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1. Introduction

1.1. Motivations

In this paper, we study the convergence (to their population counterparts) of
empirical probability measures supported on a finite metric space with respect
to entropy-regularized transportation costs. Transport distances are widely em-
ployed for comparing probability measures since they capture in a instinctive
manner the geometry of distributions (see e.g. [37] for a general presentation
on the subject). In particular, the Wasserstein distance is well adapted to deal
with discrete probability measures (supported on a finite set), as its compu-
tation reduces to solve a linear program. Moreover, since data in the form of
histograms may be represented as discrete measures, the Wasserstein distance
has been shown to be a relevant statistical measure in various fields such as
clustering of discrete distributions [40], nonparametric Bayesian modelling [24],
fingerprints comparison [33], unsupervised learning [1] and principal component
analysis [3, 31, 5].

However, the computational cost to evaluate a transport distance is generally
of order O(N3 logN) for discrete probability distributions with a support of size
N . To overcome the computational cost to evaluate a transport distance, Cuturi
[7] has proposed to add an entropic regularization term to the linear program
corresponding to a standard optimal transport problem, leading to the notion
of Sinkhorn divergence between probability distributions. Initially, the purpose
of transport plan regularization was to efficiently compute a divergence term
close to the Wasserstein distance between two probability measures, through an
iterative scaling algorithm where each iteration costs O(N2). This proposal has
recently gained popularity in machine learning and statistics, as it makes feasible
the use of smoothed optimal transportation distance for data analysis. It has
found various applications such as generative models [19] and more generally for
high dimensional data analysis in multi-label learning [16], dictionary learning
[29], image processing [9, 26], text mining via bag-of-words comparison [18],
averaging of neuroimaging data [20].

The goal of this paper is to analyze the potential benefits of the Sinkhorn di-
vergence and its centered version [14, 19] for statistical inference from empirical
probability measures. We derive novel results on the asymptotic distribution of
such divergences for data sampled from (unknown) distributions supported on
a finite metric space. The main application is to obtain new test statistics (for
one or two samples problems) for the comparison of multivariate probability
distributions.

1.2. Previous work and main contributions

The derivation of distributional limits of an empirical measure towards its pop-
ulation counterpart in p-Wasserstein distance Wp(μ, ν) is well understood for
probability measures μ and ν supported on R [15, 10, 11]. These results have
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then been extended for specific parametric distributions supported on R
d be-

longing to an elliptic class, see [28] and references therein. Recently, a central
limit theorem has been established in [12] for empirical transportation cost, and
data sampled from absolutely continuous measures on R

d, for any d ≥ 1. The
case of discrete measures supported on a finite metric space has also been con-
sidered in [33] with the proof of the convergence (in the spirit of the central
limit theorem) of empirical Wasserstein distances toward the optimal value of
a linear program. Additionally, Klatt et al. [21] analyzed, in parallel with our
results, the distributional limit of regularized optimal transport divergences be-
tween empirical distributions. In particular, the work in [21] extends the study
of distributional limits of regularized empirical transportation cost to general
penalty functions (beyond entropy regularization). The authors of [27] also stud-
ied the link between nonparametric tests and the Wasserstein distance, with an
emphasis on distributions with support in R.

However, apart from the one-dimensional case (d = 1), and the work of [21],
these results lead to test statistics whose numerical implementation become pro-
hibitive for empirical measures supported on R

d with d ≥ 2. The computational
cost required to evaluate a transport distance is indeed only easily tractable in
R. It is therefore of interest to propose test statistics based on fast Sinkhorn
divergences [7]. In this context, this paper focuses on the study of inference
from discrete distributions in terms of entropically regularized transport costs,
the link with the inference through unregularized transport, and the construc-
tion of tests statistics that are well suited to investigate the equality of two
distributions. The results are inspired by the work in [33] on the asymptotic
distribution of empirical Wasserstein distance on finite space using unregular-
ized transportation costs.

Our main contributions may be summarized as follows. First, for data sam-
pled from one or two unknown measures μ and ν supported on a finite space, we
derive central limit theorems for the Sinkhorn divergence between their empir-
ical counterpart. These results allow to build new test statistics for measuring
the discrepancies between multivariate probability distributions. Notice however
that the Sinkhorn divergence denoted W p

p,ε(μ, ν) (where ε > 0 is a regularization
parameter) is not a distance since W p

p,ε(μ, μ) �= 0. This is a serious drawback
for testing the hypothesis of equality between distributions. Thus, as introduced
in [14, 19], we further consider the centered version of the Sinkhorn divergence
W p

p,ε(μ, ν), referred to as Sinkhorn loss, which satisfies W p
p,ε(μ, μ) = 0. This

study thus constitutes an important novel contribution with respect to the work
of [21]. We present new results on the asymptotic distributions of the Sinkhorn
loss between empirical measures. Interestingly, under the hypothesis that μ = ν,
such statistics do not converge to a Gaussian random variable but to a mixture
of chi-squared distributed random variables. To illustrate the applicability of the
method to the analysis of real data, we propose a bootstrap procedure to esti-
mate unknown quantities of interest on the distribution of these statistics such
as their non-asymptotic variance and quantiles. Simulated and real datasets are
used to illustrate our approach. Finally, one may stress that an advantage of the
use of test statistics based regularized Wasserstein distance (rather than other
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losses or divergences) is to allow further statistical inference from the result-
ing optimal transport plan as demonstrated in [21] for the analysis of protein
interaction networks.

1.3. Overview of the paper

In Section 2, we briefly recall the optimal transport problem between probability
measures, and we introduce the notions of Sinkhorn divergence and Sinkhorn
loss. Then, we derive the asymptotic distributions for the empirical Sinkhorn
divergence and the empirical Sinkhorn loss. We also give the behavior of such
statistics when the regularization parameter ε tends to zero at a rate depending
on the number of available observations. A bootstrap procedure is discussed in
Section 3. Numerical experiments are reported in Section 4 for synthetic data
and in Section 5 for real data.

2. Distributional limits for entropy-regularized optimal transport

In this section, we give results on the asymptotic distributions of the empirical
Sinkhorn divergence and the empirical Sinkhorn loss. The proofs rely on the
use of the delta-method and on the property that W p

p,ε(μ, ν) is a differentiable
function with respect to μ and ν.

2.1. Notation and definitions

We first introduce various notation and definitions that will be used throughout
the paper.

2.1.1. Optimal transport, Sinkhorn divergence and Sinkhorn loss

Let (X , d) be a complete metric space with d : X×X → R+. We denote by Pp(X )
the set of Borel probability measures μ supported on X with finite moment of
order p ≥ 1, in the sense that

∫
X dp(x, y)dμ(x) is finite for some (and thus for

all) y ∈ X . The p-Wasserstein distance between two measures μ and ν in Pp(X )
is defined by

Wp(μ, ν) =

(
inf

π∈Π(μ,ν)

∫∫
X 2

dp(x, y)dπ(x, y)

)1/p

(1)

where the infimum is taken over the set Π(μ, ν) of probability measures π on
the product space X × X with respective marginals μ and ν.

In this work, we consider the specific case where X = {x1, . . . , xN} is a finite
metric space of size N . In this setting, a measure μ ∈ Pp(X ) is discrete, and we

write μ =
∑N

i=1 aiδxi where (a1, . . . , aN ) is a vector of positive weights belonging

to the simplex ΣN := {a = (ai)i=1,...,N ∈ R
N
+ such that

∑N
i=1 ai = 1} and
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δxi is a Dirac measure at location xi. Therefore, computing the p-Wasserstein
distance between discrete probability measures supported on X amounts to solve
a linear program whose solution is constraint to belong to the convex set Π(μ, ν).
However, the cost of this convex minimization becomes prohibitive for moderate
to large values of N . Regularizing a complex problem with an entropy term is
a classical approach in optimization to reduce its complexity [39]. This is the
approach followed in [7] by adding an entropy regularization to the transport
matrix, which yields the strictly convex (primal) problem (2) presented below.

As the space X is fixed, a probability measure supported on X is entirely
characterized by a vector of weights in the simplex. By a slight abuse of notation,
we thus identify a measure μ ∈ Pp(X ) by its vector of weights a = (a1, . . . , an) ∈
ΣN (and we sometimes write a = μ).

Definition 2.1 (Sinkhorn divergence). Let ε > 0 be a regularization parameter.

The Sinkhorn divergence [7] between two probability measures μ =
∑N

i=1 aiδxi

and ν =
∑N

i=1 biδxi in Pp(X ) is defined by

W p
p,ε(a, b) = min

T∈U(a,b)
〈T,C〉+ εH(T |a⊗ b), with a and b in ΣN , (2)

where 〈·, ·〉 denotes the usual inner product between matrices, a⊗ b denotes the
tensor product (xi, xj) 
→ aibj and

– U(a, b) = {T ∈ R
N×N
+ |T1N = a, TT1N = b} is the set of transport matrices

with marginals a and b (with 1N denoting the vector of RN with all entries
equal to one),

– C ∈ R
N×N
+ is the pairwise cost matrix associated to the metric space (X, d)

whose (i, j)-th entry is cij = d(xi, xj)
p,

– the regularization function H(T |a ⊗ b) =
∑

i,j log
(

tij
aibj

)
tij is the relative

entropy for a transport matrix T ∈ U(a, b).

Remark 1. This entire section is also valid for symmetric positive cost matrices
C for which C(xi, xi) = 0.

The dual version of problem (2) is introduced in the following definition.

Definition 2.2 (Dual problem). Following [8], the dual version of the mini-
mization problem (2) is given by

W p
p,ε(a, b) = max

u,v∈RN
uT a+ vT b− ε

∑
i,j

(
e−

1
ε (cij−1−ui−vj)

)
aibj . (3)

We denote by Sε(a, b) the set of optimal solutions of the maximization prob-
lem (3).

It is now well known that there exists an explicit relationship between the
optimal solutions of primal (2) and dual (3) problems. These solutions can be
computed through an iterative method called Sinkhorn’s algorithm [8] that is
described below and which explicitly gives this relationship.
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Proposition 2.1 (Sinkhorn’s algorithm). Let K = exp(−C/ε− 1N×N ) be the
elementwise exponential of the matrix cost C divided by −ε minus the matrix
with all entries equal to 1. Then, there exists a pair of vectors (ũ, ṽ) ∈ R

N
+ ×R

N
+

such that the optimal solutions T ∗
ε and (u∗

ε , v
∗
ε ) of problems (2) and (3) are

respectively given by

T ∗
ε = [diag(ũ)K diag(ṽ)]� (a⊗ b), and u∗

ε = ε log(ũ), v∗ε = ε log(ṽ),

where � is the pointwise multiplication. Moreover, such a pair (ũ, ṽ) is unique
up to scalar multiplication (or equivalently (u∗

ε , v
∗
ε ) is unique up to translation),

and it can be recovered as a fixed point of the Sinkhorn map

(ũ, ṽ) ∈ R
N × R

N 
→ (a/(Kṽ), b/(KT ũ)), (4)

where KT is the transpose of K and / stands for the component-wise division.

Remark 2. When the cost matrix C is defined as cij = ‖xi−xj‖2 and the grid
points xi are uniformly spread, the matrix vector products involving exp(−C/ε)
within the Sinkhorn algorithm can be efficiently performed via separated one
dimensional convolutions [32] without storing C.

As discussed in the introduction, an important issue regarding the use of
Sinkhorn divergence for testing the equality of two distributions is that it leads
to a biased statistics in the sense that W p

p,ε(a, b) is not equal to zero under the
null hypothesis a = b. A possible alternative to avoid this issue is to consider
the so-called notion of Sinkhorn loss [14, 19] as defined below.

Definition 2.3 (Sinkhorn loss). Let ε > 0 be a regularization parameter.

The Sinkhorn loss between two probability measures μ =
∑N

i=1 aiδxi and ν =∑N
i=1 biδxi in Pp(X ) is defined by

W p
p,ε(a, b) := W p

p,ε(a, b)−
1

2

(
W p

p,ε(a, a) +W p
p,ε(b, b)

)
. (5)

The Sinkhorn loss is not a distance between probability distributions, but
it satisfies various interesting properties for the purpose of this paper, that are
summarized below.

Proposition 2.2. The Sinkhorn loss satisfies the following three key properties
(see Theorem 1 in [14]):

(i) W p
p,ε(a, b) ≥ 0,

(ii) W p
p,ε(a, b) = 0 ⇔ a = b,

(iii) W p
p,ε(a, b) −→

ε→0
W p

p (a, b).

From Proposition 2.2, we have that a = b is equivalent to W p
p,ε(a, b) = 0,

therefore the function (a, b) 
→ W p
p,ε(a, b) reaches its global minimum at a = b,

implying that the gradient of the Sinkhorn loss is zero when a = b which is
summarized in the following corollary.

Corollary 2.4. For any a ∈ ΣN , the gradient of the Sinkhorn loss satisfies
∇W p

p,ε(a, a) = 0.
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2.1.2. Statistical notations

We denote by
L−→ the convergence in distribution of a random variable and

P−→
the convergence in probability. The notation G

L∼ a means that G is a random
variable taking its values in X with law a = (a1, . . . , an) ∈ ΣN (namely that

P(G = xi) = ai for each 1 ≤ i ≤ N). Likewise G
L∼ H stands for the equality in

distribution of the random variables G and H.

Let a, b ∈ ΣN and ân and b̂m be the empirical measures respectively generated

by iid samples X1, . . . , Xn
L∼ a and Y1, . . . , Ym

L∼ b, that is

ân = (âxn)x∈X , (6)

where âxi
n =

1

n

n∑
j=1

1{Xj=xi} =
1

n
#{j : Xj = xi} for all 1 ≤ i ≤ N.

We also define the multinomial covariance matrix

Σ(a) =

⎡
⎢⎢⎢⎣
ax1(1− ax1) −ax1ax2 · · · −ax1axN

−ax1ax2 ax2(1− ax2) · · · −ax2axN

...
...

. . .
...

−ax1axN
−ax2axN

· · · axN
(1− axN

)

⎤
⎥⎥⎥⎦

and the independent Gaussian random vectors G ∼ N (0,Σ(a)) and H ∼
N (0,Σ(b)). As classically done in statistics, we say that

{
H0 : a = b is the null hypothesis,
H1 : a �= b is the alternative hypothesis.

Remark 3. As stated in Proposition 2.1, the dual variables (u∗
ε , v

∗
ε ) solutions

of (3) for a and b in the simplex are unique up to a scalar addition. Hence for
any t ∈ R,

〈G, u∗
ε + t1N 〉 L∼ 〈G, u∗

ε〉,

since G is centered in 0 and 1′
NΣ(a)1N = 0 for a in the simplex.

2.1.3. Notations for differentiation

For a sufficiently smooth function f : (x, y) ∈ R
N × R

N 
−→ R, we denote by
∇f and ∇2f the gradient and the hessian of the function f . In particular, the
gradient of f at the point (x, y) ∈ R

N×R
N in the direction (h1, h2) ∈ R

N×R
N is

denoted by ∇f(x, y)(h1, h2) (this notation also holds for the hessian). Moreover,
the first-order partial derivative with respect to the first variable x (resp. y) is
given by ∂1f (resp. ∂2f). Equivalently, the second-order partial derivative is
denoted ∂2

ijf , with i ∈ {1, 2}, j ∈ {1, 2}.
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2.2. Differentiability of W p
p,ε

As stated at the beginning of the section, the differentiability of W p
p,ε (in the

usual Fréchet sense) is needed in order to apply the delta-method. This is proved
in the following proposition.

Proposition 2.3. The functional (a, b) 
→ W p
p,ε(a, b) is differentiable in ΣN ×

ΣN with gradient

∇W p
p,ε(a, b)(h1, h2) = 〈uε, h1〉+ 〈vε, h2〉,

where (uε, vε) ∈ Sε(a, b), the set of optimal solutions of (3).

Proof. From Proposition 2 in [14], W p
p,ε is Gâteaux differentiable and its deriva-

tive reads
∇W p

p,ε(a, b)(h1, h2) = 〈uε, h1〉+ 〈vε, h2〉,
for (uε, vε) ∈ Sε(a, b). In order to prove its differentiability (or Fréchet differen-
tiability, since RN is a finite dimensional space) at the point (a, b), we only need
to prove that the operator ∇W p

p,ε is continuous (see e.g. Prop. 3.2.3. in [41]) in
(a, b). Suppose that (an, bn) tends to (a, b) when n tends to infinity. Therefore,
this convergence also holds in the weak∗ topology for the probability measures
μn =

∑N
i=1 a

n
i δxi , ν

n =
∑N

i=1 b
n
i δxi and μ =

∑N
i=1 aiδxi , ν =

∑N
i=1 biδxi . We

denote by (un, vn) the unique couple in Sε(a
n, bn) such that for an arbitrary

i0 ∈ {1, . . . , N}, un
i0

= 0. Then, we can apply Cauchy-Schwarz inequality and
then use Proposition 13 in [14] on the convergence of the pair (un, vn) of dual
variables towards (u, v) ∈ Sε(a, b) (such that ui0 = 0), to obtain that

lim
(an,bn)→(a,b)

‖∇W p
p,ε(a

n, bn)−∇W p
p,ε(a, b)‖

= lim
(an,bn)→(a,b)

sup
‖(h1,h2)‖≤1

|〈un − u, h1〉+ 〈vn − v, h2〉|

≤ lim
(an,bn)→(a,b)

sup
‖(h1,h2)‖≤1

‖un − u‖ ‖h1‖+ ‖vn − v‖ ‖h2‖

−→
(an,bn)→(a,b)

0,

which concludes the proof.

2.3. Distributional limits for the empirical Sinkhorn divergence

2.3.1. Convergence in distribution

The following theorem is our main result on distributional limits of empirical
Sinkhorn divergences.

Theorem 2.5. For a, b ∈ ΣN , let (uε, vε) ∈ Sε(a, b) be an optimal solution of

the dual problem (3) and ân, b̂m be the empirical measures defined in (6). Then,
the following central limit theorems hold for empirical Sinkhorn divergences.
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1. One sample. As n → +∞, one has that

√
n(W p

p,ε(ân, b)−W p
p,ε(a, b))

L−→ 〈G, uε〉. (7)

2. Two samples. For ρn,m =
√
(nm/(n+m)) and m/(n +m) → γ ∈ (0, 1)

as min(n,m) → +∞, one has that

ρn,m(W p
p,ε(ân, b̂m)−W p

p,ε(a, b))
L−→ √

γ〈G, uε〉+
√
1− γ〈H, vε〉. (8)

Proof. Following the proof of Theorem 1 in [33], we have that (see e.g. Theorem
14.6 in [38]) √

n(ân − a)
L−→ G, where G

L∼ N (0,Σ(a)),

since nân is a sample of a multinomial probability measure with probability a.
For the two samples case, we use that

ρn,m((ân, b̂m)− (a, b))
L−→ (

√
γG,

√
1− γH),

where ρn,m and γ are the quantities defined in the statement of Theorem 2.5.
From Proposition 2.3, we can directly apply the delta-method:

√
n(W p

p,ε(ân, b)−W p
p,ε(a, b))

L−→ 〈G, uε〉, as n → +∞, (9)

while, for n and m tending to infinity such that n∧m → ∞ and m/(n+m) →
γ ∈ (0, 1), we obtain that

ρn,m(W p
p,ε(ân, b̂m)−W p

p,ε(a, b))
L−→ √

γ〈G, uε〉+
√

1− γ〈H, vε〉. (10)

This completes the proof of Theorem 2.5.

2.3.2. Convergence in probability

Distributional limits of empirical Sinkhorn divergences may also be character-
ized by a convergence in probability by the following result which directly follows
from the delta-method (see e.g. Theorem 3.9.4 in [36]).

Theorem 2.6. The following asymptotic results hold for empirical Sinkhorn
divergences, for any (uε, vε) ∈ Sε(a, b).

1. One sample. As n → +∞, one has that

√
n
(
W p

p,ε(ân, b)−W p
p,ε(a, b)− 〈ân − a, uε〉

)
P−→ 0.

2. Two samples – For ρn,m =
√
(nm/(n+m)) and m/(n+m) → γ ∈ (0, 1)

as min(n,m) → +∞, one has that

ρn,m

(
W p

p,ε(ân, b̂m)−W p
p,ε(a, b)− (〈ân − a, uε〉+ 〈b̂m − b, vε〉)

)
P−→ 0.

Proof. As the map (h1, h2) 
→ ∇W p
p,ε(a, b)(h1, h2) is defined, linear and contin-

uous on R
N × R

N , Theorem 3.9.4 in [36] allows us to conclude.
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2.4. Distributional limits for the empirical Sinkhorn loss

2.4.1. Convergence in distribution

The following theorems are our main results on distributional limits of the em-
pirical Sinkhorn loss, for which we now distinguish the cases a �= b (alternative
hypothesis) and a = b (null hypothesis).

Theorem 2.7. Let a �= b be two probability distributions in ΣN . Let us denote
by ân, b̂m their empirical counterparts and by (ua,b

ε , va,bε ) ∈ Sε(a, b) the dual
variables which are the optimal solutions of the dual problem (3). Then, the
following asymptotic results hold.

1. One sample. As n → +∞, one has that

√
n(W p

p,ε(ân, b)−W p
p,ε(a, b))

L−→ 〈G, ua,b
ε − 1

2
(ua,a

ε + va,aε )〉. (11)

2. Two samples. For ρn,m =
√
(nm/(n+m)) and m/(n +m) → γ ∈ (0, 1)

as min(n,m) → +∞, one has that

ρn,m(W p
p,ε(ân, b̂m)−W p

p,ε(a, b))
L−→ √

γ〈G, ua,b
ε − 1

2
(ua,a

ε + va,aε )〉

+
√
1− γ〈H, va,bε − 1

2
(ub,b

ε + vb,bε )〉.

Proof. The only difference with the proof of Theorem 2.5 is the computation of
the gradient of W p

p,ε, which is given by

∇W p
p,ε(a, b)(h1, h2) = 〈ua,b

ε − 1

2
(ua,a

ε +va,aε ), h1〉+〈va,bε − 1

2
(ub,b

ε +vb,bε ), h2〉. (12)

The proof of Theorem 2.7 then follows from the same arguments as those used
in the proof of Theorem 2.5.

Under the null hypothesis a = b, the derivation of the distributional limit of
either W p

p,ε(ân, a) or W
p
p,ε(ân, b̂m) requires further attention. Indeed, thanks to

Proposition 2.2, one has that the function (a, b) 
→ W p
p,ε(a, b) reaches its global

minimum at a = b, and therefore the gradient of the Sinkhorn loss satisfies
∇W p

p,ε(a, a) = 0. Hence, to obtain the distributional limit of the empirical
Sinkhorn loss it is necessary to apply a second-order delta-method yielding an
asymptotic distribution which is not Gaussian anymore.

Theorem 2.8. Let a = b be a probability distribution on ΣN , and denote by ân
an empirical measures obtained by independent sampling data from a. Then, as
n tends to infinity, the following asymptotic result holds

nW p
p,ε(ân, a)

L−→ 1

2

N∑
i=1

λiχ
2
i (1) (13)
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where λ1, . . . , λN are the non-negative eigenvalues of the matrix

Σ(a)1/2∂2
11W

p
p,ε(a, a)Σ(a)

1/2,

and χ2
1(1), . . . , χ

2
N(1) are independent random variables with chi-squared distri-

bution of degree 1.

Proof. From Corollary 2.4, we have that ∇W p
p,ε(a, a) = 0. In order to apply

a second order delta-method, the Hessian matrix ∇2W p
p,ε(a, b) of the Sinkhorn

loss W p
p,ε(a, b) needs to be non-singular in the neighborhood of a = b. Note

that the Sinkhorn loss is at least C3 (admitting a third continuous differential)
on the interior of its domain, as proved in Theorem 2 by [23]. Moreover, since
the function a 
→ W p

p,ε(a, b) is ε-strongly convex (Theorem 3.4, [2]) and a 
→
−1

2W
p
p,ε(a, a) is (strictly) convex (Proposition 4, [14]), we have that the Hessian

matrix of a 
→ W p
p,ε(a, b) is non-singular. We can thus apply Theorem 17 in [34]

which states that from second order delta-method, the distributional limits of
nW p

p,ε(ân, a) is given by

1

2
N (0,Σ(a))T∂2

11W
p
p,ε(a, a)N (0,Σ(a))

that can be rewritten as

1

2

N∑
i=1

λiχ
2
i (1),

where λ1, . . . , λN are the eigenvalues of the matrix Σ(a)1/2∂2
11W

p
p,ε(a, a)Σ(a)

1/2.
This concludes the distributional limit presented in relation (13).

In the two samples case, the Hessian matrix is not guaranteed to be non-
singular, in which case the asymptotic distribution is degenerated. Nevertheless,
we have the following theorem.

Theorem 2.9. Let a = b be a probability distribution on ΣN , and denote by
ân, ãm two empirical measures obtained by independent sampling data from a.
Then, let us write the Hessian matrix

∇2W p
p,ε(a, b) =

(
A B
B C

)
,

with A = ∂2
11W

p
p,ε(a, b), C = ∂2

22W
p
p,ε(a, b) and B = ∂2

12W
p
p,ε(a, b). If its Schur

complement S = C −BTA−1B is non-singular in a neighborhood of a = b, then
one has for m/(n+m) → γ ∈ (0, 1) as min(n,m) → +∞

nm

n+m
W p

p,ε(ân, ãm)
L−→ 1

2

N∑
i=1

λ̃iχ
2
i (1), (14)

where λ̃1, . . . , λ̃N are the eigenvalues of the matrix of size R
2N × R

2N given by

(
√
γΣ(a)1/2,

√
1− γΣ(a)1/2)∇2W p

p,ε(a, a)(
√
γΣ(a)1/2,

√
1− γΣ(a)1/2),
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and χ2
1(1), . . . , χ

2
N(1) are independent random variables with chi-squared distri-

bution of degree 1.

Proof. As in the proof of Theorem 2.8, we have that both A and C are ε-strongly
convex and therefore non-singular. The determinant det(∇2W p

p,ε(a, b)) = det(A)
det(S) is therefore non-zero in a neighborhood of a = b if and only if the Schur
complement S is invertible in a neighborhood of a = b. Therefore, applying
Theorem 17 in [34] as in the one sample case, we obtain the distributional limit
(14). This completes the proof of Theorem 2.9.

Remark 4. A sufficient condition to ensure the non-singularity of the Schur
matrix S comes from the ε-strong convexity of A and C, implying that for any
x ∈ R

N

xTSx = xTCx− xTBTABx > ε‖x‖2 − ε−1‖Bx‖2.

A sufficient condition for the non-singularity of S is therefore ε > supx∈RN
‖Bx‖
‖x‖

at the points a = b. Remark that since the global minimum is attained in the
critical points a = b, we have that the Hessian W p

p,ε is symmetric semi-definite

positive at these points. Therefore its Schur complement S = C − BTA−1B is
also semi-definite positive (see e.g. Section A.5.5. in [4]).

2.4.2. Convergence in probability

Limits for empirical Sinkhorn loss can again be established from a corollary of
the Delta-method as done in Theorem 2.6.

Theorem 2.10. Using the same notations as introduced in the statement of
Theorem 2.7, the following asymptotic results hold for all a, b ∈ ΣN .

1. One sample. As n → +∞, one has that

√
n

(
W p

p,ε(ân, b)−W p
p,ε(a, b)− 〈ân − a, ua,b

ε − 1

2
(ua,a

ε + va,aε )〉
)

P−→ 0.

2. Two samples – For ρn,m =
√
(nm/(n+m)) and m/(n+m) → γ ∈ (0, 1)

as min(n,m) → +∞, one has that

√
n(W p

p,ε(ân, b̂m)−W p
p,ε(a, b)− (

√
γ〈ân − a, ua,b

ε − 1

2
(ua,a

ε + va,aε )〉

+
√
1− γ〈b̂m − b, va,bε − 1

2
(ub,b

ε + vb,bε )〉)) P−→ 0.

Note that in the case a = b, this simplifies into

√
nW p

p,ε(ân, a)
P−→ 0

ρn,mW p
p,ε(ân, b̂m)

P−→ 0.
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2.5. Link with unregularized optimal transport

A natural question that arises is the behavior of distributional limits when we
let ε tends to 0 at an appropriate rate depending on the sample size. Under such
conditions, we recover the distributional limit given by Theorem 1 in Sommerfeld
and Munk [33] in the setting of unregularized optimal transport.

Theorem 2.11. Suppose that X ⊂ R
q, and consider the cost matrix C such

that cij = ‖xi − xj‖p where ‖ · ‖ stands for the Euclidean norm. We recall that
S0(a, b) ⊂ R

N × R
N is the set of optimal solutions of the dual problem (3) for

ε = 0.

1. One sample. Suppose that (εn)n≥1 is a sequence of positive reals tending
to zero such that

lim
n→+∞

√
nεn log(1/εn) = 0. (15)

Then, we have that

√
n(W p

p,εn(ân, b)−W p
p,εn(a, b))

L−→ max
(u,v)∈S0(a,b)

〈G, u〉. (16)

2. Two samples. Suppose that (εn,m) is a sequence of positive reals tending
to zero as min(n,m) → +∞ such that

lim
min(n,m)→+∞

√
ρn,mεn,m log(1/εn,m) = 0, (17)

for ρn,m =
√
(nm/(n+m)) and m/(n+m) → γ ∈ (0, 1). Then, one has

that

ρn,m(W p
p,εn,m

(ân, b̂m)−W p
p,εn,m

(a, b))

L−→ max
(u,v)∈S0(a,b)

√
γ〈G, u〉+

√
1− γ〈H, v〉. (18)

Proof. We will only prove the one sample case as both proofs work similarly.
For that purpose, let us consider the decomposition

√
n(W p

p,ε(ân, b)−W p
p,ε(a, b)) =

√
n(W p

p,ε(ân, b)−W p
p (ân, b)) (19)

+
√
n(W p

p (ân, b)−W p
p (a, b)) +

√
n(W p

p (a, b)−W p
p,ε(a, b)).

From Theorem 1 in [33], we have that

√
n(W p

p (ân, b)−W p
p (a, b))

L−→ max
(u,v)∈S0(a,b)

〈G, u〉. (20)

Since X is a finite set, it follows that the cost c is a L-Lipschitz function sepa-
rately in x ∈ X and y ∈ X with respect to the Euclidean distance. Therefore, it
satisfies the assumptions of Theorem 1 in [17] that gives a bound on the error
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between the Sinkorn divergence and the unregularized transport for a given pair
of distributions. It follows that for any a, b ∈ ΣN (possibly random),

0 ≤ W p
p,ε(a, b)−W p

p (a, b) ≤ 2εq log

(
e2L diam(X )

ε
√
q

)

where q is the dimension of the support space, and diam(X ) is the diameter of
X (i.e. diam(X ) = supx,y∈X ‖x− y‖) which is always finite in the discrete case.
Then, as soon as the sequence (εn)n≥1 satisfies (15), we obtain that

sup
(a,b)∈ΣN×ΣN

√
n(W p

p,εn(a, b)−W p
p (a, b)) −−−−→

n→∞
0. (21)

By definition of the Sinkhorn loss, one has that W p
p,ε(a, b) − W p

p,ε(a, b) =
1
2

(
W p

p,ε(a, a) +W p
p,ε(b, b)

)
. Therefore, using the upper bound (21), we get

√
n(W p

p,εn(ân, b)−W p
p (ân, b)

a.s.−−−−→
n→∞

0 and
√
n(W p

p (a, b)−W p
p,εn(a, b))

a.s.−−−−→
n→∞

0.

(22)
Combining (19) with (20) and (22), and using Slutsky’s theorem allow to com-
plete the proof of Theorem 2.11.

3. Use of the bootstrap for statistical inference

The results obtained in Section 2 on the distribution of the empirical Sinkhorn
divergence and Sinkhorn loss are only asymptotic. It is thus of interest to esti-
mate their non-asymptotic distribution using a bootstrap procedure. The boot-
strap consists in drawing new samples from an empirical distribution P̂n that
has been obtained from an unknown distribution P. Therefore, conditionally on
P̂n, it allows to obtain new observations (considered as approximately sampled
from P) that can be used to approximate the distribution of a test statistics
using Monte-Carlo experiments. We refer to [13] for a general introduction to
the bootstrap procedure.

We can apply the delta-method to prove the consistency of the bootstrap in
our setting using the bounded Lipschitz metric as defined below.

Definition 3.1. The Bounded Lipschitz (BL) metric between two probability
measures μ, ν supported on Ω is defined by

dBL(μ, ν) = sup
h∈BL1(Ω)

∫
Ω

hd(μ− ν)

where BL1(Ω) is the set of real functions Ω → R such that ‖h‖∞+ ‖h‖Lip ≤ 1.

Our main result on the consistency of bootstrap samples can then be stated.
Notice that similar results for the Sinkhorn divergence are obtained straightfor-
ward using the same arguments.
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Theorem 3.2. Let a �= b be in the simplex ΣN . For X1, . . . , Xn
L∼ a and

Y1, . . . , Ym
L∼ b, let â∗n (resp. b̂∗m) be a bootstrap empirical distribution sampled

from ân (resp. b̂m) of size n (resp. m).

1. One sample case:
√
n(W p

p,ε(â
∗
n, b)−W p

p,ε(ân, b)) converges in distribution

(conditionally on X1, . . . , Xn) to 〈G, ua,b
ε − 1

2 (u
a,a
ε +va,aε )〉 for the BL met-

ric, in the sense that

sup
h∈BL1(R)

|E[h(
√
n(W p

p,ε(â
∗
n, b)−W p

p,ε(ân, b)))|X1, . . . , Xn]−

E[h〈G, ua,b
ε − 1

2
(ua,a

ε + va,aε )〉]| P−→ 0.

2. Two samples case: ρn,m(W p
p,ε(â

∗
n, b̂

∗
m)−W p

p,ε(ân, b̂m)) converges in distri-
bution (conditionally on X1, . . . , Xn, Y1, . . . , Ym) to

√
γ〈G, ua,b

ε − 1

2
(ua,a

ε + va,aε )〉+
√
1− γ〈H, va,bε − 1

2
(ub,b

ε + vb,bε )〉

for the BL metric, in the sense that

sup
h∈BL1(R)

|E[h(ρn,m(W p
p,ε(â

∗
n, b̂

∗
m)−W p

p,ε(ân, b̂m)))|X1, . . . , Xn, Y1, . . . , Ym]

− E[h(
√
γ〈G, ua,b

ε − 1

2
(ua,a

ε + va,aε )〉+
√
1− γ〈H, va,bε − 1

2
(ub,b

ε + vb,bε )〉)]|
P−→ 0

Proof. We only prove the one sample case since the convergence for the two
samples case can be shown with similar arguments. We know that

√
n(ân −

a) tends in distribution to G ∼ N (0,Σ(a)). Moreover
√
n(â∗n − ân) converges

(conditionally on X1, . . . , Xn) in distribution to G by Theorem 3.6.1 in [36].
Then, applying Theorem 3.9.11 in [36] on the consistency of the delta-method
combined with the bootstrap allows us to obtain the statement of the present
Theorem 3.2 in the case a �= b.

As explained in [6], the standard bootstrap fails under first order degeneracy,
meaning for the null hypothesis case a = b. However, the authors propose a cor-
rected version – called the Babu correction – of the bootstrap in their Theorem
3.2 given for the one sample case by

sup
h∈BL1(R)

|E[h(n{W p
p,ε(â

∗
n, a)−W p

p,ε(ân, a)

− ∂1W
p
p,ε(ân, a)(â

∗
n − ân, a)}))|X1, . . . , Xn]

− E[h(∂2
11W

p
p,ε(a, a)(G, a)]| P−→ 0,

and for the two samples case by

sup
h∈BL1(R)

|E[h(n{W p
p,ε(â

∗
n, b̂

∗
m)−W p

p,ε(ân, b̂m)
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−∇W p
p,ε(ân, b̂m)(â∗n − ân, b̂

∗
m − b̂m)}))|X1, . . . , Xn]

− E[h(∇2W p
p,ε(a, a)(

√
γG,

√
1− γG)]| P−→ 0.

Note that most of the requirements to apply Theorem 3.2 in [6] are trivial
since the distributions are defined on a subset of RN and the function (a, b) 
→
W p

p,ε(a, b) is twice differentiable on all ΣN ×ΣN . However, the (Assumption 3.3
in [6]) on the second derivative requires a finer study that is left for future work.
Hence, we stress that the Babu-bootstrap approach that we use in our numerical
experiments is missing theoretical guarantees. Nevertheless, the results reported
from our experiments on simulated and real data illustrate its correctness.

As

∂1W
p
p,ε(ân, a)(â

∗
n − ân, a) = 〈uân,a, â∗n − ân〉

∇W p
p,ε(ân, b̂m)(â∗n − ân, b̂

∗
m − b̂m) = 〈uân,b̂m , â∗n − ân〉+ 〈vân,b̂m , b̂∗m − b̂m〉

we can reformulate the Babu bootstrap as follows.

1. One sample case. For (uân,a
ε , vân,a

ε ) ∈ Sε(ân, a), we have that

n
{
W p

p,ε(â
∗
n, a)−W p

p,ε(ân, a)− 〈uân,a, â∗n − ân〉
}

(23)

converges in distribution (conditionally on X1, . . . , Xn,) to
∂2

11W
p
p,ε(a, a)(G, a) for the BL metric.

2. Two samples case. For (uân,b̂m
ε , vân,b̂m

ε ) ∈ Sε(ân, b̂m) and m/(n + m) →
γ ∈ (0, 1), the quantity

nm

n+m

{
W p

p,ε(â
∗
n, b̂

∗
m)−W p

p,ε(ân, b̂m)

−(〈uân,b̂m , â∗n − ân〉+ 〈vân,b̂m , b̂∗m − b̂m〉)
}

(24)

converges in distribution (conditionally on X1, . . . , Xn, Y1, . . . , Ym) to

∇2W p
p,ε(a, a)(

√
γG,

√
1− γG)

for the BL metric.

4. Numerical experiments with synthetic data

We propose to illustrate Theorem 2.7, Theorem 2.8, Theorem 2.9 and Theorem
3.2 with simulated data consisting of random measures supported on a l × l
square lattice (of regularly spaced points) (xi)i=1,...,N in R

2 (with N = l2) for l
ranging from 5 to 20. We use the squared Euclidean distance as the cost function
C which therefore scales with the size of the grid. The range of interesting
values for ε is thus closely linked to the size of the grid, as it can be seen in
the expression of K = exp(−C/ε − 1N×N ). Hence, ε = 100 for a 5 × 5 grid
corresponds to more regularization than ε = 100 for a 20× 20 grid.
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We ran our experiments on Matlab using the accelerated version [35]1 of
the Sinkhorn transport algorithm [7]. Furthermore, we considered the numerical
logarithmic stabilization described in [30] which allows to handle relatively small
values of ε. Indeed, in small regularization regimes, the Sinkhorn algorithm
quickly becomes unstable, even more for large grids with a small number of
observations.

4.1. Convergence in distribution

We first illustrate the convergence in distribution of the empirical Sinkhorn loss
(as stated in Theorem 2.7) for the hypothesis a �= b with either one sample or
two samples.

4.1.1. Alternative a �= b – one sample

We consider the case where a is the uniform distribution on a square grid and

b ∝ 1N + θ(1, 2, . . . , N)

is a distribution with linear trend depending on a slope parameter θ ≥ 0 that is
fixed to 0.5, see Figure 1.

Fig 1. Example of a distribution b with linear trend (with slope parameter θ = 0.5 on a 20×20
grid).

We generate M = 103 empirical distributions ân (such that nân follows a
multinomial distribution with parameter a) for different values of n and grid
size. In this way, we obtain M realizations of

√
n(W p

p,ε(ân, b)−W p
p,ε(a, b)), and

we use a kernel density estimate (with a data-driven bandwidth) to compare
the distribution of these realizations to the density of the Gaussian distribu-
tion 〈G, ua,b

ε − 1/2(ua,a
ε + va,aε )〉. The results are reported in Figure 2 (grid

5 × 5) and Figure 3 (grid 20 × 20). It can be seen that the convergence of the
empirical Sinkhorn loss to its asymptotic distribution (n → ∞) is relatively
fast.

Let us now shed some light on the bootstrap procedure. The results on
bootstrap experiments are reported in Figure 4. From the uniform distribution

1http://www.math.u-bordeaux.fr/~npapadak/GOTMI/codes.html

http://www.math.u-bordeaux.fr/~npapadak/GOTMI/codes.html
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Fig 2. Case a �= b with one sample. Illustration of the convergence in distribution of the
empirical Sinkhorn loss for a 5 × 5 grid, ε = 1, 10, 100 and n ranging from 102 to 104.
Densities in red (resp. light blue) represent the distribution of

√
n(W p

p,ε(ân, b)−W p
p,ε(a, b))

(resp. 〈G, ua,b
ε − 1/2(ua,a

ε + va,aε )〉).

a, we generate only one random distribution ân. The value of the realization√
n(W p

p,ε(ân, b)−W p
p,ε(a, b)) is represented by the red vertical lines in Figure 4.

Besides, we generate from ân, a sequence of M = 103 bootstrap samples of ran-
dom measures denoted by â∗n (such that nâ∗n follows a multinomial distribution
with parameter ân). We use again a kernel density estimate (with a data-driven
bandwidth) to compare the distribution of

√
n(W p

p,ε(â
∗
n, b)−W p

p,ε(ân, b)) to the

distribution of
√
n(W p

p,ε(ân, b)−W p
p,ε(a, b)) displayed in Figure 2 and Figure 3.

The green vertical lines in Figure 4 represent a confidence interval of level 95%.
The observation represented by the red vertical line is mostly located within this
confidence interval, and the density estimated by bootstrap decently captures
the shape of the non-asymptotic distribution of Sinkhorn losses.
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Fig 3. Case a �= b with one sample. Illustration of the convergence in distribution of empirical
Sinkhorn loss for a 20 × 20 grid, ε = 10, 100 and n ranging from 102 to 104. Densities
in red (resp. light blue) represent the distribution of

√
n(W p

p,ε(ân, b) − W p
p,ε(a, b)) (resp.

〈G, ua,b
ε − 1/2(ua,a

ε + va,aε )〉).

4.1.2. Alternative a �= b – two samples

We consider the same setting as before, excepting that data are now both sam-
pled from distributions a and b. Hence, we run M = 103 experiments to obtain
a kernel density estimation of the distribution of

ρn,m(W p
p,ε(ân, b̂m)−W p

p,ε(a, b)),

that is compared to the density of the Gaussian variable

√
γ〈G, ua,b

ε − 1

2
(ua,a

ε + va,aε )〉+
√
1− γ〈H, va,bε − 1

2
(ub,b

ε + vb,bε )〉,

for different values of n and m. The results are reported in Figure 5. The con-
vergence does not seem as good as in the one sample case, this must be due to
the randomness coming from both ân and b̂m.

We also report in Figure 6 results on the consistency of the bootstrap pro-
cedure under the hypothesis H1 with two samples. From the distributions a
and b, we generate two random distributions ân and b̂m. The value of the real-
ization ρn,m(W p

p,ε(ân, b̂m) −W p
p,ε(a, b)) is represented by the red vertical lines

in Figure 6. Then, we generate from ân and b̂m, two sequences of M = 103

bootstrap samples of random measures denoted by â∗n and b̂∗m. We use again
a kernel density estimate (with a data-driven bandwith) to compare the green
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Fig 4. Case a �= b with one sample. Illustration of the bootstrap with ε = 10, grids of size
5×5 and 20×20 to approximate the non-asymptotic distribution of empirical Sinkhorn losses.
Densities in red (resp. light blue) represent the distribution of

√
n(W p

p,ε(ân, b)−W p
p,ε(a, b))

(resp. 〈G,ua,b
ε −1/2(ua,a

ε +va,aε )〉). The green density represents the distribution of the random
variable

√
n(W p

p,ε(â
∗
n, b)−W p

p,ε(ân, b)) in Theorem 3.2.

distribution of ρn,m(W p
p,ε(â

∗
n, b̂

∗
m) − W p

p,ε(ân, b̂m)) to the red distribution of

ρn,m(W p
p,ε(ân, b̂m) −W p

p,ε(a, b)) displayed in Figure 6. The green vertical lines
in Figure 6 represent a confidence interval of level 95%. We can draw the same
conclusion as in the one sample case. All these experiments thus perfectly illus-
trate the Theorem 2.7.

4.1.3. Hypothesis a = b – one sample

As in the previous cases, we consider a to be the uniform distribution on a
square grid. We recall that the distributional limit in the right hand side of (13)
is the following mixture of random variables with chi-squared distribution of
degree 1

1

2

N∑
i=1

λiχ
2
i (1) for λ1, . . . , λN the eigenvalues of Σ(a)1/2∂2

11W
p
p,ε(a, a)Σ(a)

1/2.

It appears to be difficult to compute the density of this distributional limit or
to draw samples from it, since computing the Hessian matrix ∂2

11W
p
p,ε(a, a) is a

delicate task. We thus leave this problem open for future work, and only rely
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Fig 5. Case a �= b with two samples. Illustration of the convergence in distribution of empirical
Sinkhorn loss for a 5 × 5 grid, for ε = 10, 100, n = m and n ranging from 103 to 105.
Densities in red (resp. blue) represent the distribution of ρn,m(W p

p,ε(ân, b̂m) − W p
p,ε(a, b))

(resp.
√
γ〈G,ua,b

ε − 1
2
(ua,a

ε + va,aε )〉+
√
1− γ〈H, va,bε − 1

2
(ub,b

ε + vb,bε )〉 with γ = 1/2).

on the non-asymptotic distribution of nW p
p,ε(ân, a). This justifies the use of the

bootstrap procedure described in Section 3. We display the bootstrap statistic in
Figure 7. The shape of the non-asymptotic density of nW p

p,ε(ân, a) (red curves
in Figure 7) looks chi-squared distributed. In particular, it only takes positive
values. The bootstrap distribution in green also recovers the most significant
mass location of the red density.

4.1.4. Hypothesis a = b – two samples

We still consider a = b to be the uniform distribution on a square grid and we
sample two measures from a denoted ân, b̂m. We compute the non-asymptotic
distribution of (nm/(m+ n))W p

p,ε(ân, b̂m) which, from Theorem 2.9, must con-

verge to 1
2

∑N
i=1 λ̃iχ

2
i (1) with {λ̃i}i the eigenvalues of

diag(
√
γΣ(a)1/2,

√
1− γΣ(a)1/2)∇2W p

p,ε(a, a) diag(
√
γΣ(a)1/2,

√
1− γΣ(a)1/2).

The results are displayed in red in Figure 8, together with the bootstrap dis-

tribution (in green) ρ2n,m(W p
p,ε(â

∗
n, b̂

∗
m) − W p

p,ε(ân, b̂m) − 〈uân,b̂m , â∗n − ân〉 −
〈vân,b̂m , b̂∗m − b̂m〉). We obtain similar results to the one sample case.



Central limit theorems for entropy-regularized optimal transport 5141

Fig 6. Case a �= b with two samples. Illustration of the bootstrap with ε = 10 for the grid of
size 5 × 5 and ε = 100 for the grid 20 × 20 to approximate the non-asymptotic distribution
of empirical Sinkhorn divergences. Densities in red (resp. blue) represent the distribution of

ρn,m(W p
p,ε(ân, b̂m)−W p

p,ε(a, b)) (resp.
√
γ〈G, ua,b

ε − 1
2
(ua,a

ε +va,aε )〉+
√
1− γ〈H, va,bε − 1

2
(ub,b

ε +

vb,bε )〉). The green density is the distribution of the random variable ρn,m(W p
p,ε(â

∗
n, b̂

∗
m) −

W p
p,ε(ân, b̂m)) in Theorem 3.2.

4.2. Estimation of test power using the bootstrap

One sample – distribution with linear trend and varying slope param-
eter The consistency and usefulness of the bootstrap procedure is illustrated
by studying the statistical power (that is P(Reject H0|H1 is true)) of statistical
tests (at level 5%) based on the empirical Sinkhorn loss. For this purpose, we
choose a to be uniform and b to be a distribution with linear trend whose slope
parameter θ is ranging from 0 to 0.1 on a 5×5 grid. We assume that we observe
a single realization of an empirical measure b̂m sampled from b with m = 103.
Then, we generate M = 103 bootstrap samples of random measures b̂∗m,j from

b̂m (with 1 ≤ j ≤ M), which allows the computation of the p-value

p-value = #{j such that n|W p
p,ε(a, b̂

∗
m,j)−W p

p,ε(a, b̂m)− 〈va,b̂m , b̂∗m,j − b̂m〉|
≥ nW p

p,ε(a, b̂m)}/M.

This experiments is repeated 100 times, in order to estimate the power (at

level u) of a test based on nW p
p,ε(a, b̂m) by comparing the resulting sequence

of p-values to the value u. The results are reported in Figure 9 (left). It can
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Fig 7. Case a = b with one sample. Illustration of the bootstrap with ε = 1, 10, 100 and two
grids of size 5×5 (left) and 20×20 (right) to approximate the non-asymptotic distribution of
the empirical Sinkhorn loss. Densities in red represent the distribution of nW p

p,ε(ân, a). The

green density represents the distribution of the random variable n(W p
p,ε(ân, a)−W p

p,ε(â
∗
n, a)−

〈uân,a, â∗n − ân〉) in (23).

be seen that the resulting testing procedures are good discriminants for the
three values of the regularization parameters ε that we considered. As soon
as the slope θ increases then b sufficiently differs from a, and the probability
of rejecting H0 thus increases. We have also chosen to report results obtained
with the Sinkhorn loss corresponding to optimal transport regularized by the
entropy H(T ) =

∑
ij tij log(tij) instead of the relative entropy H(T |a ⊗ b) =∑

i,j log
(

tij
aibj

)
tij (see Figure 9 (right)). Indeed, we remark that in the case of

the relative entropy, the power of the test seems to highly depend on the value
of ε. More precisely, for a fixed value of the slope parameter θ (or distribution
b), the test power is larger as ε increases. On the other hand, when using the
Sinkhorn loss computed with the entropy, the power of the test seems to be the
same for any value of ε.

Remark 5. The truly interesting property of the Sinkhorn loss over the Sink-
horn divergence is that in theory, for any ε > 0, we will obtain a steady ε-
dependent asymptotic distribution, and that any regularization allows us to per-
form test statistics. In practice, more regularization leads to a blending of in-
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Fig 8. Case a = b with two samples. Illustration of the bootstrap with ε = 1, 10, 100 and two
grids of size 5×5 (left) and 20×20 (right) to approximate the non-asymptotic distribution of

the empirical Sinkhorn loss. Densities in red represent the distribution of ρ2n,mW p
p,ε(ân, b̂m).

The green density represents the distribution of the random variable ρ2n,m(W p
p,ε(â

∗
n, b̂

∗
m) −

W p
p,ε(ân, b̂m)− 〈uân,b̂m , â∗n − ân〉 − 〈vân,b̂m , b̂∗m − b̂m〉) in (24).

formation. More precisely, the entropy will spread the mass of the distributions,
and in some points of the grid, the differences of masses between the two dis-
tributions can be the result of regularization. On the other hand, when very few
observations are available, and that measures are sparsely distributed on the
grid, a large ε will still allow to perform a statistical study.

5. Analysis of real data

We consider a dataset of colored images representing landscapes and foliage
taken during Autumn (20 images) and Winter (17 images), see Figure 10 for ex-
amples. These images, provided by [25], are available at http://tabby.vision.
mcgill.ca/html/welcome.html.

Each image is transformed into a color histogram on a three-dimensional grid
(RGB colors) of size N3 = 163 = 4096 of equi-spaced points. We will denote
by a1, . . . , a20 the autumn histograms and w1, . . . , w17 the winter histograms.
To compute the cost matrix C, we again use the squared Euclidean distance
between the spatial integer locations xi ∈ [0; 255]3.

http://tabby.vision.mcgill.ca/html/welcome.html
http://tabby.vision.mcgill.ca/html/welcome.html
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Fig 9. Test power (probability of rejecting H0 knowing that H1 is true) on a 5 × 5 grid in
the one sample case, as a function of the slope parameter θ ranging from 0 to 0.15 for ε = 1
(blue), ε = 5 (orange) and ε = 10 (yellow), with n = 103. (left) H(T |a ⊗ b) = Relative
entropy, (right) H(T ) = Entropy.

Fig 10. Samples of 768 × 576 colored images from autumn (first row) and winter (second
row).

5.1. Testing the hypothesis of equal color distribution between
seasons

We first test the null hypothesis that the color distribution of the images in
Autumn is the same as the color distribution of the images in Winter. To this
end, we consider the mean histogram of the dataset for each season, that we
denote

ā20 =
1

20

20∑
k=1

ak and w̄17 =
1

17

17∑
k=1

wk.
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Fig 11. Testing equality of color distributions between Autumn and Winter for a grid
of size 163 = 4096. Green densities represent the distribution of the bootstrap statistics
ρ2n,m(W p

p,ε(â
∗
n, ŵ

∗
m)−W p

p,ε(ā20, w̄17)−(〈uā20,w̄17 , â∗n−ā20〉+〈vā20,w̄17 , ŵ∗
m−w̄17〉)) (vertical

bars represent a confidence interval of level 95%) for (a) ε = 10 and (b) ε = 100. The value
of ρ2n,mW p

p,ε(ā20, w̄17) is outside the support of the green density for each value of ε, and it
is thus not represented.

Notice that both ā20 and w̄17 are discrete empirical measures admitting a zero
mass for many locations xi.

We use the two samples testing procedure described previously, and a boot-
strap approach to estimate the distribution of the test statistics

ρ2n,mW p
p,ε(ā20, w̄17).

Notice also that n and m respectively correspond to the number of observations
for the empirical Autumn distribution ā20 and the empirical Winter distribution
w̄17, which is the total number of pixels times the number of images. Therefore,
n = 20 ∗ 768 ∗ 576 = 8847360 and m = 17 ∗ 768 ∗ 576 = 7520256. We report the
results of the testing procedure for ε = 10, 100 by displaying in Figure 11 an
estimation of M = 100 observations of the bootstrap statistic’s density

ρ2n,m(W p
p,ε(â

∗
n, ŵ

∗
m)−W p

p,ε(ā20, w̄17)

− (〈uā20,w̄17 , â∗n − ā20〉+ 〈vā20,w̄17 , ŵ∗
m − w̄17)〉),

where â∗n and ŵ∗
m are respectively bootstrap samples of ā20 and w̄17, and

(uā20,w̄17 , vā20,w̄17) are the optimal dual variables associated to (ā20, w̄17) in
problem (3).

For ε = 10, 100, the value of ρ2n,m(W p
p,ε(ā20, w̄17)) is outside the support of

this density, and the null hypothesis that the color distributions of images taken
during Autumn and Winter are the same is thus rejected. In particular, the test
statistic ρ2n,m(W p

p,ε(ā20, w̄17)) is equal to 6.07×107 for ε = 10 and to 5.03×107

for ε = 100.
We also run the exact same experiments for a smaller grid (size 83 = 512) and

a higher number of observations (M = 1000). The results are displayed in Figure
12. The distributions ρ2n,m(W p

p,ε(â
∗
n, ŵ

∗
m)−W p

p,ε(ā20, w̄17)−(〈uā20,w̄17 , â∗n−ā20〉+
〈vā20,w̄17 , ŵ∗

m − w̄17〉)) are much more centered around 0 (we gain a factor 10).
However, we obtain the same conclusion as before, with a test statistic equal to
9.39× 106 for ε = 10 and 8.50× 106 for ε = 100.
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Fig 12. Testing equality of color distributions between Autumn and Winter for a grid
of size 83 = 512. Green densities represent the distribution of the bootstrap statistics
ρ2n,m(W p

p,ε(â
∗
n, ŵ

∗
m)−W p

p,ε(ā20, w̄17)−(〈uā20,w̄17 , â∗n−ā20〉+〈vā20,w̄17 , ŵ∗
m−w̄17〉)) (vertical

bars represent a confidence interval of level 95%) for (a) ε = 10 and (b) ε = 100. The value
of ρ2n,mW p

p,ε(ā20, w̄17) is outside the support of the green density for each value of ε, and it
is thus not represented.

Fig 13. Testing equality of color distributions when splitting the autumn dataset into two
for a grid of size 163 = 512. Green densities represent the distribution of the boot-
strap statistics ρ2n,m(W p

p,ε(â
∗
n, b̂

∗
m)−W p

p,ε(ā1→10, ā11→20)− (〈uā1→11,ā11→20 , â∗n − ā1→11〉+
〈vā1→11,ā11→20 , b̂∗m − ā11→20〉)) (vertical bars represent a confidence interval of level 95%)
for (a) ε = 10 and (b) ε = 100. The value of ρ2n,mW p

p,ε(ā1→10, ā11→20) is outside the support
of the green density for each value of ε, and it is thus not represented.

5.2. Testing the hypothesis of equal distribution when splitting the
Autumn dataset

We propose now to investigate the equality of distributions within the same
dataset of Autumn histograms. To this end, we arbitrarily split the Autumn
dataset into two subsets of 10 images and we compute their mean distribution

ā1→10 =
1

10

10∑
k=1

ak and ā11→20 =
1

10

20∑
k=11

ak,

for which n = m = 10 ∗ 768 ∗ 576 = 4423680. The procedure is then similar
to the Autumn versus Winter case in Subsection 5.1, meaning that we sample
M = 100 bootstrap distributions â∗n and b̂∗m from respectively ā1→10 and ā11→20.
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Fig 14. Testing equality of color distributions when splitting the autumn dataset into
two for a grid of size 83 = 512. Green densities represent the distribution of the boot-
strap statistics ρ2n,m(W p

p,ε(â
∗
n, b̂

∗
m)−W p

p,ε(ā1→10, ā11→20)− (〈uā1→11,ā11→20 , â∗n − ā1→11〉+
〈vā1→11,ā11→20 , b̂∗m − ā11→20〉)) (vertical bars represent a confidence interval of level 95%)
for (a) ε = 10 and (b) ε = 100. The value of ρ2n,mW p

p,ε(ā1→10, ā11→20) is outside the support
of the green density for each value of ε, and it is thus not represented.

The results are displayed in Figure 13. We obtain similar results than in the
two seasons case, the null hypothesis that both Autumn distributions follow
the same law is thus rejected. On the other hand, the test statistics are smaller
in this case as the histogram of color seems to be closer. Indeed, the quantity
ρ2n,mW p

p,ε(ā1→10, ā11→20) is equal to 11.02 × 106 for ε = 10 and 5.50 × 106 for
ε = 100.

Similarly to the Winter VS Autumn case, we also run the same Autumn VS
Autumn experiments for a grid of size 83 = 512 and M = 1000 observations.
The results are displayed in Figure 14 for test statistics equal to 14.07× 105 for
ε = 10 and 3.41× 105 for ε = 100.

Remark 6. For comparison purpose, we ran a χ2 test of homogeneity for testing
the hypothesis of equal distributions of colors. The obtained test statistic in the
Autumn vs Winter case is equal to χ2

AW = 6.96 × 104, and in the Autumn
splitting case to χ2

AA = 4.06 × 104. Even if χ2
AA is indeed smaller than χ2

AW ,
the contrast between these two is weaker than with the Sinkhorn loss test.

6. Future works

As remarked in [33], there exists a vast literature for two-sample testing using
univariate data. However, in a multivariate setting, it is difficult to consider that
there exist standard methods to test the equality of two distributions. We thus
intend to further investigate the benefits of the use of the empirical Sinkhorn loss
to propose novel testing procedures able to compare multivariate distributions
for real data analysis. A first perspective is to apply the methodology developed
in this paper to more than two samples using the notion of smoothed Wasserstein
barycenters (see e.g. [9] and references therein) for the analysis of variance of
multiple and multivariate random measures (MANOVA). However, as pointed
out in [9], a critical issue in this setting will be the choice of the regularization
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parameter ε, as it has a large influence on the shape of the estimated Wasserstein
barycenter. Another interesting extension of the results presented in this paper
would be to obtain the eigenvalues of the Hessian matrix of the Sinkhorn loss, in
order to compute the distributional limit under the null hypothesis of equality
of distributions.
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