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Abstract: This paper reviews predictive inference and feature selection
for generalized linear models with scarce but high-dimensional data. We
demonstrate that in many cases one can benefit from a decision theoret-
ically justified two-stage approach: first, construct a possibly non-sparse
model that predicts well, and then find a minimal subset of features that
characterize the predictions. The model built in the first step is referred to
as the reference model and the operation during the latter step as predictive
projection. The key characteristic of this approach is that it finds an excel-
lent tradeoff between sparsity and predictive accuracy, and the gain comes
from utilizing all available information including prior and that coming from
the left out features. We review several methods that follow this principle
and provide novel methodological contributions. We present a new projec-
tion technique that unifies two existing techniques and is both accurate and
fast to compute. We also propose a way of evaluating the feature selection
process using fast leave-one-out cross-validation that allows for easy and
intuitive model size selection. Furthermore, we prove a theorem that helps
to understand the conditions under which the projective approach could
be beneficial. The key ideas are illustrated via several experiments using
simulated and real world data.
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1. Introduction

Predictive inference and feature selection for generalized linear models (GLMs)
in problems with scarce data but high-dimensional feature space—regime known
as “small n, large p” '—remains a topic of active research. Often, albeit not al-
ways, the goals are twofold: the desire is to find a model that predicts unseen
data well but utilizes only a small subset of features. This facilitates the inter-
pretation and makes the model more convenient to use at prediction time.

A vast variety of different approaches have been proposed. Frequentist ap-
proaches typically formulate an estimator with a penalty that enforces sparsity

1Due to this historical naming we stick with these symbols but also use p to denote density
functions. We hope this does not confuse the reader.
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in the solution (e.g., Breiman, 1995; Tibshirani, 1996; Fan and Li, 2001; Zou
and Hastie, 2005; Candes and Tao, 2007). A useful overview has been written
by Hastie, Tibshirani and Wainwright (2015). Among Bayesians, the most com-
mon approach is to use a sparsifying prior that favors solutions with a small
number of active predictors (e.g., George and McCulloch, 1993; Raftery, Madi-
gan and Hoeting, 1997; Ishwaran and Rao, 2005; Johnson and Rossell, 2012; Car-
valho, Polson and Scott, 2010). These approaches do not automatically produce
truly sparse solutions since there is always nonzero probability for each feature
being included in the model, but sparse models can be obtained for instance
by removing features with estimated posterior effect below certain threshold
(Barbieri and Berger, 2004; Ishwaran and Rao, 2005; Narisetty and He, 2014).

All these approaches attempt to solve the two problems—prediction and fea-
ture selection—simultaneously. In this paper we argue that in many situations
one can gain if these problems are solved in two stages:

1. Construct the best predictive model you can (which potentially uses a lot
of features). Call this model the reference model.

2. If the model is too complex, find a simpler model (with acceptable com-
plexity) that gives as similar predictions as the reference model. For a given
complexity (number of features), the model with the smallest predictive
discrepancy to the reference model should be selected.

This strategy not only solves many issues that one might encounter in tradition-
ally used Bayesian approaches (as we will discuss in Sec. 2) but has also shown
empirically very good performance in comparison to many other methods with
good tradeoff between sparsity and predictive accuracy (Piironen and Vehtari,
2017a). Our discussion will be mainly from the Bayesian viewpoint but is aimed
to provide insights also for a non-Bayesian oriented reader since the idea of a
reference model is not intrinsically limited only to the Bayesian paradigm (see,
e.g, Paul et al., 2008; Harrell, 2015) or even to feature selection in generalized
linear models (e.g., Bucila, Caruana and Niculescu-Mizil, 2006; Hinton, Vinyals
and Dean, 2015).

A piece of pioneering work in this line was carried out by Lindley (1968),
who considered prediction in linear regression model when some of the features
are unavailable at prediction time. A related but slightly different approach was
proposed by Goutis and Robert (1998) and Dupuis and Robert (2003) who in-
troduced the concept of projecting the posterior information in the reference
model to smaller submodels, although they were mainly interested in feature
selection and less so about predicting with the submodels. Since then, several
papers have extended this literature by introducing new variants and computa-
tional heuristics Nott and Leng (2010); Tran, Nott and Leng (2012); Hahn and
Carvalho (2015). We discuss these contributions in detail later on.

In principle, using a reference model means adopting M-completed view
(Bernardo and Smith (1994) and Vehtari and Ojanen (2012)). However, we as-
sume the phenomena we are modeling are so complex that the true model is
not included in the list of models under consideration. Thus when constructing
the reference model, we adopt the M-open view, but if we are able to find a
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model that passes model assessment and checking (see, e.g., Gelman et al., 2013;
Gabry et al., 2018), we can use it as a reference model in M-completed setting.
The benefit of a reference model is that it reduces the variance in the model
selection in a same way as use of model assumptions reduce the uncertainty in
the usual data modeling.

1.1. Owur contributions

This paper makes the following contributions:

e We give a detailed review about the aforementioned projection techniques
under unified notation, illustrate their differences and provide recommen-
dations about the preferred approaches.

e We develop a new type of projection—called clustered projection—that
can be considered as a unification of the approach of Goutis, Dupuis and
Robert and that of Tran et al., and show that it gives a good balance
between speed and accuracy.

e We propose a new efficient method for validating the selection process
using approximate leave-one-out (LOQ) cross-validation. This technique
can be used to assess the predictive accuracy of the submodels which
allows for intuitive model size selection.

e We discuss the typical difficulties encountered with the traditional Bayesian
feature selection approaches via small examples and show how the projec-
tive approach yields more satisfactory results. Since an extensive compari-
son showing the superiority of the projection (in terms of sparsity-accuracy
tradeoff) to many other Bayesian model selection strategies over a vari-
ety of data sets has already been carried out earlier (Piironen and Vehtari,
2017a), here we focus only on some of the most commonly used techniques
and illustrate via small examples why they are problematic.

e We discuss the connection of the projection to the popular Lasso estima-
tor (Tibshirani, 1996) together with several empirical results that demon-
strate the benefit of the proposed approach in the “small n, large p” -
setting.

e We prove a theorem that—at least in our knowledge—for the first time
gives a theoretical argument of why and under which conditions the use
of reference model could be beneficial for parameter learning in linear
models.

e We provide an R software package projpred that implements all the dis-
cussed methods. The package is freely available and makes the method
easily accessible to a wide audience. 2

We hope this work will serve as a useful overview of the projective inference and
spark further research on an important methodology we feel has largely been
overlooked.

2The codes with installation instructions and examples are available at https://github.
com/stan-dev/projpred.
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1.2. Why does a reference model improve feature selection?

We begin with a simple example that motivates why use of a reference model can
be useful for feature selection. Although the details are different, this example
is greatly inspired by the one presented by Paul et al. (2008).

Assume we have collected n measurements of p features z;, j = 1,....,p
along with measurements of some target variable y. Assume also that the data
are generated according to the following mechanism:

N(0,1),

y|f~N(f,1)

zi|f~NWpfi1=p)  G=1.. Prel,
x]'fNN(Oal) J=Pra+1l,...,p.

(1)

The target variable values y are noisy observations from the latent function
values f which are drawn randomly from a standard Gaussian distribution. The
first pre1 features x; are also noisy observations from the latent function f, which
makes them correlated and on average equally predictive about y. The multiplier
/P and the noise variance 1 — p are chosen so that the marginal variance of
each z; is 1 and the pairwise correlations between the first pr. features are all
equal to p. The rest of the features are drawn randomly from a standard normal
distribution and are thus uncorrelated and irrelevant for predicting y.

Suppose our goal is to assess how predictive each of the features is about the
target variable. A simple strategy would be to compute the sample correlation
R(x;,y) between each feature and the target variable and then rank the features
based on the absolute values |R(z;,y)|. Since the features are related to the
target variable via the latent f, clearly our task would be easier if we had access
to the noiseless values f instead of the noisy ones y, since the additional noise
weakens the correlations, that is, |Cor(z;,y)| < |Cor(x;, f)| for j =1,..., Prel.
In practice we do not observe f directly, but intuitively if we could build up a
model whose output f, is fairly close to the true f, we might expect to benefit
by making the assessment based on the sample correlations R(x;, f) instead
of R(x;,y).

Figure 1 illustrates this idea. The left graph shows the absolute sample corre-
lations |R(z;,y)| versus |R(z;, f)| for one data realization from (1) with p = 500,
prel = 150, n = 30 and p = 0.5. The relevant features (red dots) are much better
separated from the irrelevant ones (gray dots) when we consider their correlation
with f instead of y. The right graph demonstrates that this holds also when we
replace the unknown f with predictions f, of a reference model we can actually
compute. Here the reference fit is obtained by Bayesian linear regression of y on
the first three supervised principal components of all the features (the procedure
is discussed in detail in Sec. 6).

Figure 2 shows that this pattern holds for a wide range of values for p and p,;.
Parameter p describes how strongly the relevant features are predictive about y,
so when p is close to 1, they all are almost perfect copies of f and therefore easy
to distinguish from the noise features. On the other hand when p gets smaller,
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Fic 1. Introductory example: Left: Absolute sample correlations of each feature x; with the
observed target variable y (horizontal axis) and with the noiseless latent value f (vertical axis)
for n = 30 observations generated according to (1), with p = 500, pre = 150 and p = 0.5.
Red dots denote the truly relevant features and gray dots irrelevant noise features. Right: The
same but the true latent f replaced by the predictions fx of a reference model we can actually
compute (see the text for details). The relevant features are much better separated from the
irrelevant ones when we consider their correlations with either the true f or the reference
model predictions f« instead of the observed y (the amount of overlap between the two groups
is depicted by the black lines).

the predictive power of the relevant features decreases and hence they are more
difficult to identify. It is quite remarkable that above p = 0.4 the reference model
approach gives nearly oracle results.

1.3. Remark on the terminology

To avoid confusion, it is useful to distinguish between two different problems
both of which could be considered as “feature selection”:

1. Find a minimal subset of features that yield a good predictive model for
y, so that adding more features does not considerably improve predictive
accuracy.

2. Identify all features (or as many as possible) that are statistically related
to the target variable y.

In the remainder of this paper, we shall focus solely on the first problem, mean-
ing that the central interest is the tradeoff between predictive accuracy and
number of features. The latter problem—which is often referred to as multiple
(hypothesis) testing—is more concerned with controlling metrics such as false
discovery rate (FDR), and different means are more suitable for solving this
problem. Still, as the previous example illustrates (Sec. 1.2), we expect the ref-
erence model approach to be beneficial also there.

2. Traditional Bayesian approaches

This section briefly reviews some of the most common Bayesian approaches for
inference with large number of features and highlights their main difficulties.
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Fic 2. Introductory example: Average rank of the truly relevant features when the features are
sorted based on their absolute sample correlations with y (orange) or with the reference model
predictions f« (blue). The results are averages over 100 data realizations from mechanism (1),
with n = 30 and p = 500, and the results are shown for three different values of pre; with
varying p. Lower values are better, and the dashed lines denote the oracle results (that is, if
all truly relevant features are ranked before the irrelevant ones). The standard errors (vertical
lines) are in most cases smaller than the dot sizes.

2.1. Sparsifying priors

Consider the standard Gaussian linear regression model
inBTXi+€i7 €iNN(Oa02)7 t=1,...,mn, (2)

where x is the p-dimensional vector of features, 3 contains the corresponding
regression coefficients and o2 is the noise variance. A very popular Bayesian
approach for assessing the relevances of the different features is to assign a
sparsifying prior on each 3;, and then perform the relevance assessment based
on the marginal distributions for each §; (see Sec. 2.2).

A popular prior choice is the spike-and-slab, which is often written as a mix-
ture of two Gaussians

BilAj e, e~ A N(0,¢%) + (1 — A;)N(0,?), 3
Aj |~ Ber(m), ji=1,...,p, ®)

where ¢ < ¢ and the indicator variable A; € {0,1} denotes whether the coef-
ficient f3; is close to zero (comes from the “spike”, A; = 0) or nonzero (comes
from the “slab”, A\; = 1). The width of the spike ¢ is either taken to be exactly
zero or set to a small positive value (George and McCulloch, 1993; Ishwaran
and Rao, 2005). The prior inclusion probability 7 is either fixed (typically to
m = 0.5) or given a hyperprior such as 7 ~ U(0,1) (Ishwaran and Rao, 2005).
A popular alternative to the spike-and-slab is to formulate the prior for §;s as

a continuous mixture of Gaussians. Several such priors have been proposed (e.g.
Carvalho, Polson and Scott, 2010; Armagan, Clyde and Dunson, 2011; Bhat-
tacharya et al., 2015; Bhadra et al., 2017), but the most popular one is probably
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the horseshoe
Bil A, ~N(0,72A3),

4
AchJr(O’l)’ j:]‘7"'7p’ ()

which has been shown to possess several attractive properties and has enjoyed
a great empirical success (Carvalho, Polson and Scott, 2009; Polson and Scott,
2011; van der Pas, Kleijn and van der Vaart, 2014). The intuition is that the
global scale 7 drives all the coefficients toward zero, while the thick Cauchy-
tails for the local scales A; allow some of the coefficients to escape the shrinkage.
Piironen and Vehtari (2017b) proposed an extension to the formulation (4),
called the regularized horseshoe

222
ﬂj|Aj7T7CNN(Oa7—2§]2’)7 f?:m7

>‘ch+(071)7 j:]-v"'apv

& ~ -Inv-x? (V, 52) ,

()

which introduces an additional regularization parameter ¢ that brings the char-
acteristics of the horseshoe even closer to those of the spike-and-slab (3). The
idea is that unlike in the original horseshoe where the largest coefficients are
only very weakly penalized (horseshoe has Cauchy-tails), here they face a regu-
larization equivalent to a Student-t slab with scale s and v degrees of freedom.
For a fixed but finite slab width ¢ = s (obtained by letting v — 00), the prior
is operationally similar to the spike-and-slab (3) with the same ¢, whereas the
original horseshoe (4) (obtained by letting also s — o0) resembles the spike-
and-slab with infinite slab width ¢ — oo (see Piironen and Vehtari, 2017b, for
the derivations, more detailed discussion and illustrations). This additional reg-
ularization is useful if the parameters are weakly identified (e.g. coefficients in
separable logistic regression) and often robustifies and speeds up the Markov
chain Monte Carlo (MCMC) posterior inference.

It is possible to place a prior for the global parameter T based on the sparsity
assumptions analogous to the prior for 7 in spike-and-slab (3). Under certain
assumptions, Piironen and Vehtari (2017¢,b) showed that to concentrate prior
mass onto solutions where pg coefficients are far from zero, most of the prior
mass for 7 should be concentrated near the reference value

PR (6)

Cp—pon
A recommended weakly informative prior is then 7| ~ C*(0,73), which we
shall also use throughout this paper unless otherwise stated.

2.2. Bayes factors and marginal posterior relevance assessment

It should be made explicit that neither the spike-and-slab (3) nor the (regular-
ized) horseshoe (5) performs actual feature selection in the sense that some of
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the variables would have exactly zero coefficient with probability one, which is
true for many of the non-Bayesian penalized estimators (see Sec. 4). Although
often overlooked, the actual selection problem can remain highly non-trivial
even after successfully fitting the model with a sparsifying prior.

In the spike-and-slab literature, the actual selection is most often carried
out either by selecting the most probable feature combination (that is, using
Bayes factors) or by selecting those features with posterior inclusion probability
above some threshold, typically 0.5, although several thresholding rules have
been proposed (Barbieri and Berger, 2004; Ishwaran and Rao, 2005; Narisetty
and He, 2014). Analogous decision rules based on the posterior estimates for the
so called shrinkage factors could also be devised for the continuous shrinkage
priors (Carvalho, Polson and Scott, 2010).

Unfortunately both the Bayes factors and the marginal relevance assessment
have difficulties that make them unsatisfactory in our opinion. Firstly, the pos-
terior inference via MCMC for multimodal posterior resulting from one of the
sparsifying priors can be a challenge for high-dimensional feature spaces, albeit
sophisticated sampling techniques can alleviate this problem (see, e.g., Zanella
and Roberts, 2019). Secondly, for large number of features p the Bayes factors
typically have high Monte Carlo errors due to the fact that only a vanishingly
small proportion of the 2P models is visited during MCMC, and almost all
models are not visited at all. The relevance assessment based on the marginal
posteriors on the other hand can produce unintuitive results in the case of cor-
relating features, since it can be that the marginals of two or more coeflicients
overlap with zero but the joint distribution is clearly distinguished from zero
(see Sec. 2.3). Another major issue is that neither of these approaches provides
a satisfactory answer to how to perform post-selection inference for the selected
model, in particular, how to make inference and predictions after the selection,
conditional on all the information available. For an example of how the pro-
jective approach can improve predictions using the selected model even when
marginal posterior probabilities are used for selecting the features, see Figure 6
in Piironen and Vehtari (2017a).

2.8. An illustrative example

We illustrate the difficulties with the marginal relevance assessment discussed in
Section 2.2 with similar data as in the introductory example, see Equation (1).
We generated one data realization with n = 50 observations for three different
number of features, p = 4, p = 10 and p = 50, each using p = 0.8 and pr = %,
so in each case the first half of the features were truly relevant. For illustration
purposes, we did this by first generating the data for p = 4 and then adding the
right number of relevant and irrelevant features for cases p = 10 and p = 50.
This way, the realized values for the first two relevant features z; and xo and
the target variable y did not vary between the three data sets, which lets us
illustrate how the total number of features p affects the relevance assessment of
the two features.
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Fic 3. Simulated example: The rows denote the results for the three different priors, Gaus-
sian, regularized horseshoe (RHS) and spike-and-slab (SS), and the columns show the results
for the three different number of features p. For the Gaussian and RHS priors the graphs
show the posterior median (dots) with 50% and 90% credible intervals (thick and slim lines,
respectively) for the regression coefficients Bj. For SS prior, the graphs show the posterior
inclusion probabilities for each variable. As the dimensionality p increases, all the marginals
start to overlap with zero, and the SS posterior inclusion probabilities get smaller.

A Bayesian linear regression model was fitted to these data with three differ-
ent priors on the regression coefficients:

e Gaussian ;|7 ~ N(0,72) with 7 ~ C(0,1)
e Regularized horseshoe (RHS) with pg = 1, v = 4, s = 1 (See Eq. (5) and

(6))
e Spike-and-slab (SS)? with = ~ U(0,1)

Figure 3 visualizes the posterior median and credible intervals for the regression
coefficients under Gaussian and RHS priors, along with the marginal posterior
inclusion probabilities for the different features obtained from the SS-posterior.
With only p = 4 features and Gaussian prior, both z; and x; are detected
to be relevant as the marginal posteriors of 5; and (2 are distinguished from
zero. As the number of features grows, the marginals become more concentrated
around zero and with p = 50 the marginals of all the relevant features are
substantially overlapping with zero. The same applies also for the RHS prior, in
fact it appears that the marginals start to concentrate around zero faster than
for Gaussian prior. Also for the SS prior, the marginal inclusion probabilities
generally decrease for all the relevant features as the dimensionality grows, and

3For inference, we used the R-package spikeslab (Ishwaran, Kogalur and Rao, 2010).
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Fic 4. Simulated example: Posterior draws for f1 and P2 with Gaussian and regularized
horseshoe (RHS) priors (top and bottom row, respectively) when the total number of features
p varies. In each graph, the observed data for x1,x2 andy are exactly the same, only the prior
and the total number of features p varies. Notice how the marginal posteriors are always more
overlapping with zero than the joint posterior. As the dimensionality increases (in particular,
when the number of features correlating with x1 and x2 increases), the joint posterior becomes
more closer to the product of the two marginals and more overlapping with zero.

for p = 50 only one of them just barely has probability over 0.5. Notice how
the marginals of the coefficients for the relevant variables are not substantially
different from those of the irrelevant ones when p = 50 regardless of the prior.

The reason for this behaviour is quite simple: as the number of features car-
rying similar information grows, the coefficients of most of the relevant features
could be set to zero as long as one (or a few) of them obtain nonzero coefficient.
In other words, none of the features is so precious that it could not be removed,
and therefore the marginals of all the features become more overlapping with
zZero.

Figure 4 further illustrates what happens to the posterior of 5; and 8> when
the dimensionality changes. For p = 4 where z; and x5 are the only relevant
features, the posterior dependency between their coefficients is very strong; if
one of the coefficients is set to zero, then the other one must be large. As
the number of features p grows, the posterior dependency between (5; and (2
becomes weaker; when there are many features that carry similar information
as 1 and xo, both coefficients could be set to zero because there are many
substitutes. The results for p = 50 really summarize why the marginals and the
pairwise posterior plots can be very challenging to interpret and even misleading:
x1 and x5 have correlation of p = 0.8 and their correlation with y both exceed
0.6, yet there is no apparent posterior dependency and both marginals clearly

4The correlation between each relevant z; and y is \/g ~ 0.63
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overlap zero! Figure 9 in Appendix A.1 confirms that these observations are not
due to cherry-picking a specific data set, but hold over multiple data realizations.

2.4. Why not to use cross-validation for selecting the feature
combination?

Cross-validation (CV) and information criteria (IC) are widely used generic
methods for estimating predictive performance of essentially any learning algo-
rithm. One might be wondering why not to use them also for feature selection?
While it is certainly true that for example cross-validation can be a robust and
convenient method for comparing a few competing models, in feature selection
the number of model comparisons becomes quickly impractically large even for a
relatively small number of candidate features. The computational burden of fit-
ting a large number of models becomes an obvious problem especially if Bayesian
approach with MCMC is used for inference.

Another problem that is not always so well understood is that when many
models are compared using cross-validation, the selection process is liable to
overfitting which can lead to selection of non-optimal model due to relatively
high variance in the cross-validation estimates. We have discussed this in de-
tail in our earlier work (Piironen and Vehtari, 2017a) where we also show that
the projective approach is considerably more resilient to this phenomenon. The
selection induced bias has also been discussed by other authors, see for exam-
ple Ambroise and McLachlan (2002), Reunanen (2003) and Cawley and Talbot
(2010).

3. Predictive projection

This section discusses the projective approach in detail. We start by describing
the projective idea in general, and then discuss the exponential family models
and GLMs as special cases.

3.1. Remarks on notation

We shall denote the training data by D. The ‘tilde’ notation is used to denote
future measurements, for example symbol § denotes unseen measurement for y.
To simplify notation, we use g; to denote a new observation at the ith observed
feature values x;, which allows us to drop the conditioning on x; from the
conditional distributions. Notice though that g; is in general different from the
observed y;.

3.2. General idea

In generic terms, posterior projection refers to a procedure of replacing the
posterior distribution p(8. | D) of the reference model with a simpler distribution
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q1 (@) that is restricted in some way. For example, in feature selection context
for GLMs, this would mean constraining some of the regression coefficients to be
exactly zero. In general, the domain of the projected parameters 8 € ® can and
typically will be different from the domain of the reference model parameters
0. € O,. For this reason, it is not meaningful to define the projection directly via
the discrepancy between p(8. | D) and ¢, (). Instead, a natural approach would
be to define it via the discrepancy between the induced predictive distributions

KL(p(7|D) lq(7)) = Ez(logp(j|D) —logq(y))
= —Ej(logq(g)) + const.
= —E;(logEge(p(7]0))) + const.
= —Eo.(Ejo.(logEe(p(]0)))) +const.  (7)

Here Eg, (), Ej|o,(-) and Eg(-) denote expectations over p(8.|D), p(7|0+)
and ¢, (0), respectively. Optimal projection of posterior p(8, | D) from parame-
ter space ©, to © in terms of minimal predictive loss would then be the distribu-
tion ¢, (@) that minimizes functional (7). In practice minimizing this is difficult
even for relatively simple models and projected posterior ¢, (8) due to the many
expectations, but expression (7) serves as the ideal when re-formulating the pro-
jection in a more tractable way. Below we define three different projections.

3.3. Practical projection techniques

Draw-by-draw  Instead of trying to minimize the functional (7) assuming
some parametric form for ¢, (6), we can obtain an easier optimization problem
by formulating the projection as a pointwise mapping from a given 8, € @, to
0, €O as

0, =arg Inin KL(p(716.) | p(716))
= arg géagEgm*(lng(@ 19)). (8)

For models where the predictions are conditioned on some set of observed pre-
dictors %, one takes the average of (8) over the distribution of the predictors.
As the distribution of the future predictors p(X) is typically not available, the
expectations over this are most conveniently approximated by a sample mean
over the observed {x;}? ;. This results in a projection equation

1 — _
0, =arg max -~ ; Ey, 0. (logp(7:]0) ), 9)

which is the original formulation of (Goutis and Robert, 1998; Dupuis and
Robert, 2003) (they used minimization of KL-divergence in their formulation,
but this is equivalent to maximizing the expected likelihood in Eq. (9)). Given
S draws {62}5_, from the posterior p(6. | D) we can project each of these sep-
arately via (9) to obtain the corresponding draws {635 }5_; in the projection
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space ©. These can be thought of as draws from a projected posterior distri-
bution ¢, (8) (although this may not be available analytically), and hence they
are used exactly as we would use posterior draws for that particular submodel.
The appealing property of the draw-by-draw projection is that it is computa-
tionally feasible for many commonly used models such as the GLMs because
the optimization problem will have the same form as the problem of finding the
maximum likelihood parameter values (see Sec. 3.5). The introduced projection
error or loss is then defined as the average loss over the draws

0|+~

S
bo = + 3 KL(p(7162) | p(7 | 62)). (10)
s=1

Single point (one cluster) Draw-by-draw projection (above) maps each
parameter value 6, into a corresponding value 6, in the projection space. The
single point projection (which is a special case of the clustered projection that
we will introduce in a moment) instead maps the whole posterior p(€. | D) into
a single value @ . This can be obtained from (7) by assuming ¢, () is a point
mass at @ € O, taking expectation over the predictors X and then optimizing
the expression with respect to 0

1< 3
0.1 = arg max ;Egi(logp(yi 16)). (11)

This is the formulation of Tran, Nott and Leng (2012). Notice that (11) is other-
wise same as (9) except that here the expectation is computed over the posterior
predictive distribution of the reference model, that is, Eg, (-) = Eg_ (Eg, [o.(*) ),
where Eg, () denotes expectation over p(6.|D). In practice the expectation
Ej, (-) is approximated using the posterior draws. Equation (11) can be used to
compute optimal point estimates in the projection space. Also, when ® = @,
this computes the optimal predictive point estimates in the original parameter
space (for a related approach, see Bernardo and Juérez, 2003). It is worth notic-
ing that in general the result is often different from the usual point estimates,
such as the posterior mean or median.

The benefit of the single point projection over the draw-by-draw is that it is
much lighter computationally. For instance, for GLMs (Sec. 3.5), solving (11)
has the same computational complexity as solving (9), and since the latter must
be solved separately for each of the S posterior draws, single point projection
essentially reduces the computations by a factor of S. Another benefit of formu-
lation (11) is that it allows convenient search techniques, such as the Lasso type
L;-penalty, to be used for finding good submodels (see Section 4). The draw-
back is that it can be somewhat less accurate than the one-to-one projection,
meaning that the predictive accuracy of the submodel can be compromised. To
address this point, we shall introduce the clustered projection below.

Clustered The clustered projection is our novel approach that can be
thought of as a unification of the draw-by-draw and single point projections. In
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this approach one clusters the posterior draws {85} ; of the reference model
into C clusters {0 : s € I.}, ¢ = 1,...,C, and then performs a single point
projection within each cluster. Here Iy,..., Ic denote the index sets that indi-
cate which draw belongs to which cluster (we discuss in a moment how to come
up with such a division). The projection for the cth cluster then becomes

1 — _
0, = arg max — ;Ey 11.(logp(7:10) ), (12)

where Ej, |7.(-) denotes the predictive distribution of the reference model com-
puted over the posterior draws in that cluster /.. In other words, Ey, |7, (h(%:)) =
\I_lc\ > .er, Eg. 1o (h(7:)) for any function h(g;).”> Solving (12) for each or the C
clusters yields a set of projected parameters {6 }<_,. Each of these is given a
weight w, proportional to the number of draws in that cluster, w. = |{$‘, and
these weights are taken into account when computing expectations over the pro-
jected posterior. For example, the projected predictive density at future ¢ is
then given by

C
a(7) =Y _wep(7]69). (13)

More generally, the expectation of an arbitrary function h(0)) over the pro-
jected posterior is calculated as Zle weh(69).

A simple but generic and effective approach is to cluster the draws {65}5_,
based on the expected values they impose for y in the unconstrained (latent)
space. That is, if fs = g(E(¥ 03 )), where § = (91, ..., 9n) and g(-) denotes the
link function, we would cluster the vectors {f,}>_,. This approach is convenient
since it makes the clustering independent of the dimensionality of the parameter
space of the reference model, and since in practice for projection we need only
the vectors f; (see Sec. 3.4 and 3.5), we can perform the clustering with access
only to the predictions of the reference model (without access to the actual pa-
rameter values). As a clustering algorithm, we use k-means. Although k-means
is known to have some limitations, in our experience it usually performs reason-
ably well. An alternative approach would be to minimize the locations of the
projected parameters {05 }<_, jointly using for example the method of Snelson
and Ghahramani (2005), but this is computationally much more expensive.

Both the draw-by-draw (9) and the single point projection (11) are obtained
as special cases of the clustered projection (12). The draw-by-draw approach is
obtained by setting the number of clusters C' equal to the number of posterior
draws C' = S and assigning each posterior draw into its own cluster. The single
point projection is obtained by setting C' = 1 and assigning all draws into the
same cluster. The benefit of the clustered projection is that it improves the
accuracy compared to the single point (one cluster) projection already with a

5Here we are slightly abusing the notation by using the symbol E( - ) to denote sample mean
computed over a finite number of posterior draws, but we do this to simplify the notation.
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small number of clusters, and thereby gives a good tradeoff between speed and
accuracy. We will illustrate this with an example in Sec. 7.1.

3.4. Exponential family models

Assuming the observation model for y; belongs to the exponential family with
canonical parameter 7; and dispersion ¢, the log-likelihood has the form (Mc-
Cullagh and Nelder, 1989, ch. 2)

ini — B(n;
Ei—logp(yz'm)_ynTQS)(n)

for some specific functions A(-), B(-) and H(-). Here the natural parameter is a
function of the model parameters, 7; = 7;(0). The maximum likelihood solution
for the parameters 6 reduces to

+ H(yi, 9), (14)

n

O, = arg géa(zgz (yimi(0) — B(1:(8))), (15)

which does not depend on the value for the dispersion ¢ (function A(¢) is
assumed to be strictly positive). Let g; denote a new measurement at the ith
observed feature values x;. Now, if we denote the expected value of §; over some
reference distribution as pf = E(g; ), we can write the draw-by-draw, single
point and clustered projections (Eq. (9), (11) and (12)) all as

3

9, = arg reréagz (nini(0) — B(1:(9))). (16)

Thus when the observation model of the submodel is in the exponential family,
the projection of the model parameters 0 is equivalent to finding the maximum
likelihood solution with the observed targets y = (y1, ..., yn) replaced by their
expected values p, = (uf,...,pk) as predicted by the reference model. Thus
the projection can be considered as “fitting to the fit” of the reference model. As
discussed in Section 3.3, in draw-by-draw projection these fitted values p; are
computed separately for each posterior draw in the reference model, in clustered
projection separately for each cluster, and ultimately in the one cluster (single
point) projection over the whole posterior with the parameters 6, integrated
out. Notice also that the projection of the parameters 8 does not depend on the
value for the dispersion parameter ¢.

It is worth emphasizing that this result assumes only that the observation
model of the reduced model belongs to exponential family. In particular, we are
not making any assumptions about the observation model of the reference model
(which need not belong to the exponential family) or about the functional form
of (0) or about how the reference fit p, is formed. In principle this means that
the projection could be applied to a wide class of learning algorithms simply
by plugging in the fit of the reference model in place of the observed targets y;
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in maximum likelihood estimation. In practice, though, this does not work for
nonparametric models such as Gaussian processes where the parameters are the
values 7; themselves without further assumptions.

After computing the projected values for the model parameters 6 (Eq. (16)),
the dispersion ¢ is computed from

— (r:(61) _ )
= arg max + E; (H(y;, , 17
s =argmex 3 (4L + B (H(30) an
where r;(01) = pun;(01) — B(1n:;(01)) does not depend on ¢. Again, in draw-
by-draw and clustered projection, the expectation in Equation (17) is computed
separately for each draw or cluster, and in single point projection by integrating
over the whole posterior.

3.5. Generalized linear models

GLMs have their observation model in the exponential family and thus the
discussion of Section 3.4 applies. Let us first consider the projection onto a
linear Gaussian model with feature matrix X, where the parameters are the
regression coefficients 3 and dispersion is the noise variance o2. For simplicity,
let us now assume also that the reference model is a linear Gaussian model with
feature matrix Z and parameters (3,,02) and that we have drawn a posterior
sample {33,02 }5_,. Consider now the clustered projection with C' clusters.
As discussed in Section 3.4, the projection solution for @ within each cluster
is obtained by plugging in the fit of the reference model in place of y into the
familiar maximum likelihood solution

B, = (XTX)"'XTp, (18)

where pu¢ = ﬁ > e, Z3; denotes the prediction within the cth cluster. In the

single point projection (C' = 1) this reduces to p, = %Zle Z3:, whereas in
the draw-by-draw (C = S) we have pu? = Z33.

After plugging (18) into (17), it is straightforward to show that the projection
of the noise variance becomes

1 o 1
op =Y Vit —|IXB, — ulll, (19)
n = n
where V,° denotes the predictive variance of §; in the reference model within the

cth cluster. This is given by

Vi = Var(j; | I.) = E(Var(§i | B,,07) | I ) + Var(E (| 8., 0% ) | )
=E(o}|1I.) + Var(z; 85 | I.)

1 S
- ot Ve aT82). )

sel.
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where V,_; [] denotes sample variance over indices s € I.. Result (19) has a
natural interpretation; the projected noise variance is the average predictive
variance of the reference model plus the mismatch between the projected and
the reference model. Therefore any systematic variation in the data captured
by the reference model but not by the reduced model will be added to the
unstructured noise term in the reduced model. Notice also that the predictive
uncertainty of the projected model can never be smaller than in the reference
model which shows why the projection provides guard against overfitting in the
submodels.

Above we assumed that also the reference model is linear with Gaussian noise.
As already pointed out in Section 3.4, we emphasize that Equations (18) and (19)
hold even without these assumptions. For instance, p$ could come from an ar-
bitrary model, such as Gaussian process (GP), neural network or some complex
simulation model, and in the projection we investigate how much accuracy is
sacrificed by replacing it with a linear model. Even when the reference model
does not account for uncertainty in p,, that is, when no clustering can be made,
the single point projection is always available for the reference fit w,. Also, the
reference model noise could be non-Gaussian—Student-t, for instance—but we
could still project this model onto a Gaussian noise.

When the observation model of the projected model is non-Gaussian or when
the link is non-identity, the maximum likelihood solution is not available ana-
lytically, and therefore no closed form solutions for the projected regression co-
efficients or dispersion parameters exist. For solving the regression coefficients,
the standard approach then is to use iteratively reweighted least squares algo-
rithm (IRLS), where each of the log-likelihood terms £L; is replaced by a pseudo
Gaussian observation whose mean and variance are determined either by second
order Taylor series expansion to £; (e.g. Gelman et al., 2013, ch. 16.2) or by
linear approximation to the link function (McCullagh and Nelder, 1989, ch. 2.5)
at the current iterate (with canonical link functions the two approaches are
equivalent). The process is then iterated until convergence. Given the solution
to the regression coefficients, one can then plug that into Equation (17) and
solve the corresponding value for the dispersion (which might also require an
iterative procedure).

4. Search strategies

Due to the combinatorial explosion, even for relatively small number of features
it is infeasible to go through all the combinations when finding the optimal
reduced model for a given number of features. Therefore one has to rely on
approximate search heuristics for exploring promising submodels. Probably the
simplest alternative is to use a forward stepwise excursion. This procedure starts
from the model with only the intercept term and sequentially adds the feature
that decreases the projection error the most. Forward search can be used to-
gether with any of the three projection techniques presented in Section 3.3 and
often works well, but it can be computationally expensive for large number of
features.
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In the case of single point projection (11), a viable alternative is to use either
a Lasso-type Lj-penalization (Tibshirani, 1996) or the more general elastic net
penalty (Zou and Hastie, 2005) which contains L;-penalty as a special case. The
single point projection for GLMs with elastic net penalty can be written as

m[;n{—% S B (L:(8,5:)) + A (%(1 ~a)lIBI3 +a||ﬁ|1)}. (21)

=1

Here the first term is the expectation of the negative of the expected log-
likelihood of the submodel with coefficient vector B over the predictive dis-
tribution of the reference model, and « is the elastic net mixing parameter that
bridges the gap between Lasso (o = 1) and ridge (o = 0). Solving this for
a > 0 over a grid of values for X\ yields a sequence of models with varying
number of regression coefficients different from zero, which can then be used to
order the features, for instance by recording the order in which their coefficients
break nonzero as \ is decreased® (for more detailed discussion, see e.g. Hastie,
Tibshirani and Wainwright, 2015).

One of the key advantages of elastic net over the forward stepwise search is
that it is computationally very efficient. In particular, the coordinate descent
algorithm of Friedman, Hastie and Tibshirani (2010) that exploits warm starts
can often compute the solution path over the entire A grid in comparable time
to a single IRLS fit for a fixed variable combination. However, we do emphasize
that unlike in the penalized GLM literature, we use the penalization only to find
promising submodels, not to regularize their fit after selection. In other words,
after we have solved problem (21) for a grid of values A, we order the features
from the most relevant to the least relevant, and find the projected parameter
values (or projected posteriors) of the submodels without any penalization, or
using only a small Lo-regularization to improve numerical stability. This is be-
cause the projection conditions on the information in the reference model and
is therefore much more resilient to overfitting than maximum likelihood estima-
tion for the parameters after selection. See Section 7.1 for an illustration of this
point, and Section 7.3 for a demonstration of how the predictive accuracy can
greatly benefit from not using the penalization for the submodels after selection.

In addition to Lasso and elastic net, there is a wide literature on different
penalties for the (generalized) linear models, that are used to induce sparsity in
the solution, and therefore could be used as search heuristics to find promising
submodels for the projection also. One such method is the adaptive Lasso (Zou,
2006) which is obtained from (21) by introducing penalty factors +; that result
in different penalization for different variables A; = v;A, j =1,...,p. Plugging
the local penalties into the regularization term in (21), the regularizer becomes

78 = Ai% (301- @2 +als).

6Notice that this is not necessarily the same order in which the coefficients go to zero as
the penalty term A is increased. This is because a coefficient that is nonzero can go back to
zero as A is reduced, but most of the time the two orderings are the same.
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Using pilot estimates 3’ for the coefficients (that can be the univariate regression
coefficients, for example) and setting v; = 1/[8;|” for some v > 0, adaptive
Lasso reduces the excessive shrinkage of the relevant coefficients and recovers
the true model under more general conditions than does the Lasso. Adaptive
Lasso can also be used to encode preferences for different variables, for instance,
due to varying measurement costs. In the projection context, Tran, Nott and
Leng (2012) proposed to set 3’ to the posterior mode of the reference model
(assuming it is also a GLM) whereas Hahn and Carvalho (2015) proposed to
use the posterior mean (the two choices are in general different for GLMs with
non-Gaussian priors for the reference model). Our approach differs from these
in that we set v; = 1 for each feature in the selection phase but then relax
completely v; = 0 after the feature selection is done. We also utilize clustered or
draw-by-draw projection after selection when appropriate (see Sec. 7.1). Another
difference to the approach of Hahn and Carvalho is that they used squared
error instead of the KL-divergence to measure the discrepancy to the reference
model. Nott and Leng (2010) also used L;-penalization but for the draw-by-
draw projection. In this method the different draws can generally project onto
different feature combinations even for fixed A, and thus this approach does not
perform feature selection in the sense we are interested.

5. Validation and decision rules for model size selection

Although we can find the optimal reduced model for a given model complexity
by selecting the model with minimal projection loss, making the decision about
the appropriate model complexity using the KL-divergences is often difficult. A
natural way of deciding the model complexity is to validate the predictive utility
of both the reference model and the candidate reduced models on a validation
set using a metric that is easy to interpret, and then make the decision based
on these validation results. A generic and useful utility function is the mean
log predictive density (MLPD) over the validation points (see, e.g. Vehtari and
Ojanen, 2012), which has the advantage that it measures not only the point
predictions but also how well the predictive uncertainties are calibrated. Various
other utility and loss functions could also be used, such as mean squared error
(MSE) or classification accuracy in classification problems, which are often easier
to interpret.

If plenty of data are available and computation time is an issue, this as-
sessment can be done on hold-out data. However, when data are scarce, more
accurate assessment can be obtained using either leave-one-out (LOO) or K-fold
cross-validation, which we shall discuss next.

5.1. K-fold cross-validation

In K-fold cross-validation both the reference model fitting and the selection
is performed K times each time computing the utilities on the corresponding
validation set (Peltola et al., 2014). This gives us the cross-validated pointwise
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utilities u,(:) for a given model complexity k (number of features) at each data-

point i. For instance, with log predictive density as the utility function, u,(;) is
the log predictive density of the submodel with k features evaluated at the left
out y;. These can then be used to make the final decision about the appropriate
level of complexity. Our approach is to estimate the utility of each model size
k relative to the reference model, that is, AU, = U, — U,, where U, and U,
denote the true (unknown) utilities for the reduced and the reference model,
respectively. The point estimate and the standard error for the relative utility
AU in such pairwise comparison are given by

AU, = %i (u,(:) - ug)) , (22)
i=1

st = \/ Vi [uf?) ], (23)

where VI ,[-] denotes the sample variance. Given the point estimate and its
standard error it is easy to construct desired confidence intervals for AUy. A
natural choice is then to choose the simplest model that has acceptable difference
relative to the reference model with some confidence (Piironen and Vehtari,
2017a).

A simple choice is to select the smallest model for which the utility estimate
is no more than one standard error away from that of the reference model, that
is, the smallest k that satisfies AU}, + s > 0, which means that the submodel
is no worse than the reference model with probability approximately o = 0.16.
This approach has the drawback that such a model is not guaranteed to be
found if the submodels all introduce a considerable loss in utility. Instead one
could compare the utilities relative to the best submodel found, that is, in

Equation (22) replace ul? by u,(;zcst where kpes; = arg maxy, AUy. Based on the
experiments in Section 7.4 the two choices perform quite similarly, the latter
tending to select less parsimonious models but also with slightly better predictive
accuracy. Depending on the application, one might be willing to sacrifice more
utility in order to simplify the model ever further, and the decision about the
appropriate model size could naturally be made on more subjective grounds
also.

5.2. Leave-one-out cross-validation

The drawback in the K-fold cross-validation is that it requires fitting the refer-
ence model K times. Here we propose a new alternative approach using approx-
imate leave-one-out (LOO) validation using the Pareto smoothed importance
sampling (PSIS) (Vehtari, Gelman and Gabry, 2017), which avoids the repeated
fitting of the reference model. In (PS)IS-LOO, the posterior draws can be treated
as draws from the LOO posteriors given the importance weights. The weight
for draw 0] after leaving ith observation out, wgi), is given by wgi) x p(TllBs)'
These raw weights are then regularized using Pareto smoothing to stabilize the
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LOO estimates in case the importance weight distribution has a thick tail (see
Vehtari, Gelman and Gabry, 2017, for the procedure). It is then easy to approx-
imate the desired quantities for the LOO folds using these weights. For instance,
in the clustered projection for the Gaussian linear model we need the predictive
means p§ and variances (V7 ..., V.,¢) from the reference model for each cluster c.
If the reference model is also linear with Gaussian noise, using the notation from
Section 3.5, the predictive means at the observed inputs for the ¢th LOO are
given by

p= w2, (24)
sel.
where the weights are assumed to be normalized Zs el wgi) = 1. Correspond-

ingly, the predictive variance at point j for the ith LOO is given by

Vi= Y w0+ Ve 2185wl (25)
sel.

where V ; [+, vs] denotes the weighted sample variance over indices s € I,
with weights v;. Equation (25) is merely the weighted version of formula (20).
The feature selection and the projection onto the submodels at the search path
are then carried out for each LOO exactly as in the K-fold case. Exactly the
same decision rules as with the K-fold validation can be used to decide the
appropriate model size, the LOO method simply gives an alternative procedure
for computing the pointwise utilities, ugj) and uil), for the reduced and reference
models, respectively.

PSIS has the benefit that it gives us the Pareto l%—diagnostics for each LOO
describing the accuracy of the importance sampling approximation, with k <
0.7 indicating reliable approximation (see Vehtari, Gelman and Gabry, 2017;
Vehtari et al., 2019, for more precise discussion). Larger values indicate that the
calculated utilities u,(;) and u!” for such observation i have high variance and
can be biased (optimistic). In such cases, better estimates can be obtained by
iterative moment matching LOO (Paananen et al., 2020) or K-fold validation.
In Section 7.2 we demonstrate empirically that even when a few k-values exceed
this threshold, the relative utility estimate (22) can be nearly unbiased since the

bias in both u,(j) and qu) tends to cancel out in the subtraction.

5.3. Importance of validating the search

In order to reduce computations, it might be tempting to perform the reference
model fitting and feature selection only once using all the available data, and
then simply use LOO or K-fold CV to estimate the performance of the found
submodels. We strongly advice not to employ this strategy, as this is known to
produce biased performance estimates, and the bias can be substantial especially
for small n and large number of features (see Piironen and Vehtari, 2017a, for
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illustrations). To avoid the selection induced bias, it is important that the same
data are never used simultaneously for selection and assessment, meaning that
the selection must be performed separately for each of the cross-validation folds
regardless of the feature selection method. Section 7.2 shows an example of the
resulting bias when the selection process is not taken into account in the model
assessment.

6. On the construction of the reference model

How to construct a good reference model is naturally a central issue in the whole
projective approach. It should be clear that this is essentially an open-ended
question with no definite answer; for each problem there are endless choices.
For simple linear and logistic regressions with moderate number (say less than
a hundred) features we recommend using all the features with a sparsifying
prior, which can work better than a non-sparse prior like Gaussian. If one is
uncertain about the prior, the recommended strategy is to try different choices
and compare the resulting fits with cross-validation.

In high-dimensional problems, say with hundreds of features or more, fully
Bayesian approach can still provide a good fit but can also prove computation-
ally expensive (Piironen and Vehtari, 2017b). Using either feature screening,
dimension reduction or the combination of the two can be very successful for
alleviating the computational burden without sacrificing the predictive accu-
racy (Neal and Zhang, 2006; Fan and Lv, 2008; Piironen and Vehtari, 2018). In
our experience this is true especially for data sets that have plenty of features
many of which are correlated with each other and predictive about the target
variable. Microarray data sets (Sec. 7.4) are typical examples that fall into this
category.

For these problems a simple but useful recipe combining feature screening and
dimension reduction is known as supervised principal components (SPCs) (Bair
et al., 2006), which works as follows. First, univariate correlations R(z;,y) be-
tween each feature x; and the class label y are computed, and only features
with |R(z;,y)| above some threshold v are retained. This yields a reduced fea-
ture matrix X.,, from which one then computes the first n. principal components
(21,...,2n,) and uses these as the predictors for the reference model. The ad-
vantage over the unsupervised principal components is that the screening step
anticipates variation in the original features unrelated to the variance in y, and
therefore the predictive power is typically more heavily loaded on the first few
components. In the experiments of this paper, the screening threshold -y is se-
lected using fivefold cross-validation from a coarse grid of n, = 7 values evenly
spaced between Ypnin and Ymax, where i, is the largest v such that none of
the features are discarded and 7. the smallest v such that only one feature
survives the screening. Furthermore, we use n. = 3 SPCs with a Gaussian prior
N(0,72) for the regression coefficients and hyperprior 7 ~ t; (0, s;2,) where
Smax denotes the standard deviation of the largest principal component (this
is done only to make the prior roughly the same regardless of the scale of the

SPCs).
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We emphasize that we do not argue that this gives a foolproof method for
constructing a good reference model. Rather the purpose is to demonstrate that
even with such a simple, easy-to-implement and computationally light method
it is possible to come up with a reference model that gives good results and
improves feature selection in many cases. Indeed, in our earlier work we found
that the optimal method is in general data set dependent, and in some cases
better results can be obtained by other choices such as the iterative version
of the above algorithm (Piironen and Vehtari, 2018). Again, cross-validation
and posterior predictive checks should be used to guide the selection of the
reference model (Gelman et al., 2013; Vehtari, Gelman and Gabry, 2017; Gabry
et al., 2018). A generic strategy for improving the prediction accuracy is also to
average over several models, using either stacking or (pseudo) Bayesian model
averaging (Yao et al., 2018), or boosting or bagging in non-Bayesian context (see,
e.g., Hastie, Tibshirani and Friedman, 2009).

7. Experiments

This section presents several examples of the projective method. We shall first
demonstrate the basic usage of the different projection techniques and the new
LOO validation for the model size selection, and then compare the projective
approach to the elastic net family estimators. For fitting the Bayesian reference
models we use Stan (Stan Development Team, 2018), with the convenient inter-
faced to GLMs provided by R-packages rstanarm (Goodrich et al., 2018) and
brms (Biirkner, 2017). All the projections are computed using our R-package
projpred. The results for the elastic net family methods are computed using
R-package glmnet (Friedman, Hastie and Tibshirani, 2010).

7.1. Illustration of different projections

This section illustrates the differences between the three projection techniques
introduced in Section 3.3. Consider the following synthetic binary classification
data. For instances belonging to the first class, the first three features are drawn
from independent Gaussians with mean 1 and scale 0.5, whereas for the obser-
vations from the second class the mean and scale of these features are —1 and
0.5, respectively. In addition, the data has 27 additional noise features that are
drawn from independent standard Gaussians, so the data has 30 features alto-
gether (out of which the only the first three are predictive about the class label).
We generated one data realization with n = 50 observations and fitted Bayesian
logistic regression model to those data using the RHS prior (5) with hyperpa-
rameter choices pp = 1, s> = 1 and v = 4. This serves as our reference model.
Figure 5 illustrates the posterior projection onto the first two features for
the three different projections: draw-by-draw (left column), single point (mid-
dle column) and 10 clusters (right column). We observe that even with the
single point projection, the predictive probabilities are very close to those of
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Fic 5. Demonstration of different projections: The full posterior with p = 30 features pro-
jected onto the first two features using the draw-by-draw approach (left column), single point
projection (middle column) or 10 clusters projection (right column). Top row shows the ob-
served data and the contours (from 0.1 to 0.9) of the predictive probability for § = 1, whereas
middle row shows the predictive probabilities at the observed input locations (vertical axis
denoting the result for the full model with all features, and horizontal axis for the projection
of the corresponding column). Bottom row shows the projected regression coefficients (black
dots) as well as the draws from the full posterior (gray crosses). In bottom row plots, the dot
sizes denote the relative weights (the dot sizes between different columns are not comparable).

the draw-by-draw projection (see top and middle row), and projecting 10 clus-
ters gives predictions indistinguishable from the draw-by-draw projection for all
practical purposes. This result is insightful, as one might think that the single
point projection would be substantially inferior because it computes only point
estimates for the projected model. The key insight is that these point estimates
are computed so as to take into account the uncertainty in the parameters of
the full model. Therefore the resulting predictive distribution is much closer to
that of the full model than what would be obtained by projecting only the poste-
rior mean of the full model or by computing the maximum likelihood estimates
for the submodel (which in this case do not even exist because the classes are
separable).
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Another important point is that even for the draw-by-draw method the pro-
jected posterior is in general different from the marginal posterior for those
parameters in the full model (see the bottom left plot in Fig. 5). In particular,
the projected posterior has vanishingly little mass near the origin g1 = 83 = 0,
although the full posterior has substantial mass there. This makes sense: after
removing feature x3 which is predictive and highly correlated with x; and x5 the
coefficients of x; and x2 can not both be set to zero, otherwise the predictions
would seriously be affected.

As discussed earlier, the benefit of the clustered projection compared to the
draw-by-draw projection is its speed; projecting only C' clusters cuts down the
computations by a factor of C/S, where S is the number of draws that would
be projected in the draw-by-draw projection. The computational savings can be
huge when projections need to be computed onto many models, such as with
the LOO validation. For instance, for this data set computing the projections
of each of the n = 50 LOO posteriors for all model sizes up to 30 features in
a naive fashion would require a total of 1500 projections, each of which takes
around a second or two depending on the hardware. Thereby with the clustered
projection we can reduce the computation time from the order of 25-50 minutes
to about 4-8 seconds’. The additional benefit of the single point projection is
that it can be combined with the sparsity enforcing penalty functions (Sec. 4)
which allows for fast searching for promising submodels.

For these reasons, our preferred choice is to use single point projection in the
selection phase, and a small number of clusters (1-10) when making predictions
with the submodels. Even though the difference in the predictions with 1 or 10
clusters is small in this example, adding more than one cluster can sometimes
give slightly more accurate predictions with very little computational overhead.
Still, we find the draw-by-draw projection most convenient for visualizing the
projected posterior distributions for instance when credible intervals or regions
are of interest. It also serves as a useful yardstick for checking and confirming
the accuracy of the clustered projection.

7.2. Simulated example revisited with projection and LOO

We shall now revisit the simulated example discussed in Section 2.3 and illustrate
the steps of projective selection as well as our new LOO validation technique.
The first step is to decide the reference model, which we would in practice do
by assessing the fits of each of the candidate models using cross-validation and
posterior predictive checks. The sums of LOO log predictive densities for the
Gaussian and RHS priors are —76.8 and —77.6 with standard errors 6.8 and
6.2, respectively, so there is no significant difference between the predictive fits
between these models (this holds also if we make the comparison in pairwise

"In a careful implementation the difference would not be quite as dramatic since some
of the submodels would be visited in many of the n = 50 folds, so their projections would
not need to be computed again every time, but this example still gives a good idea of the
computational gain.
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Fic 6. Simulated example, projective selection: Left column: MLPD and relative MLPD
with one standard error intervals on independent test data of 1000 points (black) and using
LOO (blue) for the selected and projected submodels. The data has p = 50 features and the
reference fit is the linear model with RHS prior (the same as in the right middle subplot of
Figure 8). Right column: The same but results are averaged over 200 data realizations. The
orange curves show the LOO for the submodels if the feature selection is done only once,
and not separately for each of the n folds. The difference to the blue curve comes from the
selection induced bias.

fashion, like in Eq. (22) and (23)). The R package spikeslab does not provide
the posterior draws for the regression coefficients and thus we cannot compute
LOO for the SS prior, so we ignore it for now.

Suppose we select the model with RHS prior as our reference model (the
results for Gaussian prior are shown in Appendix A). We then run the projective
feature selection with the Lj-search and assess the accuracy of the submodels
using the LOO approach (Sec. 5.2). The MLPD for the submodels relative to the
reference model are shown in the bottom left subplot of Figure 6 (blue curve).
The one standard error -rule (Sec. 5.1) would suggest selecting one feature,
which results in a small loss in accuracy on test data (black curve) compared to
the reference model. The top left subplot shows the MLPD on the actual scale,
which demonstrates how much larger the uncertainty is about the actual MLPD
than about the relative MLPD.

The right column of Figure 6 shows the average LOO curves for both MLPD
and relative MLPD over 200 data replications. These graphs demonstrate that
the actual LOO values for the submodels are slightly biased (optimistic). This
is due to a small bias in the PSIS-LOO for the reference model, which is also
diagnosed by a few k-values that exceed 0.7 in most data realizations. Notice
though, that the results for the relative MLPD are still essentially unbiased
for submodels with performance close to the reference model, because the bias
cancels out in subtraction (22) (see Sec. 5.2). In other words, even if we have
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only a biased estimate of the reference model utility, we can still get a good
indication of whether our submodel performance is close to that of the reference
model.

Right column subplots of Figure 6 also show the expected LOO results if we
do not take into account the selection induced bias but perform the selection only
once (not separately for the n folds) and then compute LOO for the submodels
(see Sec. 5.3). The selection induced bias is clear although only moderate in this
particular example.

For assessing the submodel accuracies, LOO validation is very useful in this
particular example because of a few reasons. Firstly, PSIS-LOO works pretty
well for the full model (only a few k-values above 0.7 in most data realizations).
Secondly, the number of features is only moderate and hence the feature selec-
tion is very fast. Thirdly, the number of observations is small, so the number of
selection paths we need to compute is also small. Consequently, the whole vali-
dation process takes only a few seconds, which is much less than a single model
fit with the horseshoe prior (around half a minute with a standard laptop), so
the computational savings compared to K-fold cross-validation are clear.

7.3. The benefit of using a reference model

This section demonstrates the benefits of a reference model for feature selec-
tion and parameter estimation in the submodels. We again utilize simulated
data generated by mechanism (1), and consider regression of the original y on
(1‘1, . ,$p).

We used a setup with n = 50 training observations with p = 500 features, out
of which first p,e; = 50 were relevant, and report average results over 50 data
realizations for p-values of 0.3, 0.5 and 0.8.8 The reference model is fitted using
SPCs as discussed in Section 6. We tested four different strategies for selecting
features and making predictions with the selected subsets of features:

1. Lasso: Sort the variables from the most relevant to least relevant according
to the order in which they enter the model as the regularization coefficient
A is decreased. For a given number of features, the submodel coefficients
are computed using the smallest A for which other variables do not enter
the model. In the regression problems, the noise variance o2 is estimated
as proposed by Reid, Tibshirani and Friedman (2016), that is, by dividing
the sum of the squared residuals by n—p,ct where p,e¢ denotes the number
of active features in the submodel.

2. Lasso, relaxed: Same as Lasso, but after sorting the variables, the sub-
model coefficients and predictions are computed without any regulariza-
tion (which affects also the estimated noise variance in regression).”

8We also considered varying values for p,.; but the conclusions are not sensitive to the
selected value p.e; = 50.

9We are aware that the term ‘relaxed Lasso’ has been used to denote a more general
method where after feature selection the coefficients are computed with a small but nonzero
Li-penalty (Meinshausen, 2007). The complete relaxation (i.e., zero penalty after selection)
was referred to as ‘Lasso-OLS hybrid’ by Efron et al. (2004)
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3. Lj-projection: Li-penalized projection (21) varying A similarly as in Lasso.
In regression, the projected noise variance is computed according to Equa-
tion (19) (where C = 1).

4. Lq-projection, relazed: Same as Li-projection, but after sorting the vari-
ables, the submodel coefficients are projected without any regularization
(which affects also the projected noise variance in regression).

Notice that all these methods utilize only point estimates for the model param-
eters in the submodels, the difference is only how they are computed.

Figure 7 shows the regression MLPD and MSE on independent test data as
well as the projected noise standard deviation for different submodel sizes. The
blue curves demonstrate the benefit of relaxation for Li-projection: both even-
tually achieve the performance of the reference model but without relaxation
this requires many more features. The reason is the inherent tradeoff between
shrinkage and selection: in order to force most of the regression coefficients to
zero, the regularization coefficient A must be made large, but this will also over-
shrink the nonzero coefficients. Therefore projecting without any penalization
after selection achieves greatly improved tradeoff between accuracy and model
complexity. Notice in particular that here no regularization is needed to avoid
overfitting in projection; when more features are added the projected submodels
simply get closer to the reference model.

However, the picture is quite different when the parameter estimates are com-
puted based on the observed data without utilizing the reference model (Fig. 7,
orange curves). The relaxation improves the fit in terms of MSE for submodels
with only a few features but results in overfitting for larger models. In terms
of MLPD the relaxed Lasso performs worst overall indicating badly calibrated
uncertainties in the predictive distributions, which is mostly due to underestima-
tion of the noise variance (bottom row) for most model sizes. Projection methods
on the other hand show very good calibration of predictive uncertainties which is
evident from superior MLPD and noise variance estimation for most model sizes.
Overall the projection approach shows a bigger edge for p = 0.3 and p = 0.5
where the individual features are less predictive. Results in Appendix A.3 show
that these conclusions are very similar also for a binary classification (logistic
regression) setup.

7.4. Real world benchmarks

This section shows how the projection compares in high-dimensional real world
problems. We use microarray data sets!® some of which have been used as
benchmarks by several authors (Li, Campbell and Tipping, 2002; Lee et al.,
2003; Hernéndez-Lobato, Herndndez-Lobato and Sudrez, 2010). All data sets
deal with binary classification, and the number of features and data set sizes
can be found in Table 1.

10All except the Ovarian data are available at http://featureselection.asu.edu/
datasets.php.
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Fic 7. Benefit of reference model, regression: MLPD and MSE on test data, along with
the estimated noise standard deviation as a function of number of features selected after L -
penalized search, before and after relazation (dashed and solid, respectively), with and without
utilizing the reference model (blue and orange, respectively). Different columns show results
for different values of p (see Eq. (1)). Errorbars indicate one standard error intervals and
black dashed lines the reference model result. In the bottom row plots the gray line denotes
the true noise standard deviation.

Again, as a reference model we use the one described in Section 6 and call it
here ‘Bayes SPC’. For the projection method, we used L;-search and made the
submodel predictions using five clusters projection. The number of features was
decided based on fivefold cross-validation. To investigate the effect of the model
size selection heuristic discussed in Section 5.1, we report results for the smallest
number of features that had its cross-validated MLPD within one standard error
away from the reference model (‘Proj-ref-1se’) or from the best submodel (‘Proj-
best-1se’). We also report results (‘Proj-ref-1se-reg’ and ‘Proj-best-1se-reg’) that
are otherwise exactly the same as the two above but utilize a little bit of ridge
regularization (with A = 0.1) in the submodel projections which was observed
to improve the numerical stability in cases where some of the reference model
class probabilities are close to 0 and 1.

For comparison, we computed results for Lasso, elastic net (with o = 0.7 and
a = 0.3) and ridge. To investigate the sensitivity of these to the selection of
the regularization parameter \, we report results for two choices: Ao denotes
the value that minimizes the tenfold CV-error whereas A15 (default in glmnet)
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TABLE 1
Microarray benchmark data sets: Average computation time (in seconds) over five repeated
runs. In all cases the time contains the cross-validation of the tuning parameters and/or the
model size. The first result for Lasso is computed using our software (projpred) whereas the
second result (and that of ridge) is computed using the R-package glmnet which is more
highly optimized.

Data set n p Computation time

Bayes SPC  Projection Lasso (projpred) Lasso Ridge

Ovarian 54 1536 30.4 3.6 1.3 0.2 1.5
Colon 62 2000 31.0 4.0 1.6 0.3 2.2
Prostate 102 5966 49.4 7.6 5.0 0.8 7.5
Leukemia 72 7129 47.0 6.3 5.6 0.7 9.4
Glioma 85 22283 95.8 14.2 15.6 2.6 52.2

denotes the largest A which has its CV-error within one standard error of that
of Aopt. To avoid any possible biases in the comparisons, the out-of-sample
predictive accuracies for all the methods were assessed using an outer tenfold
cross-validation. That is, the reference model, projected submodels as well as
the baseline methods were computed ten times, each time leaving one tenth of
the data out and then validating the found models on this left-out data.

The MLPD and classification accuracies from the outer cross-validation are
shown in the first two rows of Figure 8. Overall the differences in accuracy
between the methods are fairly small compared to the standard errors in the
estimates. In terms of MLPD, the reference model Bayes SPC gives somewhat
better results than Lasso, elastic net and ridge with A, but all these give
similar results when Ao is used, and in fact ridge gives a bit better results
for Leukemia data. All projections have statistically indistinguishable MLPD
compared to Bayes SPC, but the model size selection with ‘best-1se’ performs
slightly better in terms of classification accuracy. Adding a little bit of regu-
larization does not hurt predictive accuracy but we noticed that it makes the
projection numerically more stable in cases where the reference class probabili-
ties are close to 0 and 1.

The bottom row of Figure 8 shows the number of selected features for each
method. The projection methods produce by far the most parsimonious models
(notice the log scale). The only data set where Lasso (with Ajs) selects fewer
variables is Leukemia, but there it also yields inferior results in terms of MLPD.
This is perfectly in accordance with the results shown in Figures 7 and 11: the
projection finds very good tradeoff between sparsity and accuracy. Although
not shown in Figure 8, the accuracy of the baseline methods would severely
be affected were they allowed to use as few features as the projection methods.
To fully respect the differences in the number of features used, we have also
reported them using hard numbers in Table 2 (appendix A) since an accurate
comparison on the log scale is somewhat cumbersome.

The computation times are shown in Table 1. After forming the reference
model, the projection is computationally only slightly more expensive than Lasso
and the increase comes from the relaxed projections (the predictions are com-
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Fic 8. Microarray benchmark data sets: MLPD (top row), classification accuracy (middle
row) and the number of features used (bottom row) with one standard error intervals for the
different data sets. The last column denotes the average. In all plots the dashed vertical line
denotes the results for the Bayes SPC that is used as the reference for the projections. Many
methods produce comparable predictive accuracy but the projection methods achieve the same
accuracy with far fewer features (notice log scale in the bottom row plots).

puted without the L;-penalty). Although not as highly optimized as glmnet, our
software is reasonably fast even for the largest problems. Forming the reference
model (Bayes SPC) is computationally the most expensive part, though still
very affordable considering that all the computations (reference model construc-
tion and projection) for the largest number of features can be done in about
two minutes. Indeed, this demonstrates that the projection can be very feasible
computationally and it can yield improved results to the standard approaches,
as were shown in Figure 8.

8. Theoretical results

In this section we present a theorem that helps us to understand when the
reference model could be helpful for parameter learning in linear submodels.
Here we only state the results, the proofs can be found in appendix B.

Let X = (x],...,x]) € R"*? be the design matrix and y = (y1,...,Yn) €
R™ the target measurements. Assume the target measurements decompose as
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yi = p(x;) + &, where p(x) is the true expected value of y given x, p(x) =
E(y|x), and ¢; are i.i.d. random numbers independent of x with zero mean
and finite variance o2 denoting the variation in y that cannot be explained
by x. It should be emphasized that although we assume ¢ denotes random error
independent of x, it may contain systematic variation related to some other
(unobserved) features not included in x, and hence the magnitude of & should
be interpreted as the irremovable error for this particular set of features x. In
vector notation, y decomposes as y = p + &, where g = (p(x1),. .., 1(xn))
and € = (e1,...,&,). Furthermore, in what follows we shall use the shorthand
notation ||v||3; = v Mv, where v is a vector and M a positive definite matrix.

Consider two methods of estimating the regression coefficients when regress-
ing y on X, namely

B=(X"X)"'X"y and B, = (X"X)'X"p.. (26)

Here ,@ is the familiar least squares estimate, and 3, a projection of an arbitrary
reference fit p, € R™. Let us then define the expected prediction error for any
vector of coefficients 3 as

A = s (11X -1 ).

Notice that although we consider here the predictions at the observed input
locations X, the expectation is with respect to a set of mew measurements
y = p + €, where e is a vector of new noise terms &1, ...,&,. The gain from
using 3, instead of B is defined as the reduction in the expected prediction
error

G =A(B) — A(By). (27)
We have the following lemma.

Lemma 1 Assume regression coefficient estimators 3 and B, as defined by
Equation (26). The gain G (Eq. (27)) of using B instead of B satisfies

1
G=—(lly = pllp = llm. = nllp),

where P = X(XTX)"1XT,

Since both ||y — p||p and ||, — p||% are non-negative, the interpretation of
Lemma 1 is that for linear submodels, one can expect to gain (that is, G > 0)
from using a reference model when the reference fit p, is closer to the best
possible prediction p (with features x) than the observed noisy target values
y (with the norms taken with respect to the projection matrix P). This makes
perfect sense: if we fit our model to pseudo-data p, instead of the actual data
y, we expect to do better if the pseudo-data are closer to the true underlying
conditional mean p(x) = E(y|x), that is, less noisy than the actual data. Notice
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that the lemma makes no assumptions about the form of the true underlying
mean u(x) that captures the relationship between y and x. In particular, p(x)
need not be linear in x, not even smooth or continuous. Neither does the lemma
assume anything about how the reference fit p, is constructed.

Let us now assume the differences e, = p, — p are random numbers with
mean b and covariance K. These describe the bias and variance in the reference
fit.}! We have the following theorem

Theorem 2 Assume the terms e, = p, — p have mean b € R™ and covariance
K € R™ ™. Then the expected gain can be written as

B(G) =~ (0%~ TH(PK) — [bl}3)

Theorem 2 further decomposes the reference model error into bias and variance.
The term Tr(PK) is difficult to grasp without further assumptions, but the
theorem can be understood more easily by the following immediate corollary.

Corollary 2.1 Assume the reference model errors are uncorrelated with a com-
mon variance, that is, K = O’i*I. Then the expected gain E(G) simplifies to

P 1
B(G) =" (02 o2 - ];an%) .

This corollary states that with an unbiased reference model (b = 0) we can
expect to gain when the variance of the residuals p, — p is smaller than the
variance of y — p. Furthermore, the gain increases with the dimensionality of
the projection space p, but on the other hand goes to zero when n — oo. This is
also in perfect accordance with the empirical results, for instance those shown
in the middle row of Figure 7. There the difference in predictive MSE between
relaxed Lasso and projection is small up to about p = 2, but then starts to
increase gradually. On the other hand we know the least squares fit gives us the
optimal coefficients at the limit » — oo and hence we do not expect to gain
anything then with a reference model.

The above analysis assumes the future predictions are made at the observed
input locations. Usually this is not quite a realistic assumption, but it still gives
us some idea when the reference model could be useful. Extending the result
to different X would require assumptions about the functional form of p(x).
Furthermore, here we used squared error as the loss function as it allows for
tractable analysis, but we expect one of the major advantages of the projection
to be that it conserves the predictive uncertainties well which are not measured
by the squared error. Finally, this analysis considers only parameter learning

11Here we mean bias and variance both due to fitting the reference model to a finite data
set and having unobserved features. For example, even if our reference model was a completely
deterministic function of x and some other features z, then its value in a particular location
x; is still random as it depends on the realized value for z.
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in the submodels with a fized set of features, but it says little about when the
reference model can improve the selection of a better feature combination. In
principle it is possible to improve selection even when the reference model is not
unbiased, as long as the bias is “in the right direction”, for instance so that it
favors certain features over the others. We have discussed in a bit more detail in
our earlier work, see Section 3 in Piironen and Vehtari (2017a). The empirical
evidence about the improved selection is convincing (Sec. 1.2) but currently we
are not aware of any theoretical analysis on this topic.

9. Discussion

Sparsity enforcing (non-Bayesian) penalized estimators—in particular Lasso and
the whole elastic net family—are both fast to compute and provide good results
with minimal hand tuning. This makes them excellent baselines for almost any
problem. One can, however, do even better in terms of tradeoff between spar-
sity and predictive accuracy, by forming a reasonable reference model and then
finding its projections onto reduced set of features. The projective framework
provides a systematic way of handling uncertainties in Bayesian fashion and also
a principled way of estimating other parameters than the regression coeflicients
(such as the noise variance).

This paper has focused on selecting a minimal subset of features that are
sufficient for achieving accurate predictions. As pointed out in Section 1.3, this
is a different problem from what is known as multiple (hypothesis) testing, where
the goal is to identify as many features as possible that are statistically related
to the target variable (Johnstone and Silverman, 2004; Efron, 2010; Castillo and
van der Vaart, 2012). The empirical evidence indicates that the reference model
approach could be highly useful also in this problem setting since it tends to
help rank the truly relevant features before the irrelevant ones (Sec. 1.2), but
the topic requires more research.

Ultimately it would be desirable to extend the projective approach to nonlin-
ear and nonparametric models such as Gaussian processes (GP) (for tentative
work, see Piironen and Vehtari, 2016). The approach could also find more ap-
plications in improving interpretability and transparency of complex black box
models such as deep neural networks, an idea that have been explored by Ribeiro,
Singh and Guestrin (2016); Peltola (2018) and Afrabandpey et al. (2019). Al-
though the “fitting-to-fit” approach could in principle be applied to almost any
kind of model, plenty of work remains in formulating the projection in a com-
putationally tractable way for all these different cases.
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Fic 9. Simulated example (Sec. 2.3): Relative proportion of data sets where at least one
feature is found to be significant using marginal relevance assessment. With SS prior feature
is considered significant if its posterior probability exceeds 0.5 and with Gaussian and RHS
priors if its coefficient is either positive or negative with posterior probability 0.95 or more.
The results are computed from 50 randomly generated data sets generated according to (1)
with n = 50, p = 0.8 and p,e = g. Vertical bars denote one standard error intervals.

A. Extra experimental results
A.1. Marginal relevance assessment

Section 2.3 demonstrated how the posterior marginals tend to overlap with
zero when the data contains many relevant correlated features. Figure 9 simply
confirms that these observations are not due to cherry-picking a specific data
set. For each of the three priors the relative proportion of data sets where at
least one feature is found to be significant goes down when p increases. With
Gaussian and RHS priors this probability is already fairly close to zero with
p = 50, and even with SS we fail to find any relevant features in about half of
the data sets. The exact proportions are naturally dependent on the selected
thresholding rules (posterior probability of 0.5 in SS and credible level 0.95 for
Gaussian and RHS) but these do not affect the main conclusions.

A.2. Simulated example with projection and LOO

Figure 10 shows the analogous results to Figure 6 but using the full model
with Gaussian prior as the reference model. The results are otherwise similar
to those in Figure 6, but here the submodels with 3 to 14 features achieve
a slightly better generalization performance than the reference model. This is
simply due to the fact that the Gaussian prior is not the optimal choice in
this particular case since it does not help to shrink the coefficients of the truly
irrelevant features, and hence we can gain by removing those features. This does
not mean that the Gaussian prior would always be inappropriate even for very
high-dimensional problems, see for instance the results for the microarray data
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Fic 10. Simulated example, projective selection: The same as in Figure 6 but using the full
model with Gaussian prior as the reference model.

sets in Section 7.4 where the ridge regression performs very well (corresponds
to maximum a posteriori solution with the Gaussian prior).

A.3. The benefit of using a reference model

Section 7.3 demonstrated the benefit of a reference model with a regression
example. Here we show the results for similar data, but converting the task to
a binary classification (logistic regression) setup by defining the target variable
as an indicator yeass = 1 (y > 0), where y is the continuous target used in the
regression case.

Figure 11 shows the results for the classification data. The conclusions are
very similar to those drawn from Figure 7. Here the relaxed Lasso overfits even
more severely; although the classification accuracy is similar to the Lasso, the
MLPD is very low indicating bad calibration in the predicted class probabilities.
Again, the edge for projection is more pronounced for p = 0.3 and p = 0.5, but
we observe that for these cases also the relaxed projection struggles to achieve
the same MLPD as the reference model, and for larger number of features (15—
25) the penalized projection achieves slightly better results. This is due to a
small instability of the projection in data sets where some of the reference class
probabilities are close to 0 and 1 and shows that even the projection, although
very resilient, is not always entirely immune to overfitting.

A.4. Real world benchmarks

Table 2 shows the average number of features selected by the different methods
in the microarray examples (Sec. 7.4). The projection methods clearly select the
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F1c 11. Benefit of reference model, classification: Results analogous to those in Figure 7 but
for the classification data. Here shown are MLPD and classification accuracy on test data.

TABLE 2
Average number of features selected for the different methods in the microarray examples
over the ten outer cross-validation folds. The last column denotes average over all data sets.
The projection methods select by the most parsimonious models. The sparsest other method
with similar predictive accuracy (Lasso with Apest, see Fig. 8) selects on average over twice
as many features as the most dense projection (Proj best-1se-reg).

Method Ovarian  Colon  Prostate Leukemia  Glioma  Average
Bayes SPC 633.0 881.0 7.7 1030.4 736.2 657.7
Proj ref-1se 3.3 2.2 2.9 8.6 1.6 3.7
Proj ref-1se-reg 7.2 3.9 3.8 11.0 7.2 6.6
Proj best-1se 3.1 2.1 2.9 16.2 1.6 5.2
Proj best-1se-reg 7.2 4.3 4.6 18.8 6.2 8.2
Lasso, Aise 11.7 5.1 12.7 15.3 9.2 10.8
Lasso, Apest 18.6 11.1 23.6 23.2 25.0 20.3
Enet a = 0.7, A\ige 22.5 8.1 23.2 25.9 23.7 20.7
Enet a = 0.7, Apest 42.6 21.3 49.3 50.6 56.1 44.0
Enet a = 0.3, Aise 57.7 24.8 53.6 74.5 74.1 56.9
Enet a = 0.3, Apest 114.3 64.2 124.8 188.0 187.7 135.8
Ridge, Aise 1536 2000 5966 7129 22283 7782.8
Ridge, Apest 1536 2000 5966 7129 22283 7782.8

most parsimonious models.

B. Proofs of the theoretical results
B.1. Proof of Lemma 1

First plug in the definitions (26) into the formula of the expected gain (27) and
expand
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nG =y Py —2u'Py — pu[Pu, +2u" Pp,
=y Py —2u"Py — uPp, +2u"Pp, — p"Pu+p"Ppu
=(y—m'Py —p) = (b —0)"P(p, — p)
= Iy = ullp — llm. — pllp-
Hence G =+ (|ly — plfp — llpe. — pl3).
B.2. Proof of Theorem 2
By Lemma 1, G = 1 (||e||3 — ||p, — p]|p), where € = y — . Taking the expec-
tation of G with respect to the € as well as the randomness in the reference fit
. yields
E(G)=— (E(e"Pe) —E((t, — )P, — 1))

(TY(PCOV(E)) — Te(PCov(p, — ) — E(p, — 1) " PE(p, — ))

=3 =3

= (°Tr(P) — Tr(PK) — b"Pb) .
Now we have

Tr(P) = Tr(X(XTX) 'XT) = Tr(XTX(XTX) ™) = Tr(I,) = p,
so the expected gain simplifies to

B(G) = - (0%~ Tr(PK) — [[bl}). (28)

B.3. Proof of Corollary 2.1

If the errors in the reference model are uncorrelated, that is, K = O'EL*I, the
expected gain (28) reduces to

E(G)=—(o*p—o; p—|bllp)

1
2 Z*—Z—jnb@).

I 3=

A/~
Q
|
Q
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