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Using an algorithm developed by the author, two new presen-

tations for R. Lyons’ sporadic simple group Ly are established,

which contain fewer relations and are shorter than previously

known ones.

1. INTRODUCTIONIn [Gebhardt 2000] I introduced an algorithm, calledthe Double Coset Cannon Algorithm (DCCA), pro-ducing a rather short de�ning set of relations for agroup G with respect to a given generating set of G.Given some subgroup H < G, the algorithm essen-tially uses the structure of the H-H-double cosetsin G in combination with a test for redundancy ofrelators described in [Cannon 1973] and extends ade�ning set of relations for H to a de�ning set of re-lations for G. For its application, the permutationrepresentation of the generators of G on the cosetsof the subgroup H (i.e., the Cayley graph of G withrespect to H and the generating set in question) isneeded, and a base and a strong generating set forthis permutation representation have to be known.In this paper, we apply the algorithm to two per-mutation representations of R. Lyons' sporadic sim-ple group Ly [Lyons 1972] and obtain two new pre-sentations for this group, which involve the samegenerating sets as two previously known presenta-tions published by H. Gollan [1998] and C. Sims[1973; Havas and Sims 1999], respectively, but con-tain fewer relations and have a smaller total length.In the sequel, we denote by hX jRi the �nitelypresented group with set of generators X and set ofrelations R, where X is a �nite set and R � F (X)is a �nite subset of the free group generated by X.For a subset X of any group G, hXi denotes thesubgroup of G generated by X.
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2. SKETCH OF THE ALGORITHMIn this section we give a concise sketch of the usedalgorithm. For a detailed discussion and proofs see[Gebhardt 2000] or [Gebhardt 1999].Assume G = hH; ti and let XH be a generatingset of H with de�ning set of relations RH . Let �be the Cayley graph of G with respect to H andthe generating set X = XH [ ftg of G. Denoteby �jH the graph obtained from � by removing alledges labelled with t, let �1; : : : ;�s be the connectedcomponents of �jH and for i = 1; : : : ; s �x a vertexvi of �i. Without loss of generality we can assumev1 = H and v2 = Ht�1. Fixing a maximal tree Tof �, which contains maximal trees of all connectedcomponents of �jH , one can (using the notion offundamental circuits) associate to every edge " of �a fundamental relator �(") and moreover to everyedge � of some connected component �i of �jH anelement gvi(�) 2 StabH(vi).The following results are the basis for Cannon'salgorithm [1973].
Theorem 2.1. The set of all fundamental relators ex-tends RH to a de�ning set of relations of G withrespect to the generating set X.
Theorem 2.2. Let R � RH be a set of relations holdingin G and assume that in � edges are coloured suchthat the fundamental relator to every coloured edge isderivable from the relations in R. Let � be a relatorderivable from R, which induces at some vertex of� a path containing exactly one uncoloured edge �(counted with multiplicities).Then the fundamental relator �(�) is derivablefrom R.The next two theorems are established in [Gebhardt2000].
Theorem 2.3. Let �1; : : : ; �r be edges of some con-nected component �i of �jH and let R � RH be a setof relations holding in G, from which �(�1); : : : ; �(�r)are derivable. Let � be an edge of �i.Then �(�) is derivable from R ifgvi(�) 2 hgvi(�1); : : : ; gvi(�r)i:
Theorem 2.4. Let v be a vertex of �, k 2 H \ H t�1and let �i and �j be the connected components of�jH containing the vertices v and vt, respectively .Let R � RH be a set of relations holding in G, from

which the fundamental relators belonging to all edgesof �2, �i and �j are derivable.Then the fundamental relators belonging to theedges labelled with t starting at the vertices v andvk, respectively , are equivalent modulo R.By de�ning a map wt : F (X) ! Z jXj in the ob-vious way and considering the images of R and ofthe possible extensions of R by a single fundamen-tal relator under wt, some heuristics for adding newfundamental relators to R can be established [Geb-hardt 2000].From these results, one obtains the following al-gorithm:
Algorithm (DCCA). Let XH be a generating set forH < G with de�ning set of relations RH and letX = XH [ ftg be a generating set for G.The following algorithm extends RH to a de�ningset R of relations for G with respect to the gen-erating set X. (See next page for the procedureDCCAColour.)[initialization]construct �, �jH , �i, vi (i = 1; : : : ; s), and T asabovecolour the edges of T and the edges of �1R := RHSi := h1i (i = 2; : : : ; s)[add one relator belonging to an edge with label t]�nd edge " with minimal ��Z jXj : hwt (R [ f�(")g)iZ��R := R [ f�(")gDCCAColour( )[Step 1: treat edges of �jH ]for i = 2; : : : ; swhile jSij < ��StabH(vi)���nd edge " of �i such that gvi(") =2 SiR := R [ f�(")gDCCAColour( )end whileend for[Step 2: treat remaining edges of �]while there exists an uncoloured edge�nd uncolored edge " with minimal��Z jXj : hwt (R [ f�(")g)iZ��R := R [ f�(")gDCCAColour( )end while
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procedure DCCAColour( )repeatquit := truefor all vertices v of �for all � 2 Rif the path induced by � at v contains exactly one uncoloured edge "colour "quit := falseif " has label tif the requirements of Theorem 2.4 are satis�edcolour the edges with label t starting at all vertices in wH\Ht�1, where w is the startingvertex of "end ifelse�nd i 2 f2; : : : ; sg such that " is an edge of �iSi := hSi; gvi(")icolour all edges "0 of �i satisfying gvi("0) 2 Siif jSij = jStabH(vi)j[treatment of �i has just been completed]check for new possibilities of applying Theorem 2.4end ifend ifend ifend forend foruntil quit = true The procedure DCCAColour.
3. PRESENTATIONS OBTAINED USING THE

SUBGROUP G2(5)

3A. The Presentation by C. SimsIn the course of his original proof of existence anduniqueness of Ly, C. Sims in [Sims 1973; Havas andSims 1999] gave a presentation of Ly on 5 generatorsa; b; c; d; z plus 34 auxiliary generators which con-tains 86 relations. After substituting the auxiliarygenerators, there remains a set RSimsG of 52 nontrivialrelations involving the generators a; b; c; d; z with atotal length of 1297. From this presentation, a per-mutation representation of G on 8 835 156 digits canbe obtained via coset enumeration with respect tothe subgroup generated by a; b; c and d [Havas andSims 1999].According to [Havas and Sims 1999], we can writeha; b; c; d; z j i �! ha; b; c; d; z jRSimsG i =: G ' Ly and
� (ha; b; c; d j i) =: H1 ' G2(5):

3B. A New Presentation via G2(5)Restricting the permutation representation of de-gree 8 835 156 to the smallest H1-orbit, one obtainsa permutation representation of H1 of degree 19 530.A base and a strong generating set for this permu-tation representation can easily be computed usingMAGMA [Bosma et al. 1997]. Since H1 is a pointstabilizer in the permutation representation of de-gree 8 835 156 of G, this leads to a base and a stronggenerating set for this permutation representationof G.Moreover, we use the permutation representationof H1 of degree 19 530 in order to verify that H2 :=� (ha; b; c j i) ' 51+4+ : GL2(5) and that the order ofH2 is jH2j = 1500 000, hence jH1 : H2j = 3906.We start by choosing a de�ning set RH2 of rela-tions from the set RSimsG : Let
RH3 := �a8; b5; (ab)4; [a2; b]; [a; b]3	 � RSimsG
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andRH2 := RH3 [ �c5; ca2 = c3;cba = ca2bcbcb�1; cb2 = c2cb�1(cb)�2	 � RSimsG :We apply the coset enumeration programme ACE[Havas 1991] in order to compute the group order��ha; b jRH3i�� = 480. One also checks that the sub-group of ha; b; c jRH2i generated by a and b is ofindex 3125. This proves that��ha; b; c jRH2i�� = 1500 000;hence, RH2 is a de�ning set of relations for H2 con-taining 9 relations with a total length of 80.Then, by applying the DCCA twice (to H1 =hH2; di with subgroup H2 and to G = hH1; zi withsubgroup H1), we construct sets RH1 and RG of re-lations, such that RH2 [ RH1 is a de�ning set ofrelations for H1 ' G2(5) and RH2 [ RH1 [ RG is ade�ning set of relations for G ' Ly.For the �rst application of the DCCA, the per-mutation representation of H1 corresponding to theaction of H1 on the cosets of H2 is needed. This per-mutation representation of degree 3906, as well as abase and a strong generating set for it, can easily beconstructed from the permutation representation ofH1 of degree 19530 using MAGMA.There are 3 nontrivial H2-H2-double cosets in H1.As can be expected from the results of [Gebhardt2000], the RH1 obtained consists of 7 relations:RH1 := �(a�ba)d = a�ba5; (b2�a)d = �a2b2�a;(ba�cba�b2a)dcd = �ab�a�ba�b2ac�bcba�c;(a2�cba�cb�a�b)dcd = �a2�b�a(�bc)2b2;(b2acba)dc�abcd = �ab�a�b�a�b2c�a�b�cba;(a�c2b)dc�abcd = �a4b2�c�ba�bca�b;c�a�ca�c�aca �d�c�a�cac�acdca�c�a�cacd	Here and elsewhere we use the convention �a := a�1,and so on. The total length of RH1 is 160. The CPUtime for this computation on an IBM RS/6000-590was 12 seconds.The data necessary for the second application ofthe DCCA have already been provided. There are4 nontrivial H1-H1-double cosets in G. The DCCAthus produces a set RG containing 9 relations:

RG := �az = �a3; azdz = a3;(�c �dcbab2(cb)2�cd)zdz =�cbc2a�cb �dca�cb�c�b2c�ac �dcb2cda �d�c �dcb�ab;[z; �d�cba�b �dc �d�cd�c�ba�bc �dcd] = bc�b�c;azd�bz = �a �d�cb�c2a�bc�ab2c�bc�a�cd�b�a;(�c�a �d�cba�ba�cbca�c �dcdac�babac)zd�bz =�ac�a3�c�b2�cd�ca�cb2c�bc�a�cd�b�c �d�cbabdc�a;(�abdc�a�bab�a�c�bca)zdcdz = �ca3b�c�b�ac �d�cb�a�b;( �dcb�a�b)zdcdz = ac�aba�cbca�c�b�a�bab �dca�c�b�ca;a �d�cb�a2 �d�c�b2�cd�c(a�c)2b�ac2�bc �dcac�ba �d�zbz�bz	The total length of RG is 309. The CPU time forthis computation on an IBM RS/6000-590 was 12.3hours, and about 450MB of memory were used.The complete de�ning set RH2 [ RH1 [ RG of re-lations for G with respect to the generators a; b; c; dand z thus contains 25 relations of total length 549.
4. PRESENTATIONS OBTAINED USING THE

SUBGROUP 3̂McL : 2

4A. The Presentation by H. GollanH. Gollan [1998] gave a proof for the existence anduniqueness of Lyons' group that is independent ofSims' proof. As a part of this proof, he also estab-lished a presentation for Ly. The starting point is atransitive permutation groupG = � (ha; b; c; d; e; f; t; y j i)with 8 generators on 9 606 125 digits, with a sub-group H := � (ha; b; c; d; e; f; t j i) ' 3̂McL : 2which he proves to be the full point stabilizerStabG(2252):With this at hand he eventually proves that G ' Ly.According to [Conway et al. 1985] and [Gollan1998], the set RH shown at the top of the next pageis a de�ning set of relations for H ' 3̂McL : 2with respect to the generators a; b; c; d; e; f; t, wherea; b; c; d; e; f correspond to generators of 3̂McL and tto the outer automorphism of this group. The totallength of RH is 556.From his so-called double coset trick which heused to prove the equalityH = StabG(2252), Gollan
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RH := �a2; b2; c2; d2; e2; f2; t2; (ab)3; (ac)2; (ad)2; (ae)4;(af)2; (bc)5; (bd)2; (be)2; (bf)2; (cd)3; (ce)3; (cf)4; (de)2;(df)3; (ef)6; a(cf)2; b(ef)3; (eab)3; (bce)5; (aecd)4; (cef)21;(abc)5; (abce)24; at � abcdfcbecfdcba; bt � (bc)2dfeacbcfefdc;ct � r(bc)2r2(bc)2r2bcafdcbcefcbcdecdfe; dt � (bc)4abacdecbfcdecbac;et � (bc)3r(bc)2rbcrafdeacbceaefdcfea; ft � bcr2((bc)2r2)2abfcbdcbeacbd	
Set RH of relations for the presentations of Section 4, where r := cdefdcbefedcfdecfd(cef)14 .as a by-product also obtained a set RGollanG of 78 ad-ditional relations with a very large total length (farmore than 4000), so that RH [ RGollanG is a de�n-ing set of relations for G ' Ly with respect to thegenerators a; b; c; d; e; f; t; y.

4B. A New Presentation via 3̂McL : 2Because of Gollan's result H = StabG(2252), thepermutation representation of G ' Ly of degree9 606 125 can be interpreted as the permutation rep-resentation of G on the cosets ofH ' 3̂McL : 2in G. From [Gollan 1998], a base and a strong gen-erating set for this permutation representation areavailable, too.Although the de�ning set RH of relations for His not minimal, it is used in the sequel, since the re-lations are very natural and since they nicely re
ectthe group structure of 3̂McL : 2.Thus, the data necessary for applying the DCCAare available. There are 4 nontrivial H-H-double

cosets in G, and so we obtain a set RG containing 9relations with a total length of 828 (see sidebar be-low). The total CPU time on an IBM RS/6000-590was approximately 33.9 hours and about 400MB ofmemory were used.The complete de�ning set RH [RG thus contains45 relations with a total length of 1384. Note, how-ever, that no optimization was applied to the pre-sentation of H , yet.
5. CONCLUSIONSThe computations described in this paper have beenperformed using the author's implementation of theDCCA which exists in the form of a C++ class li-brary. Some information can be found in [Gebhardt1999]; the source code is available from the authoron request.It has already been noted in [Havas and Sims1999] that presentations of Ly are important to rep-resentation theory, in that proofs of the correctnessof several matrix representations of Ly rely upon

RG := �(bcbdtcefectcbtb)y= ebftefcbteacbtcbatbefdctbfteacbtcbaecdcbcfetftcbatbtdfdceb;(bcbdtcfecbcetcecb)y= tatatbtbctfteacbtcbatbefdctefcbteacbtcbatbefdcfbtbfteacbtcbatabtabde;(abceacdtbcetefea)ydy= btabctfteatbfteatbtabctbcaetftabctbcaetfbtbtabctbcaetfbadtdeatce;(abceacdtecetctebcb)ydy= tbtabctbcaetftabctbcaetfbtbfcdfebtabctbcaetbcfetbatceatbcaetfbcdtetce;(atetadtbetabtbtatbcdfab)ycby= tbtbtabctcdfebtabctbcaetbcefeteacbtcbacectbtbcbetaeabfecta;(atetadtbetacebcbtcbaet)ycby= tbteacbtcbatbtbtabctbcaetfbtatdfecfdcbtcbatbefdcftabctbcaetftbetct;(tdtatadceatedtfecbae)yatby= btabtbfteacbtcbatbtbtabctbcaetftabctbcaetftabctbcaetfbabectcfteacbtcbaeft;(tdtatadcebcbctabctb)yatby= tbftetbfteacbtcbatfteacbtcbatfteacbtcbatbtbfcdfebtabctbcaetbcfetfbtcdfctct;tbtatbftdfefdtabctbacetftcbatftefcbteacbtcbatbefdcftabctbacdfetfbty�1btay�1tdtatadceyatcdabtatdcycby	Set RG of relations for the presentation in Section 4B.
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checking that the generating matrices satisfy de�n-ing relations. Having in mind matrix representa-tions of larger degree, the total length of such apresentation becomes important, since it essentiallydetermines the number of matrix-matrix multipli-cations which have to be performed to verify thecorrectness of a representation.In this respect, especially the new presentationobtained via G2(5) may be useful, since the numberof relations is just half of the number of relationsof Sims' original presentation. Its total length issmaller by a factor of more than 2.3.For computations involving the maximal subgroup3̂McL : 2 of Ly, also the second presentation con-structed here may be of use, since it re
ects thestructure of this subgroup quite nicely.It should be noted, however, that due to the rathere�cient elimination of redundant generators, it isfairly di�cult to apply coset enumeration techniquesto presentations obtained from the DCCA in gen-eral.
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