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In a companion paper, Rubin and Silverberg relate the ques-

tion of unboundedness of rank in families of quadratic twists of

elliptic curves to the convergence or divergence of certain se-

ries. Here we give a computational application of their ideas

on counting the rational points in such families; namely, to find

curves of high rank in families of quadratic twists. We also ob-

serve that the algorithm seems to find as many curves of positive

even rank as it does curves of odd rank. Results are given in

the case of the congruent number elliptic curves, which are the

quadratic twists of the curve y2 = x3 � x; for this family, the

highest rank found is 6.

1. MAIN ALGORITHMRubin and Silverberg [2000] have studied the ques-tion of unboundedness of rank in families of quad-ratic twists, and have rephrased it in terms of theasymptotic behavior of certain arithmetically de-�ned series. Fix a family of twists E(D) : Dy2 =f(x), where D is square-free. Then the startingpoint of their argument is the observation of Gouvêaand Mazur [1991] that, for any nonzero rationalnumber x = u=v, x is the x-coordinate of a ratio-nal point on exactly one of the curves E(D), namelywhen D = s(f(u=v)). Here s(u=v) will denote thesquare-free part of a rational number u=v; that is,the unique square-free integer such that s(u=v) �v=uis the square of a rational number.This observation suggested to Rubin and Silver-berg the following sieving process to look for curvesof high rank in a given family of twists. For eachrational number u=v up to some �xed height, com-pute the D for which (u=v; y) is a rational pointon the curve E(D). Keep track of which D's wereattained most often in this way; these are the D'sfor which there are many rational points of small(naive) height. Since the logarithmic (naive) height
c
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is approximately a quadratic form on the group ofrational points, a curve with many points found inthis way would tend to have higher rank. The laststep is most easily accomplished by computing therank of the best D's directly, using one of the avail-able rank computation programs such as mwrank[Cremona 1998] or apecs [Connell n.d.]. In practice,of course, curves of high rank are quite rare, andit requires the consideration of many rational num-bers u=v to distinguish between curves of high rankand large regulator and those of moderate rank butsmall regulator.
2. THE CONGRUENT NUMBER ELLIPTIC CURVESWe have actually implemented and run this algo-rithm in the case of the so-called congruent num-ber elliptic curves, which are the quadratic twistsE(D) : Dy2 = x3 � x. The literature seems to belacking in concrete examples of curves in this familywith even moderately high rank. Nemenzo [1998],extending results from [Noda and Wada 1993; Kra-marz 1986], computes the ranks of all of the curvesE(D) for D � 40000; the highest rank encounteredin this range is 4.For the congruent number elliptic curves, the com-putations can be simpli�ed considerably. First ofall, we need only consider one representative of eachelement in the quotient group E(D)(Q )=E(D)tors(Q ).In this case, E(D)tors(Q ) = fO; (0; 0); (1; 0); (�1; 0)g �=Z =2Z � Z =2Z , and it is easy to check that in eachorbit of a point of in�nite order in the natural ad-ditive action of the torsion subgroup, there are twopoints with positive x-coordinate. Furthermore, ex-actly one of these two x-coordinates is written inlowest terms as the quotient of an odd number andan even number. It is obvious that there are nopoints with x-coordinate less than one, so in the al-gorithm it su�ces to consider only rational numbersu=v > 1, with u and v not both odd. Equivalently,we could consider only those rational numbers u=vwith u and v both odd, but then it is easy to see thatwe must consider numbers up to a greater height,which is disadvantageous for reasons described be-low.In practice, the most di�cult computation in thealgorithm is the determination of s(f(u=v)), whichin the general case seems to be about as di�cult as

factoring f(u=v). However, in this special case wehave f(u=v) = (1=v4)(u3v�uv3), sos(f(u=v)) = s(u3v�uv3) = s�uv(u�v)(u+v)�:Now, since u and v are relatively prime and notboth odd, the four numbers u, v, u� v, and u+ vare all pairwise relatively prime, and we may writes�uv(u�v)(u+v)� = s(u)s(v)s(u�v)s(u+v). In thealgorithm, we consider rational numbers up to some�xed height H , so certainly u; v � H and u + v <2H . Thus it su�ces to precompute the square-freeparts of all integers up to 2H , and the computationof s(f(u=v)) is reduced to a few multiplications.The remaining question is how to keep track of thescore of each D as the algorithm progresses. In ourimplementation, we used a hash table keyed on theinteger D. Also, we enforced a maximum table size(simply constrained by memory limitations), and soany D discovered after the table was full was ig-nored. We chose the number of hash buckets to bea prime number p near the maximum table size, tominimize key collisions, and then the hash functionis simply reduction modulo p.The constraint of the table size is quite a trouble-some one, since the table tends to �ll rather quickly.There are on the order of h2 rational numbers ofheight less than h, and so if repetitions are rare (asthey are in practice), the table will be full after con-sidering numbers up to height on the order of thesquare root of the table size. There are, however, nu-merous ways to improve one's chances of �nding acurve of high rank. For example, one could demandthat for a number D to be entered into the table, itmust have some minimum number of prime factors(since the Selmer group must be large; see [Silver-man 1986, X.6]), or that each prime factor must beless than some arbitrary upper bound. Also, theConjecture of Birch and Swinnerton-Dyer predictsthat E(D) has even rank if D � 1; 2; 3 (mod 8) andodd rank if D � 5; 6; 7 (mod 8). So, if one is in-terested in a particular rank, it is easy to eliminatecurves whose rank is the opposite parity. Anotheroption is to \clean out" the table every time it getsfull, by removing all of the D's that have only ap-peared once. This is a tremendous savings of space,but it takes a lot of time, and the table must beemptied so often that there are undoubtedly many
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unlucky curves of high rank that never manage toget more than one entry before the next cleaning.Results of running this algorithm with most of theimprovements just mentioned are given below. Foreach rank, the �rst curve found by the algorithm isgiven, which is a curve of that rank distinguishedby having several rational points of relatively smallheight. The speci�cations for this particular run-ning of the algorithm are as follows: the maximumtable size was 3000000, and the upper bound H onu and v was 100000. These particular examples canbe produced in a relatively short time, perhaps be-tween four and six hours on a Sparc machine with64-bit integers. In fact, the more time-consumingportion of the algorithm was running a rank compu-tation program on the high-scoring D's to see whichactually have high rank.Rank 1: D = 6Rank 2: D = 210Rank 3: D = 1254Rank 4: D = 29274Rank 5: D = 4132814070Rank 6: D = 61471349610Note that for most ranks, the �rst curve found isnot the curve with the smallestD. For example, E(5)has rank 1 and E(34) has rank 2. In fact, for eachgiven rank except 6, I know of smallerD's than thosegiven above. It is a much more di�cult problem toproduce the minimum D for which E(D) has a givenrank r, since it may have large regulator. For thisproblem, there does not seem to be a signi�cantlybetter approach than trying to compute directly therank of each E(D) in succession, which is hopelesslyslow.
3. TUNNELL’S THEOREM AND THE EFFECTIVENESS OF

THE ALGORITHMTo analyze the e�ectiveness of this algorithm, onemust consider how quickly the algorithm tends to�nd curves of a given rank. In this section, we con-sider the simplest case, and look at how well the al-gorithm �nds curves of rank 2 as compared to howwell it �nds curves of rank 1.Tunnell's theorem (see [Tunnell 1983] or [Koblitz1984, IV.4]), which hypothesizes the weak Birch andSwinnerton-Dyer conjecture, characterizes in a com-

putationally e�ective way all of the congruent num-ber elliptic curves of nonzero rank. Furthermore,the reduction of D modulo 8 conjecturally gives usthe parity of the rank. Combining these, we cancompute fairly easily which curves E(D) have oddrank, and which have nonzero even rank. If we as-sume that most of the odd rank curves have rank1, and that most of the nonzero even rank curveshave rank 2 (reasonable assumptions given experi-mental data), we can address the above question inthis special case.The results of this computation are given in Ta-ble 1. For this computation, the upper bound Hon u and v is 500000. The �rst column of thetable is the range of square-free integers D. Thenext three columns show data for the curves whichconjecturally have odd rank; that is, where D �5; 6; 7 (mod 8). The �rst of these three is the num-ber of curves of nonzero rank, which is all of them inthe odd rank case. That is, this �rst column is justthe number of squarefree integers D in the speci�edrange. The next shows the number found by the al-gorithm, and the third is the percentage found. The�nal three columns give analogous data for the evenrank case, i.e., when D � 1; 2; 3 (mod 8). In thiscase Tunnell's theorem is used to compute whichcurves have nonzero rank, and so the weak Birchand Swinnerton-Dyer conjecture is hypothesized.As the computations show, it seems to be just aseasy to �nd curves of nonzero even rank as curves ofodd rank. In fact, the number of positive even rankcurves found is practically equal to the number ofodd rank curves. This is rather surprising given therelative rarity of nonzero even rank curves.
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range #odd found #even foundfrom to # % # %1 1000000 303979 12832 4.221 28733 11190 38.9451000001 2000000 303972 6656 2.190 23875 6247 26.1652000001 3000000 303933 5308 1.746 22181 4970 22.4073000001 4000000 304003 4526 1.489 21416 4469 20.8684000001 5000000 303945 4146 1.364 20459 3963 19.3705000001 6000000 303944 3854 1.268 20208 3640 18.0136000001 7000000 303977 3485 1.146 19609 3406 17.3707000001 8000000 303971 3241 1.066 19523 3211 16.4478000001 9000000 303962 3035 0.998 18755 2970 15.8369000001 10000000 303962 2959 0.973 18559 2867 15.44810000001 11000000 303983 2758 0.907 18118 2733 15.08411000001 12000000 303953 2739 0.901 18191 2719 14.94712000001 13000000 303965 2620 0.862 18025 2625 14.56313000001 14000000 303955 2445 0.804 17674 2596 14.68814000001 15000000 303953 2517 0.828 17220 2343 13.60615000001 16000000 303973 2319 0.763 17174 2428 14.13816000001 17000000 303938 2304 0.758 16803 2167 12.89717000001 18000000 303969 2266 0.745 17026 2192 12.87418000001 19000000 303991 2122 0.698 16879 2180 12.91519000001 20000000 303963 2095 0.689 16751 2121 12.662
TABLE 1. Expected number of nonzero rank curves withD up to 20 million, grouped by the conjectural parity of therank. The computations use Tunnell's theorem, and therefore hypothesize the weak Birch and Swinnerton-Dyerconjecture. The table also shows what fraction of these D's were encountered in running the algorithm describedin this paper with H < 100000; that is, the D's for which E(D) has a rational point whose x-coordinate hasheight less than 100000.[Gouvêa and Mazur 1991] F. Gouvêa and B. Mazur,\The square-free sieve and the rank of elliptic curves",J. Amer. Math. Soc. 4:1 (1991), 1{23.[Koblitz 1984] N. Koblitz, Introduction to elliptic curvesand modular forms, Graduate Texts in Math. 97,Springer, New York, 1984. Second edition, 1993.[Kramarz 1986] G. Kramarz, \All congruent numbersless than 2000", Math. Ann. 273:2 (1986), 337{340.[Nemenzo 1998] F. R. Nemenzo, \All congruent numbersless than 40000", Proc. Japan Acad. Ser. A Math. Sci.74:1 (1998), 29{31.
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