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Abstract: We consider bivariate observations (X1, Y1), . . . , (Xn, Yn) such
that, conditional on the Xi, the Yi are independent random variables. Pre-
cisely, the conditional distribution function of Yi equals FXi

, where (Fx)x
is an unknown family of distribution functions. Under the sole assumption
that x �→ Fx is isotonic with respect to stochastic order, one can estimate
(Fx)x in two ways:
(i) For any fixed y one estimates the antitonic function x �→ Fx(y) via
nonparametric monotone least squares, replacing the responses Yi with the
indicators 1[Yi≤y].
(ii) For any fixed β ∈ (0, 1) one estimates the isotonic quantile function
x �→ F−1

x (β) via a nonparametric version of regression quantiles.
We show that these two approaches are closely related, with (i) being

more flexible than (ii). Then, under mild regularity conditions, we estab-

lish rates of convergence for the resulting estimators F̂x(y) and F̂−1
x (β),

uniformly over (x, y) and (x, β) in certain rectangles as well as uniformly
in y or β for a fixed x.
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1. Introduction

Suppose we observe n ≥ 1 pairs

(X1, Y1), (X2, Y2), . . . , (Xn, Yn) ∈ X × R

with random or fixed covariate values X1, . . . , Xn in a set X ⊂ R such that,
conditional on X = (Xi)

n
i=1, the response values Y1, . . . , Yn are independent

with
IP(Yi ≤ y |X) = FXi(y),

for 1 ≤ i ≤ n and y ∈ R. Here (Fx)x∈X is an unknown family of distribution
functions on R. Note that some values Xi could be identical, so the correspond-
ing random variables Yi have the same conditional distribution, given X.

Our goal is to estimate the whole family (Fx)x∈X under the sole assumption
that x �→ Fx is isotonic (non-decreasing) with respect to stochastic order. This
can be expressed in three equivalent ways:

(SO.1) For arbitrary fixed y ∈ R, Fx(y) is antitonic (non-increasing) in x ∈ X .
(SO.2) For any fixed β ∈ (0, 1), the minimal β-quantile F−1

x (β) := min{y ∈ R :
Fx(y) ≥ β} is isotonic in x ∈ X .

(SO.3) For any fixed β ∈ (0, 1), the maximal β-quantile F−1
x (β+) := inf{y ∈

R : Fx(y) > β} is isotonic in x ∈ X .

In what follows, we denote with Qx(β) any β-quantile of Fx and assume that it
is isotonic in x.

Such a constraint appears natural in several settings. For instance, an em-
ployee’s income Y tends to increase with his or her age X. Other examples in
which such a stochastic order is plausible are: The expenditures Y of a house-
hold for certain goods in relation to its monthly income X; the body height
or weight Y of a child in relation to its age X. Stochastic ordering constraints
also have applications in forecasting. For example, X1, . . . , Xn and Y1, . . . , Yn

could be the predicted and actual cumulative precipitation amounts on n dif-
ferent days, respectively, with the predictions being obtained from a numerical
weather prediction model, see Henzi [7].

With condition (SO.1) in mind, one could think about estimating the an-
titonic function x �→ Fx(y) by means of monotone least squares regression,
replacing the response values Yi with the indicator variables 1[Yi≤y]. Precisely,

we would set F̂x(y) = h(x) with an antitonic function h : X → [0, 1] such that

n∑
i=1

(1[Yi≤y] − h(Xi))
2
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is minimal. The solution h is unique on the set Xn := {X1, . . . , Xn}, and on
X \ Xn one could extrapolate it in some reasonable way. In the special case of a
finite X , this approach has been proposed by Hogg [8] and analyzed by El Barmi
and Mukerjee [6]. For the 2-sample problem, the nonparametric maximum like-
lihood estimator was found by Brunk et al. [2], but it has no known extension
to the k-sample case, for k ≥ 3.

Conditions (SO.2-3) suggest to imitate the regression quantiles of Koenker
and Bassett [10]. That means, we estimate the conditional β-quantiles Qx(β)

by Q̂x(β) = h(x) with an isotonic function h : X → R minimizing the empirical
risk

n∑
i=1

ρβ(Yi − h(Xi)),

where ρβ denotes the loss function

ρβ(z) := (β − 1[z<0])z.

This estimator has been considered, for instance, by Poiraud-Casanova and
Thomas-Agnan [14] who showed that it coincides with an estimator of Casady
and Cryer [3] which is given by a certain minimax formula involving sample
β-quantiles. The characterization of isotonic estimators in terms of minimax
formulae has also been derived by Robertson and Wright [15] in a rather gen-
eral framework including arbitrary partial orders on X and general loss functions
Ri(·) in place of ρβ(Yi − ·), see also Section 4.1.

The goals of the present paper are to clarify the connection between these
two estimation paradigms and to provide new consistency results in a suitable
asymptotic framework.

In Section 2, we give a detailed description of the estimator (F̂x)x∈X based on

monotone least squares and estimators (Q̂x)x∈X based on monotone regression

quantiles. Then we show that the estimators Q̂x are essentially quantiles of the
estimators F̂x, but the latter allow for smoother estimated quantile curves.

In Section 3, we analyze the estimators in a suitable asymptotic framework
with a triangular scheme of observations and X being a real interval. It turns
out that under certain regularity conditions on the design points and the true
distribution functions Fx, one can prove rates of convergence for quantities such
as

sup
x∈I,y∈J

∣∣F̂x(y)− Fx(y)
∣∣ and sup

x∈I,β∈B

∣∣Q̂x(β)−Qx(β)
∣∣

with intervals I ⊂ X , J ⊂ R and B ⊂ (0, 1). These results generalize and im-
prove the findings of Casady and Cryer [3], see also Mukerjee [13] who analyzed
a slightly different estimator. In addition, we investigate

sup
y∈J

∣∣F̂xo(y)− Fxo(y)
∣∣ and sup

β∈B

∣∣Q̂xo(β)−Qxx(β)
∣∣

for a fixed interior point xo of X . These results complement the analysis of a
single quantile curve by Wright [17].

Proofs and technical details are deferred to Section 4. We also provide some
general results about isotonic regression which are of independent interest.
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2. Estimation of the conditional distributions

Throughout this section, we view the observations (Xi, Yi), 1 ≤ i ≤ n, as fixed
and focus mainly on computational aspects. Let x1 < · · · < xm be the different
elements of the set Xn of observed values Xi, implying m ≤ n. For 1 ≤ j ≤ m,
we set

wj := #{i : Xi = xj}.
Then

IP(Yi ≤ y) = Fxj (y) whenever Xi = xj ,

and the unconstrained maximum likelihood estimator of Fxj (y) is given by

F̂j(y) := w−1
j

∑
i :Xi=xj

1[Yi≤y]. (2.1)

2.1. Estimation of Fx via monotone least squares

The estimator F̂j(y) in (2.1) is rather poor by itself, unless the corresponding
subsample size wj is large. But in connection with our stochastic order con-
straint, it becomes a useful tool. Note first that, for any function h : X → R,

n∑
i=1

(1[Yi≤y] − h(Xi))
2 =

m∑
j=1

wj

(
F̂j(y)− h(xj)

)2
+

m∑
j=1

wjF̂j(y)
(
1− F̂j(y)

)
,

and the stochastic order assumption implies that the vector F (y) = (Fxj (y))
m
j=1

belongs to the cone

R
m
↓ := {f ∈ R

m : f1 ≥ f2 ≥ · · · ≥ fm}.

Hence one can estimate F (y) by the unique least squares estimator

F̂ (y) =
(
F̂xj (y)

)m
j=1

:= argmin
f∈R

m
↓

m∑
j=1

wj

(
F̂j(y)− fj

)2
.

It is known that F̂ (y) may also be represented by the following minimax and
maximin formulae, see Robertson, Wright and Dykstra [16]: For 1 ≤ j ≤ m,

F̂xj (y) = min
r≤j

max
s≥j

F̂rs(y) = max
s≥j

min
r≤j

F̂rs(y), (2.2)

where

F̂rs(y) := w−1
rs

s∑
j=r

wjF̂j(y) = argmin
f∈R

s∑
j=r

wj

(
F̂j(y)− f

)2
,

wrs :=

s∑
j=r

wj = #{i : xr ≤ Xi ≤ xs},
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and r, s stand for indices in {1, 2, . . . ,m} such that r ≤ s. These formulae are
useful for theoretical considerations. In particular, since the pointwise maximum
or minimum of finitely many distribution functions is a distribution function,
too, we may conclude that for 1 ≤ j ≤ m,

F̂xj (·) is a distribution function.

The computation of F̂ (y) is easily achieved via the pool-adjacent-violators
algorithm (PAVA), see Robertson, Wright and Dykstra [16]. Note also that it

suffices to compute F̂ (y) for at most n − 1 different values of y. Precisely,

if y1 < y2 < · · · < y� are the elements of {Y1, Y2, . . . , Yn}, then F̂ (y) = 0

for y < y1, F̂ (y) = 1 for y ≥ y�, and F̂ (y) = F̂ (yk) for 1 ≤ k < � and
y ∈ [yk, yk+1). Consequently, since the PAVA is known to have linear complexity,

the computation of all estimators F̂xj (·), 1 ≤ j ≤ m, requires O(n log n+m�) =
O(n2) steps.

Finally, we extrapolate F̂ (y) to an antitonic function x �→ F̂x(y) on X . We set

F̂x(y) := F̂x1(y) for x ≤ x1 and F̂x(y) := F̂xm(y) for x ≥ xm. For xj−1 ≤ x ≤ xj ,

1 < j ≤ m, one could define F̂x(y) by linear interpolation, but other antitonic
interpolations are possible without affecting our asymptotic results.

2.2. Plug-in estimation of Qx

Once we have estimated (Fx)x∈X by (F̂x)x∈X as in Section 2.1, we can easily
determine the corresponding quantile functions. For any fixed β ∈ (0, 1) and xj ,
1 ≤ j ≤ m, we could determine the minimal and maximal β-quantiles,

F̂−1
xj

(β) := min
{
y ∈ R : F̂xj (y) ≥ β

}
F̂−1
xj

(β+) := inf
{
y ∈ R : F̂xj (y) > β

}
.

Both vectors (F̂−1
xj

(β))mj=1 and (F̂−1
xj

(β+))mj=1 are isotonic, and any choice of

an isotonic function X 	 x �→ Q̂x(β) such that F̂−1
xj

(β) ≤ Q̂xj (β) ≤ F̂−1
xj

(β+),
1 ≤ j ≤ m, is a plausible estimator of a β-quantile curve.

2.3. Estimation of Qx via monotone regression quantiles

Similarly as in Section 2.1, we focus on the vector Q(β) = (Qxj (β))
m
j=1. Writing

n∑
i=1

ρβ(Yi − h(Xi)) =

m∑
j=1

∑
i:Xi=xj

ρβ(Yi − h(xj)),

one can estimate Q(β) by some vector in the set

Q̂(β) := argmin
q∈R

m
↑

Tβ(q),
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where R
m
↑ := −R

m
↓ = {q ∈ R

m : q1 ≤ q2 ≤ · · · ≤ qm} and

Tβ(q) :=

m∑
j=1

∑
i:Xi=xj

ρβ(Yi − qj).

Note that the function Tβ(·) is convex but not strictly convex on R
m. Hence

it need not have a unique minimizer. The next result provides more precise
information in terms of the minimal and maximal sample β-quantiles

F̂
−1
rs (β) := min

{
y ∈ R : F̂rs(y) ≥ β

}
,

F̂
−1
rs (β+) := inf

{
y ∈ R : F̂rs(y) > β

}
.

Lemma 2.1. The set Q̂(β) is a compact and convex subset of Rm
↑ .

Two particular elements of Q̂(β) are the vectors � = (�j)
m
j=1 and u = (uj)

m
j=1

with components

�j := max
r≤j

min
s≥j

F̂
−1
rs (β) = min

s≥j
max
r≤j

F̂
−1
rs (β),

uj := min
s≥j

max
r≤j

F̂
−1
rs (β+) = max

r≤j
min
s≥j

F̂
−1
rs (β+).

Any vector q ∈ Q̂(β) satisfies � ≤ q ≤ u componentwise.
On the other hand, suppose that q ∈ R

m
↑ satisfies � ≤ q ≤ u and that

{j < m : qj < qj+1} is a subset of {j < m : �j < �j+1 or uj < uj+1}. Then
q ∈ Q̂(β).

Finally, for any j ∈ {1, . . . ,m}, the set {xj}× (�j , uj) contains no data point
(Xi, Yi).

Remark 2.2. At first glance, one might suspect that any isotonic vector q ∈ R
m
↑

satisfying � ≤ q ≤ u minimizes Tβ . But this conjecture is wrong. As a coun-
terexample, consider the case of n = 2 observations with X1 < X2 but Y1 > Y2.
Here m = 2, and F̂11(y) = 1[y≥Y1], F̂22(y) = 1[y≥Y2] and

F̂12(y) =

⎧⎪⎨⎪⎩
0 if y < Y2,

0.5 if Y2 ≤ y < Y1,

1 if y ≥ Y1.

Hence
� = (Y2, Y2)

� and u = (Y1, Y1)
�,

because F̂
−1
11 (0.5) = F̂

−1
11 (0.5+) = Y1, F̂

−1
22 (0.5) = F̂

−1
22 (0.5+) = Y2 and

F̂
−1
12 (0.5) = Y2, F̂

−1
12 (0.5+) = Y1.

But
Q̂(0.5) =

{
(q, q)� : q ∈ [Y2, Y1]

}
,

because for q ∈ [Y2, Y1]
2 with q1 ≤ q2,

ρ0.5(Y1 − q1) + ρ0.5(Y2 − q2) = 0.5(Y1 − q1 + q2 − Y2) ≥ 0.5(Y1 − Y2)

with equality if, and only if, q1 = q2.



30 A. Mösching and L. Dümbgen

2.4. Connection between the two estimation paradigms

Restricting the plug-in quantile estimators of Section 2.2 to the set Xn of ob-
served X-values leads to the set

Q̂plug−in(β) :=
{
q ∈ R

m
↑ : F̂−1

xj
(β) ≤ qj ≤ F̂−1

xj
(β+) for 1 ≤ j ≤ m

}
.

This set is closely related to the set Q̂(β):

Lemma 2.3. The vectors � and u in Lemma 2.1 are given by

�j = F̂−1
xj

(β) and uj = F̂−1
xj

(β+) for 1 ≤ j ≤ m.

In particular, Q̂(β) ⊂ Q̂plug−in(β).

Example 2.4. The simple example in Remark 2.2 shows that generally Q̂(β) 
=
Q̂plug−in(β). Let us illustrate this point with a more interesting numerical ex-
ample. Figure 1 shows a simulated sample of size n = 100. In addition, it shows
the minimal and maximal median curves x �→ F̂−1

x (0.5), F̂−1
x (0.5+) obtained

by linear interpolation of the points �j = F̂−1
xj

(0.5) and uj = F̂−1
xj

(0.5+), re-

spectively, as well as a piecewise linear median curve x �→ Q̂x(0.5) minimizing∫
q′(x)2 dx among all isotonic functions q : R → R such that �j ≤ q(xj) ≤ uj ,

1 ≤ j ≤ m. Although Q̂x(0.5) is a natural candidate and smoother in x than

F̂−1
x (0.5) or F̂−1

x (0.5+), the corresponding values of T0,5(·) are (rounded to
three digits)

T0.5

((
Q̂xj (0.5)

)m
j=1

)
= 45.343 > T0.5(�) = T0,5(u) = 44.112.

The true medians F−1
x (0.5) = F−1

x (0.5+) are depicted as well.

2.5. A data example

Figure 2 shows weight for age quantile curves Q̂x(β) of girls between 2 and 20
years old for different values of β. The dataset used to compute these curves
comprises n = 19 459 individuals and was publicly released as part of the Na-
tional Health and Nutrition Examination Survey conducted in the US between
1963 and 1991 (data available from www.cdc.gov). These data were analyzed
by Kuczmarski et al. [11] with parametric models to produce smooth quantile
curves. However, the details provided in their paper were not sufficient to re-
produce their work, so a direct comparison with our nonparametric approach is
not possible.

3. Asymptotic considerations

We provide some asymptotic properties of the estimators just introduced in case
of a real interval X and a triangular scheme of observations: For each sample size

www.cdc.gov
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Fig 1. n = 100 data pairs, together with the true medians F−1
x (0.5) (green, dashed) and

the estimated medians F̂−1
x (0.5) (lower red), F̂−1

x (0.5+) (upper blue) and Q̂x(0.5) (middle
black).

n ≥ 2, consider observations (Xn1, Yn1), . . . , (Xnn, Ynn) with Xn1, . . . , Xnn ∈ X
such that conditional on Xn := (Xni)

n
i=1, the random variables Yn1, . . . , Ynn

are independent with

IP(Yni ≤ y |Xn) = FXni
(y),

for 1 ≤ i ≤ n and y ∈ R. The resulting constrained estimators of Fx(y) and

Qx(β) are denoted by F̂nx(y) and Q̂nx(β), respectively. In what follows, we
derive asymptotic properties of these estimators under moderate assumptions,
where asymptotic statements refer to n → ∞.

El Barmi and Mukerjee [6] have derived asymptotic properties, including
asymptotic distributions, in case of a fixed finite set X , which is easier to handle
than the present setting. We are focusing on settings with a growing number of
different design points Xni and rates of convergence. Asymptotic distributions
or functional limit theorems are beyond the scope of the present paper, but an
interesting topic for future research.

3.1. Uniform consistency in both arguments

First of all, we assume that the distribution functions Fx are Hölder-continuous
in x, at least on some subinterval of X :
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Fig 2. Weight for age quantile curves Q̂x(β) of girls between 2 and 20 years old for different
values of β.

(A.1) For given intervals I ⊂ X and J ⊂ R, there exist constants α ∈ (0, 1]
and C1 > 0 such that

sup
y∈J

∣∣Fw(y)− Fx(y)
∣∣ ≤ C1|w − x|α for arbitrary w, x ∈ I.

Secondly, we assume that the design points are ‘asymptotically dense’ within
this interval I. To state this precisely, we need some notation. We write

ρn :=
logn

n
,

and λ(·) stands for Lebesgue measure. Moreover, the absolute frequency of the
design points Xni is denoted by wn(·), that means,

wn(B) := #{i ≤ n : Xni ∈ B} for B ⊂ X .

(A.2) For given constants C2, C3 > 0, let An be the event that for arbitrary
intervals In ⊂ I,

wn(In)

nλ(In)
≥ C2 whenever λ(In) ≥ δn := C3ρ

1/(2α+1)
n .

Then,

IP(An) → 1.
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Remark 3.1 (Fixed design points). Suppose that I = X = [a, b] with real num-
bers a < b, and let Xni = a+(i/n)(b−a) for 1 ≤ i ≤ n. Then Assumption (A.2)
is satisfied for any fixed C2 < 1 and C3 > 0.

Remark 3.2 (Random design points). Suppose that Xn1, Xn2, . . . , Xnn are
independent random variables with density g on X such that infx∈I g(x) > 0
on I. Then for any choice of α ∈ (0, 1], 0 < C2 < infx∈I g(x) and C3 > 0,

inf
{wn(In)

nλ(In)
: intervals In ⊂ I with λ(In) ≥ δn

}
≥ C2

with asymptotic probability one as n → ∞. This follows directly from a more
general basic fact about empirical distributions in Section 4.3. Hence Assump-
tion (A.2) is satisfied.

Under the two assumptions above, the estimator F̂nx satisfies a uniform con-
sistency property.

Theorem 3.3. Suppose that Assumptions (A.1–2) are satisfied. Then there
exists a C = C(C1, C2, C3) > 0 such that

lim
n→∞

IP
(

sup
x∈In,y∈J

∣∣F̂nx(y)− Fx(y)
∣∣ ≥ Cρα/(2α+1)

n

)
= 0,

where In := {x ∈ R : [x± δn] ⊂ I}.

Concerning estimated quantiles, we combine Assumptions (A.1–2) with a
growth condition on the conditional distribution functions Fx:

(A.3) For some numbers 0 ≤ β1 < β2 ≤ 1 and κ > 0,

Fx(y2)− Fx(y1) ≥ κ(y2 − y1),

for all x ∈ I and y1, y2 ∈ R such that y1 < y2 and Fx(y1), Fx(y2−) ∈ (β1, β2).

For instance, if each Fx, x ∈ I, has a density fx such that

κ := inf
x∈I

inf
y : β1<Fx(y)<β2

fx(y) > 0,

then (A.3) is satisfied with the latter parameter κ.

Theorem 3.4. Suppose that Assumptions (A.1–3) are satisfied with J = R in

(A.1). Then, for any plug-in estimator (Q̂nx)x∈X of (Qx)x∈X ,

lim
n→∞

IP
(

sup
x∈In,β∈Bn

∣∣Q̂nx(β)−Qx(β)
∣∣ > κ−1Cρα/(2α+1)

n

)
= 0,

where In ⊂ I and C = C(C1, C2, C3) are defined as in Theorem 3.3, and Bn

denotes the interval (β1 + Cρ
α/(2α+1)
n , β2 − Cρ

α/(2α+1)
n ).
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3.2. Uniform consistency at a single point

In addition to the previous uniform convergence results, one may verify uniform
consistency of F̂nxo and Q̂nxo for a fixed interior point xo of X . These results
require similar but weaker assumptions.

(A′.1xo) For a neighbourhood U ⊂ X of xo and an interval J ⊂ R, there exist
constants α ∈ (0, 1] and C1 > 0 such that

sup
y∈J

∣∣Fx(y)− Fxo(y)
∣∣ ≤ C1|x− xo|α for arbitrary x ∈ U.

(A′.2xo) For given constants C2, C3 > 0, let An be the event that

wn([xo − δn, xo])

nδn
,
wn([xo, xo + δn])

nδn
≥ C2 where δn := C3n

−1/(2α+1).

Then,
IP(An) → 1.

Under these two assumptions, the following consistency property holds.

Theorem 3.5. Suppose that Assumptions (A′.1–2xo) are satisfied. Then

sup
y∈J

∣∣F̂nxo(y)− Fxo(y)
∣∣ = Op

(
n−α/(2α+1)

)
.

(A′.3xo) For some numbers 0 ≤ β1 < β2 ≤ 1 and κ > 0,

Fxo(y2)− Fxo(y1) ≥ κ(y2 − y1),

for all y1, y2 ∈ R such that y1 < y2 and Fxo(y1), Fxo(y2−) ∈ (β1, β2).

Theorem 3.6. Suppose that Assumptions (A.1–3xo) are satisfied with J = R

in (A.1xo). Then, for any plug-in estimator (Q̂nx)x∈X of (Qx)x∈X ,

sup
β∈Bn

∣∣Q̂nxo(β)−Qxo(β)
∣∣ = Op

(
n−α/(2α+1)

)
,

where Bn := (β1 +Δn, β2 −Δn) and Δn = O(n−α/(2α+1)).

4. Proofs and technical details

4.1. Monotone regression

In this section we review isotonic regression on a totally ordered set in a rather
general setting, summarizing and extending results of numerous authors. Our
main goal is a thorough understanding of isotonic regression in situations with
potentially non-unique solutions. For extensions to partially ordered sets we
refer to Mühlemann, Jordan and Ziegel [12].
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The starting point are m ≥ 2 loss functions R1, . . . , Rm : R → R with the
following property: For arbitrary indices 1 ≤ a ≤ b ≤ m, the function

Rab :=

b∑
j=a

Rj

is minimal on a compact interval [Lab, Uab] ⊂ R, strictly antitonic on (−∞, Lab]
and strictly isotonic on [Uab,∞).

This property is satisfied if all functions Rj are convex with Rj(x) → ∞
as |x| → ∞. It implies a refined version of the so-called Cauchy-mean-value
property.

Proposition 4.1. Let {a, . . . , b} ⊂ {1, . . . ,m} be partitioned into k ≥ 2 index
intervals {a1, . . . , b1}, . . . , {ak, . . . , bk}. Then

min
1≤i≤k

Laibi ≤ Lab ≤ max
1≤i≤k

Laibi

and
min

1≤i≤k
Uaibi ≤ Uab ≤ max

1≤i≤k
Uaibi .

Proof. The smallest minimizer Lab of Rab is the largest real number r such that
Rab is strictly antitonic on (−∞, r] and the smallest real number s such that

Rab is isotonic on [s,∞). Since Rab =
∑k

i=1 Raibi , this function is strictly an-
titonic on the interval

⋂
1≤i≤k(−∞, Laibi ] =

(
−∞,min1≤i≤k Laibi

]
and isotonic

on the interval
⋂

1≤i≤k[Laibi ,∞) =
[
max1≤i≤k Laibi ,∞

)
. This yields the desired

inequalities for Lab. The largest minimizer Uab can be handled analogously.

Now we consider the function T : Rm → R,

T (x) :=

m∑
j=1

Rj(xj)

and the set
Q := argmin

q∈R
m
↑

T (q).

The elements of Q can be characterized completely in terms of the minimizers
of the functions Rab. Throughout the sequel, we set x0 := −∞ and xm+1 := ∞
for a vector x ∈ R

m
↑ . Moreover, the componentwise minimum and maximum of

vectors x,y ∈ R
m are denoted by min(x,y) and max(x,y), respectively.

Proposition 4.2. For a vector x ∈ R
m
↑ , the following two properties are equiv-

alent:
(i) x ∈ Q.
(ii) For arbitrary indices 1 ≤ a ≤ b ≤ m,

xa ≤ Uab if xa−1 < xa,

xb ≥ Lab if xb < xb+1.
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This characterization is a generalization of Theorem 8.1 of Dümbgen and
Kovac [5].

Proof of Proposition 4.2. We first show that property (i) is equivalent to a seem-
ingly weaker version of (ii):

(ii′) For arbitrary indices 1 ≤ a ≤ b ≤ m,

xa ≤ Uab if xa−1 < xa = xb,

xb ≥ Lab if xa = xb < xb+1.

Suppose that property (ii′) is violated. Specifically, for some indices 1 ≤ a ≤
b ≤ m, let xa−1 < xa = xb but xa > Uab. Since Rab is strictly isotonic on
[Uab,∞),

x̃j :=

{
xj if j < a or j > b

max(xa−1, Uab) if a ≤ j ≤ b

defines a vector x̃ ∈ R
m
↑ such that T (x̃) < T (x). Analogously, if xa = xb < xb+1

but xb < Lab, one can find a vector x̃ ∈ R
m
↑ such that T (x̃) < T (x). This shows

that property (i) implies property (ii′).
Suppose that property (ii′) is satisfied, and let y be an arbitrary vector in R

m
↑ .

If yj > xj for some index j, let a be the smallest such index, and let c be the
largest index with xc = xa. Thus xa = xc < xc+1 and ya−1 ≤ xa < ya ≤ yc. Now
we repeat the following step until yc = xc: We choose the smallest index b such
that yb = yc. Property (ii′) implies that xc ≥ Lbc, so Rbc is isotonic on [xc,∞).
Consequently, if we replace yb, . . . , yc with the smaller number max(xc, yb−1),
the value T (y) does not increase. These considerations show that replacing
ya, . . . , yc with xa = xc yields a new vector y ∈ R

m
↑ with the same or a smaller

value of T (y). Repeating this construction finitely often shows that replacing y
with min(x,y) does not increase T (y). Analogously one can show that replacing
y with max(x,y) does not increase T (y). Combining both steps shows that the
original vector y satisfies the inequality T (y) ≥ T (x). Hence x belongs to Q.

It remains to show equivalence of properties (ii) and (ii′). The latter is obvi-
ously a consequence of the former one. Hence it suffices to show that a violation
of property (ii) implies a violation of (ii′). Consider indices 1 ≤ a ≤ b ≤ m
such that xa−1 < xa but xa > Uab. In case of xb = xa, this is a viola-
tion of property (ii). In case of xa < xb we partition {a, . . . , b} into max-
imal index intervals {a1, . . . , b1}, . . . , {ak, . . . , bk} on which j �→ xj is con-
stant. Then xa = min1≤i≤k xai , whereas Proposition 4.1 yields the inequal-
ity Uab ≥ min1≤i≤k Uaibi . Hence for some index i, xai−1 < xai = xbi but
xai > Uaibi , a violation of (ii). The situation that xb < xb−1 but xb < Lab can
be handled analogously.

Proposition 4.2 implies already an interesing property of the set Q.

Corollary 4.3. If x(1),x(2) ∈ Q, then min(x(1),x(2)) and max(x(1),x(2)) be-
long to Q as well.
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Proof. For symmetry reasons it suffices to verify that x := min(x(1),x(2)) ∈ Q,
and this is equivalent to x satisfying property (iii) in Proposition 4.2. Let 1 ≤
a ≤ b ≤ m, and suppose that xa−1 < xa. Then for some k ∈ {1, 2},

xa−1 = x
(k)
a−1 < xa ≤ x(k)

a ,

so property (iii) of x(k) implies that xa ≤ x
(k)
a ≤ Uab. In case of xb < xb+1, we

choose k ∈ {1, 2} such that

xb = x
(k)
b < xb+1 ≤ x

(k)
b+1,

and then property (iii) of x(k) implies that xb = x
(k)
b ≥ Lab.

Now we provide the main result involving min-max and max-min formulae
for the set Q.

Theorem 4.4. For any index 1 ≤ j ≤ m,

�
(1)
j := max

a≤j
min
b≥j

Lab = �
(2)
j := min

b≥j
max
a≤j

Lab

and

u
(1)
j := min

b≥j
max
a≤j

Uab = u
(2)
j := max

a≤j
min
b≥j

Uab.

This defines vectors � = (�
(1)
j )mj=1 and u = (u

(1)
j )mj=1 in Q, and any vector x ∈ Q

satisfies � ≤ x ≤ u componentwise.

Proof of Theorem 4.4. For symmetry reasons, if suffices to verify the claims

about �. Precisely, with �(k) := (�
(k)
k )mj=1, we show subsequently that

�(1) ≤ �(2), (4.1)

�(2) ≤ x for any x ∈ Q, (4.2)

�(1) ∈ Q. (4.3)

Inequality (4.1) follows from

�
(1)
j ≤ max

a≤j
min
b≥j

max
ã≤j

Lãb = max
a≤j

�
(2)
j = �

(2)
j

for 1 ≤ j ≤ m.
As to (4.2), for x ∈ Q and 1 ≤ j ≤ m let b̃ be the largest index such that

xb̃ = xj . Then xb̃ < xb̃+1, so property (ii) of x in Proposition 4.2 implies that

�
(2)
j ≤ max

a≤j
La,b̃ ≤ xb̃ = xj .

It remains to verify (4.3). For indices 1 ≤ j < k ≤ m,

�
(1)
j = max

a≤j
min
b≥j

Lab ≤ max
a≤j

min
b≥k

Lab ≤ max
a≤k

min
b≥k

Lab = �
(1)
k ,
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whence �(1) ∈ R
m
↑ . To show that �(1) ∈ Q, it suffices to show that it has

property (iii) in Proposition 4.2, and this is an immediate consequence of the
following two claims: For 1 ≤ j ≤ m,

�
(1)
j−1 < �

(1)
j implies that �

(1)
j = min

b≥j
Ljb, (4.4)

�
(1)
j < �

(1)
j+1 implies that �

(1)
j = max

a≤j
Laj . (4.5)

As to (4.4), suppose that the conclusion is wrong, i.e. �
(1)
j > minb≥j Ljb. Then

j > 1, and for some index ã ≤ j − 1,

�
(1)
j = min

b≥j
Lãb ≤ min

b≥j
max(Lã,j−1, Ljb) = max

(
Lã,j−1,min

b≥j
Ljb

)
= Lã,j−1,

where we used Proposition 4.1. But then

�
(1)
j−1 ≥ min

b≥j−1
Lãb = min

(
Lã,j−1,min

b≥j
Lãb

)
= �

(1)
j ,

i.e. the assumption of (4.4) is wrong as well.

Concerning (4.5), suppose that that the conclusion is wrong, i.e. �
(1)
j < Lãj

for some ã ≤ j. Then j < m, and

�
(1)
j ≥ min

b≥j
Lãb = min

(
Lãj , min

b≥j+1
Lãb

)
= min

b≥j+1
Lãb

≥ min
b≥j+1

min(Lãj , Lj+1,b) = min
(
Lãj , min

b≥j+1
Lj+1,b

)
= min

b≥j+1
Lj+1,b.

Consequently,

min
b≥j+1

Lj+1,b ≤ �
(1)
j and min

b≥j+1
Lãb ≤ �

(1)
j .

This is true for any index ã ≤ j with Lãj > �
(1)
j . If a ≤ j is such that Laj ≤ �

(1)
j ,

then

min
b≥j+1

Lab ≤ min
b≥j+1

max(Laj , Lj+1,b) = max
(
Laj , min

b≥j+1
Lj+1,b

)
≤ �

(1)
j .

Thus minb≥j+1 Laj ≤ �
(1)
j for any a ≤ j + 1. Consequently, �

(1)
j+1 ≤ �

(1)
j , i.e. the

assumption of (4.5) is wrong as well.

We end this subsection with two additional conclusions for the special case
of convex functions Rj .

Theorem 4.5. Suppose in addition that all loss functions Rj are convex. Then
the set Q is compact and convex. If x ∈ R

m
↑ is such that � ≤ x ≤ u and

{j < m : xj < xj+1} ⊂ {j < m : �j < �j+1 or uj < uj+1}, then x ∈ Q.
Moreover, each function Rj is linear on the interval [�j , uj ].
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Proof. The general assumptions imply that each function Rj = Rjj has a com-
pact set of minimizers. Together with convexity, this implies that Rj is contin-
uous with Rj(x) → ∞ as |x| → ∞. But then, T : Rm → R is a continuous and
convex function such that T (x) → ∞ as ‖x‖ → ∞. Moreover, Rm

↑ is a closed
convex cone in R

m. This implies that Q is a compact and convex set.
To verify the remaining statements, consider the vectors x(λ) := (1−λ)�+λu,

λ ∈ [0, 1]. Since Q is a convex set, all these vectors belong to Q. But for 0 <
λ < 1,

{j < m : xj(λ) < xj+1(λ)} = {j < m : �j < �j+1 or uj < uj+1}.

Exploiting property (ii) of x(λ) in Proposition 4.2 for all λ ∈ (0, 1), we may
conclude that for arbitrary indices 1 ≤ a ≤ b ≤ m,

ua ≤ Uab if �a−1 < �a or ua−1 < ua,

�b ≥ Lab if �b < �b+1 or ub < ub+1.

In particular, any vector x ∈ R
m
↑ such that � ≤ x ≤ u and {j < m : xj < xj+1}

is a subset of {j < m : �j < �j+1 or uj < uj+1} satisfies property (iii) in
Proposition 4.2. Hence x ∈ Q.

Finally, since

Tβ(q(λ)) =

m∑
j=1

Rj

(
(1− λ)�j + λuj

)
is constant in λ ∈ [0, 1], each summand Rj

(
(1− λ)�j + λuj

)
has to be linear in

λ ∈ [0, 1], which is equivalent to Rj being linear on [�j , uj ].

4.2. Proofs of Lemma 2.1 and 2.3

Proof of Lemma 2.1. For 1 ≤ j ≤ m, set

Rj(q) :=
∑

i:Xi=xj

ρβ(Yi − q).

This is a convex function of q ∈ R with Rj(q) → ∞ as |q| → ∞. To apply the
results of the previous subsection, we need to determine the sets [Lab, Uab] for
1 ≤ a ≤ b ≤ m. Note that R′

j(q+) =
∑

i:Xi=xj
(1[Yi≤q] − β), whence

R′
ab(q+) = wab(F̂ab(q)− β).

Consequently,

Lab = min
{
q ∈ R : R′

ab(q+) ≥ 0
}

= F̂
−1
ab (β),

Uab = inf
{
q ∈ R : R′

ab(q+) > 0
}

= F̂
−1
ab (β+).

Now all but the last statement of Lemma 2.1 follow from Theorems 4.4 and
4.5. As to the last statement, note that each Rj is a convex and piecewise linear
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function with strict changes of slope at each Yi such that Xi = xj . Consequently,
since Rj is linear on [�j , uj ], there is no data point (Xi, Yi) such that Xi = xj

and Yi ∈ (�j , uj).

Proof of Lemma 2.3. For arbitrary y ∈ R,

y ≥ F̂−1
xj

(β) if and only if F̂xj (y) ≥ β.

But the min-max formula (2.2) for F̂xj (y) implies that the inequality on the
right hand side is equivalent to the following statements:

min
r≤j

max
s≥j

F̂rs(y) ≥ β,

for all r ≤ j, F̂rs(y) ≥ β for some s = s(r) ≥ j,

for all r ≤ j, y ≥ F̂
−1
rs (β) for some s = s(r) ≥ j,

y ≥ max
r≤j

min
s≥j

F̂
−1
rs (β) = �j .

Hence F̂−1
xj

(β) = �j . Analogously, for any y ∈ R,

y ≥ F̂−1
xj

(β+) if and only if F̂xj (y−) ≤ β.

But (2.2) remains valid if we replace ‘(y)’ with ‘(y−)’, so the inequality on the
right hand side is equivalent to the following statements:

max
s≥j

min
r≤j

F̂rs(y−) ≤ β,

for all s ≥ j, F̂rs(y−) ≤ β for some r = r(s) ≤ j,

for all s ≥ j, y ≤ F̂
−1
rs (β+) for some r = r(s) ≥ j,

y ≤ min
s≥j

max
r≤j

F̂
−1
rs (β+) = uj .

Hence F̂−1
xj

(β+) = uj .

4.3. Ratios of empirical and true probabilities

Let P̂n be the empirical distribution of independent r.v.s X1, . . . , Xn with dis-
tribution P on the real line. Further let δn > 0 such that δn → 0 while
nδn/ log n → ∞ (as n → ∞). Then there exist numbers εn > 0 such that
εn → 0 and

inf
{ P̂n(I)

P (I)
: intervals I ⊂ R with P (I) ≥ δn

}
≥ 1− εn (4.6)

with asymptotic probability one.
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Proof. By means of the quantile transformation, this claim can be reduced to the
special case of P being the uniform distribution on [0, 1]. Then let 0 =: X(0) <
X(1) < X(2) < · · · < X(n) < X(n+1) := 1 be the augmented order statistics of
X1, . . . , Xn. With Ujk := X(k) −X(j) = P ((X(j), X(k))) for 0 ≤ j < k ≤ n, an
elementary consideration shows that the left-hand side of (4.6) equals

min
{k − j − 1

nUjk
: 0 ≤ j < k ≤ n+ 1, Ujk ≥ δn

}
. (4.7)

But Ujk ∼ Beta(k − j, n+ 1− k + j) (where Beta(n+ 1, 0) := δ1), so

IE(Ujk) = pjk :=
k − j

n+ 1
,

and Proposition 2.1 of Dümbgen [4] implies that for any c > 0,

IP
(
Ujk > pjk +

√
2pjk(1− pjk)c+ c

)
≤ exp(−(n+ 1)c).

Consequently, setting cn := γ log(n+ 2)/(n+ 1) for some fixed γ > 2,

IP
(
Ujk ≤ pjk +

√
2pjk(1− pjk)cn + cn for 0 ≤ j < k ≤ n+ 1

)
> 1− (n+ 2)2−γ/2 → 1.

But elementary calculations show that Ujk ≤ pjk+
√

2pjk(1− pjk)cn+cn implies
that

pjk ≥ Ujk −max
(
cn,

√
2cnUjk

)
and thus

k − j − 1

nUjk
=

(n+ 1)pjk − 1

nUjk
≥ 1−max

(
cn/Ujk,

√
2cn/Ujk

)
− (nUjk)

−1.

Consequently, with asymptotic probability one, (4.7) is not smaller than 1− εn,
where

εn := max
(
cn/δn,

√
2cn/δn

)
+ (nδn)

−1 → 0.

4.4. Asymptotics

In what follows, we always work with the conditional distribution of (Yni)
n
i=1,

given Xn. Moreover, we tacitly assume that Xn is a “good” vector in the sense
that the event An in Assumption (A.2) or (A′.2xo) occurs.

To lighten the notation, we do not introduce an extra subscript n for the
weights wrs or the empirical distribution functions F̂rs. Furthermore, we define

F̄rs(·) := w−1
rs

s∑
j=r

wjFxj (·).

The norm ‖ ·‖∞ denotes the usual supremum norm of functions on the real line.
The proofs make use of the following exponential inequality which follows

from Bretagnolle [1] and Hu [9].
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Theorem 4.6. Let Y1, Y2, Y3, . . . be independent random variables with respec-
tive distribution functions F1, F2, F3, . . . . For k ∈ N, let

F̂(·) :=
1

k

k∑
i=1

1[Yi≤· ] and F̄ (·) :=
1

k

k∑
i=1

Fi(·).

Then there exists a universal constant C4 ≤ 25/2e such that for all η ≥ 0,

IP
(√

k
∥∥F̂− F̄

∥∥
∞ ≥ η

)
≤ C4 exp(−2η2).

Corollary 4.7. Let

Mn := max
1≤r≤s≤m

w1/2
rs ‖F̂rs − F̄rs‖∞.

Then for any constant D > 1,

lim
n→∞

IP(Mn ≤ (D logn)1/2) = 1.

Proof of Corollary 4.7. Note that the number Mn is the maximum of the
(
m
2

)
+

m < (n+ 1)2/2 quantities

w1/2
rs ‖F̂rs − F̄rs‖∞,

and we may apply Theorem 4.6 to each of them. Consequently,

IP(Mn ≥ ηn) ≤
∑

1≤r≤s≤m

IP
(
w1/2

rs ‖F̂rs − F̄rs‖∞ ≥ ηn
)

≤ (C4/2) exp(2 log(n+ 1)− 2η2n)

for arbitrary ηn ≥ 0. But the right hand side converges to zero as n → ∞ if
ηn = (D logn)1/2 for fixed D > 1.

Proof of Theorem 3.3. Recall that ρn = log(n)/n, δn = C3ρ
1/(2α+1)
n and In =

{x ∈ I : [x ± δn] ⊂ I}. Recall also that we treat Xn as fixed and assume that
the event An in Assumption (A.2) occurs. Let n be sufficiently large so that
In 
= ∅. For x ∈ In the indices

r(x) := min
{
j ∈ {1, . . . ,m} : xj ≥ x− δn

}
,

j(x) := max
{
j ∈ {1, . . . ,m} : xj ≤ x

}
are well-defined, because [x − δn, x] is a subinterval of I of length δn, so As-
sumption (A.2) guarantees that this interval contains at least one observation
xj . Moreover, we have

r(x) ≤ j(x),

x− δn ≤ xr(x) ≤ xj(x) ≤ x,

wr(x)j(x) = wn([x− δn, x]) ≥ C2nδn.
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Consequently, with Mn as in Corollary 4.7, for any y ∈ J we obtain the inequal-
ities

F̂nx(y)− Fx(y) ≤ F̂nxj(x)
(y)− Fx(y)

= min
r≤j(x)

max
s≥j(x)

F̂rs(y)− Fx(y)

≤ max
s≥j(x)

F̂r(x)s(y)− Fx(y)

≤ w
−1/2
r(x)j(x)Mn + max

s≥j(x)
F̄r(x)s(y)− Fx(y)

≤ (C2nδn)
−1/2Mn + Fxr(x)

(y)− Fx(y)

≤ (C2nδn)
−1/2Mn + C1δ

α
n .

In the first step we used antitonicity of x̃ �→ F̂nx̃(y), in the second last step
we used antitonicity of x̃ �→ Fx̃(y), and the last step utilizes Assumption (A.1).
But IP(Mn ≤ (D logn)1/2) → 1 for any fixed D > 1, and on the event {Mn ≤
(D logn)1/2}, the previous considerations imply that

sup
x∈In,y∈J

(
F̂nx(y)− Fx(y)

)
≤ (C2nδn)

−1/2(D logn)1/2 + C1δ
α
n = Cρα/(2α+1)

n

with C := (C2D/C3)
1/2 + C1C

α
3 .

Analogously one can show that on {Mn ≤ (D logn)1/2},

sup
x∈In,y∈J

(
Fx(y)− F̂nx(y)

)
≤ (nδn)

−1/2(D logn)1/2 + C1δ
α
n = Cρα/(2α+1)

n

with the same constant C.

The proof of Theorem 3.4 is based on Theorem 3.3 and two elementary in-
equalities for distribution functions:

Lemma 4.8. Suppose that F,G are distribution functions such that

‖F −G‖∞ ≤ Δ < 1.

Then

G−1(β) ≥ F−1(β −Δ), for Δ < β < 1,

G−1(β+) ≥ F−1((β +Δ)+), for 0 < β < 1−Δ.

Lemma 4.9. Suppose that F is a distribution function so that, for given 0 ≤
β1 < β2 ≤ 1 and κ > 0,

F (y2)− F (y1) ≥ κ(y2 − y1)

for arbitrary y1 < y2 such that F (y1), F (y2−) ∈ (β1, β2). Then F−1(β) =
F−1(β+) and ∣∣F−1(β)− F−1(β′)

∣∣ ≤ κ−1|β − β′|, (4.8)

for arbitrary β, β′ ∈ (β1, β2).
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Proof of Lemma 4.8. Let Δ < β < 1 and y < F−1(β −Δ). Then F (y) < β −Δ
and thus

G(y) ≤ F (y) + Δ < β −Δ+Δ = β.

Therefore, we have y < G−1(β) and letting y → F−1(β − Δ) yields the first
inequality.

Next, let 0 < β < 1−Δ and y > F−1((β +Δ)+). Then F (y−) > β +Δ and
thus

G(y−) ≥ F (y−)−Δ > β +Δ−Δ = β.

This gives y > G−1(β+), and letting y → F−1((β − Δ)+) proves the second
claim.

Proof of Lemma 4.9. Let β, β′ ∈ (β1, β2) be such that β < β′. Define y1 :=
F−1(β) and y2 := F−1(β′), so that y1 ≤ y2. If y1 = y2, then (4.8) is trivial. In
case y1 < y2, we have, for all h ∈ (0, y2 − y1], that

β1 < β ≤ F (y1) ≤ F (y2 − h) ≤ β′ < β2,

so that F (y1), F (y2 − h) ∈ (β1, β2). Therefore, we get

β′−β ≥ lim
h↓0

F (y2−h)−F (y1) ≥ lim
h↓0

κ(y2−h−y1) = κ(F−1(β′)−F−1(β)).

Proof of Theorem 3.4. With Δn := Cρ
α/(2α+1)
n , we may write Bn = (β1 +

Δn, β2−Δn). Let n be large enough so that In and Bn are nondegenerate inter-
vals; in particular, Δn < 1/2. The proof of Theorem 3.3 reveals that IP(A∗

n) → 1,
where A∗

n is the event that

sup
x∈In

‖F̂nx,k − Fx‖∞ ≤ Δn for k = 1, 2.

Here F̂nx,1 and F̂nx,2 denote two extremal ways to extrapolate F̂nx from x ∈
{x1, . . . , xm} to arbitrary x ∈ X : With x0 := −∞ and xm+1 := ∞, we define

F̂nx,1 :=

{
F̂nxj if xj−1 < x ≤ xj , 1 ≤ j ≤ m,

0 if x > xm,

F̂nx,2 :=

{
1 if x < x1,

F̂nxj if xj ≤ x < xj+1, 1 ≤ j ≤ m.

Then F̂nx,1 ≥ F̂nx ≥ F̂nx,2 for any choice of (F̂x)x∈X . The event A∗
n implies that

F̂nx,k is a proper distribution function for k = 1, 2 and all x ∈ In. Moreover, for
x ∈ In and β ∈ Bn, it follows from Lemmas 4.8 and 4.9 that

Q̂x(β) ≥ F̂−1
nx,1(β) ≥ F−1

x (β −Δn) ≥ F−1
x (β)− κ−1Δn,

Q̂x(β) ≤ F̂−1
nx,2(β+) ≤ F−1

x ((β +Δn)+) ≤ F−1
x (β) + κ−1Δn.
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Consequently,

IP

(
sup

x∈In,β∈Bn

∣∣Q̂x(β)−Qx(β)
∣∣ > κ−1Δn

)
≥ IP(A∗

n) → 1

as n → ∞.

We now proceed to the proof of Theorem 3.5. Theorem 4.6 and Lemma 4.11
in the next subsection imply the following exponential inequality:

Corollary 4.10. With the same notation as in Theorem 4.6, for any D′ ∈ (0, 2)
there exists a universal constant D′′ = D′′(D′) such that

IP
(
sup
k≥ko

∥∥F̂k − F̄k

∥∥
∞ ≥ η

)
≤ D′′ exp(−D′koη

2)

for all ko ∈ N and η ≥ 0.

Proof of Theorem 3.5. Let us define the indices

rn := min
{
j ∈ {1, . . . ,m} : xj ≥ xo − δn

}
and

jn := max
{
j ∈ {1, . . . ,m} : xj ≤ xo

}
.

Since we assume the event An in (A′.2xo) to occur, we know that

xo − δn ≤ xrn ≤ xjn ≤ xo,

wrnjn = wn([xo − δn, xo]) ≥ C2nδn > 0.

One can easily deduce from Corollary 4.10 that

Mn := max
j≥jn

w
1/2
rnj

‖F̂rnj − F̄rnj‖∞ = Op(1).

Consequently, for y ∈ J ,

F̂nxo(y)− Fxo(y) ≤ F̂njn(y)− Fxo(y)

= min
r≤jn

max
s≥jn

F̂rs(y)− Fxo(y)

≤ max
s≥jn

F̂rns(y)− Fxo(y)

≤ w
−1/2
rnjn

Mn +max
s≥jn

F̄rn,s(y)− Fxo(y)

≤ (C2nδn)
−1/2Mn + Fxo−δn(y)− Fxo(y)

≤ (C2nδn)
−1/2Mn + C1δ

α
n .

But the right hand side does not depend on y and is of order Op

(
(nδn)

−1/2 +

δαn
)
= Op(n

−α/(2α+1)). Consequently,

sup
y∈J

(
F̂xo(y)− Fxo(y)

)
= Op(n

−α/(2α+1)).
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With analogous arguments one shows that supy∈J

(
Fxo(y)− F̂xo(y)

)
is of order

Op(n
−α/(2α+1)) as well.

Proof of Theorem 3.6. The proof uses essentially the same arguments as the
proof of Theorem 3.4. The main differences are that we replace In with {xo}
and ρn with n−1.

4.5. An exponential inequality for the LLN

We consider stochastically independent random elements Z1, Z2, Z3, . . . with
values in a normed vector space (Z, ‖ · ‖). Defining the partial sums S0 := 0 and
Sn :=

∑n
i=1 Zi for n ∈ N, we assume that ‖Sb −Sa‖ is measurable for arbitrary

integers 0 ≤ a < b.

Lemma 4.11. Suppose that there are constants c > 0 and C ≥ 1 such that for
arbitrary integers 0 ≤ a < b and real numbers η > 0,

IP(‖Sb − Sa‖ > η) ≤ C exp
(
−cη2/(b− a)

)
. (4.9)

Then for arbitrary c′ ∈ (0, c) there exists a constant C ′ such that

IP
(
sup
n≥no

‖Sn/n‖ ≥ η
)

≤ C ′ exp(−c′noη
2) (4.10)

for arbitrary numbers no, η ≥ 0.

Corollary 4.10 is a consequence of this result, where Zi := 1[Yi≤· ] − Fi is a
random bounded function on the real line, and c = 2.

Proof of Lemma 4.11. Note that the right hand side of (4.10) is continuous in
η ≥ 0 and no ≥ 0, and it is not smaller than 1 in case of η = 0 or no = 0. Hence
it suffices to verify that

IP
(
sup
n≥no

‖Sn/n‖ > η
)

≤ C ′ exp(−c′noη
2) (4.11)

for arbitrary numbers no, η > 0.
The essential ingredient will be the following inequality: For arbitrary real

numbers 0 ≤ a < b and η > 0,

IP
(
max
a≤n≤b

‖Sn‖ > η
)

≤ 2C exp

(
− cη2(√

b+
√
b− a

)2) (4.12)

(with the maximum over the empty set interpreted as 0). To verify this, it suffices
to consider the case of a and b being integers; otherwise one could replace a with
�a� and b with �b�, and this would even decrease the term

√
b+

√
b− a in (4.12).

Define the stopping time

τ := min
({

n ∈ {a, . . . , b} : ‖Sn‖ > η
}
∪ {∞}

)
.
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Then, for 0 < λ < 1,

IP
(
max
a≤n≤b

‖Sn‖ > η
)

= IP(τ ≤ b)

≤ IP(‖Sb‖ > λη) + IP
(
τ ≤ b, ‖Sb‖ ≤ λη

)
= IP(‖Sb‖ > λη) +

b−1∑
n=a

IP
(
τ = n, ‖Sb‖ ≤ λη

)
≤ IP(‖Sb‖ > λη) +

b−1∑
n=a

IP
(
τ = n, ‖Sn − Sb‖ > (1− λ)η

)
= IP(‖Sb‖ > λη) +

b−1∑
n=a

IP(τ = n) IP
(
‖Sn − Sb‖ > (1− λ)η

)
≤ C exp

(
−cλ2η2

b

)
+

b−1∑
n=a

IP(τ = n)C exp

(
−c(1− λ)2η2

b− a

)
≤ C exp

(
−cλ2η2

b

)
+ C exp

(
−c(1− λ)2η2

b− a

)
.

Here the fourth last step follows from the triangle inequality for ‖·‖: ‖Sn−Sb‖ ≥
‖Sn‖−‖Sb‖ > η−λη in case of τ = n and ‖Sb‖ ≤ λη. The third last step follows
from independence of the Zi and the fact that the event {τ = n} depends on
Za, . . . , Zn, whereas ‖Sn − Sb‖ is a function of Zn+1, . . . , Zb. If we take

λ :=

√
b√

b+
√
b− a

,

then the two exponents in our inequality are identical, and we obtain (4.12).
Since c′ < c, the constant

β :=
(c/c′ + 1)2

4c/c′

satisfies β > 1 and

c′ =
c(√

β +
√
β − 1

)2 .
With (4.12) at hand, we may argue that for arbitrary numbers no > 0,

IP
(
sup
n≥no

‖Sn/n‖ > η
)

≤
∞∑
k=0

IP
(

max
βkno≤n≤βk+1no

‖Sn‖ > βknoη
)

≤ 2C

∞∑
k=0

exp

(
− cβ2kn2

oη
2(√

βk+1no +
√
βk+1no − βkno

)2)

= 2C

∞∑
k=0

exp

(
− cβknoη

2(√
β +

√
β − 1

)2)
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= 2C

∞∑
k=0

exp(−p(η)βk),

where p(η) := c′noη
2 > 0. Since βx is increasing in x ≥ 0, we find the upper

bound

∞∑
k=1

exp(−p(η)βk) ≤
∫ ∞

0

exp(−p(η)βx) dx

= (log β)−1

∫ ∞

0

exp(−p(η)ey) dy

≤ (log β)−1

∫ ∞

0

exp(−p(η)(1 + y)) dy

=
1

p(η) log β
exp(−p(η)),

which yields

IP
(
sup
n≥no

‖Sn/n‖ > η
)

≤ 2C
(
1 +

1

p(η) log β

)
exp(−p(η)).

For a number po > 0 to be specified later, the bound above is not greater than

2C
(
1 +

1

po log β

)
exp(−p(η)) = 2C

(
1 +

1

po log β

)
exp(−c′noη

2)

whenever p(η) ≥ po. But in case of p(η) ≤ po, the latter bound is at least

2C
(
1 +

1

po log β

)
exp(−po) ≥ 1

if we set po := min{(log β)−1, log(4C)}. Consequently, with this choice of po,
(4.11) is true with C ′ := 2C

(
1 + (po log β)

−1
)
.
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