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Using an algorithm developed by the author, two new presen-
tations for R. Lyons’ sporadic simple group Ly are established,
which contain fewer relations and are shorter than previously
known ones.

1. INTRODUCTION

In [Gebhardt 2000] I introduced an algorithm, called
the Double Coset Cannon Algorithm (DCCA), pro-
ducing a rather short defining set of relations for a
group G with respect to a given generating set of G.
Given some subgroup H < G, the algorithm essen-
tially uses the structure of the H-H-double cosets
in G in combination with a test for redundancy of
relators described in [Cannon 1973] and extends a
defining set of relations for H to a defining set of re-
lations for G. For its application, the permutation
representation of the generators of G on the cosets
of the subgroup H (i.e., the Cayley graph of G with
respect to H and the generating set in question) is
needed, and a base and a strong generating set for
this permutation representation have to be known.
In this paper, we apply the algorithm to two per-
mutation representations of R. Lyons’ sporadic sim-
ple group Ly [Lyons 1972] and obtain two new pre-
sentations for this group, which involve the same
generating sets as two previously known presenta-
tions published by H. Gollan [1998] and C. Sims
[1973; Havas and Sims 1999], respectively, but con-
tain fewer relations and have a smaller total length.
In the sequel, we denote by (X | R) the finitely
presented group with set of generators X and set of
relations R, where X is a finite set and R C F(X)
is a finite subset of the free group generated by X.
For a subset X of any group G, (X) denotes the

subgroup of G generated by X.
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2. SKETCH OF THE ALGORITHM

In this section we give a concise sketch of the used
algorithm. For a detailed discussion and proofs see
[Gebhardt 2000] or [Gebhardt 1999].

Assume G = (H,t) and let Xy be a generating
set of H with defining set of relations Ry. Let T’
be the Cayley graph of G with respect to H and
the generating set X = Xy U {t} of G. Denote
by I'|i the graph obtained from I' by removing all
edges labelled with ¢, let I'y, ..., I'; be the connected
components of I'|; and for ¢ = 1,...,s fix a vertex
v; of I';. Without loss of generality we can assume
vy = H and v, = Ht™!. Fixing a maximal tree T
of I', which contains maximal trees of all connected
components of I'|y, one can (using the notion of
fundamental circuits) associate to every edge € of T’
a fundamental relator p(e) and moreover to every
edge k of some connected component I'; of I'|z an
element g,, (k) € Stabg (v;).

The following results are the basis for Cannon’s
algorithm [1973].

Theorem 2.1. The set of all fundamental relators ex-
tends Ry to a defining set of relations of G with
respect to the generating set X.

Theorem 2.2. Let R O Ry be a set of relations holding
in G and assume that in I' edges are coloured such
that the fundamental relator to every coloured edge is
derivable from the relations in R. Let p be a relator
derivable from R, which induces at some vertex of
T' a path containing exactly one uncoloured edge K
(counted with multiplicities).

Then the fundamental relator p(k) is derivable
from R.

The next two theorems are established in [Gebhardt
2000].

Theorem 2.3. Let Kq,...,k, be edges of some con-
nected component I'; of T'|y and let R O Ry be a set
of relations holding in G, from which p(ky), ..., p(K,)
are derivable. Let k be an edge of T';.

Then p(k) is derivable from R if

Go: (K) € (v, (K1) - -+ s Gu; (K1)
Theorem 2.4. Let v be a verter of T, k € HN H'™
and let I'; and T'; be the connected components of

[|g containing the vertices v and v', respectively.
Let R O Ry be a set of relations holding in G, from

which the fundamental relators belonging to all edges
of 'y, T'; and T'; are derivable.

Then the fundamental relators belonging to the
edges labelled with t starting at the vertices v and

vk, respectively, are equivalent modulo R.

By defining a map wt : F(X) — Z™! in the ob-
vious way and considering the images of R and of
the possible extensions of R by a single fundamen-
tal relator under wt, some heuristics for adding new
fundamental relators to R can be established [Geb-
hardt 2000].

From these results, one obtains the following al-
gorithm:

Algorithm (DCCA). Let Xy be a generating set for
H < G with defining set of relations Ry and let
X = Xy U{t} be a generating set for G.

The following algorithm extends Ry to a defining
set R of relations for G with respect to the gen-
erating set X. (See next page for the procedure
DCCAColour.)

[initialization]

construct I, Ty, Ty, v; (1 = 1,...
above

colour the edges of T and the edges of 'y

R = RH

Si={(1) (i=2,...,s)

,8), and T as

[add one relator belonging to an edge with label t]
find edge ¢ with minimal ‘Z‘Xl (wt (RU{p(e)}))|
R:=RU{p(e)}

DCCAColour( )

[Step 1: treat edges of I'| ]
fori=2,...,s
while |S;| < |Stabg (v;)
find edge € of T'; such that g,,(¢) ¢ S;
R:=RU{p(e)}
DCCAColour()
end while
end for

[Step 2: treat remaining edges of T']
while there exists an uncoloured edge
find uncolored edge € with minimal
12X (wt (R U (o))
R:=RU{p(e)}
DCCAColour()
end while
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procedure DCCAColour()
repeat
quit := true
for all vertices v of T’
for all pe R

if the path induced by p at v contains exactly one uncoloured edge &

colour ¢
quit := false
if € has label ¢

if the requirements of Theorem 2.4 are satisfied

colour the edges with label ¢ starting at all vertices in wf"

end if
else

=7
H' " where w is the starting

vertex of

find i € {2,...,s} such that £ is an edge of T;

Si == (Si, g, (€))

colour all edges ¢’ of I'; satisfying g,.(¢') € S;

if |Sz| = ‘ StabH(vl)|

[treatment of T'; has just been completed]
check for new possibilities of applying Theorem 2.4

end if
end if
end if
end for
end for
until quit = true

The procedure DCCAColour.

3. PRESENTATIONS OBTAINED USING THE
SUBGROUP G,(5)

3A. The Presentation by C. Sims

In the course of his original proof of existence and
uniqueness of Ly, C. Sims in [Sims 1973; Havas and
Sims 1999] gave a presentation of Ly on 5 generators
a,b,c,d,z plus 34 auxiliary generators which con-
tains 86 relations. After substituting the auxiliary
generators, there remains a set R2™ of 52 nontrivial
relations involving the generators a, b, c,d, z with a
total length of 1297. From this presentation, a per-
mutation representation of G on 8 835 156 digits can
be obtained via coset enumeration with respect to
the subgroup generated by a,b, ¢ and d [Havas and
Sims 1999].

According to [Havas and Sims 1999], we can write
{a,b,c,d,z|) = (a,b,¢,d, 2| R3™) =: G ~ Ly and

m ({a,b,c,d|)) =: Hy ~ Gy(5).

3B. A New Presentation via G,(5)

Restricting the permutation representation of de-
gree 8835 156 to the smallest H;-orbit, one obtains
a permutation representation of H; of degree 19 530.
A base and a strong generating set for this permu-
tation representation can easily be computed using
MAGMA [Bosma et al. 1997]. Since H; is a point
stabilizer in the permutation representation of de-
gree 8 835 156 of G, this leads to a base and a strong
generating set for this permutation representation
of G.

Moreover, we use the permutation representation
of H, of degree 19530 in order to verify that H, :=
7 ((a,b,c|)) ~ 557 : GLy(5) and that the order of
H, is |H,| = 1500000, hence |H; : Ho| = 3906.

We start by choosing a defining set Rp, of rela-
tions from the set RE™s: Let

Ry, = {as, b2, (ab)?, [a®,b], [a, b]3} C Rzims
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and

2
Ry, := Ry, U {05, ¢ =c,

2 _ 2 -1
A = c"Pebeb™t, & =2 (¢

)7} C Rg™.
We apply the coset enumeration programme ACE
[Havas 1991] in order to compute the group order
|(a,b| Raz,)| = 480. One also checks that the sub-
group of (a,b,c|Rp,) generated by a and b is of
index 3125. This proves that

|(a,b,¢| Ry, )| = 1500000

hence, Ry, is a defining set of relations for H, con-
taining 9 relations with a total length of 80.

Then, by applying the DCCA twice (to H, =
(Hy,d) with subgroup H, and to G = (Hy, z) with
subgroup H;), we construct sets Ry, and Rg of re-
lations, such that Ry, U Ry, is a defining set of
relations for H; ~ G4(5) and Ry, U Ry, U Rg is a
defining set of relations for G ~ Ly.

For the first application of the DCCA, the per-
mutation representation of H; corresponding to the
action of H; on the cosets of H, is needed. This per-
mutation representation of degree 3906, as well as a
base and a strong generating set for it, can easily be
constructed from the permutation representation of
H, of degree 19530 using MAGMA.

There are 3 nontrivial H,- Hy-double cosets in H;.
As can be expected from the results of [Gebhardt
2000], the Ry, obtained consists of 7 relations:

ab = aba a)” =a“ov’a

= {(aba)? = aba®, (b’a)! = a’b’a,
acoa = ababab’*acbe ac,
bacbab?a)d? babab’achcb
a“cobacba = a“ba(bc
2 b b b ded 2b b b2

(

(a

b?acba)*®**! = ababab®cabeba,

&b)deted — g*h2chabcab,

cacacacadéacacacdcacacacd }

Here and elsewhere we use the convention @ := a=1,

and so on. The total length of Ry, is 160. The CPU
time for this computation on an IBM RS/6000-590
was 12 seconds.

The data necessary for the second application of
the DCCA have already been provided. There are
4 nontrivial H;-H;-double cosets in G. The DCCA
thus produces a set Rg containing 9 relations:

Re = {az — @, @ =
(edcbab®(cb)?ed)*™ =
ébc? acbdcaebeb® cacdeb® cdadédcbab,
[z, debabdcdedebabeded] = bebe,
a*®* = gdebe® abeab® cheacdba,
(¢adebabacbcacdcdacbabac)*™ =
aca’cb’edeach® cbcacdbedebabdca,
(abdcababachea ) = ca®bebacdebab,
(dcbab)***** = acabacbcacbababdcachea,
adeba®deb*ede(ae) bac® bedcacbadzbzbz }
The total length of Rg is 309. The CPU time for
this computation on an IBM RS/6000-590 was 12.3
hours, and about 450 MB of memory were used.
The complete defining set Ry, U Ry, U Rg of re-

lations for G with respect to the generators a,b, ¢, d
and z thus contains 25 relations of total length 549.

4. PRESENTATIONS OBTAINED USING THE
SUBGROUP 3Mcl : 2

4A. The Presentation by H. Gollan

H. Gollan [1998] gave a proof for the existence and
uniqueness of Lyons’ group that is independent of
Sims’ proof. As a part of this proof, he also estab-
lished a presentation for Ly. The starting point is a
transitive permutation group

G:ﬂ_(<aabacada€7fﬂt7y|>)

with 8 generators on 9606125 digits, with a sub-
group

H :=7({a,b,c,d e, f,t|)) ~ 3McL: 2
which he proves to be the full point stabilizer
Stabg(2252).

With this at hand he eventually proves that G ~ Ly.

According to [Conway et al. 1985] and [Gollan
1998], the set Ry shown at the top of the next page
is a defining set of relations for H ~ 3McL : 2
with respect to the generators a, b, ¢, d, e, f,t, where
a,b,c,d, e, f correspond to generators of 3 McL and ¢
to the outer automorphism of this group. The total
length of Ry is 556.

From his so-called double coset trick which he
used to prove the equality H = Stabg(2252), Gollan
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Ry :{a2, v:, &, d*, €, f,
@f?, (o, (b, (be)?,
(df)*, (ef)’, alcf)®,  bef)?,
abe)®,  (abce)?,

a' - abedfcbecfdcba,
c' - r(be)*r*(be)*r?*beafdcbeefcbedecdfe,
e' - (be)*r(be)*rberafdeacbeeaefdcefea,

337

t*, (ab)?, (ac)’, (ad)’, (ae)
®N?  (ed)?, (ce)’, (cf)', (de)?,
(eab)®, (bce)®, (aecd)*, (cef)?',

b* - (be)?dfeachefefde,
d" - (bc)*abacdecbfcdechac,
f* - ber®((be)?r?)?abfcbdcbeachd }

Set Ry of relations for the presentations of Section 4, where r := cdefdcbefedcfdecfd(cef)'*.

as a by-product also obtained a set RE°"2" of 78 ad-
ditional relations with a very large total length (far
more than 4000), so that Ry U RS is a defin-
ing set of relations for G ~ Ly with respect to the
generators a, b, c,d, e, f,t,y.

4B. A New Presentation via 3McL : 2

Because of Gollan’s result H = Stabg(2252), the
permutation representation of G ~ Ly of degree
9606 125 can be interpreted as the permutation rep-
resentation of G on the cosets of

H ~ 3McL: 2

in G. From [Gollan 1998]|, a base and a strong gen-
erating set for this permutation representation are
available, too.

Although the defining set Rp of relations for H
is not minimal, it is used in the sequel, since the re-
lations are very natural and since they nicely reflect
the group structure of 3McL : 2.

Thus, the data necessary for applying the DCCA
are available. There are 4 nontrivial H-H-double

cosets in G, and so we obtain a set Rg containing 9
relations with a total length of 828 (see sidebar be-
low). The total CPU time on an IBM RS/6000-590
was approximately 33.9 hours and about 400 MB of
memory were used.

The complete defining set Ry U Rg thus contains
45 relations with a total length of 1384. Note, how-
ever, that no optimization was applied to the pre-
sentation of H, yet.

5. CONCLUSIONS

The computations described in this paper have been
performed using the author’s implementation of the
DCCA which exists in the form of a C++ class li-
brary. Some information can be found in [Gebhardt
1999]; the source code is available from the author
on request.

It has already been noted in [Havas and Sims
1999] that presentations of Ly are important to rep-
resentation theory, in that proofs of the correctness
of several matrix representations of Ly rely upon

Rg = { (bebdtcefectcbtb)? = ebftefcbteacbtcbatbefdcetbfteacbtcbaecdcbefet ftebatbtdfdceeb,
bebdtcfecbeetcech)? = tatatbtbetfteacbtcbatbefdctefcbteacbtcbatbefdefbtbfteacbtcbatabtabde,
abceacdtbeetefea)V™ = btabct fteatbfteatbtabetbeaet ftabetbeaet fhtbtabetbeaet fbadtdeatce,
abceacdtecetctebeb)?™ = tbtabetbeaet ftabetbeaet fbtbfedfebtabetbeaetbefetbatceatbeaet focdtetce,

atetadtbetacebebtcbaet)Ve™ = thteacbtcbatbtbtabetbeaet fotatdfecfdcbtcbatbefdcftabetbeaet ftbetct,
tdtatadceatedtfecbae)?*™ = btabtbfteacbtcbatbtbtabctbeaet ftabetbeaet ftabetbeaet foabectcfteachtcbaeft,

(
(
(
(atetadtbetabtbtatbedfab)?“" = tbtbtabetedfebtabetbeaetbeefeteachtcbacectbtbebetacabfecta,
(
(
(

tdtatadcebcbetabeth)?™ ™ = thftetbfteachtcbat fteacbtcbat fteachtchatbtbfcdfebtabetbeaetbefet fhtedfetct,
tbtatbftdfefdtabctbacetftcbatftefcbteacbtcbatbefdcftabetbacdfet foty 1btayi1tdtatadceyai}cdabtatdcycby}

Set R of relations for the presentation in Section 4B.
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checking that the generating matrices satisfy defin-
ing relations. Having in mind matrix representa-
tions of larger degree, the total length of such a
presentation becomes important, since it essentially
determines the number of matrix-matrix multipli-
cations which have to be performed to verify the
correctness of a representation.

In this respect, especially the new presentation
obtained via G3(5) may be useful, since the number
of relations is just half of the number of relations
of Sims’ original presentation. Its total length is
smaller by a factor of more than 2.3.

For computations involving the maximal subgroup
3McL : 2 of Ly, also the second presentation con-
structed here may be of use, since it reflects the
structure of this subgroup quite nicely.

It should be noted, however, that due to the rather
efficient elimination of redundant generators, it is
fairly difficult to apply coset enumeration techniques
to presentations obtained from the DCCA in gen-
eral.
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