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We present the results of our computations concerning the space
groups of dimension 5 and 6. We find 222 018 and 28 927 922
isomorphism types of these groups, respectively. Some overall
statistics on the number of @Q-classes and Z-classes in dimen-
sions up to six are provided. The computations were done with
the package CARAT, which can parametrize, construct and iden-
tify all crystallographic groups up to dimension 6.

1. INTRODUCTION AND DEFINITIONS

The classification of the isomorphism types of space
groups in a given dimension is an old problem. Fe-
dorov and Schonflies gave in 1895 a list of the 219
affine space-group types in three dimensions. This
list was later extended to dimension 4 [Brown et al.
1978]. Continuing this work in this way (that is,
giving a list of representatives) does not seem to be
appropriate for higher dimensions, because the num-
bers grow rapidly. We suggest replacing this kind of
classification by a set of algorithms which enables
one to perform at least the following tasks:

e give a space group R a “name”, that is, compute
invariants/properties that determine the affine
type of R uniquely;

e construct specific space groups on demand,

e count specific space groups, i.e., all space groups
in a given Z-class, as defined below.

As an example of this philosophy we calculated the
number of space groups in dimensions 5 and 6, and
the results are presented in this paper. A second
application is given in [Cid and Schulz 2001], where
the torsion-free space groups in dimension 5 and 6
are classified, which correspond to the compact Eu-

clidean flat manifolds of that dimension.
The computer programs and data which can be
used to obtain these results are part of CARAT, a
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software package available on the Internet at http://
www-math.math.rwth-aachen.de/~LBFM/carat/.
The package, the algorithms, a lot of the underlying
theory and the terminology used in this paper is
given in [Opgenorth et al. 1998].

Recall that the structure of a space group R is
given by the exact sequence

0—Z"—R—P—1,

where P < GL,(Z) = Aut(Z") is finite and acts
naturally on Z". We call P the point group of R.

We say two space groups R and R’ belong to the
same

(i) affine class if they are isomorphic,

(ii) Z-class if the corresponding point groups P and
P’ are conjugate in GL,,(Z),

(iii) Q-class if the corresponding point groups P and
P’ are conjugate in GL,(Q).

For a finite subgroup G < GL,(Z) we define the
space of invariant forms of G by

F(GQ)={FeZl]|g"Fg=F for all g € G}.

sym
Crystal families correspond to the transitive closure
of ~, defined as follows: For two finite subgroups
G,H < GL,(Z), we say G ~ H if there exist sub-
groups G’ < G and H' < H with F(G") = F(G),
F(H') = F(H) and G’ and H' belong to the same
Q-class. If one requires that the commuting alge-
bras of G and G’ as well of H and H' in Q"*" are
the same, one gets strict families instead.

For strict families one can easily define a sym-
bol by taking advantage of the following property
of strict families: the natural representation of any
group G in the strict family can be decomposed into
rational irreducible representations A; with multi-
plicities n;, that is,

n1A1 + e + TLaAa.

The n; and the strict families of the A;(G) are char-
acterising invariants of the strict family of G. As
names for the strict families of irreducible groups
of dimension d we choose the symbol d — «, where
« numbers the irreducible families of dimension d.
Putting some order on these symbols, one assigns to
G the symbol

(dl-Oél,.. .,dl—al; dz-ag, .. .,dz-az; ey da—aa,. .. ,da-Oéa).

ni n2 Ngq

For crystal families one similarly defines a symbol,
which differs from the above only in cases where a
“” shows up: One first notes that a family is the
union of strict families. For the symbol of an irre-
ducible family one chooses a symbol d-« like above.
In the symbol of a reducible family one uses these
for the constituents of multiplicity one, and the sym-
bols for the strict families for the other constituents.
For instance for dimension 1 one has just one strict
family (= family), which gets the symbol 1. For
dimension 2, one has two irreducible families 2-1
(quadratic) and 2-2 (hexagonal): the first splits into
two strict families 2-1 and 2-1’, and the second into
strict families 2-2 and 2-2’. For dimension three one
again has just one strict irreducible family, which
therefore is also a family, and gets the symbol 3.

2. CONSTRUCTING THE -CLASSES

In the given approach, constructing a set of repre-
sentatives for the Q-classes of finite subgroups of
GL,(Z) up to dimension 6 is the first difficulty. We
solve it by taking a list of Q-maximal subgroups of
GL,(Z) from [Plesken and Pohst 1977a; 1977b], and
compute their subgroups via an algorithm described
in [Cox et al. > 2000] and implemented in the stan-
dard group theory package MAGMA [Bosma and
Cannon 1993].

In principle, we could test each pair of these sub-
groups for GL,(Q)-conjugacy to obtain a set of rep-
resentatives. For a short description of the GL,, (Q)-
conjugacy test used, see [Opgenorth et al. 1998]. To
reduce the number of pairs which have to be consid-
ered for a GL,(Q)-conjugacy test, these invariants
proved to be helpful:

(a) the family symbol [Plesken and Hanrath 1984];

(b) the order;

(c) the elementary divisors of the Gram matrix of
the Z-bilinear form ® : ZG x ZG — 7 defined by

(Z a9, Z bhh) — Z agb, Tr(gh),
g h g;h

which is in line of the GL,(Q)-conjugacy test
mentioned above.

This greatly reduces the number of pairs to be pro-
cessed, and it was feasible to tackle them directly.
We found 955 QQ-classes in dimension 5 and 7104 in
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dimension 6. The tables below show how they are
distributed into crystal families. These computa-
tions took 4 weeks on an HP-9000/J282 and two HP-
9000/730. An explicit list of representatives of the
Q-classes up to dimension 6 is now part of CARAT.

3. FROM QQ-CLASSES TO AFFINE CLASSES

The splitting of Q-classes into affine classes (that is,
isomorphism types of space groups) is done in two
steps.

The first is to split the Q-classes into Z-classes,
for which an algorithm has been described in [Opge-
north et al. 1998, Section 3.2.2].

The second step, splitting into affine classes each
of the resulting 6079 Z-classes in dimension 5 and
85311 in dimension 6, is classical [Zassenhaus 1948;
Brown et al. 1978]. As a matter of fact, for given
finite G < GL,,(Z), the isomorphism classes of space
groups with point group GL,,(Z)-conjugate to G are
in bijection with the orbits of the normalizer N :=
Ner,(z)(G) on

H*(G,Z") =~ HY(G,Q"/Z"™).

The only slight problem here is that the number of
orbits might be too large to compute them all, but in
this case the lemma of Burnside is applied (bear in

mind that although N might be infinite, H*(G,Z")
is not, and hence the acting group is finite).

4. RESULTS FOR DIMENSIONS 4, 5, AND 6

Table 2 gives the results of our computations con-
cerning the crystallographic groups in dimension 5

409

known results for the dimensions 2, 3 and 4 [Brown
et al. 1978]. Starting from the Q-classes as input,
the computations take respectively about 10 min, 6
hours, and 3 days in dimensions 4, 5, and 6 (timing
again on a HP-9000/J282 workstation).

To interpret the family symbol, see [Plesken and
Hanrath 1984] or call the appropriate CARAT rou-
tine. The first number following a comma or a semi-
colon or the number at the beginning denotes the
dimension of an irreducible Q-constituent. Equiv-
alent constituents are separated by a comma, and
inequivalent ones by a semicolon.

APPENDIX: CARAT

CARAT is an acronym for Crystallographic Algo-
Rithms And Tables. It handles enumeration and
construction problems, as well as recognition and
comparison problems for crystallographic groups up
to dimension 6. Besides the above mentioned ta-
bles of Q-classes, it contains a table of the Bravais
groups (full automorphism groups of lattices) and
their inclusions up to dimension 6. From this basic
information the above tasks can be performed by a
set of algorithms whose implementation are part of
CARAT.

The most basic algorithms are:

(a) the Zassenhaus algorithm [1948] to split a Z-class
into affine classes;

(b) the sublattice algorithm, which for G < GL,,(Z)
and L < Z" a G-lattice computes the maximal G-

and 6. For comparison, we give in Table 1 the sublattices of L [Plesken and Pohst 1977a; 1977b];
fs. Q Z aff. fs. Q Z aff. f.s. Q 7Z aff. f.s. Q Z aff. | fs. Q Z aff.
L1 2 2 2(/|11,1 2 2 2(| 1,11 2 2 2 | 221;1;1 15 113 1670 | 3;1 16 85 471
1 2 4 7|11 3 6 13| 11,11 3 6 13 |21;21 11 41 302 | 41 37 73 205
21 2 2 3|11 313 59| L1112 6 12 | 22022 2 2 2|41 2 2 3
22 4 5 5 2-1;1 7 16 65 1,1;151 4 25 207 | 2-2,2-2 2 5 5 | 42 22 45 53
22,112 21 45|| 1;1;1;1 5 54 1001 | 22;1,1 12 21 49 | 420 2 2 2

3 515 35 21217 1 1 1 | 2-2;1;1 22 84 471 | 43 7 16 20

2-1,2-1 1 3 6 | 2-2;2-1 22 40 108 | 4-3 4 5 5

> 10 13 17 (| >. 32 73 219 2-1;1,1 7 16 88 | 2-2;2-2 26 63 87 | >, 227 710 4783

TABLE 1. Families of two-dimensional (left), three-dimensional, and four-dimensional crystallographic groups. In
each subtable, the first column gives the family symbols; the others give the number of Q-classes, Z-classes and

affine classes.
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f. symbol Q Z aff. f. symbol Q Z aff. f. symbol Q / aff.
1,1,1,1,1 2 2 2 | 2-1;1:1;1 33 912 84997 | 3;2-1 31 200 2147
1,1,1,1;1 3 6 13 | 21,2151 59 728 20487 | 3;2-2 59 281 1333
1,1,1:1,1 3 9 21 | 2-2/,2-2';1 5 7 12 | 4171 7 16 70
1,1,1:1;1 4 25 226 | 2-2,2-2;1 7 24 56 | 4-1;1 141 534 6976
1,1;1,1;1 4 38 396 | 2-2:1,1,1 12 21 49 | 421 7 7 23
1,1;1:1;1 8 169 8083 | 2-2:1,1:1 35 146 1271 | 4-2;1 104 250 979
1:1;1;1;1 8 279 49659 | 2-2:1:1:1 45 432 10878 | 4-3';1 12 21 45
2-1/,2-1;1 3 6 14 | 2-22-1;1 119 592 7220 | 4-3:1 23 70 162
2-1,2-151 4 31 201 2-2;2-2;1 116 416 1940 5-1 13 39 112
2-1;1,1,1 7 16 90 | 3;1,1 16 85 565 5-2 10 40 89
2-1;1,151 24 232 6113 | 3;1;1 31 445 8789 > 955 6079 222018
f. symbol Q A aff. f. symbol Q 7 aff. f. symbol Q A aff.
1,1,1,1,1,1 2 2 9 | 2222522 15 27 43 | 41,11 141 562 12500
1,1,1,1,1;1 3 6 13 | 2-2,2-2,2-2 2 6 6 | 4-1;1;1 365 4760 446887
1,1,1,1;1,1 3 9 21 | 2-2,2.2:1,1 727 67 | 41;2-1 399 2868 92178
1,1,1,1;1;1 4 25 228 | 2-22.2:1;1 15 114 673 | 4-1;2-2 576 1950 12345
1,1,1;1,1,1 2 8 17 | 22,2221 15 51 146 | 4-2:1,1 7 7 25
1,1,1;1,1;1 5 60 866 | 2-2,2-2:22 25 122 180 | 4-2:1;1 15 30 249
1,1,1;1;1;1 8 177 10537 | 221,1,1,1 12 21 49 | 42721 17 23 68
1,1;1,1;1,1 3 41 396 | 2-2:1,1,1;1 35 146 1330 | 4222 28 45 52
1,1;1,1;1;1 8 374 34875 | 2-2:1,1;1,1 22 126 1214 | 4-2;1,1 104 250 1223
1,1;1;1;1;1 15 1439 934891 | 2-2:1,1;1;1 84 1177 66716 | 4-2:1;1 315 1604 21599
1:1;1;1;1;1 15 2273 8599496 | 2-2:1;1;1;1 101 3121 665233 | 4-2:2-1 343 1123 5359
2.172-12-1" 1 1 1| 222121 8§ 11 21 | 42;22 481 1747 2388
2121511 3 9 923 | 2-2;2-1,2-1 14 69 319 | 43511 12 21 49
2121311 5 35 276 | 2-2;2-1;1,1 119 592 13308 | 4-31;1 22 84 471
212121 5 14 00 | 2-2;2-1;1;1 433 7580 592666 | 4-3;2-1 22 40 108
2-1,2-1,2-1 1 3 8 | 2-2;2-1;2-1 277 2131 47956 | 4-3;2-2 34 67 67
2-1,2-1;1,1 4 40 354 | 2-2;2-2;1,1 116 428 2658 | 4-3:1,1 23 62 157
2-1,2-1;151 10 311 8989 | 2-2;2-2;1;1 358 3004 55848 4-3;151 46 296 1696
2-1,2-1;2-1 10 131 2306 2-2;2-2;2-1 358 1524 8212 4-3;2-1 49 155 490
2-1:1,1,1,1 716 00 | 2-2;2-2;2-2 264 1379 2534 | 4-3:2-2 69 236 268
21;1,1,1;1 24 232 7012 | 3,3 5 36 109 | 5-1;1 43 228 1561
21;1,1;1,1 15 207 7647 | 3:1,1,1 16 85 571 | 5-2;1 32 222 956
2-1;1,1;1;1 64 3244 738504 | 31,151 51 904 29343 | 6-1 93 519 2538
2-1;1;1;151 78 9938 11255381 3;1;151 65 3004 382566 6-2 125 334 441
21:2-1;1,1 59 869 71105 | 3;2-1;1 179 3744 218443 | 62 4 5 5
2.1;2-1;1;1 218 12717 4258091 | 3:2-2:1 203 2973 54405 | 6-3 15 34 45
2-1;2-1;2-1 113 2355 234229 | 3;3 60 806 10538 6-3' 4 5 5
9:9/9.9/2.9" 9 2 2 | 41711 716 95 | 64 P 9 23
92:9/2.911 5 9 15 | 4-11;1 15 113 1809 | 64’ 2 6 11
2.92/9.951:1 7 20 71| 4121 17 67 540

2-2/,2-2":2-1 7 8 16 4-1';2-2 22 40 108 > 7104 85311 28927922
TABLE 2. Families of five-dimensional (top) and six-dimensional (bottom) crystallographic groups. The first

column gives the family symbols; the others give the number of Q-classes, Z-classes and affine classes.
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(c) the lattice automorphism and isometry algorithm
to compute isometries/automorphism groups of
quadratic forms [Plesken and Souvignier 1997].

Building up from these algorithms, CARAT offers
an implementation of the normalizer (and Z-equiv-
alence) algorithm [Opgenorth 2001], based mainly
on (c), to construct isometries between so called G-
perfect forms. Combining this with the sublattice
algorithm (b) one gets an algorithm to split a Q-
class into Z-classes. Note that the normalizer algo-
rithm also provides input necessary for the extension
algorithm (a).

In the data bank of Q-classes, each class has a
name, from which certain invariants can be read off.
CARAT automatically extends this name to a name
of the isomorphism class of a space group, via a
name of the Z-class by using the above algorithms
as numbering devices. Two space groups are iso-
morphic if and only if CARAT produces the same
name for both of them.

To use CARAT one need not learn a new lan-
guage; instead uses the Unix command line to call
the various programs, each of which comes with an
online help. It should be portable to any Unix ma-
chine.
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