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We give examples where Kanenobu’s necessary condition for
the rationality of a knot is not sufficient, and show that such
examples are atypical.

1. INTRODUCTION
This note is devoted to the following theorem:

Theorem 1.1 [Kanenobu 1989]. For a rational or 2-
bridge knot or link, the Jones polynomial V and the
Brandt-Lickorish—Millett—Ho polynomial Q) satisfy

(—u—u ) (Q(—u—u")—-1) =2(V(u)V(u™")—1).
(%)

See [Jones 1985; Brandt et al. 1986; Ho 1985] for the
definition of these polynomials.

Apart from its elegance, formula (*) attracted my
attention in particular because it provides a sim-
ple criterion to decide about the nonrationality of a
knot (apart from considering Schubert’s classifica-
tion [1956] or knot group arguments).

The converse of this criterion turns out not to
be true; that is, (*) is not a necessary and suffi-
cient condition for rationality. Here we construct
infinite series of knots that are nonrational, in fact
even nonalternating, but for which (%) is satisfied.
These examples have been suggested by empirical
calculations (explained subsequently), which never-
theless reveal (%) to be a surprisingly powerful test.

2. A SYSTEMATIC COLLECTION OF EXAMPLES

The first series of examples we construct suggested
by empirical calculations is basically due to Joan
Birman. We denote by o; the Artin braid group
generators and by A = 0,00, the square root of
the generator of the center of the 3 strand braid
group Bjs, as well as by [a] the exponent sum of a,
and by w, g and ¢ the writhe, genus and crossing
number.
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Proposition 2.1. Let o € B; be a 3-braid of the form

(i) o8¥F1 gt or

(i) ot oy toyoy

for k € N sufficiently large. Then the knot K =
(A* =Y satisfies (*), but is nonrational, even non-
alternating. Infinitely many knots arise this way.

The proof we give here is of knot-theoretical flavour,
but a more generally applicable argument will be
given later.

Proof. By [Birman 1985, proposition 2|, K and &
have the same HOMFLY polynomial P [Freyd et al.
1985], so also in particular the same V and A [Alex-
ander 1928] polynomials. (Such pairs of knots will
subsequently be called Birman pairs.) Since [a] =
[A** =] we have Q(&) = Q(K) by [Kanenobu 1989,
Theorem 2|. Since & is evidently 2-bridge, (*) holds
for K.

Assume that K were alternating. Since & is a
closed alternating braid, A(K) = A(&) is a monic
polynomial. But by [Murasugi 1963] (see also Corol-
lary 5.3 of [Cromwell 1989]) such a link is fibered,
and therefore, by Theorem A of [Murasugi 1991], the
Morton—Williams—Franks inequality [Morton 1986;
Franks and Williams 1987] is sharp on K.

If v is of type (i), K would then be a (2,n) torus
link, and V(K) = V(&) would imply K = &. But
(basically as observed by Birman) Murasugi’s for-
mulas [1974, §9-11] show that o(K) # o(&) for k
sufficiently large, a contradiction.

If « is of type (ii), the (closed braid) diagram &
is reduced, and the Morton—Williams—Franks bound
for both K and & is sharp and equals 3. Then by
[Murasugi 1991, Corollary 2] a reduced alternating
diagram D of K must have the same crossing num-
ber as the diagram &. Therefore, since

9(D) = g(K) = maxdeg A(K)
= maxdeg A(&) = g(&),

the number of Seifert circles of D is the same as
this of &, namely 3. But by Morton’s inequali-
ties [1986] the P polynomial determines the writhe
of a diagram of minimal number of Seifert circles,
if the Morton—Williams—Franks inequality is sharp.
Therefore [a] = w(&) = w(D). Since D, as a di-
agram with 3 Seifert circles, can be made into a
braid diagram by at most one Vogel move [Vogel

1990], and since o changes at most by 2 under a
crossing change, the remark after Proposition 11.1
of [Murasugi 1974] shows that |o(K) — o(&)] < 2.
However, by Murasugi’s signature formulas, for &
large enough |o(K) — o(&)| also gets large enough,
a contradiction.

Finally, to show that infinitely many of the knots
are distinct, let £ — oo and use again Murasugi’s
signature formulas showing o — co. O

3. AN EMPIRICAL APPROACH

A more realistic estimate for the quality of (x) as
a rationality test can be obtained by examining the
tables in [Hoste and Thistlethwaite 1999].

First, (*) detected all nonrational prime knots
from the tables of [Rolfsen 1976] (which are easy to
identify from the Conway notation recorded there).
For knots of 11 or more crossings, Thistlethwaite
does not specify which knots in his tables are ra-
tional, but the number of such knots for given low
crossing number can be obtained by computer in a
few seconds by enumerating iterated fractions aris-
ing from compositions of the crossing number into
the entries of the Conway notation, and considering
(only) fractions p/q with p,q € N mutually prime
and p odd up to the equivalence p/q; ~ p/q <=
q1q; ' = +1 in Z, (see [Kanenobu 1986], for exam-
ple). The numbers are

crossing number 11 12 13 14 15 16
# of rational knots | 91 176 352 693 1387 2752

A formula for these numbers has been proved in
[Ernst and Sumners 1987].

Considering prime alternating knots, I found that
the number of knots satisfying (*) coincides up to 16
crossings with the one of the above table, showing
that (x) decides about rationality of any such knot.

A further check showed (x) to be violated for any
composite knot of at most 16 crossings, assuming
that so far the crossing number is additive under
connected sum and taking from a prime knot and its
obverse only one as a factor, as mirroring a compos-
ite factor does not change either of the expressions
on both hand-sides of (x). By [Menasco 1984; Kid-
well 1987; Thistlethwaite 1987], (x) is easily shown
to be violated by any alternating composite knot,
by comparing the edge coeflicients.
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knot Description in the notation of [Dowker and Thistlethwaite 1983]
121879 4 12 —-18 14 -20 2 8§ —22 -24 -10 -6 —16
129037 6 10 14 -—-18 2 =20 4 22 24 -8 —-12 16
137750 4 12 14 —-16 18 —-20 2 =22 24 -26 —6 8 —10
137960 4 12 16 —-22 14 -20 2 8§ 24 26 -10 -6 18
1433787 4 12 16 —14 -22 2 -20 24 -26 —-28 —-10 -8 6 —18
1443535 6 10 24 -18 2 =20 -22 26 28 -8 -—12 4 14 16
1444370 6 12 16 —22 -18 4 —-24 2 -26 -8 —-28 —14 —-10 -20
1446672 8§ —-10 12 —-18 20 —-22 24 26 -6 28 -2 4 16 14
1446862 8§ —-12 -16 -20 22 -2 24 -4 26 -6 28 10 14 18
15157719 | 4 12 14 —-16 18 —-28 2 -22 24 -26 -30 -6 8 —10 —20
15168643 | 4 12 18 14 24 22 2 —-26 6 —28 =30 10 8 —16 —20
15233158 | 6 12 16 —24 —20 —26 4 —28 2 -10 -8 —-30 —-18 —14 -—-22
15247180 6 16 14 20 —-26 18 —-24 4 2 10 28 30 —-12 -8 22

TABLE 1. Knots of up to 15 crossings for which Kanenobu’s formula (x) fails as a rationality test.

It is clear that among the nonalternating knots
examples should occur, and the simplest ones are
two knots of 12 crossings, 125037 and 12g79. The
first of these forms a famous Birman pair (see [Lick-
orish and Millett 1987, Example 17]) with 7;; the
coincidence of () in this case was observed, without
further explanation, already in [Brandt et al. 1986].
The complete list of exceptions up to 15 crossings is
given in Table 1.

124879 123037

FIGURE 1. The two simplest knots for which (x) fails
as rationality test.

Besides 124437, Proposition 2.1 explains two more
of these examples: 14,3535 (associated to 10,) and
1446862 (associated to the (2,11)-torus knot 11347).

For all 13 knots listed in Table 1, nonalternation
can be proved by the Kauffman [1990] F' polynomial.
In fact, except for the Birman (pair) knots and the
two further examples 137960 and 15168643 (0of which
the first has the same V' and @, but not A, as 5,),
already the criteria for V' given in [Kauffman 1987]
and [Thistlethwaite 1987, Theorem 1] work.

The small number of exceptions compared to the
total number of knots given in [Hoste et al. 1998]
testifies to the quality of (%) as a rationality test.

4. SOME MORE SERIES OF EXAMPLES

It may appear that the 10 knots of Table 1 that lie
outside of the scope of Proposition 2.1 satisfy (x)
by accident. However, there are patterns underly-
ing some of these remaining examples. Drawing the
pictures, one observes striking similarities between
some of them, which can be extended to infinite se-
ries.

Example 4.1. For example, the diagrams of 137940
and 15947150 differ just by a ¢, move at the crossing
marked with an arrow in Figure 2. Applying further
t, moves we find that the next 8 diagrams still satisfy
(¥). Thus we are lead to conjecture that this will
hold for the whole series of diagrams.

This can be shown by some messy calculation, or
by the following analytic argument. To simplify the
notation, set z = —u —u~! and 2/ = V22 — 4 from
now on. We need to show that

2(Q(z)—1) = 2(V(ZJ;Z) V(Z;Z) - 1)

for the polynomials @; and V; of the diagrams D;
with ¢ twists. Considering the generating functions

(oo}
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and

o= S U v (7 e

4,5=0

(the series converge absolutely in a neighborhood of
(z,y,2z) = (0,0,0) and (z, z) = (0,0), respectively,
because of the exponential growth of the polynomial
coefficients in the crossing number) we find by the
relations of the ) and V' polynomials that these are
rational functions in = and y (with coefficients in
the fraction field F of Z[z, z']) whose denominators
have the form

g1 (.72, 2)
z,z) = :
9(@.2) =T
with deg, g» < 3 and (1 — z)|g» in the case of g and
P(z,y,2)

J;, b zZ)=

f(@.y,2) (1-2)(1-y) ((z+2")%z—4) ((2—2')%y—4)
with P € F[z,y], deg, P < 2, deg, P < 2 in the case
of f. To extract the diagonal part ¢ = j of f that
we are interested in (we call this ‘contracting’), we
apply a usual trick from harmonic analysis, obtain-
ing

fN(t7 z) — /f(\/.ze%riu’ te—27riu7 Z) du
0

1 1 t
= — 7{ —f(u,—,z) du.
2mi Uu U
lul=vt

The path integral can be calculated by evaluating
the relevant residues for small ¢, namely

z— 2'\?
u=0, u=t, uzt( 5 ),

obtaining rational expressions in ¢ with denomina-
tors composed by the five factors 2, t—1,

'\2 _ S\ 2 I\2
(Z+Z>t—L (Z Z)t—L <Z+Z)t—L
2 2 z— 2

the numerators being of at most the same degree in
t as the denominators.
Thus the identity we wish to show, namely

1 z 1 -
T—¢ " §<g(taz) - :) = f(t2)
when multiplied by the lowest common multiple of
the denominators (which is of degree 8 in t), turns

into a polynomial identity of degree at most 8 in ¢.

A
:

-4
Nl

15247180

A

137960

FIGURE 2. Two examples of nonalternating knots
satisfying (x), differing by a #, move only.

To prove the identity, then, it suffices to show equal-
ity for the first 9 coefficients in the Taylor expansion,
which correspond to the first 9 diagrams, the ones
we checked above.

Example 4.2. The knots 137750 and 15157719 in Figure 3
differ just by two local replacements of a crossing by
a parallel clasp. If we repeat this procedure, adding
the same number of crossings at both places, we
obtain 6 further diagrams satisfying (x).

Again, considering this series as the diagonal part of
the 2-parameter series D, ; (with respectively ¢ and
7' half-twists inserted: note that for i + ¢’ odd these
are 2 component link diagrams), one can build

f(zva:laya y17z) =

242 zE2'\N .o
S V(Y (22 e

i,5,8',5' 20

and contract three times, obtaining a polynomial in
t with coeflicients in some higher-degree algebraic

o A2
$ V/B

S K

137750

>

15157719

FIGURE 3. Two further similar examples: smoothing
out the marked crossings on the right gives the knot
with the diagram on the left.



extension of JF; likewise one builds the corresponding
series for @,

g(z,xy, 2) := Z Qi (2)zia?

i,i'>0

and contracts once. One can then show the general
case by some finite number of checks (or by some
even messier direct calculation).

Instead we show that the knots D, ; are nonalter-
nating (something we would need to show also in
the previous example, but which is then a special
case of the argument given in the following lines).

We consider the maximal z-degree of the Kauff-
man polynomial and check that for p + ¢ = 6,7,
with p,q > 0, it is ¢(D,,) — 4, and that the max-
imal coefficient of z is of the form +a* F a*** for
some k € Z, which exhibits nonalternation [Kauff-
man 1990, p. 426-427]. For p+q > 7, with p,q > 0,
the same property follows by induction on p + g by
applying the Kauffman relation near a crossing p
in the box with g twists with ¢ > p and using the
general inequality

maxdeg, F(K) <¢(K) -1

for any nontrivial link K, applying it on the diagram
on which the crossings in the twist box have become
nugatory.

There is a further similarity of diagrams between
1444370 and 15533158, this time involving local changes
at 3 crossings; but in this case I was not able to
extend it to an infinite series.

5. QUESTIONS

We conclude with a summary of the problems sug-
gested by empirical evidence.

Question 5.1. Is there a composite knot satisfying
(%)?

Question 5.2. Is there a nonrational alternating knot
which satisfies (x) (it would need to be prime)?

Question 5.3. Is there a nonrational knot with the F
polynomial of a rational knot?

Among rational knots (and also nonrational ones
[Lickorish 1988]), duplications of F' are well-known
and have been tabulated by Kanenobu.

Stoimenow: Rational Knots and a Theorem of Kanenobu 477

REFERENCES

[Alexander 1928] J. W. Alexander, “Topological invari-
ants of knots and links”, Trans. Amer. Math. Soc. 30:2
(1928), 275-306.

[Birman 1985] J. S. Birman, “On the Jones polynomial of
closed 3-braids”, Invent. Math. 81:2 (1985), 287-294.

[Brandt et al. 1986] R. D. Brandt, W. B. R. Lickorish,
and K. C. Millett, “A polynomial invariant for un-
oriented knots and links”, Invent. Math. 84:3 (1986),
563-573.

[Cromwell 1989] P. R. Cromwell, “Homogeneous links”,
J. London Math. Soc. (2) 39:3 (1989), 5635-552.

[Dowker and Thistlethwaite 1983] C. H. Dowker and
M. B. Thistlethwaite, “Classification of knot projec-
tions”, Topology Appl. 16:1 (1983), 19-31.

[Ernst and Sumners 1987] C. Ernst and D. W. Sumners,
“The growth of the number of prime knots”, Math.
Proc. Cambridge Philos. Soc. 102:2 (1987), 303-315.

[Franks and Williams 1987] J. Franks and R. F.
Williams, “Braids and the Jones polynomial”, Trans.
Amer. Math. Soc. 303:1 (1987), 97-108.

[Freyd et al. 1985] P. Freyd, D. Yetter, J. Hoste,
W. B. R. Lickorish, K. Millett, and A. Ocneanu, “A
new polynomial invariant of knots and links”, Bull.
Amer. Math. Soc. (N.S.) 12:2 (1985), 239-246.

[Ho 1985] C. F. Ho, “A polynomial invariant for knots
and links: preliminary report”, Abstracts Amer. Math.
Soc. 6 (1985), 300.

[Hoste and Thistlethwaite 1999] J. Hoste and M.
Thistlethwaite, “KnotScape”, knot polynomial calcu-
lation software, 1999. See http://www.math.utk.edu/
~morwen /knotscape.html.

[Hoste et al. 1998] J. Hoste, M. Thistlethwaite, and J.
Weeks, “The first 1,701,936 knots”, Math. Intell. 20:4
(1998), 33-48.

[Jones 1985] V. F. R. Jones, “A polynomial invariant for
knots via von Neumann algebras”, Bull. Amer. Math.
Soc. (N.S.) 12:1 (1985), 103-111.

[Kanenobu 1986] T. Kanenobu, “Examples on polyno-
mial invariants of knots and links”, Math. Ann. 275:4
(1986), 555-572.

[Kanenobu 1989] T. Kanenobu, “Relations between the
Jones and @) polynomials for 2-bridge and 3-braid
links”, Math. Ann. 285:1 (1989), 115-124.

[Kauffman 1987] L. H. Kauffman, “State models and the
Jones polynomial”, Topology 26:3 (1987), 395-407.



478 Experimental Mathematics, Vol. 9 (2000), No. 3

[Kauffman 1990]
regular isotopy”,
(1990), 417-471.

L. H. Kauffman, “An invariant of
Trans. Amer. Math. Soc. 318:2

[Kidwell 1987] M. E. Kidwell, “On the degree of the
Brandt—Lickorish—Millett—Ho polynomial of a link”,
Proc. Amer. Math. Soc. 100:4 (1987), 755-762.

[Lickorish 1988] W. B. R. Lickorish, “The panorama of
polynomials for knots, links and skeins”, pp. 399414
in Braids (Santa Cruz, CA, 1986), edited by J. S.
Birman and A. L. Libgober, Contemp. Math. 78,
Amer. Math. Soc., Providence, RI, 1988.

[Lickorish and Millett 1987] W. B. R. Lickorish and K. C.
Millett, “A polynomial invariant of oriented links”,
Topology 26:1 (1987), 107-141.

[Menasco 1984] W. Menasco, “Closed incompressible
surfaces in alternating knot and link complements”,
Topology 23:1 (1984), 37-44.

[Morton 1986] H. R. Morton, “Seifert circles and knot
polynomials”, Math. Proc. Cambridge Philos. Soc.
99:1 (1986), 107-1009.

[Murasugi 1963] K. Murasugi, “On a certain subgroup
of the group of an alternating link”, Amer. J. Math.
85 (1963), 544-550.

[Murasugi 1974] K. Murasugi, On closed 3-braids,
Memoirs Amer. Math. Soc. 151, Amer. Math. Soc.,
Providence, 1974.

[Murasugi 1991] K. Murasugi, “On the braid index of
alternating links”, Trans. Amer. Math. Soc. 326:1
(1991), 237-260.

[Rolfsen 1976] D. Rolfsen, Knots and links, Mathemat-
ics Lecture Series 7, Publish or Perish, Berkeley, 1976.
Reprinted with corrections, Publish or Perish, Hous-
ton, 1990.

[Schubert 1956] H. Schubert, “Knoten mit zwei Briicken”,
Math. Z. 65 (1956), 133-170.

[Thistlethwaite 1987] M. B. Thistlethwaite, “A spanning
tree expansion of the Jones polynomial”, Topology
26:3 (1987), 297-309.

[Vogel 1990] P. Vogel, “Representation of links by braids:
a new algorithm”, Comment. Math. Helv. 65:1 (1990),
104-113.

Alexander Stoimenow, Max-Planck-Institut fiir Mathematik, Vivatsgasse 7, D-53111 Bonn, Germany
(alex@mpim-bonn.mpg.de, http: //guests.mpim-bonn.mpg.de/alex)

Received January 14, 2000; accepted in revised form July 8, 2000



