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The well-known dual pair of Napoleon equilateral triangles in-

trinsic to each triangle is extended to infinite sequences of them,

shown to be special cases of infinite regular hexagon sequences

on each triangle. A set of hexagon-to-hexagon transformations,

the hex operators, is defined for this purpose, a set forming an

abelian monoid under function composition. The sequences re-

sult from arbitrary strings of hex operators applied to a particular

truncation of a given triangle to a hexagon. The deep structure of

the sequence constructions reveals surprising infinite sequences

of nonconcentric, symmetric equilateral triangle pairs parallel to

one of the sequences of hexagons and provides the most visually

striking contribution. Extensive experimentation with a plane

geometry educational program inspired all theorems, proofs of

which utilize eigenvector analysis of polygons in the complex

plane.

INTRODUCTIONThis paper uses the \eigenpolygon" decompositionof polygons in the complex plane to extend the well-known pair of Napoleon equilateral triangles intrin-sic to each triangle to in�nite sequences of such tri-angles. These sequences, in turn, are special casesof in�nite sequences of regular hexagons on each tri-angle.Another theme is the bene�t of experimental useof computer graphics in plane geometry. The ge-ometric constructions in this study are tedious|often infeasible| for the unaided person, yet theintuitions gained from dynamic interaction with thecomplicated constructions are powerful. Each theo-rem in this paper is the direct result of conjectureinspired by experimentation with normally unwieldygeometric constructions, made possible by the edu-cational software [Sketchpad n.d.; Bennett 1992].Napoleon's Theorem describes a transformationmapping an arbitrary triangle to an equilateral tri-angle [Chang and Sederberg 1997, pp. 57{61, 90{98;Coxeter and Greitzer 1967, 60{65; Wetzel 1992]. Itis actually a dual pair of transformations leading
c
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to the so-called outward and inward Napoleon tri-angles, called positive and negative here for consis-tency. Fukuta generalizes the Napoleon transforma-tion to a 2-step transformation that converts an ar-bitrary triangle to a regular hexagon [Fukuta 1996b;Lossers 1997] (see also [Garfunkel and Stahl 1965])and then to a 3-step transformation yielding a di�er-ent regular hexagon [Fukuta 1996a; Chapman 1997]strongly concentric with the �rst, meaning they areparallel as well (Figure 1). Each transformation isparameterized by �. At � = 0, the �rst Fukuta hex-agon is the positive Napoleon triangle plus its Star-of-David complementary equilateral. Similarly, allhexagon sequences in the paper can be interpretedas equilateral triangle sequences. At � = 0, mostinclude one or both Napoleon triangles.We show that iteration of the middle step in the3-step Fukuta transformation creates an in�nite se-quence of strongly concentric regular hexagons, eachbeing 2 times (the size of) its predecessor (in edgelength). The set of two transformations is enlargedto an in�nite set by generalizing to what are calledthe hexagon construction operators, or hex opera-tors, and applying them iteratively or in any orderto generate in�nite sequences of concentric regularhexagons. One such sequence has each hexagon p3times its predecessor and rotated �=6 from it (seeFigure 2). Another has each hexagon 2 or 3 timesa preceding one and strongly concentric with it (seeFigure 3). The structure of the transformation setitself is shown to be an abelian monoid in the caseof interest.Moreover, the deep structure of the hexagon se-quences reveals surprising in�nite sequences of non-concentric, symmetric equilateral triangle pairs par-allel to one of the sequences of hexagons. Eachemerges from a chaos of irregular and regular hexa-gons (Figure 4) in the most visually interesting con-tribution of the paper (Figure 5).
1. HEX OPERATORSAn arbitrary hexagon of six points H1H2H3H4H5H6is abbreviated H�, with Hi an arbitrary vertex. Allarithmetic on subscripts i is modulo 6. PairsHiHi+3are the main diagonals. 0� is the degenerate hexa-gon at the origin. A positive (negative) triangle hasvertices in counterclockwise (clockwise) order.

De�ne the positive n-interlaced hex operator Inon hexagon H�: For n � 0 and all i, erect pos-itive equilateral triangle RiHi+1Hi�n, a generatingtriangle. Then InH� is hexagon R�. The negativen-interlaced hex operator in is de�ned similarly butwith negative generating triangles riHi+1Hi�n.Mnemonic names are assigned for n � 2. P :=I0 and p := i0 are the progressive hex operators,since each builds equilaterals on successive pairs ofvertices. The nonprogressive ones are I := I1 andi := i1, the interlaced hex operators, and B := I2and b := i2, which are bi-interlaced.Let F be the set of hex operators and F+ the setof nonempty compositions on F. These are writ-ten as concatenations| for example, IPP � meansI(P(P �)). Letting the empty string ' represent theidentity, mapping a hexagon to itself, F� = F+[f'gis the set of strings of hex operators. The principalpurpose here is to generalize the Fukuta (Napoleon)results to in�nite sequences of hexagons (equilater-als) on a triangle by exploring the actions of arbi-trary strings in F�.De�ne the hex operator iterate by example: Pn,for n � 0, is de�ned by P0 = ', P1 = P, Pn+1 =PPn.De�ne the successive centroids operator C on ahexagon H�: Find the centroid Ci of each successivetriplet Hi�1HiHi+1 of vertices of H�. Then CH� isthe hexagon C�.
2. FUKUTA’S PROBLEMSIn an arbitrary triangle ABC, let (P1; P2), (P3; P4),and (P5; P6) be the pairs of points on the sides BC,CA, and AB respectively, such that AP5P4, P6BP1,and P3P2C are congruent with one another and sim-ilar to ABC|i.e., P � is the hexagon obtained bytruncating a copy of AP5P4 from each vertex ofABC. (See Figure 1.) Hence P � is called a trun-cation of ABC, parameterized by � = jBP1j=jBCj,with 0 � � � 1. If �� := 1� �, then P1 = �C + ��B,and similarly for all Pi. Let A0, B0, C 0 be the pointsof intersection of P1P4 and P2P5, P3P6 and P1P4,and P2P5 and P3P6, respectively.Figure 1 shows the results of applyingP and IP tothe truncation P � of triangle ABC: R� = PP � andIPP � (dashed) are irregular hexagons. Remarkably,both G�0 = CPP � and G�1 = CIPP � (solid bold)
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FIGURE 1. First two elements of sequences G (bold)and g (light), hence S and s.are regular hexagons concentric with ABC|thatis, centered on its centroid. The two hexagons arestrongly concentric (parallel and concentric), andone of them is 2 times the other, and similarly forg�0 = CpP � and g�1 = CipP � (solid light). They aresuperimposed in Figure 1 to show that the two setsof regular hexagons are di�erent, in general, and notstrongly concentric with one another. Let  denotethe angle between positive and negative cases.Many other interesting aspects of Fukuta's prob-lems are indicated: The main diagonals of IPP � areconcurrent, equal in length, equally spaced radially,parallel to the sides of CIPP � and 3 times theirsize. So are the main diagonals of PP � (relative toCPP �), which are a subset of the main diagonalsof IPP �. Similar results hold for the main diago-nals of ipP � and pP �. Furthermore, they intersectthe main diagonals of IPP � and PP � at the pointsA0, B0, and C 0. The regular hexagons CPP � andCpP � are strongly concentric if ABC is isosceles,as are CIPP � and CipP �. In this case,  = 0; gen-erally  varies with ABC but is independent of �.CPP � and CpP � become the same hexagon in thedegenerate case of an isosceles triangle with height0, its base bisected by the third vertex. These otheraspects also generalize but, for brevity, will not befurther pursued.

3. TERMINOLOGYFor orientation, only the �rst and second vertex of ahexagon are labeled, generally by 1 and 2. A singleshaded triangle ABC is used in all �gures (to withinscaling) for comparison, so the redundant labels A,B, C, and Pi are omitted in �gures after Figure 1,as are the main diagonals and triangle A0B0C 0.All sequences here begin with a construction, theinitialization, on truncation P � of ABC, which isnormally progressive, though nonprogressive initial-izations are also treated. A typical procedure is: (1)Truncate a triangle to a hexagon. (2) Apply a hexoperator to the result of the preceding step. (3) Re-peat step 2 a number j � 0 of times with various hexoperators. (4) Apply C to the hexagon from step 3to yield sequence member H�j . Step 2 for j = 0 isthe initialization.A hex operator applied to a hexagon yields a gen-erating hexagon. Use of successive centroids opera-tor C on a generating hexagon is a reduction of it.In Figure 1, PP � is the irregular generating hexagonon truncation P �, and CPP � is the reduction of itto a regular one. In all �gures generating hexagonsare dashed and reductions of them solid.It is useful to embed constructions in the complexplane, with origin at the centroid of ABC, so A+B+C = 0. Thus Pi+Pi+2+Pi+4 = 0 by expanding eachin terms of �. The centroid of an arbitrary trianglePQR is 13(P + Q + R). De�ne operators ! = ei�=3and � = ei�=6, with conjugates �! and �� . A positiveregular hexagon H� centered on the origin, verticesincreasing counterclockwise, satis�es Hi+1 = !Hi,and a negative regular one Hi+1 = �!Hi. A positiveequilateral triangle| for example, R1P2P1 in Figure1| is described by R1 = �!P2+!P1; a negative oneby r1 = !P2 + �!P1.
4. SAMENESSDe�ne an equivalence relation �=, called sameness,by the condition that G� �= H� if hexagon G� is con-gruent, without rotation or translation, to hexagonH�. Thus two concentric hexagons are the same ifthey are identical when vertex order and labels areignored.Consider a hexagon H� (from a given class of hex-agons) and hex operator strings F1;F2 2 F�. IfCF1H� �= CF2H�, then write F1 �= F2 (for that
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class). If CF1H� �= sCF2H�, where s is an arbi-trary scalar constant, write F1 �= sF2. Similarly, ifCF1H� �= ei�CF2H�, write F1 �= ei�F2. For regularhexagons write F1 �= ei�mod(�=3)F2|for example,� = ��=2 implies F1 �= �F2, while � = �n�=3, forn integer, implies F1 �= F2.As a �rst application of sameness, consider then-interlaced hex operators. It is not di�cult to seethat the positive (negative) 3- and 4-interlaced hexoperators are just i and p (I and P), respectively,using �= equivalence. Thus it su�ces to restrict at-tention to n � 2. Since B and b are the same, onlyB is studied. Hence sameness collapses the set ofhex operators to F = fP; I;B;p; ig.
5. EIGENPOLYGON ANALYSISThe (backward) shift operator S is de�ned for hex-agon G� by H� = SG� with Hi = Gi+1, and itsinverse �S by H� = �SG� with Hi = Gi�1. As shownin [Chang and Sederberg 1997], S is a linear opera-tor with eigenvalues !i, the sixth roots of unity, andeigenvectors e(i) = [1 !i !2i !3i !4i !5i]. Similarly,�S is a linear operator with the same eigenvectorsbut with eigenvalues �!i. Any hexagon can be ex-pressed as a complex linear sum of these eigenvec-tors|hence \eigenpolygons" or \basis polygons"[Glassner 1999]. For a polygon with centroid at theorigin, as assumed here, the sixth eigenvector is notused.All hex operators can be written as expressionsof the identity and shift operators: In = �!S + !�Snand in = !S+ �!�Sn. So can the successive centroidsoperator: C = 13(S+ ' + �S). Thus all operators ofinterest are linear, with the eigenvectors above andeasily computed eigenvalues: !i�1+�!ni�1 and !i+1+�!ni+1 for the hex operators, respectively, and 13(!i+1 + �!i) for C. Let �X be the vector of eigenvaluesfor operator X. Then, with simpli�cation,�P = [!+1 2! !(!+1) !2 0 1];�p = [0 �! �!(!+1) �2!2 �!2(!+1) 1];�I = [2 1 �1 �2 �1 1];�i = [�1 �2 �1 1 2 1];�B = [�!2(!+1) !2 !(!+1) �! �(!+1) 1];�C = [ 23 0 � 13 0 23 1]:

Let �XY be the vector obtained from pairwisemultiplication of �X and �Y: for example,�CP = [ 23(! + 1) 0 �13!(! + 1) 0 0 1]:The eigenpolygon decomposition of truncation P �has particular importance here. Let E be the 6� 6matrix where each row i is eigenvector e(i) and eachcolumn i is called E(i). Then P � = aE for complexcoe�cients a. Inverting E yields a in terms of givenparameters:a = 16 [���!2(!+1)V �!2v 0 ��!V ��(!+1)v 0];where V = �A+!B+�!C, v = �A+�!B+!C, and� = 1� 3�. Then the e�ect of operator X on trun-cation P � is computed from XP � =P(�X)iaie(i) =P aXie(i) = aX � E(i), where aX is the vector ob-tained from pairwise multiplication of �X and a.All elements of aCP are 0 except the �rst, so CPP �must be a regular hexagon, the �rst eigenpolygone(1), with size and orientation given by multiplier(��=3)V |that is, G�0 = (��=3)V e(1). This is just thesolution to Fukuta's �rst problem. Similar analysisfor CIPP � shows the same result but with addi-tional multiplier (�I)1 = 2| i.e., G�1 = 2(��=3)V e(1),the solution to Fukuta's second problem. The oper-ators annihilate all but one eigenpolygon, which is aregular hexagon. Similarly for the negative Fukutacases: g�0 = (��=3)ve(5), g�1 = 2(��=3)ve(5). At � = 0,the hexagonsG�0 = 13V e(1) g�0 = 13ve(5), the Napoleonhexagons, include the Napoleon equilaterals.
6. ALGEBRAIC STRUCTUREThe algebraic structure of F is established �rst forhex operators applied to arbitrary hexagons, thenre�ned for application to hexagons that are regularunder reduction by C. The following useful resultcan be established easily:
Lemma 1 (Duality). Let H� be an arbitrary hexagonand h� the same hexagon with vertices ordered op-positely .
(i) Ph� �= pH�.
(ii) ph� �= PH�.
(iii) Ih� �= iH�.
(iv) ih� �= IH�.
(v) Bh� �= BH�.
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So P and p are duals on vertex order, as are I andi; and B is self-dual. Thus it su�ces to state andprove a theorem for the positive case only.It is easily checked that all hex operators are com-mutative and associative, hence:
Lemma 2 (Semigroup). The hex operators F underfunction composition form an abelian semigroup.There is now enough machinery to derive the prin-cipal tool for special hexagons:
Lemma 3 (Identity). If CH� is positive regular , thenso are CPH�, CIH�, CBH� �= CPH�, CpH�, andCiH�, with P �= p3� (and P2 �= 3), I �= 2, B �= P,p �= 0, and i �= 1.
Proof. Saying that CH� is positive regular amountsto the requirement that all eigenpolygons in its de-composition be annihilated but the �rst one. Thenclearly ICH� simply multiplies the given hexagonby 2|that is, the only operative eigenvalue in �Iis 2| for ICH� = 2CH�. But I and C commute,so ICH� = CIH�. The other results follow fromoperative eigenvalues ! + 1 = p3 � , �! + 1 = p3 �� ,0, and �1, respectively. �The negative case follows by duality: P �= 0, I �= 1,B �= p, p �= p3� (and p2 �= 3), and i �= 2 for CH�negative regular.The next result is an immediate consequence ofthe fact that i is the unique identity for the Lemma2 semigroup in a special case:
Lemma 4 (Monoid). The hex operators F, restrictedto hexagons that reduce under C to positive regular ,form an abelian monoid under function composition.So, in the monoid, we have (F1F2)F3 �= F1(F2F3),F1F2 �= F2F1, and iF1 �= F1i �= F1, for F1;F2;F3 2 F�. Because B �= P, B is redundant in themonoid.The �rst Fukuta transformation gives CPP � pos-itive regular, so iteration of Lemma 3 yields:
Lemma 5 (Progressive Initialization). For F1PP � a hex-agon construction on the truncation P � of ABC,with F1 2 F�, reduction by C yields a positive regu-lar hexagon; that is , CF1PP � is positive regular .Figure 2 shows the result of applying P or p itera-tively to truncation P �.
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FIGURE 2. First two elements in sequencesH (bold)and h (light).
Eigenpolygon analysis shows that irregular hexa-gons result from initialization by I, B, or i instead ofP or p. The following result complements Lemma 5by stating when a construction on a nonprogressiveinitialization may too yield a regular hexagon.

Lemma 6 (Nonprogressive initialization). For F1IP � ontruncation P �, with F1 2 F�, reduction by CP (in-stead of C) yields a positive regular hexagon; thatis , CPF1IP � is positive regular . The same is trueif I is replaced by B.
Proof. By commutativity, CPF1IP � = CF1IPP �,which is positive regular by Lemma 5. Similarly forB. �Hexagon sequences generated by strings F1 contain-ing no operators P or p can be shown irregular byeigenpolygon analysis, so Lemma 6 states that nonew regular hexagons result from nonprogressive ini-tializations. It also implies that each regular hexa-gon sequence can be generated in a di�erent way: forexample, in place of construction IaPbPP � reducedby C, use construction IaBbP � reduced by CP tothe same regular hexagon. B �= P in this case onlyafter an application of at least one P; hence B is
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not redundant in F, in general, although it is in themonoid.
7. INFINITE REGULAR HEXAGON SEQUENCESThe most general regular hexagon sequences due tothe hex operators are described next, where H� a 2-3 multiple of G� means H� �= 2m3nG�, with m;n �0, and where disjoint means disjoint as sets not asgeometry.
Theorem 1. For an arbitrary triangle ABC with trun-cation P �, there exist these in�nite, concentric butdisjoint , positive regular hexagon sequences centeredon ABC , generated by strings in F� for j � 0:S=fS�j :S�0=CPP �; S�j a 2-3 multiple of S�0=G�0gS�=fS��j :S��0=CP2P �; S��j a 2-3 multiple of S��0=H�1g
Proof. By Lemma 3, iterates of I and P2 multiplya positive regular hexagon by powers of 2 or 3, re-spectively, into strongly concentric positive regularhexagons of larger size. 2-3 multiples can be or-dered uniquely by numeric size. Suppose 2m3n is thenext factor in succession. Then S�j = CIm(P2)nPP �generates the corresponding element of S and ispositive regular. S� is generated the same way asS but with one extra application of P, which ro-tates the sequence �=6 from S. That is, S��j =CIm(P2)nP2P � �= p3�S�j . Each of S and S� isstrongly concentric. �Figure 3 shows the �rst seven elements of S and �veof S� . The S elements are obtained by applyingI0, I1, P2, I2, I1P2 (or its commuted equivalents),I3, and P4, respectively, to PP �. Let s and s� bethe duals to S and S� . S� and s� do not containNapoleon hexagons at � = 0.
Theorem 2. The concentric sequence A = fSg [fsg[fS�g[fs�g[f0�g is a disjoint union, in gen-eral , containing every unique regular hexagon (by �=equivalence) generable by strings in F�.
Proof. Let A be the ordered union of the two se-quences of Theorem 1, the two from its dual, andthe one element A�0 = 0� absent from all of them.These are disjoint sets, except in the degenerate caseof ABC an isosceles triangle of height 0, mentionedearlier, when S and s (S� and s�) are the same; but

 

FIGURE 3. First seven elements in sequence S (bold)and �rst �ve in S� (light).A is never strongly concentric. Because of commu-tativity and Lemma 6 (and its dual), it su�ces toconsider only constructions of the formCIaPbicpdH�on the initializations H� 2 fPP �;pP �g, for nonneg-ative integers a, b, c, d. S and S� exhaust all casesfor which c = d = 0 on H� = PP �. For this initial-ization, ic with c > 0, is an identity creating no newhexagons, and pd with d > 0 always zeroes to 0�.The negative case follows by duality, so A exhaustsF�. �Simply iterating the elements of F generates usefulin�nite regular subsequences of A. The followingresult is easily established by Lemma 3 and simpleinduction.
Theorem 3. For an arbitrary triangle ABC with trun-cation P �, there exist these in�nite concentric pos-itive regular hexagon sequences centered on ABC,generated respectively by iterates of I and P forj � 0:G=fG�j :G�0=CPP �; G�j+1 2 times G�jgH=fH�j :H�0 =CPP �; H�j+1p3 times H�j rotated �6 g



Smith: Infinite Regular Hexagon Sequences on a Triangle 403

Let g and h be the dual sequences generated byiterates of i and p. The �rst two elements of G andg are shown in Figure 1, and those of H and h inFigure 2. Fukuta's two positive-case hexagons arethe �rst two in sequence G, hence S; the negative-case hexagons are the �rst two in g, hence s. Gis strongly concentric and a subset of S. The evenelements of H are also a subset of S, but the oddones belong to S� .
8. DEEP STRUCTUREAlthough identities im contribute nothing to hexoperator constructions reduced by C, they do in-duce an interesting regular structure in general. LetU�m = imPP � be the generating hexagon for im. Fig-ure 4 shows that the identity cluster fU�m : m � 0gof distinct generating hexagons all map to one regu-lar hexagon CPP �. Nevertheless, experiments withSketchpad strongly suggest the sceptre structure de-�ned in the lemma below, where a sceptre (from theacronym of \symmetric, congruent, equilateral, par-allel triangles") is always formed by the intersectionsof two triples of concurrent equiangular lines, withthe lines of one triple pairwise parallel those of theother (Figure 4).
Lemma 7 (Identity Cluster). The identity cluster ontruncation P � of ABC has these properties :
(i) For each i, vertices labeled i (for m even), andi + 3 (for m odd), form a line Li parallel to aside of hexagons g. Call Li a vertex locus .
(ii) At � = 13 , every hexagon U�m is the same as theNapoleon hexagon, strongly concentric with itsreduction by C, and 32 is its size: U�m �= 32CU�m.
(iii) Li, Li+2, Li+4 are concurrent . Let L1;L2 be thetriples for i = 1; 2, and let K1 and K2 be thecorresponding points of concurrency .
(iv) The elements of L2 intersect C, A, and B, re-spectively .
(v) The intersection points of L1 and L2 form a scep-tre, that is , a pair of congruent parallel equilat-eral triangles �1 = K1T3T4 and �2 = K2T6T1,with Ti = Li\Li+1. The sceptre is parallel to thehexagons g.
(vi) K1K2 is collinear with the centroid of ABC. Thedistance jK1K2j is the length of the main diago-nals of the identity cluster .
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FIGURE 4. Identity cluster generating hexagons near� = 13 . Sceptre motif is at upper left.
(vii) At � = 13 , K1 and K2 are symmetric about theorigin. At � = 23 , K1 or K2 is coincident withthe origin. At � = 1, K1 and K2 are coincident .
(viii) T6T1T3T4 is a parallelogram with angle  . Wehave T6T1 2�1, T3T4 2�2, and jT1T3j= jK1K2j.The triangles T1T3T5 and T2T4T6 are equilateral ,congruent and parallel the hexagons G, with sides3 times those of G�0.
Proof. (i) U�m=(�1)msV e(1)+(�2)m+1rve(2)+rV e(4),with r = �=6 and s = ��=2. Experiment suggeststhat U�m � S3U�m�1 are vertex loci. Indeed, U�m �S3U�m�1 = 2(�2)m�1�ve(2) for m � 1, and inductionon m proves that all these lines must pass throughU�0 . So Li has direction ve(2)i , parallel sides of hex-agons g.
(ii) � = 13 gives r = 0, s = 13 , and U�m = 13(�1)mV e(1),a regular hexagon the same as the Napoleon hexa-gon, which reduces to CU�m = 29(�1)mV e(1) �= G�0.



404 Experimental Mathematics, Vol. 9 (2000), No. 3

(iii) Without loss of generality, the equations for Lican be computed from U�2 and U�0 as equations( �U�2 � �U�0 )z � (U�2 � U�0 )�z + U�2 �U�0 � �U�2U�0 = 0:From (i), U�2 � U�0 = ��ve(2), so the equations are��ve(4)z + ve(2)�z + �vV (se(5) + re(2)) � v �V (se(1) +re(4)) = 0. The systems of equations for L1, L2 are24 �v �v a(��vV + v �V )�v! v a(�vV + v �V !)�v v! a(�vV ! + v �V )
3524 z�z1

35 = 0;24 �v v! b(��vV ! � v �V )�v �v b(�vV � v �V )�v! v b(��vV � v �V !)
3524 z�z1

35 = 0;
where a = s + r and b = s � r. Both determinantsvanish, so L1 and L2 are each concurrent. Let uv bethe unit vector for v. Solving gives K1 = �au2v �V ,K2 = bu2v �V . So K1K2 = K2 �K1 = ��u2v �V .
(iv) U�0 = sV e(1)�2rve(2)+rV e(4). Also V+v = �3Aand s � r = 13 , so U04 � A = �v is parallel to L4through point U04 , and A must lie on L4. Similarlyfor U06 �B = �!�v and U02 � C = !2�v.
(v) A main diagonal of each generating hexagon con-nects a point on a vertex locus in L1 to another inL2. Thus K1 and K2 are not the same in general.Since the Li are parallel to the sides of hexagons g,so must be the equilateral triangles of the sceptre.
(vi) The equations in (iii) for K1 and K2 show themto be collinear with the origin, and jK1K2j = ��jV j,the length of the main diagonals of the identity clus-ter.
(vii) These special cases are readily derived from theformulas in (iii) for K1 and K2.
(viii) jK1K2j is 3 times the side of G�0 since it hasthe same length as a main diagonal of the identitycluster. Compute T1 and T3, using equations in (iii)and the di�erence T1 � T3 = ��V . �A sceptre is rotationally symmetric and has six equalsides and angles, so is, in a sense, a regular hexa-gon|albeit a disconnected one. The next theo-rem establishes in�nite sequences of them too. LetT� = �1�2 = K1T3T4K2T6T1 denote a sceptre,where the labeling of Lemma 7 is used for right-handed sceptres in general (see left-handed sceptrein Figure 5, right). Call the line segment K1K2 themain diagonal of a sceptre. In general, a sceptre

T� is not centered at the origin. Let oT� be itso�set, and let �kT� be its equilateral triangle �k,for k = 1 or 2.We now de�ne the sceptre constructor 	(H�) onhexagons H� that are hex operator constructionson PP �. y(H�) is the corresponding dual sceptreconstructor on pP �. 	(H�) is constructed, withoutloss of generality, as follows: (1) Form directed linesegments Li from, say, (i � S3)H� or (i2 � ')H�.(2) If the Li meet the conditions de�ning a sceptre,return the sceptre, else 	(H�) is unde�ned.The next lemma establishes that	(H�) is de�nedfor all hexagons in its domain. Let E�0 be the sceptreof Lemma 7, but centered at the origin, and let r =ru2v �V , for which jrj = 0 at � = 13 . Then T�0 =	(PP �) = E�0 � r, so T�0 � oT�0 = E�0 and oT�0 =�r. Let 0� be the sceptre of size 0 at the origin.Extend sameness and 2-3 multiples to sceptres, andextend an arbitrary hex operator X to sceptres byX	(H�) = 	(XH�).
Lemma 8 (Sceptre operators). Let T� be a sceptre fromhex operators on PP � of triangle ABC.
(i) IT� �= �2T�, BT� �= PT�, pT� = 0� � 2oT�,iT� �= T�, and P2T� =�3(T��oT�)+oT� aresceptres .
(ii) PT� is a sceptre with main diagonal p3 that ofT� and orthogonal to it ; �kPT� is p3 times�kT�, for k = 1; 2; and oPT� = oT�.
(iii) �kT� re
ected about one of its sides is coin-cident with �kPT�, for k = 1; 2; that is , twovertices of �kT� are collinear with two sides of�kPT�.
Proof. The identity cluster in the general case is,without loss of generality,W �m = imIaPbicpdBePP �.We have W �2 � W �0 = (�1)c+d+12b+c!b+d+2e�ve(2),so vertex loci Li exist with the same orientationsas in Lemma 7. The systems of equations for L1,L2 are derived and solved as there. The solution isK1K2 = (�1)c+e2a0d!b+e(!+1)b+e��u2v �V , with mid-point at (�1)a+d+12a+dr. This is su�cient to estab-lish (i) and (ii). Part (iii) is proved by showing thatloci Li and Li+1 of �1T� are concurrent with locusLi of �1PT�, for i = 3; 4, which is done throughcalculations as in the concurrency proofs above. �So B is redundant here and even one application ofp annihilates a sceptre. P swaps the handedness of a
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sceptre (Figure 5, right). In�nite sceptre sequencesfollow immediately from the lemma for any regularhexagon sequence. They can be thought of as theregular structures lying \between" the hexagons|constructionally, not spatially|created by one ormore identity operators i applied there.
Theorem 4. Each in�nite regular hexagon sequence Qon truncation P � of triangle ABC has a correspond-ing in�nite sceptre sequence 	(Q) = f	(Qj) : Qj 2Qg. In particular , for j > 0:
(i) 	(G) has sceptres parallel to g and to one an-other , strongly concentric if � = 13 ; diagonalscollinear with one another and the centroid ofABC, and 	(Gj) is 2 times 	(Gj�1).
(ii) 	(H) has sceptres parallel to g; the diagonal of	(Hj) is perpendicular to that of 	(Hj�1) andconcentric with it , and �k	(Hj) is p3 times�k	(Hj�1).

(iii) 	(S) has sceptres parallel to g and to one an-other , strongly concentric if � = 13 ; diagonalscollinear with one another and the centroid ofABC, and 	(Sj) is a 2-3 multiple of 	(G0), towithin translation.
(iv) 	(S�) has sceptres parallel to g and to one an-other , strongly concentric if � = 13 ; diagonalscollinear with one another and the centroid ofABC, and 	(S�j) is a 2-3 multiple of 	(H1),to within translation.
(v) 	(A) = 	(S) [y(s) [	(S� ) [y(s� )[ f0�g isthe disjoint set of all possible sceptres from hexoperators on P � of ABC, to within translation.Figure 5 shows the �rst two elements of	(G) (hence	(S)) and 	(H), two of these remarkable in�nitestructures, together with the corresponding hexagonsequences. The computer is invaluable for graphicstudy of these complex structures and how theychange dynamically with �. Small changes in � away

  

FIGURE 5. First two elements of the sequences 	(G) (left) and 	(H) (right) of sceptres (pairs of equilateraltriangles) parallel to g.
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from the value shown lead to complicated diagrams.The structures in the theorem hold, of course, butthe generating hexagons become nonconvex and self-intersecting in irregular ways. Interaction with a di-agram that varies with � allows one to experiencethe sudden appearance, near � = 13 , of the con�gu-rations of Figures 4 and 5 from an apparent chaos oflines and then their abrupt disappearance back intothe same complexity.
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