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Abstract: Oracally efficient estimation and an asymptotically accurate
simultaneous confidence band are established for the nonparametric link
function in the partially linear single-index models for longitudinal data.
The proposed procedure works for possibly unbalanced longitudinal data
under general conditions. The link function estimator is shown to be ora-
cally efficient in the sense that it is asymptotically equivalent in the order
of n−1/2 to that with all true values of the parameters being known ora-
cally. Furthermore, the asymptotic distribution of the maximal deviation
between the estimator and the true link function is provided, and hence a
simultaneous confidence band for the link function is constructed. Finite
sample simulation studies are carried out which support our asymptotic
theory. The proposed SCB is applied to analyze a CD4 data set.
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1. Introduction

There has been substantial interest in semiparametric partially linear models
in the last three decades as they enjoy the advantages of both the flexibility
of nonparametric modeling and easy interpretation of parametric modeling. In
this paper we consider the following partially linear single-index model:

Y (t) = X (t)
T
β + φ

(
Z (t)

T
θ
)
+ ε (t) , t ∈ T , (1.1)

where β and θ are unknown p and q dimensional parameter vectors, φ(·) is an
unknown link function, T is a compact set of time t, Y (t) is a scalar stochastic
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process, X (t) and Z (t) are p and q dimensional covariates, and ε (t) is a random
error process.

For this model in the context of longitudinal data, many different approaches
have been studied to estimate the unknown coefficient vector Θ = (βT , θT )T

and link function φ (·). For instance, Chen et al. (2013) proposed semiparametric
minimum average variance estimation for the partially linear single-index panel
data models with fixed effects for dense longitudinal data. Ma et al. (2014) ap-
proximated the link function by the polynomial spline, and then applied the
quadratic inference function with the profile principle to estimate the linear and
sing-index coefficients for sparse longitudinal data. But their methods were lim-
ited to the balanced longitudinal data case. Later, Chen et al. (2015) proposed
a unified semiparametric estimation method called SGEE which combines the
local linear smoothing and generalized estimating equations (GEE) for possibly
unbalanced both sparse and dense longitudinal data. Moreover, Cai and Wang
(2019) introduced a refined three-stage approach called SMGEE to estimate the
nonparametric link function using marginal kernel regression and the paramet-
ric components with generalized estimating equations. Their approach produces
more efficient point and curve estimators by incorporating the within-subject
correlation for the link function estimation, but with more computational cost.
See also Lin and Carroll (2000, 2001, 2006), Fan and Li (2004), and He et al.
(2005) for a series of efforts on semiparametric models for longitudinal or cluster
data, and Carroll et al. (1997), Yu and Ruppert (2002), Xia and Härdle (2006),
Liang et al. (2010) and Gu and Yang (2015) for studies on the single-index
models in the context of independent and identically distributed data.

All aforementioned works mainly focus on the pointwise properties of esti-
mation and/or the problem of dimension reduction. To assess the shape of the
unknown link curve, however, it is desired to construct a uniform or simul-
taneous confidence band (SCB), which can be viewed as a collection of sliding
confidence intervals over the whole domain of the function with a predetermined
error probability. It is a powerful tool for making inferences on the global shape
of a true curve and for making decisions if some feature of the estimated curve
should be considered as a structure of the unknown function.

The construction of SCBs has been attempted in various contexts. A pioneer-
ing work can be traced back to Bickel and Rosenblatt (1973) for probability den-
sity functions, followed by a series of studies such as Johnston (1982), Härdle
(1989), Eubank and Speckman (1993), Claeskens and Van Keilegom (2003),
Wang and Yang (2009), Cai and Yang (2015) and Cai et al. (2019) for non-
parametric regression curves, and Wu and Zhao (2007), Liu and Wu (2010) and
Zhou and Wu (2010) for time series data. Recently, Degras (2011) constructed
an SCB for the mean function of functional data based on local linear regression,
while Cao et al. (2012) and Cao et al. (2016) constructed SCBs for the mean
and covariance functions of functional data using B-spline regression. One limi-
tation of their methods is the setting of fixed design and balanced measurement
points. In addition, Ma et al. (2012) proposed an SCB for the mean function of
the longitudinal data based on constant piecewise spline smoothing. Cao et al.
(2018) proposed an SCB for varying coefficient models for sparse longitudinal
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data via local linear regression.
In this paper we aim to construct an asymptotically accurate SCB for the link

function φ (·) in the partially linear single-index model for possibly unbalanced
longitudinal data under general conditions. Technical challenges on formulating
such bands arise due to the highly intrinsic dimensionality of longitudinal data,
the irregular and possibly subject specific time points at which the data are
collected and the difficulty to obtain the uniform oracle properties of the esti-
mation error (also known as maximal deviation) in our current setting. That is
also why the SCBs have been rather under explored in the nonparametric curve
estimation literature, especially in the context of multidimensional longitudinal
data.

The proposed SCB for the link function is innovative and useful since it is the
first of its kind for possibly unbalanced longitudinal data in the partially linear
single-index modeling structure with sound theoretical justifications. It also pro-
vides satisfactory numerical performance in finite sample sizes. Moreover, the
approach is flexible to cover a variety of situations, e.g., the single-index model
(Xia and Li (1999)) and the semiparametric partially linear model (Härdle et
al. (2012)). It can also be applied to test many kinds of predetermined models
for data, e.g., multiple linear regression model. As a motivating example, the
SCB is applied to study and make global inference on how the CD4 cell number
depends on several predictors over time via analyzing a CD4 data set.

The rest of the paper is organized as follows. In Section 2 we present an
asymptotic theory for constructing our proposed SCB. Section 3 provides further
analysis of the estimation error structure. In Section 4, concrete steps are given
to implement the proposed SCB. Simulation studies and a real data analysis are
reported in Sections 5 and 6, respectively. All the technical proofs are relegated
to the Appendix.

2. Asymptotic theory for constructing a new SCB

By convention, for any m-dimensional vector v with ith entry being vi, we
write v = (v1, . . . , vm)T as a column vector. Suppose that a random sample
consists of n subjects. For i-th subject, the response variable Yi(t) and the
covariates Xi (t) = (Xi1(t), . . . , Xip(t))

T and Zi(t) = (Zi1(t), . . . , Ziq(t))
T are

collected at points tij , 1 ≤ j ≤ Ni. To simplify the representation, denote Yij =
Yi (tij), Xij,l = Xil(tij), l = 1, 2, . . . , p, Zij,d = Zid(tij), d = 1, 2, . . . , q, Xij =
Xi (tij) = (Xij,1, . . . , Xij,p)

T , Zij = Zi (tij) = (Zij,1, . . . , Zij,q)
T and εij =

εi (tij). Meanwhile, let β = (β1, . . . , βp)
T , θ = (θ1, . . . , θq)

T , and define NT =∑n
i=1 Ni, Yi = (Yi1, . . . , YiNi)

T
,Xi = (Xi1, . . . ,XiNi)

T
,Ei = (εi1, . . . , εiNi)

T
,

and Zi=(Zi1, . . . ,ZiNi)
T
.

For the longitudinal data introduced above, model (1.1) can be written as

Yij = XT
ijβ + φ

(
ZT

ijθ
)
+ εij , 1 ≤ j ≤ Ni, 1 ≤ i ≤ n. (2.1)

Similar to related works, such as Wang et al. (2005), Fan et al. (2007) and
Chen et al. (2015), we assume that the subjects are mutually independent but



2398 L. Cai et al.

there is a within-subject correlation structure for each subject. We also assume
that max1≤i≤n Ni is bounded as n → ∞. To ensure identifiability of the link
function φ(·), the parameter vector θ is assumed to be a unit vector with the
first nonzero positive element, i.e., ‖θ‖ = 1, θ1 > 0, and no intercept is given in
model (2.1) (it is effectively included in φ(·)). We also assume that the range of
the single-index u = ZT (t)θ (and thus the domain of φ(u)) is a finite interval
[a, b].

For model (2.1), if the coefficient vector Θ were known oracally, a local linear

estimator φ̂ (u,Θ) of φ(u) is obtained by minimizing the following quadratic
form with respect to (c, d),

N−1
T

n∑
i=1

Ni∑
j=1

{
Yij −XT

ijβ − c− d
(
ZT

ijθ − u
)}2

Kh

(
ZT

ijθ − u
)
, (2.2)

where Kh (u) = h−1K (u/h) is a rescaled kernel function of kernel K (u) with
bandwidth h. By some standard calculations, one has that

φ̂ (u,Θ) = eT0
(
N−1

T ZTWZ
)−1

N−1
T ZTWY∗, (2.3)

where e0 = (1, 0)
T
,Y∗ =

(
Y ∗
11, . . . , Y1N∗

1
, . . . , Y ∗

nNn

)T
, Y ∗

ij = Yij −XT
ijβ,

Z =

(
1 · · · 1 · · · 1

ZT
11θ − u · · · ZT

1N1
θ − u · · · ZT

nNn
θ − u

)T

,

and the weight matrix W = diag
(
Kh

(
ZT

11θ − u
)
, . . . ,Kh

(
ZT

nNn
θ − u

))
.

However, Θ is generally unknown. In this case, we replace the unknown Θ in
(2.2) by a

√
n consistent estimator Θ̂ = (β̂T , θ̂T )T to obtain a feasible estimator

φ̂
(
u, Θ̂

)
= eT0

(
N−1

T ẐTŴẐ
)−1

N−1
T ẐTŴŶ

∗
,

where the symbols with a hat on the right side of the equation are the same as
those in equation (2.3) but with Θ replaced by Θ̂. Here the infeasible estimator

φ̂ (u,Θ) is introduced as a useful benchmark for feasible ones to compare with,
and as a pivotal medium by which an asymptotic SCB can be constructed.
Note that the estimation of Θ is an auxiliary step to estimate φ(u), so any√
n-consistent estimator Θ̂ will be effective in our procedure.
For integer p ≥ 0, denote by C(p) [a, b] the space of functions that have

continuous p-th derivative on [a, b] and let C [a, b] = C(0) [a, b]. We make the
following technical assumptions:

(A1) The link function φ (u) ∈ C(2) [a, b]. The functions E
[
Zij |ZT

ijθ = t
]
and

E
[
Xij |ZT

ijθ = t
]
of t have continuous derivatives up to the second order.

(A2) The errors εij , 1 ≤ j ≤ Ni, 1 ≤ i ≤ n, are independent of covariates Zij

and Xij and are independent across i, satisfying E εij = 0 and E εijεik =

σjk
i with cσ ≤ E ε2ij = σjj

i ≤ Cσ for some cσ > 0 and Cσ > 0. Moreover,
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there exist some m > 2/3,m0 > 2/3, andm1 > 2/3 such that E |εij |2+m
<

Mε, E |Zij,d|2+m0 < MZ , and E |Xij,l|2+m1 < MX for some constants
Mε > 0,MX > 0, and MZ > 0 with d = 1, . . . , p, l = 1, . . . , q. Meanwhile,

there exist constants G1 > 0 and G2 > 0 such that E
[
|Xij,l|2 |ZT

ijθ =t
]
≤

G1 and E
[
|Zij,d|2 |ZT

ijθ =t
]
≤ G2 for all t ∈ [a, b].

(A3) The kernel function K (u) is a symmetric probability density function sup-
ported on [−1, 1] and has the second Lipschitz continuous derivative.

(A4) The covariate vector Z (t) takes values in a q-dimensional bounded closed
region. The density function f (u) of ZT

ijθ satisfies f (u) ∈ C(2) [a, b]
and there exist cf > 0 and Cf > 0 such that cf ≤ f (u) ≤ Cf . The

joint density functions of
(
ZT

ijθ,Z
T
ij′θ
)
,
(
ZT

ijθ, Zij,l

)
,
(
ZT

ijθ,Xij,l

)
, and(

ZT
ijθ, Zij,l, Zij,l′

)
have continuous partial derivatives of order one.

(A5) The bandwidth h satisfies nh4 → ∞ and nh5 logn → 0 as n → ∞.

Assumption (A1) is a mild smoothness condition on the link function φ (u) to
apply local linear regression. Assumption (A2) is about the moment conditions
of the error terms and the covariates that are similar to those used in Chen et al.
(2015). It allows the error terms to have within-subject correlations. Assumption
(A3) is a typical condition for the kernel function. Clearly, if we denote ml (K)=∫
ulK (u) du, by (A3) one then has thatm0 (K)= 1 and for all odd l,ml (K)= 0.

Assumption (A4) gives some common conditions in partially linear single-
index models similar to Xia and Härdle (2006), Chen et al. (2015), and Gu and
Yang (2015). Assumption (A5) is a general restriction on the choice of bandwidth

h which keeps the bias of φ̂ (u,Θ) at a lower rate than its standard error and
keeps the order of oracle efficiency at n−1/2; see Johnston (1982), Härdle (1989)
and Gu and Yang (2015) for similar undersmoothing bandwidth conditions.
In Section 4, we will describe a detailed procedure to select an appropriate
bandwidth.

The existence of a
√
n-consistent estimator Θ̂ is needed in our main results.

The following condition that ensures any of the estimators Θ̂ in Chen et al.
(2015), Lin and Carroll (2000) and Cai and Wang (2019) is

√
n-consistent:

(C1) The link function φ (u) ∈ C(2) [a, b]; the density function f (u) of ZT
ijθ

is positive and has a continuous second-order derivative in U = {ZT θ :
Z ∈ Z, θ ∈ Ω} where Ω is a compact parameter space for θ and Z is
a compact support of Zij; E

(
Xij |ZT

ijθ = u
)
and E

(
Zij |ZT

ijθ = u
)
are a

bounded smooth function of u with continuous second-order derivative and
the constant m given in (A2) is larger than 0.

Condition (C1) is satisfied by Assumptions (A1), (A2) and (A4). In the numer-
ical studies described in Sections 5 and 6, we used the SGEE method in Chen
et al. (2015) to obtain a

√
n-consistent estimator Θ̂.

For any functions fn (x) and gn (x) defined in domain X , we use fn (x) =
O (gn(x)) and fn (x) = o (gn(x)) to denote that fn (x) /gn(x) is bounded and
fn (x) /gn(x) → 0 as n → ∞ for any fixed x ∈ X , respectively, while we
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use Op (·) , op (·) , Oa.s. (·), oa.s. (·) to represent the corresponding terms in prob-
ability and almost surely. Moreover, we use fn (x) = Up (gn (x)) and fn (x) =
up (gn (x)) to denote that supx∈X |fn (x) /gn (x)| is bounded and supx∈X |fn (x)
/gn (x)| → 0 as n → ∞ in probability, respectively. Meanwhile, define τn =

n−1/2h−1/2 log1/2 n and let [a0, b0] be an arbitrary closed subinterval of (a, b)
so that it excludes the end points of a and b.

Theorem 2.1. Under Assumptions (A1)–(A5), as n → ∞, for any u ∈ [a0, b0],
one has that

φ̂ (u,Θ)− φ (u) = Rn (u) + 2−1φ(2) (u)m2 (K)h2 + up

(
h2
)
,

where Rn (u) = f−1 (u)N−1
T

∑n
i=1

∑Ni

j=1 Kh

(
ZT

ijθ − u
)
εij.

Theorem 2.1 shows the global convergence property of φ̂ (u,Θ) whose proof
given in Appendix A.2 relies on Propositions 3.1 and 3.2 in Section 3. By The-
orem 2.1, one has

sup
u∈[a0,b0]

|φ̂ (u,Θ)− φ (u) | = sup
u∈[a0,b0]

|Rn (u) |+Op(h
2).

By Lemma A.2 in the Appendix A.1 that supu∈[a0,b0] |Rn (u)| = Op(τn) and

nh5 logn → 0 in Assumption (A5), one only needs to consider the dominating
term supu∈[a0,b0] |Rn (u) | to investigate the asymptotic distributional properties

of supu∈[a0,b0] |φ̂ (u,Θ)− φ (u) |. For u ∈ [a0, b0], define

Cn (u)= f−2(u)N−1
T h

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

E
{
Kh

(
ZT

ijθ−u
)
Kh

(
ZT

ij′θ−u
)}

E(εijεij′).

Theorem 2.2. Under Assumptions (A1)–(A5), one has that ∀z ∈ R,

lim
n→∞

P

[
ah

{
sup

u∈[a0,b0]

∣∣∣(NTh)
1/2
{
φ̂ (u,Θ)−φ (u)

}
C−1/2

n (u)
∣∣∣−bh

}
≤ z

]
=e−2e−z

,

where

ah =

{
−2 log

(
h

b0 − a0

)}1/2

, bh = ah + 2−1a−1
h log

CK

2π2
,

CK =

∫ {
K(1) (v)

}2

dv/

(
2

∫
K2 (v) dv

)
.

Theorem 2.2 describes the limiting distribution of the maximal deviation of
φ̂ (u,Θ). Its proof is readily obtained by following that of Theorem 1 in Cao et
al. (2018) for Rn (u). Note that while Theorem 1 in Cao et al. (2018) assumes
that the regression variables (times tij in their paper) to be independent over
time even within-subjects, it is seen that the independence condition of the
regression variables can be weakened to be dependent within-subjects when the
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number of observations per subject is bounded. This is because the independence
assumption needed in using the Bernstein inequality can be relaxed by using
the independence among the subjects and treating each subject’s finite sum as
a subjectwise random variable as in (A.14) in the proof of Proposition 3.1.

Theorem 2.3. Under Assumptions (A1)–(A5), for any
√
n-consistent estima-

tor Θ̂, as n → ∞, one has that

sup
u∈[a0,b0]

∣∣∣φ̂(u, Θ̂)− φ̂ (u,Θ)
∣∣∣ = Op

(
n−1/2

)
. (2.4)

The proof of Theorem 2.3 is given in Appendix A.2 which relies on Propo-
sitions 3.3 and 3.4 in Section 3. Theorem 2.3 shows that the estimator φ̂(u, Θ̂)

with any
√
n-consistent estimator Θ̂ is as efficient as the estimator φ̂ (u,Θ) with

the true coefficient vector Θ known by an “oracle”. Therefore, asymptotically
there is no need to distinguish the difference between φ̂(u, Θ̂) and φ̂ (u,Θ) when

constructing SCBs. We have hence established the oracle efficiency of φ̂(u, Θ̂).
This along with Theorem 2.2 leads to the following theorem.

Theorem 2.4. Under Assumptions (A1)–(A5), for any
√
n-consistent estima-

tor Θ̂, one has that ∀z ∈ R

lim
n→∞

P

[
ah

{
sup

u∈[a0,b0]

∣∣∣(NTh)
1/2
{
φ̂
(
u,Θ̂
)
−φ (u)

}
C−1/2

n (u)
∣∣∣−bh

}
≤ z

]
=e−2e−z

.

By Theorem 2.4, one can easily obtain a theoretical SCB for φ(u) which
depends on the unknown quantity Cn (u). In order to construct a feasible SCB
based on this result, one further needs to estimate Cn (u) with a proper uniform
convergence property.

We first estimate the unknown density function f (u) of ZT
ijθ. The following

kernel density pilot estimator is applied to estimate f (u):

f̂ (u) = N−1
T

n∑
i=1

Ni∑
j=1

Khf

(
ZT

ij θ̂−u
)
, (2.5)

where hf is the Silverman’s rule-of-thumb bandwidth (Silverman (1986), p. 48)
with the order of n−1/5. By the proof of Proposition 3.1 and Assumption (A5),
one has

sup
u∈[a0,b0]

∣∣∣f̂ (u)− f (u)
∣∣∣ = op (hf ) +Op

(
n−1/2h

−1/2
f log1/2 n

)
= op (hf ) . (2.6)

Let ε̂ij = Yij −XT
ij β̂ − φ̂

(
ZT

ij θ̂
)
, 1 ≤ j ≤ Ni, 1 ≤ i ≤ n, and define

Ĉn (u) = f̂−2 (u)N−1
T h

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

Kh

(
ZT

ij θ̂ − u
)
Kh

(
ZT

ij′ θ̂ − u
)
ε̂ij ε̂ij′ .

as an estimator of Cn(u). Then we have the following theorem whose proof is
given in Appendix A.2.
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Theorem 2.5. Under Assumptions (A1)–(A5), as n → ∞, one has that

sup
u∈[a0,b0]

∣∣∣Ĉn (u)− Cn (u)
∣∣∣ = op (hf ) .

Since hf = O
(
n−1/5

)

 log−1 n, by combining Theorems 2.4 and 2.5 one

obtains the main result in the following corollary.

Corollary 2.1. Under Assumptions (A1)–(A5), for any α ∈ (0, 1) and any√
n-consistent estimator Θ̂, as n → ∞, an asymptotically correct 100 (1− α)%

SCB for φ (u) , u ∈ [a0, b0], is

φ̂
(
u, Θ̂

)
± (NTh)

−1/2
Ĉ1/2

n (u)
(
a−1
h Q1−α + bh

)
,

where Q1−α = − log
{
−2−1 log (1− α)

}
and ah, bh are given in Theorem 2.2.

3. Error decomposition

In order to prove the global property of φ̂(u,Θ) in Theorem 2.1 and the oracle

efficiency of φ̂(u, Θ̂) in Theorem 2.3, we make the following decomposition of

the estimation errors φ̂(u,Θ)− φ(u) and φ̂(u, Θ̂)− φ(u).
For simplicity, we first denote

Tn,l (u) = N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
, l ≥ 0, (3.1)

and

Wn,l (u)=N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ−u
) (

ZT
ijθ−u

)l{
Y ∗
ij−φ (u)−φ(1)(u)

(
ZT

ijθ−u
)}

.

(3.2)
Thus,

N−1
T ZTWZ=

(
Tn,0 (u) Tn,1 (u)
Tn,1 (u) Tn,2 (u)

)

and N−1
T ZTW

(
Y∗ − φ (u)ZeT0 − φ(1) (u)Ze1

)
= (Wn,0 (u) ,Wn,1 (u))

T
, e1 =

(0, 1)
T
, which with (2.3) imply that

φ̂ (u,Θ)− φ (u) = eT0
(
N−1

T ZTWZ
)−1

N−1
T ZTW

(
Y∗ − φ (u)ZeT0

)
= eT0

(
Tn,0 (u) Tn,1 (u)
Tn,1 (u) Tn,2 (u)

)−1(
Wn,0 (u)
Wn,1 (u)

)
. (3.3)

Proposition 3.1. Under Assumptions (A3)–(A5), as n → ∞, for u ∈ [a0, b0]
and integer l = 0, 1, 2, one has that

Tn,l (u) =f (u)ml (K)hl + hl+1ml+1 (K) f (1) (u) + up

(
hl+1

)
+ Up

(
hlτn

)
.
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Proposition 3.2. Under Assumptions (A1)–(A5), as n → ∞, for u ∈ [a0, b0],
one has that

Wn,0 (u) = N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ− u
)
εij + 2−1φ(2) (u)f (u)m2 (K)h2+up

(
h2
)

and
Wn,1 (u) = Up

(
h3 + hτn

)
.

For l = 0, 1, 2, denote

T̂n,l (u) = N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l
, (3.4)

and

Ŵn,l (u) =N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂−u
)(

ZT
ij θ̂−u

)l

×
{
Yij−XT

ij β̂−φ (u)−φ(1)(u)
(
ZT

ij θ̂−u
)}

.

Similar to (3.3), one has

φ̂
(
u, Θ̂

)
− φ (u) = eT0

(
T̂n,0 (u) T̂n,1 (u)

T̂n,1 (u) T̂n,2 (u)

)−1(
Ŵn,0 (u)

Ŵn,1 (u)

)
.

Proposition 3.3. Under Assumptions (A1)–(A5), as n → ∞, one has

sup
u∈[a0,b0]

∣∣∣T̂n,l (u)− Tn,l (u)
∣∣∣ = Op

(
n−1/2

)
, l = 0 , 1 , 2 .

Proposition 3.4. Under Assumptions (A1)–(A5), as n → ∞, one has

sup
u∈[a0,b0]

∣∣∣Ŵn,l (u)−Wn,l (u)
∣∣∣ = Op

(
n−1/2

)
, l = 0, 1.

The proofs of Propositions 3.1–3.4 are given in Appendix A.2.

4. Implementation

In this section, we describe a concrete procedure to implement the SCB for
φ (u) given in Corollary 2.1. The procedure will be used in Sections 5 and 6 for
simulation studies and a real data analysis.

We use (â, b̂)=(minn,Ni

i=1,j=1Z
T
ij θ̂, maxn,Ni

i=1,j=1Z
T
ij θ̂) as the index domain and let

â0 and b̂0 be the 99% and 1% quantiles of ZT
ij θ̂, j = 1, 2, . . . , Ni, i = 1, 2, . . . , n,

respectively. The SCB for the link function is constructed over the compact
interval [â0, b̂0].
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The quartic kernel K (u) = 15
(
1− u2

)2
I (|u| ≤ 1) /16 is used for the local

linear regression in (2.2) which satisfies Assumption (A3). It is also employed to
estimate the density function of ZT

ijθ in (2.5). The bandwidth of the local linear
regression is selected by minimizing the estimated integrated mean squared error
(MISE) with undersmoothing by log−1/2 n, i.e., h = hopt log

−1/2 n, where

hopt =

{
35σ2(b− a)

n
∫
{φ(2) (u)}2f(u)du

}1/5

, (4.1)

which follows the direct plug-in approach in Ruppert et al. (1995), with the two
unknown functionals in hopt being replaced by the kernel estimates described in
Ruppert et al. (1995). From (4.1), one can see that the order of hopt is n−1/5.

Thus h = hopt log
−1/2 n has the order of n−1/5 log−1/2 n, fulfilling condition

(A5).
To obtain a

√
n-consistent estimator Θ̂ of Θ, one can employ the two-step

SGEE method in Chen et al. (2015) or the method of WI kernel GEE and WI
least square in Lin and Carroll (2000). Under Assumptions (A1)–(A5), according
to Chen et al. (2015) and Lin and Carroll (2000), one has as n → ∞,∥∥∥β̂ − β

∥∥∥ = Op

(
n−1/2

)
,
∥∥∥θ̂ − θ

∥∥∥ = Op

(
n−1/2

)
. (4.2)

In general, one can also apply the SMGEE method in Cai and Wang (2019) to
compute Θ̂ which also satisfies (4.2), but its computational procedure is time-
consuming and can be prohibitive for simulation studies. Hence the methods
in Chen et al. (2015) and Lin and Carroll (2000) are recommended here for
computational simplicity.

One reviewer commented on how in practice one would reasonably divide the
covariates into two parts before a partially linear single-index model is fitted to
data. While this is a very good general question when considering this type of
models, we provide a brief discussion here. Firstly, it would be useful to examine
the pairwise scatterplots of the data to see the trend between the response
variable and each covariate. In general, if a plot shows a clear linear trend, then
one would treat the covariate as a linear component. Meanwhile, by convention,
the dummy variables are often put in the linear part. This heuristic model
selection method for partially linear single-index models was applied in a lot of
the existing literature, see, for example, Carroll et al. (1997), Ma et al. (2014),
Chen et al. (2015) and Cai and Wang (2019). See also Section 6 for a CD4 data
analysis. Secondly, one could apply prior knowledge on the relationship between
the variables provided by expert opinions, historical information or previous
relevant studies to divide the covariates into two parts. This method was applied,
for example, in Xue and Zhang (2020) when using a partially linear single-index
model to analyze a data set from an AIDS clinical trial group (ACTG) study.
Thirdly, one could employ a penalized testing procedure in Liang et al. (2010)
or Ma et al. (2014) to simultaneously select significant variables and test the
nonparametric component. However, they are not able to detect misspecification
after the linear part and the single-index part are specified. It would be useful
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to develop a formal model checking diagnostic test in the current context. This
is generally an interesting topic for further study.

5. Simulation studies

In this section we examine finite sample performance of the proposed SCB by
Monte Carlo simulations.

We generated data using model (2.1) with X(t) and Z(t) being two-dimen-
sional and three-dimensional covariates respectively, and β = (2, 1)T , θ = 3−1

×(2, 1, 2)T . The covariates (XT
i (tij), Z

T
i (tij))

T were generated independently
from a five-dimensional normal distribution with marginal mean 0, variance
1 and pairwise correlation 0.1. In addition, following a reviewer’s suggestion,
we also considered some discrete variables for the X (t) part. Specifically, we
let X (t) be a three-dimensional variable with the true parameter vector β =
(1, 1, 1)T . Covariate Xi1 (tij) was generated from Bernoulli distribution with
probability 0.7 of being 1, while covariate Xi2 (tij) was drawn from {0, 1, 2}
with equal probability and covariate Xi3 (tij) was generated independently from
normal distribution N(0, 1). The covariate Z (t) was still a three-dimensional
covariate generated in the same way as above.

The following two link functions were considered: (1) φ(u) = 0.5 exp(u) and
(2) φ(u) = 2sin(u). Following Chen et al. (2015) the number of subjects was first
set to be n = 30, 50. In addition, n = 100 was also considered. The confidence
levels for the SCBs were set to be 1 − α = 0.95, 0.99. The observation time
tij , i = 1, 2, . . . , n, j = 1, 2, . . . , Ni for each subject was generated in the following
way as in Fan et al. (2007): each subject has a set of “scheduled” time points
{0, 1, . . . , 12}, and each of them has a 20% probability of being skipped with the
average of Ni being 10.4; the actual time tij is a perturbation of a non-skipped
“scheduled” time by adding a uniform [0, 1] random variable. Furthermore, ε (t)
was generated from a Gaussian process with mean 0, variance function σ2(t) =
0.5 exp(t/12), and ARMA(1,1) correlation structure

corr(ε (t) , ε (s)) =

{
ργ|t−s|, if t �= s,

1, if t = s.

Notice that when ρ = 1, the correlation structure above is reduced to an AR(1)
structure. We took four pairs of (ρ, γ): (1, 0.3), (1, 0.75), (0.85, 0.3), (0.85, 0.75),
which include both strongly and weakly correlated AR(1) and ARMA(1,1) er-
rors.

The construction of the SCB according to Corollary 2.1 is over an interior
interval [a0, b0] ⊂ (a, b). When the number of subjects n = 30, over 1000 repli-

cations, the average interval of [â0, b̂0] was [−2.650, 2.653] and the average in-

terval [â, b̂] = [−3.032, 3.082]. When n increases to 100, the average interval

of [â0, b̂0] was [−2.900, 2.903] and the average interval [â, b̂] = [−3.112, 3.135].
The results here are based on the case of normally distributed covariates and
φ(u) = 0.5 exp(u) under the AR(1) correlation structure with ρ = 1, γ =
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Table 1

Empirical coverage frequencies and average widths (in parentheses) of the proposed SCB

with Θ̂ obtained by the SGEE method with 1000 replications under the correct specification
of the underlying correlation structure.

φ(u) = 0.5 exp(u)

n 1− α
ε(t) ∼ AR(1) ε(t) ∼ ARMA(1,1)

ρ=1, γ=0.3 ρ=1, γ=0.75 ρ=0.85, γ=0.3 ρ=0.85, γ=0.75

30
0.95 0.863 (1.810) 0.865 (1.906) 0.860 (2.140) 0.864 (1.879)
0.99 0.929 (2.226) 0.943 (2.341) 0.928 (2.629) 0.929 (2.309)

50
0.95 0.918 (1.275) 0.911 (1.390) 0.910 (1.396) 0.896 (1.330)
0.99 0.959 (1.549) 0.954 (1.687) 0.968 (1.695) 0.957 (1.616)

100
0.95 0.970 (0.917) 0.964 (0.979) 0.976 (0.911) 0.964 (0.971)
0.99 0.988 (1.100) 0.986 (1.174) 0.989 (1.093) 0.987 (1.164)

φ(u) = 2 sin(u)

n 1− α
ε(t) ∼ AR(1) ε(t) ∼ ARMA(1,1)

ρ=1, γ=0.3 ρ=1, γ=0.75 ρ=0.85, γ=0.3 ρ=0.85, γ=0.75

30
0.95 0.892 (1.599) 0.866 (1.884) 0.888 (1.763) 0.872 (1.932)
0.99 0.954 (1.958) 0.939 (2.308) 0.950 (2.159) 0.928 (2.367)

50
0.95 0.937 (1.437) 0.918 (1.360) 0.946 (1.274) 0.917 (1.429)
0.99 0.965 (1.740) 0.964 (1.647) 0.970 (1.541) 0.967 (1.729)

100
0.95 0.977 (0.980) 0.974 (1.028) 0.982 (0.948) 0.966 (1.006)
0.99 0.988 (1.172) 0.987 (1.229) 0.990 (1.134) 0.990 (1.202)

0.3. Other settings yield similar results and hence are omitted. In principle,
[a0, b0] can cover essentially the entire interior (a, b) as the number of subjects
n → ∞.

We first look at the performance of the proposed SCB in the cases that
the correlation structure in the estimation of covariance function is correctly
specified. Tables 1 and 5 report the coverage frequencies over 1000 replica-
tions that the true curve was covered by the SCBs (with Θ̂ being obtained by
the method of SGEE in Chen et al. (2015)), at the equally spaced 401 points

{â0 + k(b̂0 − â0)/400, k = 0, 1, . . . , 400} for continuous and partly discrete co-
variates, respectively. It can be seen that in all the cases (i) as the number of
subjects n increases, the coverage frequencies improve and approach the nom-
inal level 1 − α while the average widths decrease, supporting the asymptotic
theoretical results in Corollary 2.1; (ii) the coverage frequencies for the simu-
lated data with some discrete covariates are similar to those for the simulated
data with normally distributed covariates. In addition, we also compared the
performance of the SCB when Θ is known and unknown. Table 3 reports the
coverage frequencies and the average widths of the bands when the true Θ was
used over 1000 replications for the case of the simulated data with normally
distributed covariates. By comparing Table 1 with Table 3, one can see that
the coverage frequencies and the widths of the bands are quite close to each
other which agrees with the theoretical results in Theorems 2.2 and 2.3. The
comparisons for the case of having some discrete covariates are similar, and are
thus omitted.

We next look at the impact of misspecification of the correlation structure
on the the performance of the SCB. Similar to Chen et al. (2015) and Fan et al.
(2007), we used the AR(1) working correlation structure in the covariance matrix
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Table 2

Empirical coverage frequencies and average widths (in parentheses) of the proposed SCB

with Θ̂ obtained by the SGEE method with 1000 replications in the misspecified case of
using the AR(1) correlation structure to model the true ARMA(1,1) correlation structure.

n 1− α
φ(u) = 0.5 exp(u) φ(u) = 2 sin(u)

ρ=0.85, γ=0.3 ρ=0.85, γ=0.75 ρ=0.85, γ=0.3 ρ=0.85, γ=0.75

30
0.95 0.848 (1.636) 0.864 (2.215) 0.887 (1.758) 0.870 (2.011)
0.99 0.932 (2.011) 0.935 (2.727) 0.953 (2.154) 0.926 (2.465)

50
0.95 0.907 (1.242) 0.898 (1.437) 0.946 (1.376) 0.915 (1.393)
0.99 0.960 (1.508) 0.954 (1.746) 0.972 (1.665) 0.964 (1.685)

100
0.95 0.977 (0.911) 0.963 (0.966) 0.981 (0.948) 0.963 (1.001)
0.99 0.988 (1.093) 0.983 (1.158) 0.988 (1.133) 0.988 (1.196)

Table 3

Empirical coverage frequencies and average widths (in parentheses) of the proposed SCB
with using the true Θ with 1000 replications under the correct specification of the underlying

correlation structure.

φ(u) = 0.5 exp(u)

n 1− α
ε(t) ∼ AR(1) ε(t) ∼ ARMA(1,1)

ρ=1, γ=0.3 ρ=1, γ=0.75 ρ=0.85, γ=0.3 ρ=0.85, γ=0.75

30
0.95 0.844 (1.488) 0.856 (1.625) 0.870 (1.473) 0.860 (1.431)
0.99 0.924 (1.830) 0.933 (1.997) 0.932 (1.811) 0.939 (1.760)

50
0.95 0.919 (1.183) 0.903 (1.281) 0.904 (1.185) 0.907 (1.211)
0.99 0.964 (1.438) 0.955 (1.555) 0.964 (1.440) 0.953 (1.471)

100
0.95 0.969 (0.923) 0.966 (0.985) 0.975 (0.916) 0.964 (0.970)
0.99 0.990 (1.107) 0.987 (1.182) 0.992 (1.099) 0.991 (1.163)

φ(u) = 2 sin(u)

n 1− α
ε(t) ∼ AR(1) ε(t) ∼ ARMA(1,1)

ρ=1, γ=0.3 ρ=1, γ=0.75 ρ=0.85, γ=0.3 ρ=0.85, γ=0.75

30
0.95 0.874 (1.529) 0.863 (1.686) 0.872 (1.528) 0.856 (1.649)
0.99 0.938 (1.873) 0.936 (2.065) 0.944 (1.871) 0.923 (2.020)

50
0.95 0.931 (1.231) 0.921 (1.319) 0.941 (1.233) 0.928 (1.309)
0.99 0.968 (1.490) 0.964 (1.597) 0.970 (1.492) 0.964 (1.584)

100
0.95 0.975 (0.963) 0.977 (1.017) 0.980 (0.954) 0.969 (1.008)
0.99 0.985 (1.151) 0.984 (1.216) 0.989 (1.141) 0.989 (1.204)

Table 4

Empirical coverage frequencies and average widths (in parentheses) of the proposed SCB
with using the true Θ with 1000 replications in the misspecified case of using the AR(1)

correlation structure to model the true ARMA(1,1) correlation structure.

n 1− α
φ(u) = 0.5 exp(u) φ(u) = 2 sin(u)

ρ=0.85, γ=0.3 ρ=0.85, γ=0.75 ρ=0.85, γ=0.3 ρ=0.85, γ=0.75

30
0.95 0.872 (1.475) 0.863 (1.593) 0.881 (1.533) 0.856 (1.650)
0.99 0.936 (1.814) 0.945 (1.959) 0.948 (1.878) 0.929 (2.022)

50
0.95 0.902 (1.184) 0.910 (1.259) 0.943 (1.225) 0.924 (1.307)
0.99 0.957 (1.438) 0.953 (1.529) 0.972 (1.482) 0.962 (1.582)

100
0.95 0.975 (0.915) 0.964 (0.981) 0.981 (0.961) 0.969 (1.008)
0.99 0.990 (1.098) 0.990 (1.176) 0.988 (1.149) 0.988 (1.205)
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Table 5

Empirical coverage frequencies and average widths (in parentheses) of the proposed SCB

with Θ̂ obtained by the SGEE method for φ(u) = 0.5 exp(u) with 1000 replications under the
correct specification of the underlying correlation structure. The simulated data have some

discrete variables in the linear covariates X part.

φ(u) = 0.5 exp(u)

n 1− α
ε(t) ∼ AR(1) ε(t) ∼ ARMA(1,1)

ρ=1, γ=0.3 ρ=1, γ=0.75 ρ=0.85, γ=0.3 ρ=0.85, γ=0.75

30
0.95 0.826 (1.588) 0.844 (1.671) 0.805 (2.148) 0.845 (1.947)
0.99 0.912 (1.962) 0.931 (2.064) 0.901 (2.645) 0.936 (2.405)

50
0.95 0.889 (1.204) 0.917 (1.341) 0.874 (1.560) 0.903 (1.314)
0.99 0.957 (1.470) 0.961 (1.636) 0.949 (1.908) 0.956 (1.602)

100
0.95 0.951 (0.902) 0.954 (0.946) 0.950 (0.879) 0.962 (0.928)
0.99 0.991 (1.086) 0.979 (1.139) 0.984 (1.058) 0.984 (1.117)

φ(u) = 2 sin(u)

n 1− α
ε(t) ∼ AR(1) ε(t) ∼ ARMA(1,1)

ρ=1, γ=0.3 ρ=1, γ=0.75 ρ=0.85, γ=0.3 ρ=0.85, γ=0.75

30
0.95 0.819 (2.020) 0.869 (1.944) 0.788 (1.714) 0.850 (1.696)
0.99 0.920 (2.484) 0.947 (2.393) 0.902 (2.105) 0.939 (2.086)

50
0.95 0.904 (1.377) 0.919 (1.308) 0.901 (1.233) 0.913 (1.378)
0.99 0.965 (1.672) 0.966 (1.591) 0.959 (1.498) 0.962 (1.674)

100
0.95 0.962 (1.022) 0.955 (0.986) 0.958 (0.932) 0.960 (1.080)
0.99 0.991 (1.226) 0.984 (1.184) 0.990 (1.119) 0.990 (1.295)

Table 6

Empirical coverage frequencies and average widths (in parentheses) of the proposed SCB

with Θ̂ obtained by the SGEE method with 1000 replications in the misspecified case of
using the AR(1) correlation structure to model the true ARMA(1,1) correlation structure.

The simulated data have some discrete variables in the linear covariates X part.

n 1− α
φ(u) = 0.5 exp(u) φ(u) = 2 sin(u)

ρ=0.85, γ=0.3 ρ=0.85, γ=0.75 ρ=0.85, γ=0.3 ρ=0.85, γ=0.75

30
0.95 0.806 (1.642) 0.845 (1.792) 0.805 (1.577) 0.846 (1.829)
0.99 0.904 (2.028) 0.921 (2.211) 0.900 (1.939) 0.933 (2.249)

50
0.95 0.874 (1.223) 0.892 (3.069) 0.906 (1.250) 0.917 (1.336)
0.99 0.958 (1.492) 0.956 (3.751) 0.967 (1.519) 0.960 (1.624)

100
0.95 0.955 (0.876) 0.956 (0.933) 0.960 (0.937) 0.956 (1.111)
0.99 0.984 (1.055) 0.983 (1.124) 0.989 (1.124) 0.988 (1.332)

estimation when the true underlying correlation structure is in fact ARMA(1,1).
Tables 2 and 6 summarize the simulation results under this misspecification,
while Table 4 reports those when the true Θ was used. One can see that in all
the scenarios (i) as n increases, the coverage frequencies go to the nominal level
and are quite close to those under the correct specification of the underlying
correlation structure, supporting the theoretical results in Corollary 2.1 and
Theorem 2.2; (ii) the coverage frequencies and the widths of the bands obtained
by employing the estimated Θ̂ are close to those based on the trueΘ, confirming
the oracle efficiency in Theorem 2.4. Moreover, the comparison results are again
similar for the case of having some discrete covariates in X (t). Hence, even
when the correlation structure is misspecified, the performance of the proposed
SCB is still desirable in this case. The simulation results suggest that the SCBs
are robust to the error correlation structure. In addition, we also considered
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Fig 1. Plots of the estimated link function (dash-dotted line), the true link function φ(u) =
0.5 exp(u) (solid line) and the SCBs (dashed line) with AR(1) error (ρ = 1, γ = 0.75).

the SCBs with Θ̂ obtained by the WI kernel GEE method in Lin and Carroll
(2000). The results are similar but somewhat wider widths than those in Tables
1–6 employing the SGEE method in Chen et al. (2015).

To visualize the actual function estimates and the SCBs, Figures 1 and 2 were
created for φ(u) = 0.5 exp(u) and φ(u) = 2 sin(u) under the correct specification
of the underlying AR(1) correlation structure with ρ = 1, γ = 0.75. It can be
seen that the SCBs for n = 100 are thinner and fit better than those for n = 50.
Other settings yield similar results.

Responding to a reviewer’s comment, we also examined the global discrepancy
of φ̂(u, Θ̂) and φ̂ (u,Θ) measured by the mean squared integrated error (MISE):

MISE(ϕ̂(u)) =

∫
E (ϕ̂(u)− φ (u))

2
du
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Fig 2. Plots of the estimated link function (dash-dotted line), the true link function φ(u) =
2 sin(u) (solid line) and the SCBs (dashed line) with AR(1) error (ρ = 1, γ = 0.75).

for ϕ̂(u) = φ̂(u, Θ̂) or φ̂ (u,Θ), where the expectation E is approximated by the
average of (ϕ̂(u)−ϕ (u))2 by 1000 replications and the integration

∫
is approx-

imated by the numerical integration over 401 points {â0 + k(b̂0 − â0)/400, k =

0, 1, . . . , 400}. Table 7 shows MISE(φ̂(u, Θ̂)) and the ratio MISE(φ̂(u, Θ̂))/MISE

(φ̂ (u,Θ)), while Table 8 shows those under the misspecification of the underly-
ing correlation structure. The results for the data with some discrete covariates
are similar and hence they are omitted. It can be seen that MISE(φ̂(u, Θ̂)) goes

to 0 and the ratio MISE(φ̂(u, Θ̂))/MISE(φ̂ (u,Θ)) tends to 1 when the sample
size increases regardless whether the correlation structure is correctly speci-
fied or not. In addition, Figure 3 shows the boxplots of

√
n sup400k=0 |φ̂(uk, Θ̂) −

φ̂ (uk,Θ) | over 1000 replications with uk = â0 + k(b̂0 − â0)/400 for the cases of
φ(u) = 0.5 exp(u) (on the left panel) and φ(u) = 2 sin(u) (on the right panel)
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Table 7

Comparing MISE(φ̂(u, Θ̂)) and MISE(φ̂(u,Θ)) for the data generated by normally
distributed covariates based on 1000 replications under the correct specification of the

underlying correlation structure.

φ(u) = 0.5 exp(u)

(ρ, γ)
MISE(φ̂(u, Θ̂)) MISE(φ̂(u, Θ̂))/MISE(φ̂(u,Θ))

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100
(1, 0.3) 0.0416 0.0275 0.0142 1.0927 1.0553 1.0159
(1, 0.75) 0.0465 0.0321 0.0170 1.0764 1.0514 1.0274
(0.85, 0.3) 0.0416 0.0271 0.0140 1.0960 1.0523 1.0092
(0.85, 0.75) 0.0467 0.0308 0.0165 1.0750 1.0458 1.0170

φ(u) = 2 sin(u)

(ρ, γ)
MISE(φ̂(u, Θ̂)) MISE(φ̂(u, Θ̂))/MISE(φ̂(u,Θ))

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100
(1, 0.3) 0.0351 0.0229 0.0127 1.0211 1.0232 1.0112
(1, 0.75) 0.0428 0.0285 0.0155 1.0162 1.0139 1.0072
(0.85, 0.3) 0.0344 0.0229 0.0127 1.0280 1.0172 1.0166
(0.85, 0.75) 0.0422 0.0268 0.0151 1.0164 1.0076 1.0118

Table 8

Comparing MISE(φ̂(u, Θ̂)) and MISE(φ̂(u,Θ)) for the data generated by normally
distributed covariates based on 1000 replications under misspecification of the underlying

correlation structure.

φ(u) = 0.5 exp(u)

(ρ, γ)
MISE(φ̂(u, Θ̂)) MISE(φ̂(u, Θ̂))/MISE(φ̂(u,Θ))

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100
(0.85, 0.3) 0.0415 0.0272 0.0141 1.1074 1.0560 1.0142
(0.85, 0.75) 0.0470 0.0309 0.0165 1.0852 1.0479 1.0186

φ(u) = 2 sin(u)

(ρ, γ)
MISE(φ̂(u, Θ̂)) MISE(φ̂(u, Θ̂))/MISE(φ̂(u,Θ))

n = 30 n = 50 n = 100 n = 30 n = 50 n = 100
(0.85, 0.3) 0.0340 0.0227 0.0128 1.0178 1.0180 1.0168
(0.85, 0.75) 0.0424 0.0269 0.0152 1.0174 1.0110 1.0113

under the correct specification of AR(1) error (ρ = 1, γ = 0.3). It indicates that√
n supu∈[a0,b0] |φ̂(u, Θ̂)− φ̂ (u,Θ) | is bounded in probability. All this supports

the asymptotic property (oracle efficiency) of the proposed estimator φ̂(u, Θ̂)
in Theorem 2.3. We also created the boxplots in other cases and the results are
similar.

Moreover, to see the performance of the parameter estimate Θ̂, we list the
averaged mean squared error (MSE) over 1000 replications. Tables 9 and 10
exhibit the MSE results for the data with normally distributed covariates. One
can see that for all the cases the MSE becomes smaller and goes to 0 as n
increases, which is consistent with the theoretical results in Chen et al. (2015).
The case with some discrete covariates has similar results.

6. Real data analysis

In this section we apply the proposed SCB to analyze a CD4 data set. The data
set resulted from a survey of 369 men who were infected with HIV. Each man’s
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Fig 3. Boxplots of
√
n sup400k=0 |φ̂(uk, Θ̂) − φ̂ (uk,Θ) | over 1000 replications with uk = â0 +

k(b̂0 − â0)/400 for φ(u) = 0.5 exp(u) (left panel) and φ(u) = 2 sin(u) (right panel) under the
correct specification of AR(1) error (ρ = 1, γ = 0.3).

Table 9

Performance of the estimates of the parameters measured by the averaged mean squared
error (MSE) for the data generated by normally distributed covariates based on 1000

replications under the correct specification of the underlying correlation structure (all the
values are in percentage).

φ(u) = 0.5 exp(u)
n (ρ, γ) MSE(β1) MSE(β2) MSE(θ1) MSE(θ2) MSE(θ3)

30

(1, 0.3) 0.377 0.380 0.226 0.363 0.233
(1, 0.75) 0.281 0.302 0.219 0.345 0.215
(0.85, 0.3) 0.386 0.423 0.244 0.378 0.236
(0.85, 0.75) 0.273 0.285 0.200 0.341 0.215

50

(1, 0.3) 0.237 0.207 0.141 0.209 0.135
(1, 0.75) 0.195 0.321 0.134 0.239 0.133
(0.85, 0.3) 0.232 0.228 0.144 0.237 0.133
(0.85, 0.75) 0.195 0.203 0.132 0.186 0.131

100

(1, 0.3) 0.110 0.108 0.065 0.106 0.067
(1, 0.75) 0.100 0.097 0.063 0.098 0.065
(0.85, 0.3) 0.119 0.112 0.067 0.116 0.065
(0.85, 0.75) 0.098 0.099 0.063 0.094 0.064

φ(u) = 2 sin(u)
n (ρ, γ) MSE(β1) MSE(β2) MSE(θ1) MSE(θ2) MSE(θ3)

30

(1, 0.3) 0.262 0.274 0.096 0.152 0.090
(1, 0.75) 0.196 0.212 0.072 0.104 0.065
(0.85, 0.3) 0.295 0.352 0.107 0.185 0.163
(0.85, 0.75) 0.218 0.222 0.074 0.122 0.076

50

(1, 0.3) 0.182 0.178 0.064 0.099 0.064
(1, 0.75) 0.133 0.140 0.053 0.079 0.047
(0.85, 0.3) 0.184 0.175 0.064 0.102 0.064
(0.85, 0.75) 0.154 0.151 0.051 0.090 0.047

100

(1, 0.3) 0.083 0.093 0.029 0.044 0.029
(1, 0.75) 0.069 0.073 0.027 0.038 0.026
(0.85, 0.3) 0.092 0.088 0.030 0.048 0.031
(0.85, 0.75) 0.078 0.079 0.028 0.051 0.028
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Table 10

Performance of the estimates of the parameters measured by the averaged mean squared
error (MSE) for the data generated by normally distributed covariates based on 1000

replications under misspecification of the underlying correlation structure (all the values are
in percentage).

φ(u) = 0.5 exp(u)
n (ρ, γ) MSE(β1) MSE(β2) MSE(θ1) MSE(θ2) MSE(θ3)

30
(0.85, 0.3) 0.370 0.404 0.245 0.387 0.231
(0.85, 0.75) 0.299 0.315 0.221 0.384 0.228

50
(0.85, 0.3) 0.236 0.227 0.146 0.243 0.137
(0.85, 0.75) 0.201 0.206 0.137 0.196 0.135

100
(0.85, 0.3) 0.119 0.108 0.066 0.106 0.066
(0.85, 0.75) 0.102 0.104 0.064 0.097 0.065

φ(u) = 2 sin(u)
n (ρ, γ) MSE(β1) MSE(β2) MSE(θ1) MSE(θ2) MSE(θ3)

30
(0.85, 0.3) 0.284 0.289 0.101 0.153 0.100
(0.85, 0.75) 0.236 0.240 0.081 0.127 0.079

50
(0.85, 0.3) 0.175 0.176 0.061 0.099 0.062
(0.85, 0.75) 0.155 0.157 0.052 0.093 0.049

100
(0.85, 0.3) 0.091 0.087 0.030 0.048 0.031
(0.85, 0.75) 0.081 0.085 0.029 0.051 0.030

CD4 cell numbers were measured repeatedly from 3 years before to 6 years af-
ter seroconversion. Each person has a different number of repeated observations
varying from 1 to 12, resulting in a total of 2376 CD4 observations on the follow-
ing variables: CD4 cell numbers, years after seroconversion, recreational drug
use (yes=1/no=0), number of sexual partners, packs of cigarettes a day, depres-
sion symptoms as measured by the Center for Epidemiologic Studies Depression
(CESD) scale (larger values indicate increased depressive symptoms) and age
centered around 30. The data were also studied in Zeger and Diggle (1994)
and Fitzmaurice et al. (2008) by using a semiparametric model for longitudinal
data.

Figure 4 shows the scatter plots of the CD4 cell numbers against the co-
variates: years after seroconversion, patient’s age centered around 30, patient’s
depression symptoms, and the boxplots of CD4 cell numbers by the smoking
factor. The thick solid line in the plot is the local linear fit for each pair of the
data. It can be seen that the relationship between the CD4 cell numbers and
the patient’s depression symptoms has a horizontal linear trend except near the
right end where the data are sparse, while the trend of other fitted curves is
less clear. Thus in the data analysis we put the covariate of patient’s depression
symptoms in the linear part and the other two continuous covariates, years after
seroconversion and patient’s age, in the single-index part. Next, the boxplots for
the discrete covariates were created. All of them are similar to those in Figure
4, which has a roughly linear trend. Therefore, the discrete variables are treated
as the linear components.

Denote Yij as the j-th observed CD4 cell number of the i-th person, Xij,1

as recreational drug use, Xij,2 as number of sexual partners, Xij,3 as the corre-
sponding packs of cigarettes a day, and Xij,4 as the CESD scale. Let Zij,1 be
the years since seroconversion and Zij,2 be the age centered around 30. Then
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Fig 4. Scatter plots and local linear fits (thick solid line) of the response variable CD4 cell
numbers against covariates: years since seroconversion, patient’s age, depression symptoms
as measured by the CESD scale, and the boxplots of CD4 cell numbers by packs of cigarettes
a day.

Table 11

Parameter estimates and the corresponding standard errors for the CD4 data.

Parameter β1 β2 β3 β4 θ1 θ2
Estimate 332.63 −6.21 22.89 −1.63 0.9937 0.111

Standard error 32.16 2.43 9.91 0.85 0.0064 0.024

the assumed partially linear single-index model for this data set is

Yij =

4∑
k=1

βkXij,k + φ

(
2∑

l=1

θlZij,l

)
+ εij .

The resulting parameter estimates and standard errors are listed in Table 11
by using the proposed method with Θ̂ obtained by the SGEE method assum-
ing the AR(1) working correlation structure. The analysis on linear coefficients
indicates that (i) recreational drug use and smoking are significantly positively
associated with the CD4 cell number, while the number of sexual partners has
a significantly negative association with the CD4 number; (ii) increased depres-
sion symptoms are marginally significantly associated with decreased CD4 cell
numbers with p-value 0.055.

To further study the relationship between the CD4 cell number and time
after seroconversion and patient’s age, we consider the single-index parameter
estimates and the link function estimate together. Figure 5 shows the plots
of the link function estimate φ̂(u) (solid), 95% and 67.7% SCBs (dashed line)
for the CD4 data. The straight thick line is the fitted null hypothesis curve
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Fig 5. Plots of the estimated link function φ̂(u) (solid line), the 95% and 67.7% SCBs (dashed
lines), and the fitted null hypothesis curve of φ(u) = γ0 + γ1u (thick solid line).

obtained by the least squares regression on the data points (
∑2

l=1 θ̂lZij,l, Yij −∑4
k=1 β̂lXij,k)

n,Ni

i,j=1. Since the lowest confidence level of SCB containing the null
curve is 67.7%, one cannot reject the null hypothesis with the asymptotic p-value
= 0.323, i.e., the link function might be treated as a decreasing linear function.
The asymptotic p-value 0.323, implying that the minimum confidence level of
the SCB totally containing the null curve equals to 67.7%, is approximated by
inverting the limiting Gumbel distribution given in Theorem 2.4 as follows:

p=1−exp

[
−2 exp

(
−ah

{
max

0≤k≤400

∣∣∣∣∣
√

NTh

Ĉn (uk)

[
φ̂
(
uk,Θ̂

)
−(γ0+γ1uk)

]∣∣∣∣∣−bh

})]
,

where uk = â0 + k(b̂0 − â0)/400, k = 0, 1, ..., 400, are equally spaced grid points

of [â0, b̂0] and γ0 + γ1uk represents the linear least squares fit for the data

(
∑2

l=1 θ̂lZij,l, Yij −
∑4

k=1 β̂kXij,k)
n,Ni

i,j=1.
With the sign and magnitude of the parameter estimates, one concludes that

the time after seroconversion and patient’s age play negative roles on the CD4
cell number, i.e., patients’ CD4 cell numbers tend to decrease as time goes by.
Most of these conclusions are consistent with the previous studies in Zeger and
Diggle (1994) and Fitzmaurice et al. (2008). However, our conclusions about
the negative association of the age and the number of sexual partners with
the CD4 cell number are different from theirs and might have better scientific
interpretations.

7. Concluding remarks

In this paper, an asymptotically accurate SCB was proposed under general con-
ditions for the link function in partially linear single-index models for possibly
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unbalanced longitudinal data. It was shown rigorously that the estimator for the
link function with any

√
n-consistent estimate Θ̂ is oracally efficient in the sense

that it is asymptotically indistinguishable from the estimator with the true Θ
known as a prior. Using the oracle efficiency, the limiting distribution of the
maximal deviation was obtained and hence an asymptotically correct SCB was
constructed. Our Monte Carlo experiments with commonly encountered sample
sizes support our theoretical findings.

The methodology is also suitable to the single-index model (Xia and Li
(1999)) and the semiparametric partially linear model (Härdle et al. (2012)).
It can be employed to make hypothesis testing in these models. On the other
hand, this work has focused on the case of sparse longitudinal data. Further re-
search problems include investigating whether similar strategies can be extended
to the more complex setting of dense longitudinal data and to generalized par-
tially linear single-index models for dense/sparse longitudinal data. It would also
be interesting to study possibly superior within-subject covariance estimation
and direct precision matrix estimation to reduce the potential risk of severe cor-
relation structure misspecification and improve the efficiency of the parameter
and link function estimators. We expect that future studies following these lines
to yield further useful methods that not only are on solid theoretical footing
but also have interesting applications.
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Appendix

In the following, denote un ∼ vn as limn→∞ un/vn = c, where c is some nonzero
constant and [x] as the integer part of x. For any Lebesgue measurable function
ϕ (u) on [a, b], define ‖ϕ‖∞ = supu∈[a,b] |ϕ (u)|.

A.1. Preliminaries

In this subsection, we present some lemmas that are needed in our theoretical
development.
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Lemma A.1 (Theorem 1.2 of Bosq (1998)–the Bernstein inequality). Let X1,
. . . , Xn be independent zero-mean real-valued random variables. If there exists
c > 0 such that

E |Xi|k ≤ ck−2k! EX2
i < +∞; i = 1, 2, . . . , n; k = 3, 4, . . . ,

(Cramér’s conditions), then

P

{∣∣∣∣∣
n∑

i=1

Xi

∣∣∣∣∣ > t

}
≤ 2 exp

{
− t2

4
∑n

i=1 EX2
i + 2ct

}
, t > 0.

Lemma A.2. Under Assumptions (A2)–(A5), for l = 0, 1, as n → ∞,

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
εij

∣∣∣∣∣∣ = Op

(
hlτn

)
.

Proof of Lemma A.2. Let Tn = nδ with 1/ (2 +m) < δ < 3/8, wherem > 2/3
is in Assumption (A2). By nh5 logn → 0 in Assumption (A5) and 1/ (2 +m) <

δ, one has that T
−(1+m)
n 
 τn and

∑∞
n=1 T

−(2+m)
n < +∞, while by δ < 3/8 and

nh4 → ∞ in Assumption (A5), one has that Tnτn → 0.
First, we truncate the noise εij by Tn:

εij = εij,1 + εij,2 + μij ,

where

εij,1=εijI {|εij | >Tn} , εij,2=εijI {|εij | ≤Tn} − μij , μij=E [εijI {|εij | ≤Tn}] .

Therefore,

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
εij

= N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
εij,1

+N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ −u
) (

ZT
ijθ −u

)l
εij,2

+N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ −u
) (

ZT
ijθ −u

)l
μij . (A.1)

Note that

μij=E [εijI {|εij | ≤ Tn}]=E εij−E [εijI {|εij | > Tn}]=−E [εijI {|εij | >Tn}] ,

which implies that
|μij | ≤ MεT

−(1+m)
n ,
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where Mε is given in Assumption (A2). According to Proposition 3.1 which will
be shown later, one has that∣∣∣∣∣∣N−1

T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
μij

∣∣∣∣∣∣
≤ MεT

−(1+m)
n hlN−1

T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
)

= Up

(
T−(1+m)
n hl

)
= up

(
hlτn

)
. (A.2)

Next, since

∞∑
n=1

P

{
max

1≤j≤Nn

|εnj |>Tn

}
≤

∞∑
n=1

Nn∑
j=1

P {|εnj | >Tn}≤Mε

∞∑
n=1

NnT
−(2+m)
n <+∞,

the Borel-Cantelli Lemma implies that

P

{
ω| there exists n1 (ω) , max

1≤j≤Nn

|εnj | ≤ Tn, for all n > n1 (ω)

}
= 1.

Hence, it is easily seen that

P

{
ω| there exists n2 (ω) , max

1≤i≤n
max

1≤j≤Ni

|εij | ≤ Tn, for all n > n2 (ω)

}
= 1,

which implies that P{ω| there exists n2 (ω) such that εij,1 = 0, 1 ≤ j ≤ Ni,
1 ≤ i ≤ n, for n > n2 (ω)} = 1. Thus,

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
εij,1 = 0 a.s. (A.3)

We next considerN−1
T

∑n
i=1

∑Ni

j=1 Kh

(
ZT

ijθ − u
)(
ZT

ijθ − u
)l
εij,2. It is clear that

E εij,2 = 0,

E (εij,2)
2
= E {εijI (|εij | ≤ Tn)}2 − (μij)

2

= E ε2ij − E
{
ε2ijI (|εij | > Tn)

}
− (μij)

2

= σjj
i +O

(
T−m
n + T−2(1+m)

n

)
,

and

E (εij,2εij′,2) ≤
{
E (εij,2)

2
E (εij′,2)

2
}1/2

=
{
σjj
i +O

(
T−m
n + T−2(1+m)

n

)}1/2 {
σj′j′

i +O
(
T−m
n + T−2(1+m)

n

)}1/2

=
(
σjj
i σj′j′

i

)1/2
+O

(
T−m
n + T−2(1+m)

n

)
.
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By Assumption (A2), one has that E (εij,2εij′,2) < Cσ for n large enough. Denote

ηi,l (u) = N−1
T

∑Ni

j=1 Kh

(
ZT

ijθ−u
) (

ZT
ijθ − u

)l
εij,2. One then has that

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
εij,2 =

n∑
i=1

ηi,l (u) .

It is clear that E ηi,l (u) = 0 and

E {ηi,l (u)}2 = N−2
T

Ni∑
j=1

E
{
K2

h

(
ZT

ijθ − u
) (

ZT
ijθ − u

)2l}
E ε2ij,2

+N−2
T

Ni∑
j=1

Ni∑
j′ �=j

E
{
Kh

(
ZT

ijθ − u
)
Kh

(
ZT

ij′θ − u
) (

ZT
ijθ − u

)l (
ZT

ij′θ − u
)l}

×E (εij,2εij′,2)

= N−2
T h2l−1f (u)

∫
K2 (v) v2ldv

Ni∑
j=1

σjj
i + up

(
n−2h2l−1

)
.

Thus E
∑n

i=1 ηi,l (u) = 0 and

E

{
n∑

i=1

ηi,l (u)

}2

= N−2
T h2l−1f (u)

∫
K2 (v) dv

n∑
i=1

Ni∑
j=1

σjj
i + up

(
n−1h2l−1

)
,

which implies that E {
∑n

i=1 ηi,l (u)}
2 ≤ Cn−1h2l−1 for some C > 0. Further-

more, for k ≥ 3, one has that

|ηi,l (u)|k−2
=

∣∣∣∣∣∣N−1
T

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
εij,2

∣∣∣∣∣∣
k−2

≤
{
N−1

T Nih
l−1 ‖K‖∞ 2Tn

}k−2
.

Thus,

E |ηi,l (u)|k = E
{
|ηi,l (u)|k−2 |ηi,l (u)|2

}
≤
{
N−1

T Nih
l−1 ‖K‖∞ 2Tn

}(k−2)
E |ηi,l (u)|2 ,

which means that ηi,l (u) , 1 ≤ i ≤ n, satisfy the Cramér conditions in Lemma
A.1 with c=2N−1

T CNhl−1 ‖K‖∞Tn, CN being an upper bound of all Ni. Then
for any given large enough κ > 0 and sufficiently large n,

P

{∣∣∣∣∣
n∑

i=1

ηi,l (u)

∣∣∣∣∣ > κhlτn

}

≤ 2 exp

{
− κ2h2lτ2n

4
∑n

i=1 E {ηi,l (u)}2 + 4κN−1
T CNhl−1 ‖K‖∞ Tnhlτn

}
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= 2 exp

{
− κ2 logn

4nh1−2l
∑n

i=1 E {ηi,l (u)}2 + 4nN−1
T κCN ‖K‖∞ Tnτn

}

≤ 2n−4, (A.4)

which holds since nh1−2l
∑n

i=1 E {ηi,l (u)}2 is bounded and Tnτn → 0.
To bound

∑n
i=1 ηi,l (u) uniformly for all u ∈ [a0, b0], we discretize [a0, b0] by

equally spaced points a0 = u0 ≤ u1 ≤ · · · ≤ uMn = b0 with Mn = n2. By
applying (A.4), one obtains that

∞∑
n=1

P

{
max

0≤k≤Mn

∣∣∣∣∣
n∑

i=1

ηi,l (uk)

∣∣∣∣∣ > 2hlτn

}
≤

∞∑
n=1

Mn∑
k=0

2n−4 < +∞.

The Borel-Cantelli Lemma implies that

max
0≤k≤Mn

∣∣∣∣∣
n∑

i=1

ηi,l (uk)

∣∣∣∣∣ = Oa.s.

(
hlτn

)
.

Therefore,

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
εij,2

∣∣∣∣∣∣ = sup
u∈[a0,b0]

∣∣∣∣∣
n∑

i=1

ηi,l (u)

∣∣∣∣∣
≤ max

1≤k≤Mn

∣∣∣∣∣
n∑

i=1

ηi,l (uk)

∣∣∣∣∣+ max
1≤k≤Mn−1

sup
u∈[uk,uk+1]

∣∣∣∣∣
n∑

i=1

ηi,l (u)−
n∑

i=1

ηi,l (uk)

∣∣∣∣∣
= Oa.s.

(
hlτn

)
+

Mn−1
max
k=1

sup
u∈[uk,uk+1]∣∣∣∣∣∣N−1

T

n∑
i=1

Ni∑
j=1

{
Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l−Kh

(
ZT

ijθ − uk

) (
ZT

ijθ − uk

)l}
εij,2

∣∣∣∣∣∣
≤ Oa.s.

(
hlτn

)
+ 2nN−1

T CNhl−2
∥∥∥K(1)

∥∥∥
∞

Tn (b0 − a0)M
−1
n

= Oa.s.

(
hlτn

)
, (A.5)

which holds since hl−2TnM
−1
n 
hlτn. Putting (A.1), (A.2), (A.3) and (A.5)

together, one concludes the result.

Lemma A.3. Under Assumptions (A1)–(A5), for l = 0, 1, as n → ∞, one has

sup
u∈[a0,b0]

∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l
ε̂ij

−N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
)(
ZT

ijθ − u
)l
εij

∣∣∣ = Op

(
n−1/2

)
,

where ε̂ij = Yij −XT
ij β̂−φ

(
ZT

ij θ̂
)
.
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Proof of Lemma A.3. Notice that

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l
ε̂ij

−N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l
εij

= N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ −u
)(

ZT
ij θ̂ −u

)l{
XT

ijβ−XT
ij β̂+φ

(
ZT

ijθ
)
−φ
(
ZT

ij θ̂
)}

= N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l
XT

ij

(
β − β̂

)

+N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l {
φ
(
ZT

ijθ
)
−φ
(
ZT

ij θ̂
)}

.

(A.6)

Applying the first order Tayor expansion, one has that

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l
XT

ij

(
β − β̂

)

= N−1
T

n∑
i=1

Ni∑
j=1

h−1K

(
ZT

ijθ − u

h

)(
ZT

ijθ − u
)l
XT

ij

(
β − β̂

)

+N−1
T

n∑
i=1

Ni∑
j=1

h−1

{
h−1K(1)

(
ZT

ijθ
∗ − u

h

)(
ZT

ijθ
∗ − u

)l

+lK

(
ZT

ijθ
∗ − u

h

)(
ZT

ijθ
∗ − u

)l−1

}
XT

ij

(
β − β̂

)
ZT

ij

(
θ̂ − θ

)
, (A.7)

where
(
ZT

ijθ
∗ − u

)
/h is some value between

(
ZT

ij θ̂ − u
)
/h and

(
ZT

ijθ − u
)
/h.

Clearly,

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

h−1

{
h−1K(1)

(
ZT

ijθ
∗ − u

h

)(
ZT

ijθ
∗ − u

)l

+lK

(
ZT

ijθ
∗ − u

h

)(
ZT

ijθ
∗ − u

)l−1

}
XT

ij

(
β − β̂

)
ZT

ij

(
θ̂ − θ

)∣∣∣
≤ N−1

T hl−2
{∥∥∥K(1)

∥∥∥
∞

+ l ‖K‖∞
} n∑

i=1

Ni∑
j=1

∣∣∣XT
ij

(
β − β̂

)
ZT

ij

(
θ̂ − θ

)∣∣∣
= Op

(
n−1hl−2

)
= Op

(
n−1/2

)
, (A.8)
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since E |Zij,d|2+m0 < MZ and E |Xij,l|2+m1 < MX ,m0,m1 > 2/3 in Assumption
(A2).

We next consider N−1
T

∑n
i=1

∑Ni

j=1 h
−1K

(
ZT

ijθ−u

h

)(
ZT

ijθ − u
)l
XT

ij

(
β − β̂

)
.

Let Dn = nα with 1/ (2 +m1) < α < 3/8. The n−1h−4 
 1 in Assumption
(A5) and α < 3/8 implies that Dnτn → 0, while 1/ (2 +m1) < α implies that
∞∑

n=1
D

−(2+m1)
n < +∞. We first truncate Xij,k, k = 1, 2, ..., p, by Dn with

Xij,k = X
(1)
ij,k +X

(2)
ij,k,

where X
(1)
ij,k = Xij,kI {|Xij,k| > Dn} , X(2)

ij,k = Xij,kI {|Xij,k| ≤ Dn}. Notice that

∞∑
n=1

P

{
max

1≤j≤Nn

|Xnj,k| > Dn

}
≤

∞∑
n=1

Nn∑
j=1

P {|Xnj,k| > Dn}

≤
∞∑

n=1

Nn∑
j=1

D−(2+m1)
n E |Xnj,k|(2+m1)

≤ MX

∞∑
n=1

NnD
−(2+m1)
n < ∞,

which implies that

P

{
ω|there exist a n0 (ω) such that max

1≤j≤Nn

|Xnj,k| ≤Dn for n>n0 (ω)

}
= 1.

Then one has that

P

{
ω|there exist a n1 (ω) such that max

1≤i≤n
max

1≤j≤Ni

|Xij,k| ≤Dn for n>n1 (ω)

}
= 1,

and hence

P
{
ω|there exist a n1 (ω) such that X

(1)
ij,k = 0, 1 ≤ j ≤ Ni, 1 ≤ i ≤ n,

for n > n1 (ω)
}
= 1.

Therefore,

n∑
i=1

N−1
T

Ni∑
j=1

h−1K

(
ZT

ijθ − u

h

)(
ZT

ijθ − u
)l
X

(1)
ij,k = 0 a.s.

Next, define ηi,l,k (u) = N−1
T

∑Ni

j=1 h
−1K

(
ZT

ijθ−u

h

)(
ZT

ijθ − u
)l
X

(2)
ij,k. Thus,

|E ηi,l,k (u)| ≤ N−1
T

Ni∑
j=1

h−1
E

∣∣∣∣∣K
(
ZT

ijθ − u

h

)(
ZT

ijθ − u
)l
Xij,k

∣∣∣∣∣
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= N−1
T

Ni∑
j=1

h−1

∫
K

(
s− u

h

)
|s− u|l |t| fZT

ijθ|Xij,k
(s|t) fXij,k

(t) dsdt

= N−1
T

Ni∑
j=1

∫
K (v)hl |v|l |t| fZT

ijθ|Xij,k
(u+ hv|t) fXij,k

(t) dvdt

= N−1
T

Ni∑
j=1

hl

∫
K (v) |v|l |t| ×

{
fZT

ijθ|Xij,k
(u|t) +

∂fZT
ijθ|Xij,k

(u|t)
∂u

hv + u(h)

}
fXij,k

(t)dvdt,

where fZT
ijθ|Xij,k

(u|t) and fXij,k
(t) represent the density function of ZT

ijθ given

Xij,k and the density function of Xij,k, respectively. Since E
[
|Xij,k|2 |ZT

ijθ =t
]

≤ G1 in Assumption (A2), one then has that |E ηi,l,k (u)| ≤ C0n
−1hl for some

constant C0. Next, E η2i,l,k (u) equals

N−2
T

Ni∑
j=1

Ni∑
j′=1

h−2

× E

{
K

(
ZT

ijθ − u

h

)(
ZT

ijθ − u
)l
X

(2)
ij,kK

(
ZT

ij′θ − u

h

)(
ZT

ij′θ − u
)l
X

(2)
ij′,k

}

≤ N−2
T

Ni∑
j=1

Ni∑
j′=1

h−2

× E

∣∣∣∣∣K
(
ZT

ijθ − u

h

)(
ZT

ijθ − u
)l
Xij,kK

(
ZT

ij′θ − u

h

)(
ZT

ij′θ − u
)l
Xij′,k

∣∣∣∣∣
= N−2

T

Ni∑
j=1

h−2
E

{
K

(
ZT

ijθ − u

h

)(
ZT

ijθ − u
)l
Xij,k

}2

+N−2
T

Ni∑
j=1

Ni∑
j′ �=j

h−2

× E

∣∣∣∣∣K
(
ZT

ijθ − u

h

)(
ZT

ijθ − u
)l
Xij,kK

(
ZT

ij′θ − u

h

)(
ZT

ij′θ − u
)l
Xij′,k

∣∣∣∣∣ .
By E

[
|Xij,k|2 |ZT

ijθ =t
]
≤ G1 in Assumption (A2), one has that E η2i,l,k (u) ≤

C1n
−2hl−1 with C1 being some positive constant. Moreover, notice that

|ηi,l,k (u)| ≤ N−1
T hl−1 ‖K‖∞ 2DnNi ≤ C2n

−1hl−1Dn,

for some C2 > 0. Let η̃i,l,k (u) = ηi,l,k (u) − E ηi,l,k (u). Thus E η̃i,l,k (u) = 0

and E η̃2i,l,k (u) = E η2i,l,k (u) − (E ηi,l,k (u))
2 ≤ C1n

−2hl−1. Since |η̃i,l,k (u)| ≤
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|ηi,l,k (u)|+ |E ηi,l,k (u)| ≤ 2C2n
−1hl−1Dn,

E |η̃i,l,k (u)|m ≤
(
2C2n

−1hl−1Dn

)m−2
E |η̃i,l,k (u)|2

for m > 2. Thus η̃i,l,k (u) satisfies the Cramér conditions in Lemma A.1 with
c = 2C2n

−1hl−1Dn. Employing the Bernstein inequality in Lemma A.1, the
Borel-Cantelli Lemma and discretization method again, one immediately obtains
that

sup
u∈[a0,b0]

∣∣∣∣∣
n∑

i=1

η̃i,l,k (u)

∣∣∣∣∣ = Op

(
hl/2τn

)
,

and hence

sup
u∈[a0,b0]

∣∣∣∣∣
n∑

i=1

ηi,l,k (u)

∣∣∣∣∣ ≤ sup
u∈[a0,b0]

∣∣∣∣∣
n∑

i=1

η̃i,l,k (u)

∣∣∣∣∣+ sup
u∈[a0,b0]

∣∣∣∣∣
n∑

i=1

E ηi,l,k (u)

∣∣∣∣∣
= Op

(
hlτn

)
+Op

(
hl
)
.

Thus,

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

h−1K

(
ZT

ijθ − u

h

)
(ZT

ijθ − u)lXT
ij

(
β − β̂

)∣∣∣∣∣∣
= sup

u∈[a0,b0]

∣∣∣∣∣
(

n∑
i=1

ηi,l,1 (u) , . . . ,

n∑
i=1

ηi,l,p (u)

)(
β − β̂

)∣∣∣∣∣
≤ sup

u∈[a0,b0],1≤k≤p

∣∣∣∣∣
n∑

i=1

ηi,l,k (u)

∣∣∣∣∣√p
∥∥∥β − β̂

∥∥∥
=
[
Op

(
hl/2τn

)
+Op

(
hl
)]

Op

(
n−1/2

)
= Op

(
n−1/2

)
. (A.9)

Meanwhile, it is easy to verify that

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l {
φ
(
ZT

ijθ
)
−φ
(
ZT

ij θ̂
)}∣∣∣∣∣∣

= Op

(
n−1/2

)
,

which together with (A.6), (A.7), (A.8) and (A.9) concludes that

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l
ε̂ij−

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l
εij

∣∣∣∣∣∣ = Op

(
n−1/2

)
. (A.10)
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Next, for simplicity, we denote ϕl (t) = K (t) tl. By the second order Taylor
expansion of ϕl (t) at t0 =

(
ZT

ijθ−u
)
/h, one obtains that

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l
εij

−N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
εij

= N−1
T hl−1

n∑
i=1

Ni∑
j=1

ϕl

(
ZT

ij θ̂−u

h

)
εij −N−1

T hl−1
n∑

i=1

Ni∑
j=1

ϕl

(
ZT

ijθ−u

h

)
εij

= N−1
T hl−2

n∑
i=1

Ni∑
j=1

ϕ
(1)
l

(
ZT

ijθ−u

h

)
εijZ

T
ij

(
θ̂ − θ

)

+2−1N−1
T hl−3

n∑
i=1

Ni∑
j=1

ϕ
(2)
l

(
ZT

ijθ−u

h

)(
θ̂ − θ

)T
εijZijZ

T
ij

(
θ̂ − θ

)
+N−1

T hl−1

×
n∑

i=1

Ni∑
j=1

εij

∫ (ZT
ij θ̂−u)/h

(ZT
ijθ−u)/h

{
ϕ
(2)
l (t)−ϕ

(2)
l

(
ZT

ijθ−u

h

)}(
ZT

ij θ̂−u

h
−t

)
dt. (A.11)

Notice that

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T hl−1

n∑
i=1

Ni∑
j=1

εij×

∫ (ZT
ij θ̂−u)/h

(ZT
ijθ−u)/h

{
ϕ
(2)
l (t)− ϕ

(2)
l

(
ZT

ijθ−u

h

)}(
ZT

ij θ̂−u

h
−t

)
dt

∣∣∣∣∣
≤ CN−1

T hl−1 sup
u∈[a0,b0]

n∑
i=1

Ni∑
j=1

|εij |
∫ (ZT

ij θ̂−u)/h

(ZT
ijθ−u)/h

(
t−

ZT
ijθ−u

h

)(
ZT

ij θ̂−u

h
−t

)
dt

= C ′N−1
T hl−4 sup

u∈[a0,b0]

n∑
i=1

Ni∑
j=1

|εij |
∣∣∣ZT

ij

(
θ̂ − θ

)∣∣∣3

= Op

(
n−3/2hl−4

)
= Op

(
n−1/2

)
(A.12)

for some constants C,C ′ > 0. It holds since ϕ
(2)
l (t) is Lipschitz continuous by

Assumption (A3). One next truncates εij into three parts as in (A.1). Then again
applying the Bernstein inequality in Lemma A.1, the Borel-Cantilli Lemma and
discretization method, one has that

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T hl−2

n∑
i=1

Ni∑
j=1

ϕ
(1)
l

(
ZT

ijθ−u

h

)
εijZ

T
ij

(
θ̂ − θ

)∣∣∣∣∣∣ = Op

(
n−1/2

)
,
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and

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T hl−3

n∑
i=1

Ni∑
j=1

ϕ
(2)
l

(
ZT

ijθ−u

h

)
εij

(
θ̂ − θ

)T
ZijZ

T
ij

(
θ̂ − θ

)∣∣∣∣∣∣
= Op

(
n−1/2

)
.

Therefore,

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l
εij

−N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
)(
ZT

ijθ − u
)l
εij

∣∣∣∣∣∣ = Op

(
n−1/2

)
,

which together with (A.10) implies that

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ − u
)(

ZT
ij θ̂ − u

)l
ε̂ij

−N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
)(
ZT

ijθ − u
)l
εij

∣∣∣∣∣∣ = Op

(
n−1/2

)
.

The proof is completed.

Lemma A.4. Under Assumptions (A1)–(A5), as n → ∞, one has

sup
u,u′∈[a0,b0]

∣∣∣∣∣∣N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

{
K∗
(
ZT

ij θ̂,Z
T
ij′ θ̂;u

)
−K∗(ZT

ijθ,Z
T
ij′θ;u

)}
σjj′

i

∣∣∣∣∣∣
= Op

(
n−1h−3

)
,

where K∗ (s, t;u) = K
(
s−u
h

)
K
(
t−u
h

)
.

Proof of Lemma A.4. By the Mean Value Theorem, one has that

N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

{
K∗
(
ZT

ij θ̂,Z
T
ij′ θ̂;u

)
−K∗

(
ZT

ijθ,Z
T
ij′θ;u

)}
σjj′

i

= N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

∂K∗
(
ZT

ijθ,Z
T
ij′θ;u

)
∂s

ZT
ij

(
θ̂ − θ

)
σjj′

i

+N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

∂K∗
(
ZT

ijθ,Z
T
ij′θ;u

)
∂t

ZT
ij′

(
θ̂ − θ

)
σjj′

i
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+N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

Rijj′,K∗ (u)σjj′

i

≡ SI (u) + SII (u) + SIII (u) ,

where

Rijj′,K∗ (u) = 2−1
∂2K∗

(
ZT

ijθ
∗,ZT

ij′θ
∗;u
)

∂s2

(
ZT

ij θ̂ − Z
T

ijθ
)2

+2−1
∂2K∗

(
ZT

ijθ
∗,ZT

ij′θ
∗;u
)

∂t2

(
ZT

ij′ θ̂ − Z
T

ij′θ
)2

+2−1
∂2K∗

(
ZT

ijθ
∗,ZT

ij′θ
∗;u
)

∂s∂t

(
ZT

ij θ̂ − Z
T

ijθ
)(

ZT
ij′ θ̂ − Z

T

ij′θ
)

and ZT
ijθ

∗ is a value between ZT
ij θ̂ and ZT

ijθ. By the
√
n-consistency of θ̂ in (4.2),

one can easily obtain that

max
u∈[a0,b0]

max
1≤i≤n,1≤j,j′≤Ni

|Rijj′∗ (u)| ≤ Ch−2
∥∥∥θ̂ − θ

∥∥∥2 = Op

(
n−1h−2

)
for some constant C. Thus,

sup
u∈[a0,b0]

|SIII (u)| = Op

(
n−1h−3

)
.

Next,

sup
u∈[a0,b0]

|SI (u)|

= sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

∂K∗
(
ZT

ijθ,Z
T
ij′θ;u

)
∂s

ZT
ij

(
θ̂ − θ

)
σjj′

i

∣∣∣∣∣∣
≤ max

i,j,j′

∣∣∣ZT
ij

(
θ̂ − θ

)
σjj′

i

∣∣∣ sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

∂K∗
(
ZT

ijθ,Z
T
ij′θ;u

)
∂s

∣∣∣∣∣∣
≤ Op

(
n−1/2

)
sup

u∈[a0,b0]

∣∣∣∣∣∣N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

E

⎧⎨
⎩

∂K∗
(
ZT

ijθ,Z
T
ij′θ;u

)
∂s

⎫⎬
⎭
∣∣∣∣∣∣

+Op

(
n−1/2

)
sup

u∈[a0,b0]

∣∣∣∣∣∣N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

⎧⎨
⎩

∂K∗
(
ZT

ijθ,Z
T
ij′θ;u

)
∂s

−E
∂K∗

(
ZT

ijθ,Z
T
ij′θ;u

)
∂s

⎫⎬
⎭
∣∣∣∣∣∣

= Op

(
n−1/2

)
O (1) +Op

(
n−1/2

)
Op (τn) = Op

(
n−1/2

)
,
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where the average in the fourth line above is obtained by applying the Bernstein
inequality in Lemma A.1 with the variance bounded by O

(
n−1h−1

)
. Similarly,

one obtains supu∈[a0,b0] |SII (u)| = Op

(
n−1/2

)
. By Assumption (A5), n−1/2 


n−1h−3, completing the proof.

A.2. Proofs of propositions and theorems

Proof of Proposition 3.1. Recall that ml (K) =
∫
ulK (u) du. For integer

l = 0, 1, 2, one has that

E {Tn,l (u)} = E

⎧⎨
⎩N−1

T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l⎫⎬⎭
= N−1

T

n∑
i=1

Ni∑
j=1

h−1

∫
K

(
t− u

h

)
(t− u)

l
f (t) dt

=

∫
K (v)hlvl

{
f (u) + f (1) (u)hv + u (h)

}
dv

= f (u)ml (K)hl + hl+1ml+1 (K) f (1) (u) + u
(
hl+1

)
. (A.13)

Let

ξi,l (u) = N−1
T

Ni∑
j=1

[
Kh

(
ZT

ijθ − u
)(
ZT

ijθ − u
)l−E

{
Kh

(
ZT

ijθ − u
)(
ZT

ijθ − u
)l}]

.

Thus,

Tn,l (u)− ETn,l (u) =

n∑
i=1

ξi,l (u) . (A.14)

It is clear that ξi,l (u) , 1 ≤ i ≤ n, are independent with E ξi,l (u) = 0, which
together with the fact that NT ∼ n concludes that

E ξ2i,l (u) = N−2
T

Ni∑
j=1

EK2
h

(
ZT

ijθ − u
) (

ZT
ijθ − u

)2l

+N−2
T

Ni∑
j=1

Ni∑
j′ �=j

E
{
Kh

(
ZT

ijθ − u
)
Kh

(
ZT

ij′θ − u
) (

ZT
ijθ − u

)l (
ZT

ij′θ − u
)l}

−N−2
T

Ni∑
j=1

Ni∑
j′=1

E
{
Kh

(
ZT

ijθ − u
)(
ZT

ijθ − u
)l}

E
{
Kh

(
ZT

ij′θ − u
)(
ZT

ij′θ − u
)l}

= N−2
T h2l−1Nif (u)

∫
K2 (v) v2ldv + u

(
n−2h2l−1

)
.

Thus,

var

{
n∑

i=1

ξi,l (u)

}
=

n∑
i=1

E ξ2i,l(u) = N−1
T h2l−1f (u)

∫
K2 (v) v2ldv+u

(
n−1h2l−1

)
.
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By Assumptions (A3) and (A4), one has var {
∑n

i=1 ξi,l (u)} ≤ Cn−1h2l−1 for
some C > 0. Moreover, by Minkowski’s inequality, for k > 2,

|ξi,l (u)|k−2

=

∣∣∣∣∣∣N−1
T

Ni∑
j=1

[
Kh

(
ZT

ijθ − u
)(
ZT

ijθ − u
)l− E

{
Kh

(
ZT

ijθ − u
)(
ZT

ijθ − u
)l}]∣∣∣∣∣∣

k−2

≤ N
−(k−2)
T 2k−3

⎡
⎢⎣
∣∣∣∣∣∣
Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l∣∣∣∣∣∣
k−2

+

∣∣∣∣∣∣
Ni∑
j=1

E
{
Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l}∣∣∣∣∣∣
k−2
⎤
⎥⎦

≤ N
−(k−2)
T 2k−2

{
Nih

l−1 ‖K‖∞
}k−2

.

Hence,

E |ξi,l (u)|k = E
{
|ξi,l (u)|k−2 |ξi,l (u)|2

}
≤ N

−(k−2)
T 2k−2

{
Nih

l−1 ‖K‖∞
}k−2

E {ξi,l (u)}2

=
{
2N−1

T hl−1Ni ‖K‖∞
}k−2

E {ξi,l (u)}2 ≤ ck−2
0 k! E {ξi,l (u)}2

for c0 = 2N−1
T hl−1CN ‖K‖∞ with CN being an upper bound of all Ni. That

means for each u ∈ [a0, b0], ξi,l (u) , 1 ≤ i ≤ n, satisfy Cramér’s conditions in
Lemma A.1 with c = c0. Then applying the Bernstein inequality in Lemma A.1,
the Borel-Cantelli Lemma and discretization technique, one obtains that

sup
u∈[a0,b0]

∣∣∣∣∣
n∑

i=1

ξi,l (u)

∣∣∣∣∣ = Oa.s.

(
hlτn

)
. (A.15)

Putting (A.13), (A.14) and (A.15) together, one has that

Tn,l (u) = ETn,l (u) + Tn,l (u)− ETn,l (u)

= f (u)ml (K)hl + hl+1ml+1 (K) f (1) (u) + up

(
hl+1

)
+ Up

(
hlτn

)
.

The proof is completed.

Proof of Proposition 3.2. Recall that

Wn,l (u)

= N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l {
Y ∗
ij − φ (u)− φ(1) (u)

(
ZT

ijθ − u
)}
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= N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
εij +N−1

T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
)

×
(
ZT

ijθ − u
)l {

φ
(
ZT

ijθ
)
−φ (u)−φ(1) (u)

(
ZT

ijθ − u
)}

. (A.16)

Notice that when l = 0,

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
){

φ
(
ZT

ijθ
)
− φ (u)− φ(1) (u)

(
ZT

ijθ − u
)}

= 2−1φ(2) (u)Tn,2 (u) + up

(
h2
)

= 2−1φ(2) (u) f (u)m2 (K)h2 + up

(
h2
)
, (A.17)

and when l = 1,

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

){
φ
(
ZT

ijθ
)
− φ (u)− φ(1) (u)

(
ZT

ijθ − u
)}

= N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

){
2−1φ(2) (u)

(
ZT

ijθ − u
)2

+ up

(
h2
)}

= Up

(
h3
)
. (A.18)

Therefore, equations (A.16), (A.17), (A.18), and Lemma A.2 immediately con-
clude the result.

Proof of Proposition 3.3. By ϕl (t) = K (t) tl, l = 0, 1, 2 and (A.11) in the
proof of Lemma A.3, one has that

T̂n,l (u)− Tn,l (u)

= N−1
T hl−1

n∑
i=1

Ni∑
j=1

ϕl

(
ZT

ij θ̂−u

h

)
−N−1

T hl−1
n∑

i=1

Ni∑
j=1

ϕl

(
ZT

ijθ−u

h

)

= N−1
T hl−2

n∑
i=1

Ni∑
j=1

ϕ
(1)
l

(
ZT

ijθ−u

h

)
ZT

ij

(
θ̂ − θ

)

+ 2−1N−1
T hl−3

n∑
i=1

Ni∑
j=1

ϕ
(2)
l

(
ZT

ijθ−u

h

)(
θ̂ − θ

)T
ZijZ

T
ij

(
θ̂ − θ

)

+N−1
T hl−1

n∑
i=1

Ni∑
j=1

∫ (ZT
ij θ̂−u)/h

(ZT
ijθ−u)/h

{
ϕ
(2)
l (t)− ϕ

(2)
l

(
ZT

ijθ−u

h

)}(
ZT

ij θ̂−u

h
−t

)
dt

≡ AT,l (u) +BT,l (u) + CT,l (u) .

According to (A.12), one has that supu∈[a0,b0] |CT,l (u)| equals

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T hl−1

n∑
i=1

Ni∑
j=1

∫ (ZT
ij θ̂−u)/h

(ZT
ijθ−u)/h

{
ϕ
(2)
l (t)−ϕ

(2)
l

(
ZT

ijθ−u

h

)}(
ZT

ij θ̂−u

h
−t

)
dt

∣∣∣∣∣∣
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= Op

(
n−3/2hl−4

)
= Op

(
n−1/2

)
.

Next, define

ζi,l,k (u) = N−1
T hl−2

Ni∑
j=1

ϕ
(1)
l

(
ZT

ijθ−u

h

)
Zij,k, k = 1, 2, . . . , q, l = 0, 1, 2.

By Assumptions (A3) and (A4), one easily obtains that |E ζi,0,k (u)|=O
(
n−1
)

and |E ζi,l,k (u)| = O
(
n−1hl−1

)
for l = 1, 2. Thus, there exists C1 > 0 such that

E ζi,l,k (u) ≤ C1n
−1hl−1 for all l = 0, 1, 2. Meanwhile,

E ζ2i,l,k (u)

= N−2
T h2l−4

Ni∑
j=1

Ni∑
j′=1

E

{
ϕ
(1)
l

(
ZT

ijθ − u

h

)
Zij,kϕ

(1)
l

(
ZT

ij′θ − u

h

)
Zij′,k

}

= N−2
T h2l−4

Ni∑
j=1

E

{
ϕ
(1)
l

(
ZT

ijθ − u

h

)
Zij,k

}2

+N−2
T h2l−4

Ni∑
j=1

Ni∑
j′ �=j

E

{
ϕ
(1)
l

(
ZT

ijθ − u

h

)
Zij,kϕ

(1)
l

(
ZT

ij′θ − u

h

)
Zij′,k

}
.

Hence there exists C2 > 0 such that E ζ2i,l,k (u) ≤ C2n
−2h2l−3. Let ζ∗i,l,k (u) =

ζi,l,k (u) − E ζi,l,k (u). So E ζ∗i,l,k (u) = 0 and E
{
ζ∗i,l,k (u)

}2

= E ζ2i,l,k (u) −
{E ζi,l,k (u)}2 ≤ C2n

−2h2l−3. Notice that

∣∣ζ∗i,l,k (u)∣∣ ≤ |ζi,l,k (u)|+ |E ζi,l,k (u)| ≤ CN−1
T hl−2

∥∥∥ϕ(1)
l

∥∥∥
∞

+ C1n
−1hl−1

≤ C0n
−1hl−2

for some C > 0, C0 > 0. Thus for k > 2,

E
∣∣ζ∗i,l,k (u)∣∣k=E

∣∣ζ∗i,l,k (u)∣∣k−2 ∣∣ζ∗i,l,k (u)∣∣2≤ (C0n
−1hl−2

)(k−2)
k! E

∣∣ζ∗i,l,k (u)∣∣2 ,
which implies that ζ∗i,l,k (u) satisfies the Cramér conditions in Lemma A.1 with

c = C0n
−1hl−2. Hence, applying the Bernstein inequality in Lemma A.1, the

Borel-Cantelli Lemma and Discretization method again, one has that

sup
u∈[a0,b0]

∣∣∣∣∣
n∑

i=1

ζ∗i,l,k (u)

∣∣∣∣∣ = Op

(
hl−1τn

)
.

Therefore,

sup
u∈[a0,b0]

|AT,l (u)|≤ sup
u∈[a0,b0]

∣∣∣∣∣
(

n∑
i=1

ζi,l,1 (u) , . . . ,
n∑

i=1

ζi,l,q (u)

)(
θ̂ − θ

)∣∣∣∣∣
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≤ sup
u∈[a0,b0],1≤k≤q

∣∣∣∣∣
n∑

i=1

ζi,l,k (u)

∣∣∣∣∣√q
∥∥∥θ̂ − θ

∥∥∥
= sup

u∈[a0,b0],1≤k≤q

∣∣∣∣∣
n∑

i=1

ζ∗i,l,k (u) +
n∑

i=1

E ζi,l,k (u)

∣∣∣∣∣√q
∥∥∥θ̂ − θ

∥∥∥
=
[
Op

(
hl−1τn

)
+O (1)

]
Op

(
n−1/2

)
= Op

(
n−1/2

)
.

We next consider BT,l (u). Denote

ζi,l,k,k′ (u) = N−1
T

Ni∑
j=1

hl−3ϕ
(2)
l

(
ZT

ijθ − u

h

)
Zij,kZij,k′ ,

k, k′ = 1, 2, . . . , q, l = 0, 1, 2. Applying the Bernstein inequality in Lemma A.1,
the Borel-Cantelli Lemma and discretization method as before, one has that

sup
u∈[a0,b0]

∣∣∣∣∣
n∑

i=1

ζi,l,k,k′ (u)

∣∣∣∣∣ = Op

(
hl−2τn

)
+Op

(
hl−2

)
,

and hence

sup
u∈[a0,b0]

|BT,l (u)| =
[
Op

(
hl−2τn

)
+Op

(
hl−2

)]
Op

(
n−1
)
= op

(
n−1/2

)
.

The proof is completed.

Proof of Proposition 3.4. By the Mean Value Theorem, for l = 0, 1, one has
that

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ij θ̂ −u
)(

ZT
ij θ̂ − u

)l{
φ
(
ZT

ij θ̂
)
− φ (u)− φ(1)(u)

(
ZT

ij θ̂ −u
)}

−N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ −u
)(
ZT

ijθ −u
)l{

φ
(
ZT

ijθ
)
− φ (u)− φ(1)(u)

(
ZT

ijθ −u
)}

= N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l {
φ
(
ZT

ij θ̂
)
− φ
(
ZT

ijθ
)}

+N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
φ(1) (u)ZT

ij

(
θ − θ̂

)
+N−1

T h−1

×
n∑

i=1

Ni∑
j=1

{
h−1K(1)

(
ZT

ijθ
∗−u

h

)(
ZT

ijθ
∗−u

)l
+ lK

(
ZT

ijθ
∗−u

h

)(
ZT

ijθ
∗−u

)l−1

}

× ZT
ij

(
θ̂ − θ

){
φ
(
ZT

ij θ̂
)
− φ (u)− φ(1) (u)

(
ZT

ij θ̂ − u
)}

,

where
(
ZT

ijθ
∗ − u

)
/h is some value between

(
ZT

ij θ̂ − u
)
/h and

(
ZT

ijθ − u
)
/h.
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Notice that

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l {
φ
(
ZT

ij θ̂
)
− φ
(
ZT

ijθ
)}∣∣∣∣∣∣

≤
∥∥∥φ(1) (u)

∥∥∥
∞

sup
u∈[a0,b0]

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) ∣∣ZT

ijθ − u
∣∣l ∣∣∣ZT

ij

(
θ̂ − θ

)∣∣∣
= Op

(
n−1/2hl

)
= Op

(
n−1/2

)
(A.19)

and

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) (

ZT
ijθ − u

)l
φ(1) (u)ZT

ij

(
θ − θ̂

)∣∣∣∣∣∣
≤
∥∥∥φ(1) (u)

∥∥∥
∞

sup
u∈[a0,b0]

N−1
T

n∑
i=1

Ni∑
j=1

Kh

(
ZT

ijθ − u
) ∣∣ZT

ijθ − u
∣∣l ∣∣∣ZT

ij

(
θ̂ − θ

)∣∣∣
= Op

(
n−1/2hl

)
= Op

(
n−1/2

)
. (A.20)

Meanwhile, by Assumptions (A3) and (A4), it is easy to show that

sup
u∈[a0,b0]

∣∣∣∣∣∣N−1
T h−1

n∑
i=1

Ni∑
j=1

{
h−1K(1)

(
ZT

ijθ
∗ − u

h

)(
ZT

ijθ
∗ − u

)l

+lK

(
ZT

ijθ
∗ − u

h

)(
ZT

ijθ
∗ − u

)l−1

}
ZT

ij

(
θ̂ − θ

)
×

{
φ
(
ZT

ij θ̂
)
− φ (u)− φ(1) (u)

(
ZT

ij θ̂ − u
)} ∣∣∣∣∣ = Op

(
n−1/2

)
. (A.21)

Thus, equations (A.19), (A.20), and (A.21) and Lemma A.3 conclude that

sup
u∈[a0,b0]

∣∣∣Ŵn,l (u)−Wn,l (u)
∣∣∣ = Op

(
n−1/2

)
,

completing the proof.

Proof of Theorem 2.1. By Proposition 3.1 and Assumption (A5), one has
that(

Tn,0 (u) Tn,1 (u)
Tn,1 (u) Tn,2 (u)

)−1

= f−1 (u)

(
1 + up (h) Up

(
h2
)

Up

(
h2
)

m2 (K)h2 + up

(
h3
) )−1

.

This along with Lemma A.2 and Proposition 3.2 implies that

φ̂ (u,Θ)− φ (u) = eT0

(
Tn,0 (u) Tn,1 (u)
Tn,1 (u) Tn,2 (u)

)−1(
Wn,0 (u)
Wn,1 (u)

)
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= eT0

{
f−1 (u)

(
1 + up (h) Up (1)
Up (1) m−1

2 (K)h−2 + up

(
h−1
) )}×

(
N−1

T

∑n
i=1

∑Ni

j=1 Kh

(
ZT

ijθ − u
)
εij+ 2−1φ(2) (u) f (u)m2 (K)h2+up

(
h2
)

Up

(
h3 + hτn

) )

= Rn (u) + 2−1φ(2) (u)m2 (K)h2 + up

(
h2 + hτn

)
+ Up

(
h3 + hτn

)
= Rn (u) + 2−1φ(2) (u)m2 (K)h2 + up

(
h2
)
,

where Rn (u) = f−1 (u)N−1
T

∑n
i=1

∑Ni

j=1 Kh

(
ZT

ijθ − u
)
εij . Thus the proof is

completed.

Proof of Theorem 2.3. Note that

φ̂
(
u, Θ̂

)
− φ̂ (u,Θ) = φ̂

(
u, Θ̂

)
− φ(u)−

{
φ̂ (u,Θ)− φ(u)

}

= eT0

(
N−1

T ẐTŴẐ
)−1

(
Ŵn,0 (u)

Ŵn,1 (u)

)
− eT0

(
N−1

T ZTWZ
)−1
(
Wn,0 (u)

Wn,1 (u)

)

= eT0

(
T̂n,0 (u) T̂n,1 (u)

T̂n,1 (u) T̂n,2 (u)

)−1(
Ŵn,0 (u)

Ŵn,1 (u)

)

− eT0

(
Tn,0 (u) Tn,1 (u)
Tn,1 (u) Tn,2 (u)

)−1(
Wn,0 (u)

Wn,1 (u)

)
.

According to Proposition 3.3, one has that

(
T̂n,0 (u) T̂n,1 (u)

T̂n,1 (u) T̂n,2 (u)

)−1

=

(
Tn,0 (u) Tn,1 (u)
Tn,1 (u) Tn,2 (u)

)−1

+ Up

(
n−1/2

)
,

which with Proposition 3.4 implies that

φ̂
(
u, Θ̂

)
− φ̂ (u,Θ) = eT0

{(
Tn,0 (u) Tn,1 (u)
Tn,1 (u) Tn,2 (u)

)−1

+ Up

(
n−1/2

)}

×
(
Wn,0 (u) + Up

(
n−1/2

)
Wn,1 (u) + Up

(
n−1/2

))− eT0

(
Tn,0 (u) Tn,1 (u)
Tn,1 (u) Tn,2 (u)

)−1(
Wn,0 (u)

Wn,1 (u)

)
.

Thus,

sup
u∈[a0,b0]

∣∣∣φ̂(u, Θ̂)− φ̂ (u,Θ)
∣∣∣ = Op

(
n−1/2

)
.

The proof is completed.

Proof of Theorem 2.5. It is clear that

N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

K∗
(
ZT

ij θ̂,Z
T

ij′ θ̂;u
)
ε̂ij ε̂ij′

−N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

EK∗
(
ZT

ijθ,Z
T
ij′θ;u

)
σjj′

i
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= N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

{
K∗
(
ZT

ij θ̂,Z
T

ij′ θ̂;u
)
−K∗

(
ZT

ijθ,Z
T
ij′θ;u

)}

×
(
ε̂ij ε̂ij′ − σjj′

i

)
+N−1

T h−1
n∑

i=1

Ni∑
j=1

Ni∑
j′=1

K∗
(
ZT

ijθ,Z
T
ij′θ;u

)(
ε̂ij ε̂ij′ − σjj′

i

)

+N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

{
K∗
(
ZT

ij θ̂,Z
T

ij′ θ̂;u
)
−K∗

(
ZT

ijθ,Z
T
ij′θ;u

)}
σjj′

i

+N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

{
K∗
(
ZT

ijθ,Z
T
ij′θ;u

)
− EK∗

(
ZT

ijθ,Z
T
ij′θ;u

)}
σjj′

i

where K∗ (s, t;u) = K
(
s−u
h

)
K
(
t−u
h

)
is in Lemma A.4. Notice that

ε̂ij ε̂ij′ =
[
εij −XT

ij

(
β̂ − β

)
−
{
φ̂
(
ZT

ij θ̂
)
− φ̂
(
ZT

ijθ
)}]

×[
εij′ −XT

ij′

(
β̂ − β

)
−
{
φ̂
(
ZT

ij′ θ̂
)
− φ̂
(
ZT

ij′θ
)}]

,

and σjj′

i = E εijεij′ . As in the proof of Lemma A.4, it is easy to show that

sup
u∈[a0,b0]

∣∣∣∣∣N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

{
K∗
(
ZT

ij θ̂,Z
T

ij′ θ̂;u
)
−K∗

(
ZT

ijθ,Z
T
ij′θ;u

)}

×
(
ε̂ij ε̂ij′−σjj′

i

) ∣∣∣∣∣ = Op

(
n−1h−3

)
.

Meanwhile, using the inequality in Lemma A.1 and the discretization method
again as in Lemmas A.2 and A.3, one can obtain that

sup
u∈[a0,b0]

∣∣∣∣∣N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

K∗
(
ZT

ijθ,Z
T
ij′θ;u

)(
ε̂ij ε̂ij′ − σjj′

i

)∣∣∣∣∣
= Op

(
n−1/2 log1/2 n

)
and

sup
u,u′∈[a0,b0]

∣∣∣∣∣N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

{
K∗
(
ZT

ijθ,Z
T
ij′θ;u

)
−EK

∗
(
ZT

ijθ,Z
T
ij′θ;u

)}
σjj′

i

∣∣∣∣∣
= Op

(
n−1/2 log1/2 n

)
.

In addition, according to Lemma A.4, one has that

sup
u∈[a0,b0]

∣∣∣∣∣N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

{
K∗
(
ZT

ij θ̂,Z
T

ij′ θ̂;u
)
−K∗

(
ZT

ijθ,Z
T
ij′θ;u

)}
σjj′

i

∣∣∣∣∣
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= Op

(
n−1h−3

)
.

Therefore, the four equations above imply that

sup
u,u′∈[a0,b0]

∣∣∣∣∣N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

K∗
(
ZT

ij θ̂,Z
T

ij′ θ̂;u
)
ε̂ij ε̂ij′

−N−1
T h−1

n∑
i=1

Ni∑
j=1

Ni∑
j′=1

EK∗
(
ZT

ijθ,Z
T
ij′θ;u

)
σjj′

i

∣∣∣∣∣ =Op

(
n−1h−3

)
.

This along with supu∈[a0,b0]

∣∣∣f̂ (u)− f (u)
∣∣∣ = op (hf ) in (2.6) and Assumption

(A5) concludes that

sup
u∈[a0,b0]

∣∣∣Ĉn (u)− Cn (u)
∣∣∣ = op (hf ) +Op

(
n−1h−3

)
= op (hf + h) = op (hf ) .

The proof is completed.
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