range. Using the computer to find
this solution and to calculate the values of the two
periods of the Weierstrass data, we determine the
appropriate values for e;, vy, and v,, given a value
for s;. We thereby generate the image of M5~ in
Figure 2.

8. THE EXAMPLES M/,

As in the previous section, one might investigate
whether it is possible to construct genus three ex-
amples by adding two ‘4’ type handles to M; while
preserving the symmetries. The same methods as
those used in the ‘=’ case can be used to show the
existence of a minimal disc with the desired bound-
ary and symmetries, but one must again consider
the period problem. The similarities between the
conjugate contours for the two ‘—’ handles and two
‘4’ handles allow one to observe a similar natural
obstruction to solving the period problem for the
one-ended surfaces. By adding more ends to these
surfaces, as in the previous section, this obstruction
is overcome. Denoting these new surfaces by M %,
and using arguments similar to those used in the
proof of Theorem 7.1, one has:
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FIGURE 9. Sketches of the boundary of one eighth of M, ™ and its conjugate boundary graph heights over the

front face of the bounding box.

Theorem 8.1. 1. There exists a one-parameter fam-
ily of embedded, doubly periodic minimal surfaces
M;,jH of genus three, for each k > 1.

2. Mt does not exist.

Remark 8.2. The symmetry groups for M;, M,
and M% | are identical. Hence one has two collec-
tions of genus three minimal surfaces with the same
symmetries as Karcher’s original genus one surface

Weierstrass Data for M}*

Using the same notation as that used for the surface
M3 ~, we can determine the Weierstrass data for
M;; the results are

9= z4v; z—1/v; 24wy 2—1 /v,

and

2+8; z2—1/5

dz 22 —s122—1/s3
22—1 22 —¢e222—-1/e?’
With the same constraints for parallel ends as in
(7-1) and by changing v to v; —1/v; we compute the
parameters used in generating the image in Figure 2.

')’]:

9. THE EXAMPLES M,

In this section, we consider the genus three surfaces
M./~ which arise by adding both a '+ handle and
a ’—’ handle to M. As in the case of M, and
M, the handles make it impossible to preserve the
straight line symmetries of M;, but the three mu-
tually perpendicular planar reflectional symmetries
are preserved. These symmetries reduce the number

o 2=V 2+1/vy 2—vy 241/, (2—81)2 <z—|—1/51)2

of periods that need to be addressed in order for the
period problem to be solved. In particular, M,"~ has
k + 1 periods: k — 1 of these periods arise from the
residues of the Weierstrass data at the ends; leaving
only two periods resulting from nontrivial homotopy
classes. By Lemma 4.3, the periods resulting from
the additional ends are simultaneously zero provided
the segments over which the conjugate contours are
unbounded are equal in length. As we have done in
the previous sections, we fix £ to be this common
length. Now we need only consider the two periods
that result from nontrivial homotopy classes.

Figure 10 contains sketches of the boundary of one
eighth of M, ~ (left) and M; ~ (right), together with
the conjugate contour heights written as a graph,
where 3; = length B, for j = 2,3,4,5,6. We assume
(B2 > € on all contours.

We now consider the case k = 1. By consideration
of the two periods for M; ~ for varying values of 35
and 5, we are able to use a two-dimensional degree
argument to prove:

Theorem 9.1. There exists a one-parameter family of
genus three, embedded minimal surfaces M; ™ with
4 Scherk-type ends.

In particular, consider the periods along the curves
in the (83, 05) plane given by

7 = (0,085) for B5 € [0,T],
7 = (05, T) for B3 € ]0,5],
3 =(S,0s5) for 85 € [0,T]
7+ = (83,0) for B3 € [0, 9]

I b

) )
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+B5

FIGURE 10. Sketches of one eighth of M, ~ (upper left) and M, ~ (upper right) with the Jenkin—Serrin graph
boundary heights for the conjugates of each eighth drawn below.

for positive S and T', and are able to show that, with
the correct choices for (5, S, and 7', these curves
surround a solution for the period problem.

The conjugate contours for M, ~ associated to
points along the curves 7; and 7, degenerate to con-
jugate contours for either known surfaces or surfaces
which are known to have unsolvable period prob-
lems. When the degenerate contour is known to
have a solvable period problem, we assume nothing
about the values of these periods, and in general
the remaining unfixed parameter which we will not
specify has been shown to control this period. We
seek to use only the general shape of the degenerate
contours and not the solvability of the period prob-
lems on the lower genus minimal surfaces. On each
of the degenerate surfaces, the labels we use are in-
herited from the contour for M, ~, which may differ
from those used previously in the text.

Proof of Theorem 9.1. Consider one-eighth of the fun-
damental piece, analogous to the depictions of M, ~
and M;~ in Figure 10. This one-eighth piece is
bounded by seven planar geodesics B, ...,B;. B;
and By are each of infinite length with a single end-

point, and Bs, ...,Bs are each finite length curve
segments. Let 3; = length B, for j = 2,3,4,5,6.
The singular points of the boundary are V; = B; N
B for j =1,...,6. (Unlike the cases when k > 2,
there are no curves Cj, as in Figure 10.) We place
the surface so that g equals 1 at the single end E;
and equals 0 at V;, and we define the functions

(B, B Bs) = Re/V4 2 = Re/V4 o

Vs Va

VG V6
7o (B2, Bs, Bs) = Re/ P2 = Re/ P2,
Va Vs
where s is the second component of the Weierstrass
map given in equation (3-2). We will show that:

(i) m1(7;) and m2(7;) change monotonically on each
7j, for j = 1,2,3,4. In particular, for each fixed
By and (s, w1 (B2, Fs,0s) is a strictly decreasing
function of Bs; for each fixed (3, and (3, the value
m1(0B2, B3, B5) is a strictly increasing function of
Bs; for each fixed By and s, ma(B2, B3, 0s) is a
strictly decreasing function of f3; and for each
fixed 3, and fs, m2(02, Bs, Os) is a strictly decreas-
ing function of 5.
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(Il) For all /62 > €, ’lTl(,BQ,0,0) > 0 and 7T2</82,0,0) >
0.

(iii) For any fixed B > €, if T is chosen sufficiently
large, then 7y (52,0,7) > 0 and m(f2,0,T) < 0.

(iv) There exist choices for G, > € and S large so that
71'1(,82,5,0) < 0 and 7T2(,62,S, 0) =0.

We consider the period map

H(ﬂzyﬂsaﬂs) = (Wl(ﬁZaﬂ&ﬁS)a Wz(ﬁzaﬁ?nﬁs))-

We choose 35, S, and T so that m(5,0,7) > 0,
79(B2,0,T) < 0, 71 (52, 5,0) < 0, and 7y(fFs, 5,0) =
0. Since (3, is then a fixed value, we may consider
m = m(Bs,05) and m = mo(fFs,5) as functions
of only the two variables #;3 and (35. Hence II is a
map from R? to R®. By the monotonic behavior
of m; and 7, on each 7;, it follows that the image of
71 UTy U3 U7y under II is a homotopically nontrivial
loop in R*\ {(0,0)}. Thus a zero for the period map
IT lies in the region bounded by the curves 7;. Hence
the period problem associated to M; ~ is solvable.

We prove items (i)-(iv) above by studying the
conjugate surface of the original one-eighth portion
bounded by planar geodesics B, ...,B7;. The con-
jugate surface is a graph B with respect to the z,
direction over the rectangle

{(21,0,25) €R*: 0 <y < 3,0 < w5 < &}

in the z;z3-plane, and its boundary, the conjugate
contour, consists of seven lines B}, ...,B; corre-
sponding to the planar geodesics By, ...,B7 in the
boundary of the original surface. Since conjuga-
tion preserves lengths, we have 3; = length B, =
length B;. Thus B} and B; are each infinite rays
with a single endpoint, and Bj, ...,B; are each fi-
nite line segments. The singular points of the con-
jugate contour are V;* = B: N B;,, for j =1,...,6,
corresponding to the points V; on the original sur-
face. Bj is the ray with endpoint (32, —fs,€) point-
ing in the direction of the positive z,-axis. Bj is the
segment with endpoints (3y, —f0s,¢) and (0, — s, €).
B; is the line segment with endpoints (0, —fs,¢)
and (0,0,¢). Bj is the line segment with endpoints
(0,0,¢) and (0,0,0). B: is the line segment with
endpoints (0,0,0) and (0, 35,0). B is the line seg-
ment with endpoints (0,35,0) and (02, 35,0). B;
is the ray with endpoint (0., 3s,0) pointing in the
direction of the positive x,-axis.

We denote this conjugate graph by B(5s, (s, Os),
since it depends on the values of (35, 83 and fB5. (It
also depends on ¢, but € will remain fixed, so we do
not notate this dependence.)

Proof of (i). Choose nonnegative values (s, B3, and
Bs, with 85 < 35, and choose any (; > &. Then the
interior of the graph B([(2, 3, 3s) lies above the inte-
rior of B([a, Bs, Bs) with respect to the z, direction,
by Remark 3.4. These two graphs have the line B;
in common, and it follows that as one travels from
V3 to V; along Bj, the normal vector along Bj of
B(Ba, B3, F5) is turning ahead of the normal vector
along B; of B([,, Bs, Bs). Furthermore, by the max-
imum principle these two normal vectors can never
be equal in the interior of Bj. This means that
on the original surfaces the normal vector along B,
for (s, B3, B5 is turning strictly ahead of the normal
vector along B, for Bs, (33, Bs, with respect to arc
length. Since length By = length By = ([, = ¢ is
independent of f3s, it follows that (83, 33, 85) >
7r1(/82a/637/85)'

We have just shown that for each fixed (3, and (s,
my is a strictly decreasing function of (3. Similar
arguments show the other parts of (i).

Proof of (ii). If B3 = B5 = 0, then V, coincides with
V3 and V, coincides with V5. The conjugate graph
of this surface is unique, by Theorem 3.3, hence the
surface is unique. Therefore it is M;. The embed-
dedness of M, implies that m3(8:,0,0) > 0.

The surface M; contains a vertical line, and this
line divides both M; and B, into two congruent
pieces. Let B, be the half of B, that connects the
midpoint of B, to V3 = V,. Let M, be the congruent
piece of M; bounded by B;, B, 34, and the vertical
line. Since M, has a single Scherk-type end whose
normal is parallel to the x; axis, the maximum prin-
ciple implies that the x, coordinate function on M,
cannot be maximized in the interior of M;. Further-
more, as B, is a planar geodesic in a plane parallel
to the zox3-plane, the boundary maximum principle
implies that x, cannot be maximized on B,. Simi-
larly, x, cannot be maximized on the interior of B,.
Therefore the value of the x5 coordinate at Vo, = V3
is strictly less than the value of the x, coordinate at
the midpoint of By. So m;(32,0,0) > 0.

Proof of (iii). Fix By > ¢, and choose 83 = 0 and
Bs =T > 1. Then limr_,,, B(B,,0,T) is a graph
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bounded by B}, B;, B}, and an infinite ray with
endpoint at V;* pointing in the direction of the pos-
itive xo-axis. This graph has a single Scherk-type
end of width /3% 4+ 2. (The fact that this limiting
behavior occurs follows from the arguments in [Jenk-
ins and Serrin 1966]. In this proof we will consider
various limit surfaces, and in all cases the existence
of the limit graph follows from [Jenkins and Serrin
1966].)
The original surface corresponding to

Thm ‘B(ﬁ% 07 T)

via conjugation is bounded by the planar geodesics
B,, By, By, and an infinite version of Bs. It has a
single nonvertical Scherk-type end of width /32 +¢2.
On limz o B(52,0,T'), the maximum principle im-
plies that its normal vector N along Bj lies within
a 90° geodesic arc of the unit sphere (so this is also
true along B,), and thus the z, coordinate at Vj is
greater than the z, coordinate at Vo, = V3 on the
original surface, so limr_, o m1(032,0,7) > 0. Hence
m1(082,0,T) > 0 for T sufficiently large.
Now we consider the limiting conjugate surface

Jim (B(52,0,T) - (0,T,0)),

which is a graph bounded by Bf, B;, an infinite

version of BZ equal to the negative z, axis, and a
complete line through (3,,0,¢) parallel to the the
xo-axis. This conjugate surface has two ends of
Scherk-type. One end has width € and the other
has width /(3 + 2. The original surface that cor-
responds to it via conjugation is bounded by B,
By, an infinite version of Bs, and a complete infinite
version of B;. It has two ends, again of width € and
\/ 3 + 2 > . Because of the relative widths of the
ends on this original surface, we see that the x5 coor-
dinate at Vj is greater than the x, coordinate at Vg,
so limyp_ o m2(532,0,T) < 0. Hence my(5,,0,7) < 0
for T sufficiently large. (See Figure 11.)

Proof of (iv). Choose By > €, B5 = 0, and (3 =
S > 1. We consider the limiting conjugate sur-
face limg_,o, B(02,5,0), which is a graph bounded
by Bj, B¢, B;, an infinite ray with endpoint at
V5" pointing in the direction of the negative z,-axis,
and a complete line through (3., 0, ¢) parallel to the
the z,-axis. This conjugate surface has two ends of
Scherk-type. One end has width ¢ and the other

X3

T2
Lxl

FIGURE 11. The original limit surface described at
the end of the proof of (iii).

has width 3;. The original surface that corresponds
to it via conjugation is bounded by B,, Bs, Br, an
infinite ray version of Bz, and a complete infinite
version of B;. It has two ends, again one of width ¢
and the other of width ;.

We now consider what happens to the original
surface corresponding to limg_, o, B(f2,5,0) as (2 N\
€ and as (B, " oo.

The conjugate surface limg, . (limg_,o, B(f2, S, 0))
is a graph with respect to the z, direction over the
square {(z1,0,z3) € R®:0 < zi, 3 < ). It
is bounded by the infinite ray B; with endpoint
(£,0,0) pointing in the direction of the positive xo-
axis, the line segment B; from (g,0,0) to (0,0,0),
the line segment Bj from (0, 0,0) to (0,0, ¢), and the
infinite ray with endpoint (0, 0, €) pointing in the di-
rection of the negative xy-axis. The corresponding
original surface in bounded by the planar geodesics
By, B¢, B7, and a complete infinite version of Bj.
This original surface has two ends of Scherk-type,
both of width ¢.

Note that the graph limg, ,.(lims_, B(f2,S,0))
contains the line segment from (0,0,0) to (g,0,¢)
and is symmetric with respect to rotation about this
line, by uniqueness in Theorem 3.3 and by Theorem
3.1. The maximum principle then implies that the
normal vector N along each of B} and B; is con-
tained in a 90° geodesic arc of the unit sphere, and
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thus the z; coordinate at V3 is greater than the z-

coordinate at V, = V5 in the corresponding original

surface, and the x, coordinate at V3 equals the x,

coordinate at V. Therefore

lim ( lim 75(83,,5,0)) = — lim ( lim m (s, S,0))
S—o0 Ba—e

Ba—e S—o0

> 0.

Hence for (3, sufficiently close to € and S sufficiently
large, we have m,(3,,.5,0) > 0.
The limiting conjugate surface

lim (Slim B(fs, S,0))

ﬂg—)oo

is a portion of a helicoid (this follows from [Jenk-

ins and Serrin 1966]) bounded by the positive ;-
axis, the line segment B; from (0,0,0) to (0,0,¢),
and an infinite ray with endpoint (0,0, ) pointing in
the direction of the negative z,-axis. On the corre-
sponding original surface, one eighth of a catenoid,
we then have that B, is a quarter circle of radius
2e/m. Thus limg, oo (limg_y o ™1 (52, 5,0)) = —2¢ /7.
Since the original surface corresponding to

Shm ‘B(/62, S, 0)

has two Scherk-type ends of width € and (,, it fol-
lows that

lim ( lim (71(02,5,0) + m2(52, S,0)) )
Ba—o0 * S—o0

= lim (g — ) = —o0.
ﬂ2—>oo

Thus for 8, and S sufficiently large, we have
ﬂg(ﬂQ, S, O) < 0.

Therefore for some large S and some value of
B2 > €, we have my(52,5,0) = 0. If, for this S and
B2, we have m;((3,5,0) > 0, then the original surface
corresponding to this G, B3 = .5, and G5 = 0 would
contain some point in B, U Bg where x, has a local
maximum and where the tangent plane is parallel to
the z,x3-plane. This contradicts the maximum prin-
ciple. So, for this S and f,, we have 7,(3;, S,0) < 0.
This shows (iv).

This completes the proof of the solvability of the
period problem associated to M; . Note that

H(’Tl U T2 U T3 U ’7'4)

changes continuously under continuous changes of
B2, so for all G, sufficiently close to the (3, chosen
above, TI(1; U 1, U 13 U 7y) is still a homotopically

nontrivial loop in R*\ {(0,0)}, and so the period
problem remains solvable. Hence (3, in a small open
interval serves as a deformation parameter for the
surface, thereby yielding a one-parameter family of
these surfaces. Since each eighth of the surface is
embedded, and the maximum principle tells us this
embedded surface lies in the bounding box deter-
mined by the planar curves B;, each surface in the
family is embedded. This completes the proof. [

The proof of Theorem 9.1 cannot be directly adapted
to prove existence of M, for k > 2. However, nu-
merical evidence suggests that the M~ exist for
k > 2 as well, so we make this conjecture (see Fig-
ure 3).

Conjecture 9.2. There exists a one-parameter fam-
ily of genus three, embedded minimal surfaces M, ~
with 4k Scherk-type ends, for all k > 2.

Numerical evidence also suggests that there exists
a wide variety of minimal surfaces with Scherk-type
ends and more handles of both + and — type. (See
Figure 12 for two genus 10 examples)

APPENDIX: A PROOF OF LEMMA 4.1

The first part of Lemma 4.1 is intended only to
be an intuitive aid, saying that “each collection of
surfaces results from adding ends and handles to
M,”. However, a rigorous proof is required for the
statement that “the period problems arising from
the additional ends are all solved by requiring € =
length A; = length B;”.

For each surface, we always begin by choosing
one-eighth of the original fundamental piece of the
surface. This one-eighth piece is bounded by pla-
nar geodesics, and its conjugate surface is bounded
by portions of lines. Before we consider any period
problems, we must first establish existence of this
conjugate surface, which then implies the existence
of the original one-eighth piece (without solving for
period problems yet).

The conjugate pieces exist because they are Jen-
kins—Serrin graphs. In all the cases we consider,
they are Jenkins—Serrin graphs over a rectangle, and
the boundary data is a finite constant over each of
three sides of the boundary of the rectangle. On the
fourth side, the boundary data alternates between
400 and —oo along adjacent intervals. The jump
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FIGURE 12. Fundamental pieces of MYT (left) and M;®" (right).

discontinuities occur only at the corners of the rect-
angle and at points along the fourth side where the
boundary data changes from +o00 to —oo.

Recall Theorem 3.3. In our case, by applying a
rigid motion and a homothety of R*, we may assume
without loss of generality that

D={(af:1,x2)ER2:0§$1§5,0§J}2§1}

for some positive J, that there are three C}’s which
we define as

Ci=Dn {(l’l,O) € R2},
Cz = D N {(é,xg) € R2},
Cy = D {(z1,1) € R?},

and that there are [ A;’s and B;’s, all of length 7
alternating along D N {(0,z,) € R*}. We have al-
ready incorporated the condition of Lemma 4.1, that
is, that

1
€ = length A; = length B; = T

Existence and uniqueness of a solution u to the
minimal surface equation with the given boundary
data now follows from Theorem 3.3. (The condi-
tions on the polygons P are trivially satisfied, since
no such P exists for the boundary conditions we are
using.) Furthermore, the results in [Jenkins and Ser-
rin 1966] imply that u is finite at every point in the
interior of D.



214 Experimental Mathematics, Vol. 9 (2000), No. 2

Let M denote the smallest closed minimal surface
that contains the graph u. (Here we use the word
“closed” in the sense that M contains all of its ac-
cumulation points.) Hence the interior of M is the
interior of the graph u, and M contains its bound-
ary OM , and the image of the vertical projection of
M to the z;x,-plane is

D\ {(0,z;) € R® : 2y # K/l some k € Z}.

We now prove Lemma 4.1 in a series of eight
claims.

Claim 1. M has finite total absolute curvature.

Proof. As in the proof in [Jenkins and Serrin 1966,
p. 334], u is the limit of a subsequence of minimal
graphs {u,}>>, over D. The minimal graphs u,
are determined by replacing the boundary condi-
tion +o0o by +n on each A;, replacing the boundary
condition —oco by —n on each B;, and leaving the
boundary data on C; U C, U C3 unchanged.

First we show that the total absolute curvature
of the graph of w, is bounded above by a finite
bound independent of n, which follows easily from
the Gauss—Bonnet formula. The boundary of u, is
polygonal with at most 2/ + 6 boundary line seg-
ments, and at each intersection of adjacent bound-
ary line segments the angle of intersection is /2.
Hence the total geodesic curvature of the boundary
curve for the graph u, is at most Z(2[ + 6). The
Gauss—Bonnet formula then implies

/ K|dA < m(l+ 1) (A1)
Graph(u,)

for all n, where dA is the area form on Graph(u,,)
induced by R®, and K is the intrinsic Gaussian cur-
vature of Graph(u,,).

Now we claim that for any compact convex do-
main D’ C D, there exists a subsequence {n;}52,
such that the total absolute curvature of the graphs
of u,, restricted to the domain D’ converges to the
total absolute curvature of the graph of u restricted
to D’. That is, we claim that

/ K|dA — K|dA  (A-2)
Graph(un; [pr) Graph(u|pr)

as n; — oo. This follows from the fact that, as
shown in [Jenkins and Serrin 1966|, u,|p converges
uniformly to u|p, as n — oo. The convergence (A—2)

is essentially known, and arguments showing it exist
in several places. For example, a proof is contained
in the arguments proving Theorem 2 in [Meeks and
Yau 1982], which however are intended for more gen-
eral ambient spaces; when the ambient space is R*
the arguments can be considerably simplified. A
simpler argument for the R® case can be found in
[Courant 1950, Section III.2].

For completeness, in this paragraph we outline
an argument showing (A-2). We know that the w,
converge uniformly to u over D’, by [Jenkins and
Serrin 1966]. These graphs w,|p: (resp. u|p/) are
graphs over convex domains in the z;zy-plane and
hence are the unique compact minimal surfaces with
respect to their boundaries. Hence they coincide
as surfaces in R® with the Douglas-Rado solutions
fo @ B? := {(u,v) € R* : v+ < 1} —» R®
(resp. f : B> — R®) for their boundaries. That is,
the surfaces f,(B?) and {(x1, s, un(z1,x2)) € R? :
(z1,22) € D'} (vesp. f(B?) and {(z1, z2, u(z1,22)) €
R?: (x1,x,) € D'}) coincide. The parametrizations
fn» and f have the advantage that they are confor-
mal, hence the coordinate functions fi and f?, for
i = 1,2,3, are harmonic on B?. Using arguments
similar to those we use later to prove Claim 6 of
this appendix, we can see that in fact

dus 0w Du | ou
8.’1?1 81‘1, 8.’172 83:72

converge uniformly over D’ as well. (This is equiva-
lent to showing that the normal vectors of the graphs
converge uniformly over D’.) Once we know that
first derivatives of wu, also converge uniformly, the
arguments in the proof of Lemma 3.2 and the remark
following it in [Courant 1950] can be applied: using
the three-point condition as in [Courant 1950], we
can find a subsequence f,,; of the f,, which converge
uniformly to f on dB*. Since the functions f, , f*
are harmonic, and hence the functions |f;, — f°| al-
ways attain their maximums on dB?, we conclude
that f,, — f uniformly on all of B>. Uniform
convergence for harmonic functions implies that the
convergence is smooth (a basic property of harmonic
functions; see [Gilbarg and Trudinger 1983, The-
orem 2.10], for example). We conclude that the
Douglas—Rado solutions f,, converge smoothly to
f. Hence the total absolute curvature of the graphs
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unj| p converges to the total absolute curvature of
the graph u|p.. This shows the convergence (A-2).

If the total absolute curvature of M is strictly
greater than 7(I+1), then there exists some compact
convex domain D’ C D such that the graph of u|p/
has total absolute curvature strictly greater than
m(l+1). However, then the convergence (A-2) con-
tradicts equation (A—1). Therefore the total abso-
lute curvature of M is at most w(I+1), and Claim 1
is shown. O

Claim 2. The are only a finite number of points of M
at which the tangent plane is horizontal.

Proof. The proof below is simply a modification of
an argument in the proof of Theorem 3.1 of [Meeks
and White 1991].

Consider the Gauss map

G:M— 52 = {($1,$2,$3) € RS : .’IZ§+$§+I§ = 1}

M is the closure of the graph u, so M is orientable,
and so G is well-defined. We can define G so that
G(M) c 82 N {(zy,z2,25) € R® : 23 > 0}. With
respect to conformal coordinates on M, G is a holo-
morphic map from M to the upper hemisphere of
S?, hence G is a branched covering with boundary
into the upper hemisphere. Furthermore, since 0M
consists of portions of lines parallel to the coordinate
axes in R?,

G(OM)cC
{(x1, T2, 25)€S*:2,=0 or £,=0 or z3=0}
N {(21, 72, 73) ER?: 23>0},
Therefore the covering degree of G is a constant on
each of the four sets
{($1,$2, 173)
{(z1, 22, 23)
{(z1, 2, 3)

{(zy,24,73) € S? 121 < 0,25 < 0,23 > 0}.

€S5%: x> 0,25 > 0,25 > 0},
€5%: 1 <0,25 > 0,25 > 0},
ESQ:xl >0,a:2<0,a:3 >0},

By Claim 1, these four constant covering degrees are
all finite. If the inverse image G~ !(€; = (0,0,1))
were to contain infinitely many points of M, then
at least one of these four constant covering degrees
would not be finite. Hence G~1(e; = (0,0,1)) is a
finite set, showing Claim 2. O

Let P, = {(z,22,5) € R*} be the horizontal plane
in R® of height s. An immediate corollary to Claim 2

is the following Claim 3. In Claim 3, by “nonsingu-
lar curves of R*”, we mean curves of R* which are
1-dimensional submanifolds with boundary.

Claim 3. There exists a constant L > 0 such that,
for all L' > L, P,N M, s € [L,L'] (resp. s €
[—L',—L)) is a smooth deformation (with respect to
s) from Pp N M to Pr, N M (resp. from P_p, N M
to P_r. N M) through an embeddeded collection of
nonsingular curves of R>.

Proof. A singularity in this deformation can only oc-
cur at a point of M where the tangent plane is hor-
izontal. By Claim 2, we can choose L large enough
that no such horizontal points exist in {(z1, z2, z3) €
M : x5 > L} nor in {(z1,29,23) € M : x5 < —L}.
This proves Claim 3. O

Thus, by Claim 3, for any L' > L, MN{(z1, z2,23) €
R®: x5 € [L, L']} consists of a finite number of com-
ponents, and each component is an embedded disk
bounded by two vertical lines segments, and one
curve in P/, and one curve in P;. We choose any
component Mo, of M N {(z1,2,23) € R® : 23 €
[L, L']} and extend it by rotations of 7 radians about
vertical boundary lines (this can be done, and the
extended surfaces are smooth, by the Schwarz re-
flection principle, Theorem 3.1). Extending M omp
(and its extended surfaces) by these rotations a fi-
nite number of times results in a larger compact
surface which still has only two vertical boundary
line segments, and one boundary curve in P/, and
one boundary curve in P;,. We make these rota-
tional extensions enough times so that the distance
in R? from any point in My, to the two bound-
ary vertical line segments of the extended surface is
greater than §(L'—L). We call this extended surface
Mgt ¢ it is an immersed compact disk in R, and is
not necessarily embedded. See Figure 13. (We will
later see that M  is indeed embedded for L large
enough.)

Claim 4. Mt

comp

is strongly stable.

Proof. The image G(M_omp) is contained in the upper
hemisphere of S% and does not contain the north
pole €;. Since M is comprised of a finite number

comp

of pieces congruent to M., which are all images of
vertical rotations of Momp, it follows that G(MEX )

comp
is also contained in the upper hemisphere and does
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A [ext

comp)

Mcomp
P,

FIGURE 13. The construction of Me*t

comp*

not contain €. In particular, the area of G(Mg, )
in S? is strictly less than 2.

Theorem 1.2 of [Barbosa and do Carmo 1976] tells
us that if the area of G(MS, ) is less than 27, then
Mg, is stable. The map G is not required to be
an injection in order for this theorem to hold, and
the minimal surface need only be an immersion —
it does not need to be an embedding. Furthermore,
in [Barbosa and do Carmo 1976] the word stable is
used in the strong sense; that is, a minimal surface is
stable if the second derivative of area for any smooth
nontrivial boundary-preserving variation is strictly
positive. This shows Claim 4. ]

For an oriented minimal surface M C R® and sets
A, B C M, let disty (A, B) be the intrinsic distance
in M between A and B. For each point ¢ € M, let
K, be the Gaussian curvature of M at ¢, and let ]\7q
be the oriented unit normal vector of M at q. Let
e1 = (1,0,0), and let (-,-) be the standard inner
product on R®. Let distgs(A, B) be the distance in
R? between two sets A, B C R®.

By Corollary 4 of [Schoen 1983] there exists a uni-

versal constant ¢ such that
c

ol < Gstg o
where M is any compact stable minimal surface in
R?, and ¢ is any point in M. This result (just like
Theorem 1.2 of [Barbosa and do Carmo 1976]) does
not require the surface M to be embedded — only im-
mersed. The constant c is universal in the sense that

it is independent of the choice of M. (See Theorem
16.20 of [Gilbarg and Trudinger 1983] and Theorem
11.1 of [Osserman 1969] for related results.)

Claim 5. On the surface M := Mo, N{ (21, 2, 23) €
R®: a5 € AL+ 3L, 3L + 1L]}, the Gaussian cur-
vature K is uniformly bounded by

16¢
K|l < —F—.
| | (L/ _ L)2
Proof. Mgy is a compact minimal surface in R?,

which is strongly stable by Claim 4. For all q € M ,
distaex (q,0Mg,,) > (L' — L)/4. Now we apply

comp
Corollary 4 of [Schoen 1983] and Claim 5 is proved.
(See Figure 14.) O

M Mcomp

o

Py,

FIGURE 14. The location of M, as defined in Claim 5.

Assume that L’ is chosen large enough that
8,/cH
L'—L
Claim 6. At every point of M omp N {(ml,mQ,mg) €
R®:a5€ 3L+ 2L, 2L + £L]}, we have
8./co

(8] 2 41— V2

<1
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Proof. Suppose some point p € McompN{(z1, x2, .1:3) €
R® : 25 € [3L' 4+ 2L, 2L’ + 2L]} has normal N, so
that

1 8,/ch

|<NP’€1>‘< L’*L

Then there is a tangent vector T at p such that

(T, &) > i)ﬂs Assume L' and ¢ are chosen large
enough that L'’ — L > 1 and ¢ > 10246%. Consider
a unit-speed geodesic v(t) € M,t € [0, (L' — L)/8]
so that v(0) = p and v/(0) = T, where the prime
represents partial differentiation with respect to t.

We define

(L' — L)
2y/c
Since L' > L + 1 and ¢ > 102462,

to =

we have that

ty < (L' — L)/8 and hence y(ty) € M. Let k,(t) be
the geodesm curvature of y(t). Since
16¢
K ek
| q| < (L, _ L)2

for all ¢ € M by Claim 5, and since M is min-

imal, we have |k,(t)] < 4y/c/(L'—L) for all ¢t €
[0, (L'—L)/8]. Thus |v"(t)|] < 4v/¢/(L'—L). Writ-

ing v(t) = (71(¢),72(t),v3(t)) in terms of coordinates

in R®, we have |7/(t)] < 4y/c/(L'—L). Then for
€ [0, (I'=L)/8],

i (t) =% (0)f = | [ % (s)ds
/ v (s)ds < \ZEL t,
(4y/c/L’'—L) t. Therefore
lto) 2 () = 20) = [0
> /0 0 <7;(0) - L‘,*\_/ELt> dt

=71 (0)to — 2/

and thus ] (¢) > v;(0) —

L — L°
8,/c6 2,/c
Ty A T Lto_‘s

The final inequality above follows from

8,/c0
L' -L’

7(0) = (&) >

and the final equality follows from the definition of
to. This is a contradiction, since the vertical projec-
tion to the z1z,-plane of the geodesic (t) € M C
M is contained in D. This proves Claim 6. O

Now Mcomp is one component of M N {(zy, x2,x3) €
R® : x5 € [L, L]} and thus Momp = Meomp(L') de-
pends on L'. We now wish to increase Moy, to a

connected noncompact surface M that is indepen-
dent of L’. Define

= | Meomp(L
L'>L
Thus Meomp(L') C M for all L', and M is a disk
bounded by one curve in P; and by two upward-
pointing vertical rays rq,r, with endpoints in P;.
(See Figure 15.) Since L' > L + max(1,8,/cd) was
arbitrary in the proof of Claim 6, an easy corollary
of Claim 6 is the following:

Claim 7. The normal vector N on M converges to
+¢&, at the end of M. More precisely, for all p €
(0,1), there exists L(p) > 0 such that at all points
q € {(z1,22,23) € M : x5 > L(p)}, the normal N,
satisfies ||ﬁq —éll <por ||]\7q + el < p.

Proof. We choose s so that L’ = 2s. By Claim 6, if
L' > L 4 max(1,84/cd), then

<]\_']'q7é’1>2 >1-— ﬂ

2s — L
for every point ¢ € P; N Momp. Define
NqJ_ = Nq — (Nq,€1>51.
N

GO

Py,

FIGURE 15. The surface M.
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Then

IR < 2
and
N, & = ((N,,&) £ 1)& + N}
By a straightforward computation, choosing

16+/c6 + 3L
o 16ved+3L
3p?

is sufficient to ensure
min || N, + & < p and L' > L + max(1,8/cd).
Claim 7 is shown. O

Using Claim 7 and elementary properties of conju-
gation, we now prove Lemma 4.1.

Note that distgs(r;, )= k/l for some positive
integer k. By Claim 7 and the original construc-
tion of the boundary data (the choices we made for
the A;, B;) in the Jenkins—Serrin graph, we see that
k = 1. Furthermore, by Claim 7, we have

diStM(Tl, 7'2) = diStRS (7’1, 7'2) = —. (A—3)

[
Let Mconj be the conjugate surface of M. We have

the following properties (see Figure 16):

1. Since conjugation is an isometry, M,,;is bounded
by one smooth curve of finite length, and two
smooth curves 7, 7, of infinite length.

2. Since conjugation maps straight lines to planar
geodesics, 71, 7y are boundary planar geodesics of
]\chonj that are the images of the boundary rays
r1, T3, respectively, under conjugation.

FIGURE 16. The conjugate surface of M.

3. Since conjugation preserves the Gauss map and
hence also N, the curves #; and 7, each lie in a
horizontal plane. We call these planes P; and P..

4. Since the normal vector N is preserved under
conjugation, N on M,,,; converges to +¢€; at the
end of Moy

5. By property 4 above,
diStRS (pl, pg) — diStMcon (’]’A'l, fg)

j
6. Since conjugation is an isometry,

diStMcon ('f'l, fQ) = dlStM (7'1, 7'2) .

Finally, from equation (A-3) and properties 5 and
6 above, we conclude:

A 1
Claim 8. diStRB (Pla P2) = 7

On the conjugate Mconj of M C {(z1,22,23) € M :
x3 > L}, the period problem at the end is a vertical
translation comprised of one reflection through P,
composed with one reflection through P,. Thus the
period problem is a vertical translation of length ex-
actly %, by Claim 8. Likewise, the same holds for
the conjugate surface of any other components of
{(z1,%9,23) € M : x3 > L} and any components
of {(z1,x2,23) € M : z3 < —L} as well, when L is
chosen large enough. Since the boundary behavior
alternates between +o0o and —oo along the alternat-
ing A;’s and B;’s, the normal vector of the graph u
must alternately approach +¢€; and —¢&; along the
A;’s and Bj’s. Therefore, as one travels along the
line segment D N {(0,z,) € R?}, the vertical direc-
tion of the translation periods at the ends of the
conjugate surface of M alternates between upward
and downward translations of length 2.
Thus Lemma 4.1 is shown.

ACKNOWLEDGEMENTS

The computer graphics in the figures were created
using the MESH software produced by James T.
Hoffman of the Mathematical Sciences Research In-
stitute, Berkeley, California, USA.

REFERENCES

[Barbosa and do Carmo 1976] J. L. Barbosa and M.
do Carmo, “On the size of a stable minimal surface in
R3, Amer. J. Math. 98:2 (1976), 515-528.



Rossman, Thayer, and Wohlgemuth: Embedded, Doubly Periodic Minimal Surfaces 219

[Courant 1950] R. Courant, Dirichlet’s principle, confor-
mal mapping, and minimal surfaces, Interscience, New
York, 1950. Reprinted by Springer, New York, 1977.

[Dierkes et al. 1992] U. Dierkes, S. Hildebrandt, A.
Kister, and O. Wohlrab, Minimal surfaces, I: Bound-
ary value problems, Springer, Berlin, 1992.

[Gilbarg and Trudinger 1983] D. Gilbarg and N. S.
Trudinger, Elliptic partial differential equations of sec-
ond order, Second ed., Grundlehren der Mathematis-
chen Wissenschaften 224, Springer, Berlin, 1983. Re-
vised third printing, 1998.

[Jenkins and Serrin 1966] H. Jenkins and J. Serrin,
“Variational problems of minimal surface type, II:
Boundary value problems for the minimal surface
equation”, Arch. Rational Mech. Anal. 21 (1966), 321—
342.

[Karcher 1991] H. Karcher, “Construction of higher
genus embedded minimal surfaces”, pp. 174-191 in
Geometry and topology of submanifolds, III (Leeds,
1990), edited by L. Verstraelen and A. West, World
Sci. Publishing, River Edge, NJ, 1991.

[Karcher and Polthier 1993] H. Karcher and K. Polthier,
1993. Personal communications.

[Meeks and Rosenberg 1990] W. H. Meeks and H.
Rosenberg, “The maximum principle at infinity for

minimal surfaces in flat three manifolds”, Comment.
Math. Helv. 65:2 (1990), 255-270.

[Meeks and White 1991] W. H. Meeks and B. White,
“Minimal surfaces bounded by convex curves in
parallel planes”, Comment. Math. Helv. 66:2 (1991),
263-278.

[Meeks and Yau 1982] W. H. Meeks and S. T. Yau, “The
classical Plateau problem and the topology of three-
dimensional manifolds. The embedding of the solution
given by Douglas—Morrey and an analytic proof of
Dehn’s lemma”, Topology 21:4 (1982), 409-442.

[Osserman 1969] R. Osserman, A survey of minimal
surfaces, Van Nostrand Reinhold Co., New York, 1969.
Reprinted by Dover, New York, 1969, 1986.

[Schoen 1983] R. Schoen, “Estimates for stable minimal
surfaces in three-dimensional manifolds”, pp. 111-126
in Seminar on minimal submanifolds, edited by E.
Bombieri, Annals of Math. Stud. 103, Princeton Univ.
Press, Princeton, 1983.

[Wei 1992] F. S. Wei, “Some existence and uniqueness
theorems for doubly periodic minimal surfaces”, In-
vent. Math. 109:1 (1992), 113-136.

[Wohlgemuth 1997] M. Wohlgemuth, “Minimal surfaces
of higher genus with finite total curvature”, Arch.
Rational Mech. Anal. 137:1 (1997), 1-25.

Wayne Rossman, Faculty of Science, Kobe University, Kobe 657-8501, Japan (wayne@math.kobe-u.ac.jp,
http: //www.math.kobe-u.ac.jp/HOME/wayne/wayne.html)

Edward C. Thayer, ZymoGenetics Inc., 1201 Eastlake Ave East, Seattle WA, 98102, United States (thayer@zgi.com)

Meinhard Wohlgemuth, Mathematische Institut, Universitdt Bonn, Beringstrafie 1,

53115 Bonn, Germany (meinhard@math.uni-bonn.de)

Received May 26, 1998; accepted in revised form May 6, 1999



