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The well-known dual pair of Napoleon equilateral triangles in-
trinsic to each triangle is extended to infinite sequences of them,
shown to be special cases of infinite regular hexagon sequences
on each triangle. A set of hexagon-to-hexagon transformations,
the hex operators, is defined for this purpose, a set forming an
abelian monoid under function composition. The sequences re-
sult from arbitrary strings of hex operators applied to a particular
truncation of a given triangle to a hexagon. The deep structure of
the sequence constructions reveals surprising infinite sequences
of nonconcentric, symmetric equilateral triangle pairs parallel to
one of the sequences of hexagons and provides the most visually
striking contribution. Extensive experimentation with a plane
geometry educational program inspired all theorems, proofs of
which utilize eigenvector analysis of polygons in the complex
plane.

INTRODUCTION

This paper uses the “eigenpolygon” decomposition
of polygons in the complex plane to extend the well-
known pair of Napoleon equilateral triangles intrin-
sic to each triangle to infinite sequences of such tri-
angles. These sequences, in turn, are special cases
of infinite sequences of regular hexagons on each tri-
angle.

Another theme is the benefit of experimental use
of computer graphics in plane geometry. The ge-
ometric constructions in this study are tedious—
often infeasible—for the unaided person, yet the
intuitions gained from dynamic interaction with the
complicated constructions are powerful. Each theo-
rem in this paper is the direct result of conjecture
inspired by experimentation with normally unwieldy
geometric constructions, made possible by the edu-
cational software [Sketchpad n.d.; Bennett 1992].

Napoleon’s Theorem describes a transformation
mapping an arbitrary triangle to an equilateral tri-
angle [Chang and Sederberg 1997, pp. 57-61, 90-98;
Coxeter and Greitzer 1967, 60-65; Wetzel 1992]. It
is actually a dual pair of transformations leading
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to the so-called outward and inward Napoleon tri-
angles, called positive and negative here for consis-
tency. Fukuta generalizes the Napoleon transforma-
tion to a 2-step transformation that converts an ar-
bitrary triangle to a regular hexagon [Fukuta 1996b;
Lossers 1997] (see also [Garfunkel and Stahl 1965])
and then to a 3-step transformation yielding a differ-
ent regular hexagon [Fukuta 1996a; Chapman 1997]
strongly concentric with the first, meaning they are
parallel as well (Figure 1). Each transformation is
parameterized by o. At o = 0, the first Fukuta hex-
agon is the positive Napoleon triangle plus its Star-
of-David complementary equilateral. Similarly, all
hexagon sequences in the paper can be interpreted
as equilateral triangle sequences. At ¢ = 0, most
include one or both Napoleon triangles.

We show that iteration of the middle step in the
3-step Fukuta transformation creates an infinite se-
quence of strongly concentric regular hexagons, each
being 2 times (the size of) its predecessor (in edge
length). The set of two transformations is enlarged
to an infinite set by generalizing to what are called
the hexagon construction operators, or her opera-
tors, and applying them iteratively or in any order
to generate infinite sequences of concentric regular
hexagons. One such sequence has each hexagon /3
times its predecessor and rotated 7/6 from it (see
Figure 2). Another has each hexagon 2 or 3 times
a preceding one and strongly concentric with it (see
Figure 3). The structure of the transformation set
itself is shown to be an abelian monoid in the case
of interest.

Moreover, the deep structure of the hexagon se-
quences reveals surprising infinite sequences of non-
concentric, symmetric equilateral triangle pairs par-
allel to one of the sequences of hexagons. Each
emerges from a chaos of irregular and regular hexa-
gons (Figure 4) in the most visually interesting con-
tribution of the paper (Figure 5).

1. HEX OPERATORS

An arbitrary hexagon of six points H, Hy H; H,Hs Hg
is abbreviated H*, with H; an arbitrary vertex. All
arithmetic on subscripts ¢ is modulo 6. Pairs H; H; 3
are the main diagonals. 0* is the degenerate hexa-
gon at the origin. A positive (negative) triangle has
vertices in counterclockwise (clockwise) order.

Define the positive n-interlaced hex operator I,
on hexagon H*: For n > 0 and all i, erect pos-
itive equilateral triangle R;H;,1H;_,, a generating
triangle. Then I,H* is hexagon R*. The negative
n-interlaced hex operator i, is defined similarly but
with negative generating triangles r;H; .1 H;_,,.

Mnemonic names are assigned for n < 2. P :=
I, and p := iy are the progressive hex operators,
since each builds equilaterals on successive pairs of
vertices. The nonprogressive ones are I := I; and
i := iy, the interlaced hex operators, and B := I,
and b := i, which are bi-interlaced.

Let F be the set of hex operators and FT the set
of nonempty compositions on F. These are writ-
ten as concatenations—for example, IPP* means
I(P(P*)). Letting the empty string ¢ represent the
identity, mapping a hexagon to itself, F* = FTU{p}
is the set of strings of hex operators. The principal
purpose here is to generalize the Fukuta (Napoleon)
results to infinite sequences of hexagons (equilater-
als) on a triangle by exploring the actions of arbi-
trary strings in F*.

Define the hex operator iterate by example: P,
for n > 0, is defined by P’ = ¢, P! = P, P"*! =
PP".

Define the successive centroids operator C on a
hexagon H*: Find the centroid C; of each successive
triplet H; H;H; ., of vertices of H*. Then CH* is
the hexagon C*.

2. FUKUTA’S PROBLEMS

In an arbitrary triangle ABC, let (Py, P,), (Ps, Py),
and (Ps, Ps) be the pairs of points on the sides BC,
CA, and AB respectively, such that AP;P,, PsBP;,
and P3P, C are congruent with one another and sim-
ilar to ABC' —i.e., P* is the hexagon obtained by
truncating a copy of APsP, from each vertex of
ABC. (See Figure 1.) Hence P* is called a trun-
cation of ABC, parameterized by o = |BP,|/|BC|,
with0<o<1.If6:=1—-o0, then P, =0C + 7B,
and similarly for all P;. Let A’, B’, C’ be the points
of intersection of P,P, and P,Ps, P;Ps and P, Py,
and P, Ps and PP, respectively.

Figure 1 shows the results of applying P and IP to
the truncation P* of triangle ABC: R* = PP* and
IPP* (dashed) are irregular hexagons. Remarkably,
both G} = CPP* and G} = CIPP* (solid bold)
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FIGURE 1. First two elements of sequences G (bold)
and g (light), hence S and s.

are regular hexagons concentric with ABC —that
is, centered on its centroid. The two hexagons are
strongly concentric (parallel and concentric), and
one of them is 2 times the other, and similarly for
go = CpP* and g; = CipP* (solid light). They are
superimposed in Figure 1 to show that the two sets
of regular hexagons are different, in general, and not
strongly concentric with one another. Let i) denote
the angle between positive and negative cases.

Many other interesting aspects of Fukuta’s prob-
lems are indicated: The main diagonals of IPP* are
concurrent, equal in length, equally spaced radially,
parallel to the sides of CIPP* and 3 times their
size. So are the main diagonals of PP* (relative to
CPP*), which are a subset of the main diagonals
of IPP*. Similar results hold for the main diago-
nals of ipP* and pP*. Furthermore, they intersect
the main diagonals of IPP* and PP* at the points
A', B', and C'. The regular hexagons CPP* and
CpP* are strongly concentric if ABC is isosceles,
as are CIPP* and CipP*. In this case, ¥ = 0; gen-
erally 1 varies with ABC but is independent of o.
CPP* and CpP* become the same hexagon in the
degenerate case of an isosceles triangle with height
0, its base bisected by the third vertex. These other
aspects also generalize but, for brevity, will not be
further pursued.
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3. TERMINOLOGY

For orientation, only the first and second vertex of a
hexagon are labeled, generally by 1 and 2. A single
shaded triangle ABC is used in all figures (to within
scaling) for comparison, so the redundant labels A,
B, C, and P; are omitted in figures after Figure 1,
as are the main diagonals and triangle A’B’C".

All sequences here begin with a construction, the
initialization, on truncation P* of ABC, which is
normally progressive, though nonprogressive initial-
izations are also treated. A typical procedure is: (1)
Truncate a triangle to a hexagon. (2) Apply a hex
operator to the result of the preceding step. (3) Re-
peat step 2 a number j > 0 of times with various hex
operators. (4) Apply C to the hexagon from step 3
to yield sequence member Hy. Step 2 for j = 0 is
the initialization.

A hex operator applied to a hexagon yields a gen-
erating hexagon. Use of successive centroids opera-
tor C on a generating hexagon is a reduction of it.
In Figure 1, PP* is the irregular generating hexagon
on truncation P*, and CPP* is the reduction of it
to a regular one. In all figures generating hexagons
are dashed and reductions of them solid.

It is useful to embed constructions in the complex
plane, with origin at the centroid of ABC, so A+B+
C =0. Thus P,+ P, 2+ P, ;4 = 0 by expanding each
in terms of . The centroid of an arbitrary triangle
PQR is 1(P + Q + R). Define operators w = €'™/?
and 7 = €'"/%, with conjugates w and 7. A positive
regular hexagon H* centered on the origin, vertices
increasing counterclockwise, satisfies H;,; = wH;,
and a negative reqular one H; 1 = WH;. A positive
equilateral triangle — for example, R, P, P; in Figure
1—is described by R; = 0P, 4+ wP;; a negative one
by r1 = wP, + WP;.

4. SAMENESS

Define an equivalence relation 22, called sameness,
by the condition that G* =2 H* if hexagon G* is con-
gruent, without rotation or translation, to hexagon
H*. Thus two concentric hexagons are the same if
they are identical when vertex order and labels are
ignored.

Consider a hexagon H* (from a given class of hex-
agons) and hex operator strings F;, F, € F*. If
CF,H* = CF,H*, then write F; = F, (for that
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class). If CF,H* =~ sCF,H*, where s is an arbi-
trary scalar constant, write F; & sF,. Similarly, if
CF,H* = ¢"CF,H*, write F; = ¢?’F,. For regular
hexagons write F; 2 e¥med("/3)F, —for example,
6 = +x/2 implies F; = 7F,, while § = £nn/3, for
n integer, implies F; = F».

As a first application of sameness, consider the
n-interlaced hex operators. It is not difficult to see
that the positive (negative) 3- and 4-interlaced hex
operators are just i and p (I and P), respectively,
using = equivalence. Thus it suffices to restrict at-
tention to n < 2. Since B and b are the same, only
B is studied. Hence sameness collapses the set of
hex operators to F = {P,I, B, p,i}.

5. EIGENPOLYGON ANALYSIS

The (backward) shift operator S is defined for hex-
agon G* by H* = SG* with H; = G;,, and its
inverse S by H* = SG* with H;, = G,_;. As shown
in [Chang and Sederberg 1997], S is a linear opera-
tor with eigenvalues w', the sixth roots of unity, and
eigenvectors e’ = [1 w' w? W W* W*]. Similarly,
S is a linear operator with the same eigenvectors
but with eigenvalues @‘. Any hexagon can be ex-
pressed as a complex linear sum of these eigenvec-
tors—hence “eigenpolygons” or “basis polygons”
[Glassner 1999]. For a polygon with centroid at the
origin, as assumed here, the sixth eigenvector is not
used.

All hex operators can be written as expressions
of the identity and shift operators: I, = @S 4 wS”
and i, = wS 4+ ©S". So can the successive centroids
operator: C = 1(S + ¢ + S). Thus all operators of
interest are linear, with the eigenvectors above and
easily computed eigenvalues: w® '+@" ! and w1+
@™t for the hex operators, respectively, and §(w’+
1+ @) for C. Let Ax be the vector of eigenvalues
for operator X. Then, with simplification,

Ap = [wH]1 2w w(w+1) w? 0 1],

A =0 —w —w(w+l) —2w? —w?(w+1) 1],
M=[21 -1 -2 -1 1],

N=[-1 -2 -11 2 1],

A = [-W?(w+1) w? w(w+l) —w —(w+1) 1],

Ae=[20 1021l

Let Axy be the vector obtained from pairwise
multiplication of Ax and Ay: for example,

Acp = [2(w+1) 0 —jw(w+1) 0 0 1].

The eigenpolygon decomposition of truncation P*
has particular importance here. Let E be the 6 x 6
matrix where each row i is eigenvector e® and each
column i is called E(. Then P* = aFE for complex
coefficients a. Inverting E yields a in terms of given
parameters:

a=1i-ow(w+1)V pw’v 0 —pwV &(w+1)v 0],
where V = —A+wB+oC,v=—-A+wB+wC, and
p =1—30. Then the effect of operator X on trun-
cation P* is computed from XP* = 3" (\x);a,e(? =
Y ax,el) = ax - E®) where ax is the vector ob-
tained from pairwise multiplication of Ax and a.
All elements of acp are 0 except the first, so CPP*
must be a regular hexagon, the first eigenpolygon
eV, with size and orientation given by multiplier
(7/3)V —that is, G, = (6/3)VeV). This is just the
solution to Fukuta’s first problem. Similar analysis
for CIPP* shows the same result but with addi-
tional multiplier (A1), = 2—i.e., G; = 2(5/3)Ve®),
the solution to Fukuta’s second problem. The oper-
ators annihilate all but one eigenpolygon, which is a
regular hexagon. Similarly for the negative Fukuta
cases: g; = (5/3)ve®, gf = 2(5/3)ve®. At o =0,
the hexagons G = Ve g5 = 1vel® the Napoleon
hezagons, include the Napoleon equilaterals.

6. ALGEBRAIC STRUCTURE

The algebraic structure of F is established first for
hex operators applied to arbitrary hexagons, then
refined for application to hexagons that are regular
under reduction by C. The following useful result
can be established easily:

Lemma 1 (Duality). Let H* be an arbitrary hexagon
and h* the same hexagon with vertices ordered op-
positely.

() Ph* = pH".
(i) ph* =~ PH".
(i) Ih* = iH*.
(iv) ih* =2 IH*.
(v) Bh* = BH*.



So P and p are duals on vertex order, as are I and
i; and B is self-dual. Thus it suffices to state and
prove a theorem for the positive case only.

It is easily checked that all hex operators are com-
mutative and associative, hence:

Lemma 2 (Semigroup). The hex operators F under
function composition form an abelian semigroup.

There is now enough machinery to derive the prin-
cipal tool for special hexagons:

Lemma 3 (Identity). If CH* s positive reqular, then
so are CPH*, CIH*, CBH* =2 CPH*, CpH*, and
CiH*, with P = /37 (and P? = 3),1~22 B~ P,
P20, andi=1.

Proof. Saying that CH* is positive regular amounts
to the requirement that all eigenpolygons in its de-
composition be annihilated but the first one. Then
clearly ICH* simply multiplies the given hexagon
by 2—that is, the only operative eigenvalue in Ag
is 2—for ICH* = 2CH*. But I and C commute,
so ICH* = CIH*. The other results follow from
operative eigenvalues w + 1 = 37, @ +1 = /37,
0, and —1, respectively. O

The negative case follows by duality: P =0, I =21,
B~ p, p=+37 (and p> = 3), and i = 2 for CH*
negative regular.

The next result is an immediate consequence of
the fact that i is the unique identity for the Lemma
2 semigroup in a special case:

Lemma 4 (Monoid). The hex operators F, restricted
to hexagons that reduce under C to positive reqular,
form an abelian monoid under function composition.

So, in the monoid, we have (F F5)F; = F,(F,F;),
FlFQ = FgFl, and iF1 = Fli = Fl, for F17F2,
F3; € F*. Because B = P, B is redundant in the
monoid.

The first Fukuta transformation gives CPP* pos-
itive regular, so iteration of Lemma 3 yields:

Lemma 5 (Progressive Initialization). For F1PP* q hez-
agon construction on the truncation P* of ABC,
with ¥, € F*, reduction by C yields a positive regu-
lar hexagon; that is, CF,PP* is positive regular.

Figure 2 shows the result of applying P or p itera-
tively to truncation P*.
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N

FIGURE 2. First two elements in sequences H (bold)
and h (light).

Eigenpolygon analysis shows that irregular hexa-
gons result from initialization by I, B, or i instead of
P or p. The following result complements Lemma 5
by stating when a construction on a nonprogressive
initialization may too yield a regular hexagon.

Lemma 6 (Nonprogressive initialization). For F{I1P* on
truncation P*, with ¥, € F*, reduction by CP (in-
stead of C) yields a positive reqular hexagon; that
is, CPF.IP* is positive reqular. The same is true
if I is replaced by B.

Proof. By commutativity, CPF,IP* = CF,IPP*,
which is positive regular by Lemma 5. Similarly for

B. U

Hexagon sequences generated by strings F; contain-
ing no operators P or p can be shown irregular by
eigenpolygon analysis, so Lemma 6 states that no
new regular hexagons result from nonprogressive ini-
tializations. It also implies that each regular hexa-
gon sequence can be generated in a different way: for
example, in place of construction I*P*PP* reduced
by C, use construction I*B®P* reduced by CP to
the same regular hexagon. B = P in this case only
after an application of at least one P; hence B is
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not redundant in F, in general, although it is in the
monoid.

7. INFINITE REGULAR HEXAGON SEQUENCES

The most general regular hexagon sequences due to
the hex operators are described next, where H* a 2-
3 multiple of G* means H* &£ 2™3"G*, with m,n >
0, and where disjoint means disjoint as sets not as
geometry.

Theorem 1. For an arbitrary triangle ABC with trun-
cation P*, there exist these infinite, concentric but
disjoint, positive regular hexagon sequences centered
on ABC, generated by strings in F* for j > 0:

§={5;:5;=CPP~, 53 a 2-3 multiple of S;=Gg}
S.={S; :S; =CP?P} S} a 2-3 multiple of S} =H}

Proof. By Lemma 3, iterates of I and P? multiply
a positive regular hexagon by powers of 2 or 3, re-
spectively, into strongly concentric positive regular
hexagons of larger size. 2-3 multiples can be or-
dered uniquely by numeric size. Suppose 23" is the
next factor in succession. Then S» = CI"™(P?)"PP*
generates the corresponding element of S and is
positive regular. S, is generated the same way as
S but with one extra application of P, which ro-
tates the sequence 7/6 from S. That is, Sro=
CI™(P?)"P?P* = /37S;. Each of § and S, is
strongly concentric. O

Figure 3 shows the first seven elements of S and five
of S,. The S elements are obtained by applying
I°) I', P2, I?, I'P? (or its commuted equivalents),
I3, and P*, respectively, to PP*. Let s and s, be
the duals to S and S,. S, and s, do not contain
Napoleon hexagons at ¢ = 0.

Theorem 2. The concentric sequence A = {S} U
{s}U{S,}U{s, } U{0*} is a disjoint union, in gen-
eral, containing every unique reqular hexagon (by =
equivalence) generable by strings in F*.

Proof. Let A be the ordered union of the two se-
quences of Theorem 1, the two from its dual, and
the one element A} = 0* absent from all of them.
These are disjoint sets, except in the degenerate case
of ABC' an isosceles triangle of height 0, mentioned
earlier, when S and s (S, and s,) are the same; but

FIGURE 3. First seven elements in sequence S (bold)
and first five in S, (light).

A is never strongly concentric. Because of commu-
tativity and Lemma 6 (and its dual), it suffices to
consider only constructions of the form

CIanicde*

on the initializations H* € {PP* pP*}, for nonneg-
ative integers a, b, ¢, d. S and S, exhaust all cases
for which ¢ =d =0 on H* = PP*. For this initial-
ization, i¢ with ¢ > 0, is an identity creating no new
hexagons, and p¢ with d > 0 always zeroes to 0*.
The negative case follows by duality, so A exhausts
F*. O

Simply iterating the elements of F' generates useful
infinite regular subsequences of A. The following
result is easily established by Lemma 3 and simple
induction.

Theorem 3. For an arbitrary triangle ABC with trun-
cation P*, there exist these infinite concentric pos-
itive reqular hexagon sequences centered on ABC,
generated respectively by iterates of I and P for
Jj=>0:

G={G;:G;=CPP*, &’

j+1

H={H;:H;=CPP;H;

j+1

2 times G}
V3 times H7 rotated %}



Let g and h be the dual sequences generated by
iterates of i and p. The first two elements of G and
g are shown in Figure 1, and those of H and h in
Figure 2. Fukuta’s two positive-case hexagons are
the first two in sequence G, hence S; the negative-
case hexagons are the first two in g, hence s. G
is strongly concentric and a subset of S. The even
elements of H are also a subset of S, but the odd
ones belong to S..

8. DEEP STRUCTURE

Although identities i contribute nothing to hex
operator constructions reduced by C, they do in-
duce an interesting regular structure in general. Let
U;, = i"PP* be the generating hexagon for i”. Fig-
ure 4 shows that the identity cluster {U}, : m > 0}
of distinct generating hexagons all map to one regu-
lar hexagon CPP*. Nevertheless, experiments with
Sketchpad strongly suggest the sceptre structure de-
fined in the lemma below, where a sceptre (from the
acronym of “symmetric, congruent, equilateral, par-
allel triangles”) is always formed by the intersections
of two triples of concurrent equiangular lines, with
the lines of one triple pairwise parallel those of the
other (Figure 4).

Lemma 7 (Identity Cluster). The identity cluster on
truncation P* of ABC' has these properties:

(i) For each i, vertices labeled i (for m even), and
i+ 3 (for m odd), form a line L; parallel to a
side of hexagons g. Call L; a vertex locus.

(i) At 0 = %, every hexagon U}, is the same as the
Napoleon hexagon, strongly concentric with its
reduction by C, and 2 is its size: U}, = 3CU},.

(iii) L;, Liyo, L;vq are concurrent. Let Ly, Lo be the
triples for i = 1,2, and let K; and K, be the
corresponding points of concurrency.

(iv) The elements of Ly intersect C, A, and B, re-
spectively.

(v) The intersection points of Ly and Ly form a scep-
tre, that is, a pair of congruent parallel equilat-
eral triangles A, = K \T5T, and Ay = KyTgTy,
with T; = L; N L, 1. The sceptre is parallel to the
hezagons g.

(vi) K1 K, is collinear with the centroid of ABC. The
distance |K,K,| is the length of the main diago-
nals of the identity cluster.
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T3

FIGURE 4. Identity cluster generating hexagons near
o = 1. Sceptre motif is at upper left.

(vii) At 0 = %, K; and Ky are symmetric about the
origin. At o = %, K, or K, is coincident with
the origin. At o =1, K; and K, are coincident.

(viii) T 11 13Ty is a parallelogram with angle . We
have T¢T) € Ay, T3Ty € Ay, and |T1T3| = | K, Ks|.
The triangles T1 1315 and ToyT,Ts are equilateral,
congruent and parallel the hexagons G, with sides
3 times those of G§.

Proof. (i) U, = (—1)msVeM +(—2)" 1 rve® +rVe®,
with 7 = p/6 and s = /2. Experiment suggests
that Uy — S3U} _, are vertex loci. Indeed, Uj —
S3U% | =2(—=2)""'pve® for m > 1, and induction
on m proves that all these lines must pass through
Uj. So L; has direction ve(z), parallel sides of hex-

agons g.

(i)o =3givesr =0,s =%, and U}, = :(—=1)"Ve®,
a regular hexagon the same as the Napoleon hexa-
gon, which reduces to CU}, = 2(—1)"Ve® = Gj.
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(iii) Without loss of generality, the equations for L;
can be computed from U; and U; as equations

U —U)z— (U —UNz+U;U; —U;UE = 0.
From (i), Uy — U; = —pve?| so the equations are
—veWz + ve?z + vV (se® + re?) — vV (se™ +
re¥) = 0. The systems of equations for L;, L, are

v —v a(=oV +oV)] [2]
w v a®V +oVw) zZ| =0,
7 w a(@Vw+oV) ]| [1]
v ww b(—oVw—oV)]| [2]
v —v bV —oV) z| =0,
w v b=V —ovVw) | | 1]

where a = s +r and b = s — r. Both determinants
vanish, so L; and L, are each concurrent. Let u, be
the unit vector for v. Solving gives K; = —au?V,

K2 = buz‘_/ So K1K2 = KQ — K1 == 5'u12)V
(iv) Uy = sVe) —2rve®@+rVe®. Also V+v = —34
and s —r = 3, so Uy, — A = ov is parallel to L,
through point Uy,, and A must lie on L. Similarly
for Uy, — B = —wov and Uy, — C = w?ov.

(v) A main diagonal of each generating hexagon con-
nects a point on a vertex locus in L; to another in
L;. Thus K; and K, are not the same in general.
Since the L; are parallel to the sides of hexagons g,
so must be the equilateral triangles of the sceptre.

(vi) The equations in (iii) for K; and K, show them
to be collinear with the origin, and |K; K,| = |V,
the length of the main diagonals of the identity clus-
ter.

(vii) These special cases are readily derived from the
formulas in (iii) for K; and K,.

(viii) |K1K>| is 3 times the side of G} since it has
the same length as a main diagonal of the identity
cluster. Compute 7; and T3, using equations in (iii)
and the difference T, — 153 = aV. [l

A sceptre is rotationally symmetric and has six equal
sides and angles, so is, in a sense, a regular hexa-
gon— albeit a disconnected one. The next theo-
rem establishes infinite sequences of them too. Let
TA = AN, = K\ TyT,K,T;T, denote a sceptre,
where the labeling of Lemma 7 is used for right-
handed sceptres in general (see left-handed sceptre
in Figure 5, right). Call the line segment K; K, the
main diagonal of a sceptre. In general, a sceptre

T? is not centered at the origin. Let oT® be its
offset, and let A, T? be its equilateral triangle Ay,
for k=1 or 2.

We now define the sceptre constructor W(H*) on
hexagons H* that are hex operator constructions
on PP*. (H") is the corresponding dual sceptre
constructor on pP*. ¥(H*) is constructed, without
loss of generality, as follows: (1) Form directed line
segments L; from, say, (i — S*)H* or (i* — ¢)H*.
(2) If the L; meet the conditions defining a sceptre,
return the sceptre, else W(H*) is undefined.

The next lemma establishes that ¥(H*) is defined
for all hexagons in its domain. Let EZ be the sceptre
of Lemma 7, but centered at the origin, and let r =
rulV, for which |r| = 0 at ¢ = 1. Then Tj* =
¥(PP*) = E5 —r,s0 TS — oI = Ef and oTE =
—r. Let 0® be the sceptre of size 0 at the origin.
Extend sameness and 2-3 multiples to sceptres, and
extend an arbitrary hex operator X to sceptres by
XU (H*) = (XH).

Lemma 8 (Sceptre operators). Let T> be a sceptre from
hex operators on PP* of triangle ABC.

(iy ITA = 274, BTA = PTA, pT» = 04 — 2072,
iTA T2, and P?TA = —3(T2 —oT?)+0T* are
sceptres.

(i) PT is a sceptre with main diagonal \/3 that of
T? and orthogonal to it; APTA is V3 times
ALTA, for k= 1,2; and oPT? = oT?.

(i) A T? reflected about one of its sides is coin-
cident with A PT?, for k = 1,2; that is, two
vertices of AT? are collinear with two sides of
AkPTA

Proof. The identity cluster in the general case is,
without loss of generality, W* = i"I*P*i°p?B°PP*.
We have Wy — Wi = (—1)ctdH1gbrebrdi2e nye(2)
so vertex loci L; exist with the same orientations
as in Lemma 7. The systems of equations for Ly,
L, are derived and solved as there. The solution is
K, K, = (—1)¢te200%wb ¢ (w+1)*+5u2V, with mid-
point at (—1)*+t4+129%dy This is sufficient to estab-
lish (i) and (ii). Part (iii) is proved by showing that
loci L; and L;; of A;T? are concurrent with locus
L; of AyPT?, for i = 3,4, which is done through
calculations as in the concurrency proofs above. [J

So B is redundant here and even one application of
p annihilates a sceptre. P swaps the handedness of a



sceptre (Figure 5, right). Infinite sceptre sequences
follow immediately from the lemma for any regular
hexagon sequence. They can be thought of as the
regular structures lying “between” the hexagons—
constructionally, not spatially —created by one or
more identity operators i applied there.

Theorem 4. Each infinite reqular hexagon sequence Q
on truncation P* of triangle ABC has a correspond-
ing infinite sceptre sequence ¥(Q) = {¥(Q;) : Q; €
Q}. In particular, for j > 0:

(i) ¥(GQ) has sceptres parallel to g and to one an-
other, strongly concentric if o = %; diagonals
collinear with one another and the centroid of
ABC, and ¥(G;) is 2 times ¥(G,_1).

(i) W(H) has sceptres parallel to g; the diagonal of
W(H;) is perpendicular to that of W(H;_1) and
concentric with it, and AyW(H;) is /3 times
Ay (Hj_q).

Smith: Infinite Regular Hexagon Sequences on a Triangle 405

(i) W(.S) has sceptres parallel to g and to one an-
other, strongly concentric if o = %; diagonals
collinear with one another and the centroid of
ABC, and ¥(S;) is a 2-3 multiple of ¥(Gy), to
within translation.

(iv) ¥(S,) has sceptres parallel to g and to one an-
other, strongly concentric if o = %; diagonals
collinear with one another and the centroid of
ABC, and ¥(S;,) is a 2-3 multiple of ¥(H,),
to within translation.

V) T(A) =T (S)Ud(s)UT(S,)Ud(s,)U{0”} is
the disjoint set of all possible sceptres from hex
operators on P* of ABC, to within translation.

Figure 5 shows the first two elements of ¥(G) (hence
¥(S)) and ¥(H), two of these remarkable infinite
structures, together with the corresponding hexagon
sequences. The computer is invaluable for graphic
study of these complex structures and how they
change dynamically with o. Small changes in o away

FIGURE 5. First two elements of the sequences ¥(G) (left) and W (H) (right) of sceptres (pairs of equilateral
triangles) parallel to g.
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from the value shown lead to complicated diagrams.
The structures in the theorem hold, of course, but
the generating hexagons become nonconvex and self-
intersecting in irregular ways. Interaction with a di-
agram that varies with o allows one to experience
the sudden appearance, near o = %, of the configu-
rations of Figures 4 and 5 from an apparent chaos of
lines and then their abrupt disappearance back into
the same complexity.
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