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ISBA, Université catholique de Louvain, Belgique
e-mail: anouar.elghouch@uclouvain.be

Abstract: This paper concerns the dependence structure of a random pair
(Y1, Y2) conditionally upon a covariate X in the case where the variable Y1

is subject to random right censoring. The dependence structure is described
by a conditional copula for which we propose a nonparametric estimator.
We establish the asymptotic properties of the proposed estimator and in-
vestigate its finite sample behavior in a numerical study. The methodology
is illustrated through a real data example featuring patients with advanced
lung cancer.

MSC 2010 subject classifications: Primary 62G99; secondary 62N01.
Keywords and phrases: Conditional copula, Kendall’s tau, kernel esti-
mation, Spearman’s rho, survival analysis, weak convergence.

Received September 2018.

1. Introduction

Copulas have become a popular tool to model dependence structures. Recently,
many works in this field have been concerned with capturing the influence of a
covariate X ∈ R on the dependence structure of a vector of interest (Y1, Y2) ∈
R2. An example is given in [8], where a copula function is used to illustrate how
the relationship between the life expectancy of men (Y1) and women (Y2) varies
with the gross domestic product (X). To describe this copula function, consider
the conditional joint distribution of (Y1, Y2) given X = x, for a real number x,
given by Fx(y1, y2) = P (Y1 ≤ y1, Y2 ≤ y2|X = x). If the conditional marginal
distributions of Y1 and Y2 given X = x, denoted by F1x and F2x, respectively,
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are continuous, then Sklar’s theorem ensures that there exists a unique copula
Cx : [0, 1]2 → [0, 1] such that Fx(y1, y2) = Cx{F1x(y1), F2x(y2)}. Conversely, the
copula associated to the bivariate conditional distribution Fx is given by

Cx(u1, u2) = Fx

{
F−1
1x (u1), F

−1
2x (u2)

}
. (1.1)

The bivariate function Cx is called the conditional copula and contains all the
dependence features of (Y1, Y2) given a fixed value x taken by the covariate.

Since the pioneering work of [13], the topic of modeling and estimating con-
ditional copula models has recently gained momentum. For example, models
specifying a relation between the covariate and a parametric copula were stud-
ied in [10] and [13]. A semiparametric estimation procedure for the conditional
copula was proposed in [2] (resp. [1]) when the conditional marginal distributions
are assumed to be known (resp. unknown). A nonparametric approach has been
investigated in [22] and [8], and a bootstrap method suitable for this estimation
procedure was developed in [12]. However, all of the previously-mentioned esti-
mation strategies rely on the availability of a sample generated from the random
vector (Y1, Y2, X) and lead to unsatisfactory results when the data are incom-
plete. Amongst others, the right censoring scheme is a source of incompleteness
that frequently appears in medical studies and clinical trials.

For the censored unconditional case (i.e. censored data without covariates),
the parametric and semiparametric estimation of the copula function has been
studied in [14]. Nonparametric copula estimation procedures have been pro-
posed in [9] under different censoring scenarios. In the aforementioned article, a
goodness-of-fit procedure for copula models suitable for right censored data is
also investigated.

In this work, we propose a nonparametric methodology to estimate the condi-
tional copula when the random variable Y1 is subject to random right censoring.
To be more specific, we assume that the available data arise as the realizations of
the random vector (T1, Y2, X, δ1), with T1 = min(Y1, C1) and δ1 = I(Y1 ≤ C1),
where C1 is a censoring variable. The properties of the proposed estimator are
investigated for large and finite sample sizes.

This paper is organized as follows. In Section 2, an estimator for the condi-
tional copula in the presence of censoring is presented. This estimator is based
on a new nonparametric estimator of the joint conditional distribution. In Sec-
tion 3, we investigate the asymptotic properties of these estimators by providing
an asymptotic representation of the conditional distribution estimator, and by
identifying the weak limit of a properly re-scaled version of these estimators. A
simulation study showing the performance of the conditional copula estimation
procedure is presented in Section 4. In Section 5, we apply this methodology to a
lung cancer dataset to illustrate the influence of age on the relationship between
survival time and weight loss. All the required assumptions and conditions for
the theoretical validity of the results presented in Section 3 are provided in Ap-
pendix A. The proofs are given in Appendix B, Appendix C and Appendix D.
Additional technical results are provided in Appendix E and Appendix F.
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2. An inverse-conditional-probability-of-censoring estimator of Cx

As previously mentioned, the estimation of Cx from independent and completely
observed random vectors (Y11, Y21, X1), . . ., (Y1n, Y2n, Xn) has been investigated
by [22] and [8]. Specifically, consider the estimator of the joint conditional dis-
tribution Fx given by

F̂x(y1, y2) =
n∑

i=1

wni(x, h) I (Y1i ≤ y1, Y2i ≤ y2) ,

where wn1(x, h), . . . , wnn(x, h) are kernel-based weight functions that smooth
the covariate space and h = hn is a parameter called bandwidth that typically
depends on the sample size. Popular choices for these weight functions include
Nadaraya-Watson and local-linear weights given respectively by

wNW
ni (x, h) =

K
(
Xi−x

h

)
Sn,0(x, h)

(2.1)

and

wLL
ni (x, h) =

K
(
Xi−x

h

) {
Sn,2(x, h)−

(
Xi−x

h

)
Sn,1(x, h)

}
Sn,0(x, h)Sn,2(x, h)− S2

n,1(x, h)
, (2.2)

where K is a symmetric and continuously differentiable kernel density function
on [−1, 1] and Sn,j(x, h) =

∑n
i=1{(Xi − x)/h}jK{(Xi − x)/h} , for j ∈ {0, 1, 2}.

The corresponding conditional empirical marginal distributions are defined
by

F̂1x(y1) =

n∑
i=1

wni(x, h) I (Y1i ≤ y1) and F̂2x(y2) =

n∑
i=1

wni(x, h) I (Y2i ≤ y2) ,

see [15].
In view of (1.1), a plug-in estimator of Cx proposed by [22] and [8] is defined

by

Ĉx(u1, u2) =

n∑
i=1

wni(x, h) I
{
Y1i ≤ F̂−1

1x (u1), Y2i ≤ F̂−1
2x (u2)

}
, (2.3)

where for j = 1, 2, F̂−1
jx (u) = inf{y ∈ R : F̂jx(y) ≥ u} is the left-continuous

generalized inverse of F̂jx.
To construct our conditional copula estimator, we need first to estimate the

conditional distribution function Fx. In the unconditional context (i.e., with-
out a covariate), the nonparametric estimation of the bivariate distribution of
(Y1, Y2) in the presence of censoring has been studied by many authors, see for
example [6], [3] and [4]. However, to the best of our knowledge, the nonpara-
metric estimation of Fx has never been studied and hence this is an original
contribution of the present paper.
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For the rest of the paper, a fixed design is assumed, where the outcome
of the random vector (T1, Y2, δ1, X) is observed at X ∈ {x1, . . . , xn}. To be
more specific, we consider independent random vectors (T11, Y21, δ11, x1), . . .,
(T1n, Y2n, δ1n, xn), where (T1i, Y2i, δ1i, xi) is distributed as (T1, Y2, δ1, X) | X =
xi. Also, the censoring variable C1 is assumed to be independent of (Y1, Y2)
given the value taken by X.

To build our estimator for Fx, we use an inverse-probability-of-censoring
weighting approach (see chapter 3.3 in [16]). Specifically, to compensate for
the presence of censoring, each uncensored observation receives an extra weight
equal to its inverse probability of failure. This idea is motivated by the fact that

Fx(y1, y2) = E
{
I(T1 ≤ y1, Y2 ≤ y2)

δ1
1−Gx(T1)

|X = x
}
,

where Gx(t) = P(C1 ≤ t | X = x) denotes the conditional distribution of the
censoring variable given X = x. In the case where Gx is known, one could
estimate Fx by

F̂Gx
x (y1, y2) =

n∑
i=1

I(T1i ≤ y1, Y2i ≤ y2)
wni(x, h)δ1i
1−Gx(T1i)

. (2.4)

In our case Gx is unknown, so we replace it by the conditional Kaplan-Meier
estimator for the censoring variable C1:

Ĝx(t) = 1−
∏

T1(i)≤t

{
1−

wn[i](x, g)

1−
∑i−1

k=1 wn[k](x, g)

}1−δ1[i]
, (2.5)

where T1(1) ≤ . . . ≤ T1(n) are the ordered T ′
1is, and δ1[i] and wn[i](x, h) are,

respectively, the corresponding δ1i and wni(x, h). Here, g = gn is an auxiliary
bandwidth parameter that may differ from h. The resulting estimator for the
conditional distribution function Fx is given by

F̂ Ĝx
x (y1, y2) =

n∑
i=1

I(T1i ≤ y1, Y2i ≤ y2)
wni(x, h)δ1i

1− Ĝx(T1i)
. (2.6)

Note that when no censoring occurs, all the δ1i’s are equal to 1, which implies

Ĝx = 0 (see Equation (2.5)) and therefore F̂ Ĝx
x reduces to F̂x.

To estimate the conditional marginal distribution of Y1 given x and taking
into account the right censoring of Y1, we consider the estimator given by

F̂ Ĝx
1x (y1) =

n∑
i=1

I(T1i ≤ y1)
wni(x, h)δ1i

1− Ĝx(T1i)
.

When g = h, we show in Appendix F.1 that F̂ Ĝx
1x coincides with the conditional

Kaplan-Meier estimator for the survival time Y1 introduced by [5].



5048 T. Bouezmarni et al.

Because Y2 is completely observed, for more efficiency, we estimate F2x with

F2x(y2) =
n∑

i=1

I (Y2i ≤ y2)wni(x, h).

So, from Equation (1.1), a plug-in estimator for the conditional copula is
given by

ĈĜx
x (u, v) = F̂ Ĝx

x

{(
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v)

}
=

n∑
i=1

I

{
T1i ≤

(
F̂ Ĝx
1x

)−1

(u), Y2i ≤ F̂−1
2x (v)

}
wni(x, h)δ1i

1− Ĝx(T1i)
. (2.7)

We can see that F̂ Ĝx
x = F̂x and that Ĝx = 0 if all the survival times are observed,

hence the two estimators ĈĜx
x and Ĉx are equal in this case. Moreover, upon

setting all the weight functions wni(x, ·) equal to n−1, we retrieve an estimator
that is very similar to the one proposed in [9] to estimate the unconditional
copula.

3. Main theoretical results

The aim of this section is to investigate the large sample behavior of the pro-
cesses

F
Ĝx
x =

√
nh(F̂ Ĝx

x − Fx) and B
Ĝx
x =

√
nh(ĈĜx

x − Cx).
Because we estimate the conditional distribution Gx, the asymptotic results of

FĜx
x and BĜx

x become more challenging to prove. First, we show in Theorem 3.1

that, up to a term converging in probability to zero, FĜx
x can be expressed as

a weighted sum of independent random functions. Note that, in the complete
data case, the estimator F̂x is, by definition, a sum of independent random

variables. Second, we obtain a weak convergence result for FĜx
x in Corollary 3.3.

Finally, the weak limit of FĜx
x allows us to establish, in Proposition 3.5, the

weak convergence of BĜx
x .

3.1. Asymptotic representation of FĜx
x

For any distribution function L, let τL be the right endpoint of its support, i.e.
inf{t : L(t) = 1}, and write τx = min{τF1x , τGx}. Due to the censoring, we can-
not hope to infer on the conditional distribution beyond τx. Before establishing

the asymptotic behavior of FĜx
x over any closed subset included in [0, τx) × R,

we need the following notations: H1x(y1) = P(T1 ≤ y1 | X = x), Hx(y1, y2) =
P(T1 ≤ y1, Y2 ≤ y2 | X = x), Hu

x (y1, y2) = P(T1 ≤ y1, Y2 ≤ y2, δ1 = 1 | X = x),
Hu

1x(y1) = P(T1 ≤ y1, δ1 = 1 | X = x) and Hc
1x(y1) = P(T1 ≤ y1, δ1 = 0 |

X = x). Also, for any map (z, y1, y2) �→ Lz(y1, y2), we let L̇z and L̈z denote,
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respectively, its first and second partial derivative with respect to z, and we set

L
[j]
z (y1, y2) = (∂/∂yj)Lz(y1, y2), for j = 1, 2.

For the asymptotic representation of FĜx
x , we introduce

J (1)
ix (y1, y2) =

I (T1i ≤ y1, Y2i ≤ y2, δ1i = 1)

1−Gx(T1i)
− Fx(y1, y2), and

J (2)
ix (y1, y2) =

∫ y1

0

I (T1i ≤ v)−H1x(v)

{1−H1x(v)}2
ΔFx(y1, y2, v) dH

c
1x(v)

+

∫ y1

0

I (T1i ≤ v, δ1i = 0)−Hc
1x(v)

1−H1x(v)

×
{
F [1]
x (y1, y2)−

ΔFx(y1, y2, v)H
u[1]
x (v, y2)

1−Hx(v)

}
dv,

where ΔFx(y1, y2, v) = Fx(y1, y2)− Fx(v, y2).

In the complete data case, we can see that J (1)
ix (y1, y2) = I(Y1i ≤ y1, Y2i ≤ y2)

− Fx(y1, y2) and J (2)
ix (y1, y2) = 0.

Recall that all the assumptions and conditions cited below are provided in
Appendix A and that all the proofs are given in Appendix B, Appendix C and
Appendix D.

Theorem 3.1. Suppose that max(g, h) → 0 such that as as n → ∞ the se-
quences nh5(logn)−1, ng5(logn)−1, hg−1 and

√
ng(log n)−1 converge to some

constants as n → ∞. Assume that Conditions W1–W6 are satisfied and that
Assumptions (C1) to (C6) are fulfilled for Fx, Hx, H

u
x , H

c
1x and Gx.

For any 0 < t < τx, write Tt = [0, t] × R. Then, uniformly in (y1, y2) ∈ Tt,
we have

F
Ĝx
x (y1, y2) =

√
nh

n∑
i=1

{
wni(x, h)J (1)

ix (y1, y2) + wni(x, g)J (2)
ix (y1, y2)

}
+ oP(1).

From Theorem 3.1, it can be seen that, for a large sample size, the be-

haviour of FĜx
x is roughly explained by the contribution of two terms. The first

term, namely
√
nh

∑n
i=1 wni(x, h)J (1)

ix , provides the asymptotic representation

of
√
nh[F̂Gx

x (y1, y2)−Fx(y1, y2)], i.e. when Gx is known. The second term is due
to the estimation of the Gx.

Remark 3.2.

1. Through the proof of Theorem 3.1, the stochastic processes Zx ≡
∑n

i=1 Zhi,
where

Zhi(y1, y2, G) =
√
nh I(T1i ≤ y1, Y2i ≤ y2)wni(x, h)

δ1i
1−G(T1i)

,

plays a central role in showing the asymptotic representation and the weak

convergence of both FĜx
x and BĜx

x , see Appendix B.1. In fact,

F
Ĝx
x (y1, y2)− F

Gx
x (y1y2) = Zx(y1, y2, Ĝx)− Zx(y1, y2, G), and
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B
Ĝx
x (u, v)− B

Gx
x (u, v) = Zx

((
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v), Ĝx

)
− Zx

((
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v), G

)
,

where FGx
x =

√
nh(F̂Gx

x − Fx) and BGx
x =

√
nh(ĈGx

x − Cx).
2. When g = h, the conditional marginal distribution estimator F̂ Ĝx

1x is equal
to the conditional Kaplan-Meier estimator introduced in [5], see Appen-

dix F.1. Hence, the random function
√
nh{F̂ Ĝx

1x (y1) − F1x(y1)}, which is

equal to
√
nh{F̂ Ĝx

x (y1, y2) − Fx(y1, y2)} as y2 → ∞, reduces to the con-
ditional Kaplan-Meier process studied in [20]. As expected, it is shown,
in Appendix F.2, that these two process share the same asymptotic i.i.d
representation.

3.2. Weak convergence of FĜx
x

In view of Theorem 3.1, the large sample behavior of FĜx
x will essentially depend

on the conditions imposed on the weight functions and on the bandwidths h and

g. To establish its weak limit, we consider the zero mean Gaussian processes J
(1)
x

and J
(2)
x with covariance function

cov{J(1)x (y1, y2), J
(1)
x (y′1, y

′
2)}

= K4

{∫ y1∧y′
1

0

F
[1]
x (v, y2 ∧ y′2)

1−Gx(v)
dv − Fx(y1, y2)Fx(y

′
1, y

′
2)

}
,

and

cov{J(2)x (y1, y2), J
(2)
x (y′1, y

′
2)}

= K4

∫ y1∧y′
2

0

ΔFx(t ∧ y′1, y2, v)ΔFx(t ∧ y′1, y
′
2, v)

{1−H1x(v)}2
dHc

1x(v),

where the constant K4 is defined in Assumption W4. Moreover, let

b(1)x (y1, y2) =K2

{
Ḟx(y1, y2)−

∫ y1

0

Ġx(v)
F

[1]
x (v, y2) + Ḟ

[1]
x (v, y2)

1−Gx(v)
dv

}
+

K3

2

{
F̈x(y1, y2)−

∫ y1

0

G̈x(v)
F

[1]
x (v, y2)

1−Gx(v)
dv

}
,

and

b(2)x (y1, y2) =K2

∫ y1

0

Ḣ1x(v)H
c[1]
1x (v) + Ḣ

c[1]
1x (v)

1−H1x(v)
ΔFx(y1, y2, v) dv

+
K3

2

∫ y1

0

Ḧ1x(v)H
c[1]
1x (v) + Ḧ

c[1]
1x (v)

1−H1x(v)
ΔFx(y1, y2, v) dv,
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where the constants K2 and K3 are defined in Assumption W2 and W3, respec-
tively.

Corollary 3.3. Suppose that the assumptions of Theorem 3.1 are met. For any
0 < t < τx, write Tt = [0, t]× R.

(a) If hg−1 → 0 and
√
nhg2 → K5 as n → ∞ for some K5 > 0, then FĜx

x

converges weakly in l∞(Tt) to J
(1)
x +K5b

(2)
x over Tt.

(b) If g = h, and in addition if
√
nh5 → K6 as n → ∞ for some K6 > 0,

then FĜx
x converges weakly to a gaussian process having the representation Jx ≡

J
(1)
x + J

(2)
x +K6{b(1)x + b

(2)
x } over Tt, with

cov{J(1)x (y1, y2), J
(2)
x (y′1, y

′
2)}

=

∫ y′
1

0

ΔFx (y
′
1, y

′
2, v)

{1−H1x(v)}2
{Fx(y1 ∧ v, y2)−H1x(v)Fx(y1, y2)} dHc

1x(v)

− Fx(y1, y2)

∫ y′
1

0

Hc
1x(v)

1−H1x(v)

{
F [1]
x (v, y′2)−

ΔFx(y
′
1, y

′
2, v)H

[1]
1x (v)

1−H1x(v)

}
dv .

Note that K6b
(1)
x represents the bias of the process

√
nh

∑n
i=1 wni(x, h)J (1)

ix

as n → ∞ and K5b
(2)
x is the asymptotic bias of

√
nh

∑n
i=1 wni(x, g)J (2)

ix (y1, y2).

Also note that, when there is no censoring, the asymptotic bias and covariance

function of FĜx
x respectively reduce to K2Ḟx(y1, y2) + (K3/2) F̈x(y1, y2), and

K4{Fx(y1 ∧ y′1, y2 ∧ y′2)−Fx(y1, y2)Fx(y
′
1, y

′
2)}, which match the asymptotic bias

and covariance of the process
√
nh(F̂x − Fx) in the context of complete data

(see e.g. [22]).

Remark 3.4. According to Corollary 3.3 (a), when the bandwidth hg−1 → 0,
i.e. g is asymptotically larger than h, the impact of estimating the conditional

probability of censoring on the asymptotic distribution of F̂ Ĝx
x appears only in the

asymptotic bias K5b
(2)
x . Note that the bias related to the process FGx

x disappears
in that case. But, as in that case hg−1 → 0 and ng5 < ∞ as n → ∞, it follows
that h must be chosen so that nh5 → 0. This excludes the possibility of taking
h ∼ n−1/5, which is the usual order of the optimal bandwidth parameter in the
mean squared error sense.

3.3. Weak convergence of BĜx
x

The next result states the weak limit of the conditional copula estimator under
random censoring. Let α◦

x be a zero-mean gaussian process with covariance func-

tion cov{α◦
x(u), α

◦
x(u

′)} = K4(u∧u′−uu′), and let b
(3)
x (v) = K2Ḟ2x{F−1

2x (v)}+
2−1K3F̈2x{F−1

2x (v)}.

Proposition 3.5. Assume that the conditions of Theorem 3.1 as well as Con-
dition (D) are satisfied. For any 0 < t < τx, let T̃t = [0, H1x(t)]× [0, 1].
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(a) If hg−1 → 0 and
√
nhg2 → K5 as n → ∞ for some K5 > 0, then BĜx

x con-

verges weakly in l∞(T̃t) to a gaussian process with the following representation:

αx(u, v)− C[1]
x (u, v)αx(u, 1)− C[2]

x (u, v)α◦
x(v),

where αx(u, v) = J
(1)
x {F−1

1x (u), F−1
2x (v)}+K5 b

(2)
x {F−1

1x (u), F−1
2x (v)} and

cov{αx(u, v), α
◦
x(v

′)} = K4{Cx(u, v ∧ v′)− Cx(u, v)v′} .

(b) If h = g and
√
nh5 → K6 as n → ∞ for some K6 > 0, then BĜx

x converges

weakly in l∞(T̃t) to a gaussian process with the following representation

βx(u, v)− C[1]
x (u, v)βx(u, 1)− C[2]

x (u, v){α◦
x(v) +K6b

(3)
x (v)},

where βx(u, v) = Jx{F−1
1x (u), F−1

2x (v)}, and for y1, y2, y
′ ∈ R,

K−1
4 cov[Jx(y1, y2), α

◦
x{F2x(y

′)}]
= Fx(y1, y2 ∧ y′)− Fx(y1, y2)F2x(y

′)

+

∫ y1

0

Hx(z, y
′)−H1x(z)F2x(y

′)

{1−H1x(z)}2
ΔFx(y1, y2, z) dH

c
1x(z)

+

∫ y1

0

Hc
x(z, y

′)−Hc
1x(z)F2x(y

′)

1−H1x(z)

{
F [1]
x (z, y2)−

ΔFx(y1, y2, z)H
[1]
1x (z)

1−H1x(z)

}
dz.

As shown in Appendix D, the covariance structure of the tight limit of BĜx
x is

a consequence of the fact that BĜx
x =

√
nh

∑n
i=1{wni(x, h)j

(1)
ix +wni(x, g)j

(2)
ix }+

oP(1) on l∞(T̃t), where

j
(1)
ix (u, v) =J (1)

ix {F−1
1x (u), F−1

2x (v)} − C[1]
x (u, v)J (1)

ix {F−1
1x (u), F−1

2x (1)}
− C[2]

x (u, v)[I{Y2i ≤ F−1
2x (v)} − v],

and

j
(2)
ix (u, v) =J (2)

ix {F−1
1x (u), F−1

2x (v)} − C[1]
x (u, v)J (2)

ix {F−1
1x (u), F−1

2x (1)}.

When all the δ1i’s are equal to one, i.e. for complete data, the term J
(2)
x

reduces to 0. Hence, the covariance structure of the limit process αx matches
the one of the conditional copula process

√
nh(Ĉx − Cx) established by [22].

4. Simulation study

The nonparametric estimation of the conditional copula involves a choice for
the weight functions wn1(x, ·), . . . , wnn(x, ·) that fulfils the required assumptions
listed in Appendix A.2. It is shown in [12] that the requirements W1–W5 are
satisfied, among others, by the Nadaraya–Watson and the local linear weights,
given respectively in (2.1) and (2.2).
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The simulation results that will be reported here have been obtained using the
local linear weights with the triweight function K(y) = 35(1−y2)3 I(|y| ≤ 1)/32.
When negative weights occur, they are truncated to zero and the remaining
weights are simply re-scaled so that they sum to one. As pointed out in [12],
this modification is asymptotically negligible. Finally, note that all the numerical
experiments were also run using the Nadaraya–Watson kernel. As the results
were very similar, they are not presented here.

The primary aim of this section is to evaluate the performance of the proposed
conditional copula estimator with respect to the percentage of censoring, the
influence of the covariate on the dependence and the effect of the sample size.
This performance is evaluated by considering the average squared bias (ASB)

and the average variance (AV). To be specific, if Ĉx is some estimator of Cx,
then

ASB(Ĉx) =
1

K2

K∑
i,j=1

[
E{Ĉx(ui, uj)} − Cx(ui, uj)

]2
, and

AV(Ĉx) =
1

K2

K∑
i,j=1

E
(
Ĉ2
x(ui, uj)−

[
E{Ĉx(ui, uj)}

]2 )
.

The two criteria, ASB and AV, have been estimated from 1 000 replicates under
each of the scenario with n = 250 and n = 1000 and K = 15.

The nonparametric estimation of Cx also requires a choice for either one or two
bandwidth parameters. Indeed, an interesting aspect of Proposition 3.5 is that

the limiting distribution of the copula process BĜx
x differs in the case when g = h

and when hg−1 → 0. Therefore, the secondary aim of this section is to evaluate
the impact of using a single or both bandwidth parameters in the estimation of

Cx. In the following, let ĈĜx,1
x and ĈĜx,2

x denote the estimators resulting from

the choices g = h and g �= h respectively. Setting g = h× 0.25 log(n) for ĈĜx,2
x ,

their performance is compared for different values of h.
The covariate is generated from the standard normal distribution and the

estimation of the conditional copula is evaluated at x = 0.5. The copula which
joins the marginals is either a normal copula CN

� or a Clayton copula CCL
γ . These

are defined for −1 < � < 1 and γ > 0 by

CN
� (u, v) =

∫ Φ−1(u)

−∞

∫ Φ−1(v)

−∞
ϕ�(y, z) dz dy,

and
CCL
γ (u, v) =

(
u−γ + v−γ − 1

)−1/γ
,

where ϕ� is the bivariate standard Normal density with correlation � and Φ is
the standard Normal distribution. It is convenient to quantify the dependency
using Kendall’s tau. For any copula C, its associate Kendall’s tau can be written
as

T(C) = 4

∫ 1

0

∫ 1

0

C(u1, u2) dC(u1, u2)− 1. (4.1)
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For a given conditional copula Cx, the conditional Kendall’s tau, as suggested
by [8] for complete data, is given by Tx = T(Cx).

In the following, both the conditional Normal and Clayton copulas are pa-
rameterized in such a way that Tx = a1 × {Φ(x) − 0.2}2. The constant a1 is
chosen such that Tx ∈ {0, .1, .25, .35}. From the relationships between Kendall’s
tau and the parameters of the Normal and Clayton copulas, this can be done
by setting

�(x) = sin

(
Tx × π

2

)
and γ(x) =

2Tx

1− Tx
.

This means that the triplet (Y1i, Y2i, xi) is obtained by considering either �(xi)
or γ(xi) combined with the corresponding copula. As discussed at the beginning
of Section 3.1, the tail support of the distribution of a random variable may not
be identified due to right censoring when the support of the censoring variable
is included in the support of the variable of interest, i.e. when τCx < τFx . To
evaluate the impact on the estimation of Cx, the cases where τCx = τFx and
τCx < τFx are examined separately in the following two sections.

4.1. τGx = τFx

Here, we have considered the case where τGx = τFx = ∞. To do this, the
conditional marginal distributions of Y1i and Y2i given X = xi are generated
from an exponential distribution with mean given, for some constant a2, by

λxi = a2 × {1 + Φ(xi) + Φ(xi)
2},

i.e. Fjxi(y) = P{Yji ≤ y | X = xi} = 1 − e
− y

λxi . The censoring variable C1i

is also picked as an exponential but with mean a3 × {1 + Φ(xi) + Φ(xi)
2}, for

some constant a3. Hence, the probability of censoring conditional on X = x,
denoted θ thereafter, is given by a2

a2+a3
. The results are reported for a2 = 5 and

θ ∈ {.2, .4, .6} in Tables 1 and 2.

4.2. τGx < τFx

Here, we have considered τFx = ∞ and τCx < ∞. In that case, the conditional
marginal distributions of Yi1 and Yi2 given X = xi are generated from an
exponential distribution with mean λxi . The censoring variable Ci1 is generated
from a uniform distribution over [0, a4λxi ], for some constant a4. We can show
that in this case, the percentage of censoring is given by

θ =
(
1− e−a4

)
/a4.

The constant a4 is chosen such that θ ∈ {0.2, 0.4}. We have also covered the
scenario θ = 0, which corresponds to the situation when all the survival times
are observed. The results are reported in Table 3 and 4.
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4.3. Comments on the simulations results

From the obtained results it can be seen that, globally, when the association
between Y1 and Y2 increases, the bias increases whereas the variance decreases
slightly. Another interesting finding is that there is no significant difference
between the results obtained with a single bandwidth (g = h) and double band-
width (g �= h), except for large sample size (n = 1000). In this case, double
bandwidth reduces the bias substantially without increasing the variance of the
resulting estimator. The results from the Normal and Clayton copula are quite
similar. Also, and as expected, increasing the percentage of censoring decreases
the performances of the copula estimator both in terms of bias and variance.
The opposite is observed regarding the effect of the sample size. A larger (resp.
smaller) bandwidth is needed when censoring (resp. sample size) increases. Note
that we obtain much more accurate information on the conditional copula when
τGx = τFx . When τGx < τFx , one needs a large sample size to get accurate
estimates otherwise the results should be interpreted with care, especially when
the percentage of censoring is high. Finally, as for any kernel-based estima-
tor, we can see that a large bandwidth, typically, leads to a larger bias and a
smaller variance. This becomes clear with a large sample size (see the results
for n = 1000).

5. Illustrative example

In this section, we illustrate our methodology by considering a dataset, analyzed
by [11], on patients with advanced lung cancer from the North Central Cancer
Treatment Group. Their study was originally developed to determine whether
descriptive information from a patient-completed questionnaire could provide
prognostic information that was independent from that already obtained by the
patient’s physician. Requested information, before entering the study, include
age, calories intake, weight-loss in the last six months, etc. Three variables are
considered in our example: the survival time between onset of lung cancer and
death (Y1), the weight lost in the last six months before entering the study (Y2)
and the age of the patient (X), which is our conditioning variable. The dataset
contains information on n = 228 patients among whom 165 died and 63 were
right-censored during the follow-up period.

We start our analysis by investigating the marginal effects of age on the
survival time and weight loss. Figure 1 illustrates the local linear regression
estimators of the survival time and weight loss on age. We can see that age
has an effect on both variables. In fact, the survival time and the weight loss
increase for young people, i.e. between 39 and 50 years. But there is no clear
effect when age is higher than 50 years.

The goal here is to assess the effect of age on the relationship between the
survival time and the weight loss in the last six months using the conditional
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Fig 1. (a) Nonparametric regression estimator of (a) survival time on age; (b) weight loss
on age.

Kendall’s tau of (Y1, Y2) given X = x, given by

T(Cx) = 4

∫ 1

0

∫ 1

0

Cx(u1, u2) dCx(u1, u2)− 1. (5.1)

A natural way to estimate this coefficient is to replace the unknown quantity

Cx in the above expression by its nonparametric estimator ĈĜx
x given by (2.7).

This can be expressed as

T(ĈĜx
x ) = 4

∫ H1x(t)

0

∫ 1

0

ĈĜx
x (u1, u2)dĈĜx

x (u1, u2)− 1. (5.2)

Except for the case where H1x(t) = 1, the truncation in the integral above is

needed because ĈĜx
x is inconsistent outside [0, H1x(t)]×[0, 1], see Proposition 3.5

above. More about this subject can be found in [23]. Unfortunately, the quantity
H1x(t) is unknown and there is no obvious way to estimate it without imposing
some restrictive assumptions on the data generating process. In practice one may
consider (5.2) without the truncation, but then the results should be interpreted
with care.

Figure 2 (left side) shows the scatter plot of the observed survival times on
the y axis and the weight loss in the last six months on the x axis using differ-
ent symbols for censored/uncensored observations and different colors for the
age of the patients. From this figure it can be seen that there is a relation-
ship between time and weight loss: the survival time has tendency to decrease
with increasing weight loss. This tendency is not very strong as the estimated
unconditional (global) Kendall’s tau is only of −0.002. Figure 2 (right side)
shows the estimated conditional Kendall’s tau between time and weight loss
given the age of the patients. The dashed curve corresponds to the estimator,
say T(Ĉx), obtained ignoring censoring, i.e. by considering all observed times as

exact, and the solid curve is the estimator T(ĈĜ
x ) obtained using our method

that takes into account censoring. For both estimators a bandwidth h = 8.2 was
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Fig 2. Left: Scatter plot of time versus age (1 = uncensored, 0 = censored); Right: Conditional
Kendall’s as a function of age estimated (i) taking into account censoring (solid curve) and
(ii) considering censored observations as exact survival times (dashed curve).

used. We can see that while the estimated conditional Kendall’s tau coefficients
remain negative their magnitude changes with age. When the latter increases

from 55 to 60, the absolute value of T(ĈĜ
x ) decreases from 0.25 to reach 0.18,

and then starts increasing to reach 0.20 at the age 63 before decreasing again
to reach its minimum value of 0.1 around the age 66. This figure illustrates
the advantage of the conditional Kendall’s tau over the global one as the for-
mer gives a more precise picture of the association between survival time and
weight loss accounting for age whereas the latter measures only the “average”
association. From this figure one can also see that the “uncorrected” estimator
T(Ĉx) underestimates the strength of the association between time and weight
loss.

6. Conclusion and discussion

In this work, we have studied the relationship between two random variables
Y1 and Y2 conditional on the value taken by a covariate X in the case where
the variable Y1 is subject to random right censoring. We have proposed a kernel
smoothing estimator for the conditional copula and have investigated its asymp-
totic and finite sample properties. To illustrate the usefulness of the proposed
method, we have applied it to a dataset on advanced lung cancer.

The methodology can be extended to cover the case when censoring affects
not only Y1, as it is the case in this work, but also Y2. More precisely, let us
assume that Yj is censored by Cj which, given X = x, has as a conditional
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survival function Sjx, j = 1, 2. It can be easily shown that

Fx(y1, y2) = E
{
I(T1 ≤ y1, T2 ≤ y2)

δ1δ2
Sc
x(T1, T2)

|X = x
}
,

where δj = I(Yj ≤ Cj), j = 1, 2, and Sc
x(y1, y2) = P (C1 ≥ y1, C2 ≥ y2|X = x).

Clearly, provided that a valid estimator for this quantity is available, one can
estimate the copula Cx using exactly the same approach as we did in the above
case when censoring affects only Y1. For example, if C1 and C2 are known to
be independent given X = x, then one could use Ŝc

x(y1, y2) = Ŝ1x(y1)Ŝ2x(y2),
where Ŝjx is the Beran’s estimator of Sjx, j = 1, 2. More generally, let Cc

x be
the conditional (survival) copula of (C1, C2) given X = x. If Cc

x is known, then
one could use Cc

x(Ŝ1x(y1), Ŝ2x(y2)) to estimate Sc
x(y1, y2). In practice Cc

x is un-
known and needs to be estimated from the observed data (T1i, T2i, δ1i, δ2i, Xi),
i = 1, . . . , n. Due to identifiability issues, this can only be done parametrically
by assuming that Cc

x belongs to a parametric family of copulas. Once such para-
metric family has been chosen, one can then estimate the copula parameter(s)
via maximum likelihood as done, for example, in [7].

The methodology can also be straightforwardly extended to cover the case of
k ≥ 2 variables of interest, say Y1, . . . , Yk, where only the variable Y1 is censored.
This can be done by using the same weight functions, i.e. by using

F̂ Ĝx
x (y1, y2, ..., yk) =

n∑
i=1

I(T1i ≤ y1, Y2i ≤ y2, ..., Yki ≤ yk)
wni(x, h)δ1i

1− Ĝx(T1i−)
,

as an estimator for the joint conditional distribution of (Y1, . . . , Yk)|X = x.

Appendix A. Assumptions

Appendix A.1. (Sub-)distribution functions

Smoothness conditions over Fx, Hx, H
u
x , H

c
1x and Gx are needed in the proof of

Theorem 3.1. We formulate them for a general (sub-)distribution function Lx

and for a fixed Ts = [0, s]× R with s > t, where t is given in Theorem 3.1.

(C1) L̇x(y1, y2) =
∂
∂xLx(y1, y2) exists and is continuous over V (x) × Ts, where

V (x) is a neighborhood of x;

(C2) L
[j]
x (y1, y2) =

∂
∂yj

Lx(y1, y2), j = 1, 2 exist and are continuous over V (x)×
Ts;

(C3) L̈x(y1, y2) =
∂2

∂x2Lx(y1, y2) exist and is continuous over V (x)× Ts;
(C4) L

[i,j]
x (y1, y2) = ∂2

∂yi∂yj
Lx(y1, y2), i, j = 1, 2 exist and are continuous over

V (x)× Ts;
(C5) L̇

[j]
x (y1, y2) =

∂2

∂x∂yj
Lx(y1, y2), j = 1, 2 exist and are continuous over V (x)

× Ts;
(C6) L̇

[1,2]
x (y1, y2) =

∂3

∂x∂y1∂y2
Lx(y1, y2) and L̈

[1,2]
x (y1, y2) =

∂4

∂x2∂y1∂y2
Lx(y1, y2)

exist and are continuous over V (x)× Ts;



C
o
n
d
itio

n
a
l
co
p
u
la

u
n
d
er

ra
n
d
o
m

righ
t
cen

so
rin

g
5
0
5
9

Table 1. Average integrated square bias (AISB ×104) estimated from 1 000 replicates of BĜx
x with n = 250 and n = 1000 in the case τCx = τFx = ∞.

Upper pannel: Normal Copula. Bottom pannel: Clayton Copula.

Tx = .1 Tx = .25 Tx = .35
θ h n = 250 n = 1000 n = 250 n = 1000 n = 250 n = 1000

g = h g �= h g = h g �= h g = h g �= h g = h g �= h g = h g �= h g = h g �= h

20%

0.9 1.420 0.510 0.223 0.023 1.403 0.481 0.232 0.028 1.515 0.536 0.286 0.051
1.2 0.356 0.167 0.014 0.009 0.361 0.178 0.022 0.028 0.471 0.264 0.057 0.057
1.5 0.138 0.116 0.021 0.030 0.138 0.118 0.057 0.073 0.237 0.212 0.102 0.115
1.8 0.049 0.050 0.047 0.049 0.083 0.083 0.106 0.111 0.188 0.185 0.164 0.168
2.1 0.038 0.037 0.085 0.087 0.091 0.090 0.161 0.167 0.216 0.214 0.225 0.231
2.4 0.049 0.048 0.095 0.096 0.114 0.114 0.189 0.195 0.254 0.251 0.265 0.270
2.7 0.063 0.064 0.120 0.121 0.159 0.163 0.234 0.240 0.296 0.299 0.319 0.324

40%

0.9 1.707 1.464 0.532 0.050 1.525 1.282 0.535 0.045 1.553 1.304 0.609 0.068
1.2 0.973 0.639 0.078 0.032 0.859 0.537 0.072 0.039 0.948 0.604 0.119 0.074
1.5 0.535 0.405 0.054 0.035 0.435 0.311 0.072 0.067 0.530 0.392 0.149 0.131
1.8 0.390 0.374 0.060 0.056 0.318 0.302 0.114 0.111 0.430 0.409 0.214 0.204
2.1 0.329 0.321 0.079 0.077 0.300 0.286 0.145 0.151 0.457 0.432 0.270 0.265
2.4 0.291 0.280 0.088 0.084 0.273 0.258 0.190 0.186 0.448 0.425 0.340 0.328
2.7 0.259 0.249 0.090 0.087 0.291 0.277 0.210 0.208 0.487 0.466 0.384 0.375

60%

0.9 10.841 8.653 1.551 1.059 9.378 7.289 1.271 0.788 8.699 6.667 1.186 0.683
1.2 5.339 4.948 0.923 0.764 4.297 3.935 0.699 0.538 3.915 3.566 0.662 0.480
1.5 4.465 4.420 0.881 0.733 3.342 3.283 0.715 0.566 2.959 2.888 0.743 0.571
1.8 4.441 4.230 0.752 0.758 3.329 3.130 0.618 0.590 2.968 2.762 0.723 0.662
2.1 3.699 3.680 0.687 0.691 2.764 2.713 0.627 0.601 2.602 2.530 0.798 0.739
2.4 3.705 3.641 0.791 0.743 2.622 2.538 0.733 0.659 2.423 2.315 0.950 0.844
2.7 3.607 3.502 0.824 0.787 2.673 2.561 0.782 0.721 2.550 2.424 1.053 0.961

20%

0.9 1.324 0.442 0.185 0.024 1.567 0.618 0.214 0.034 1.563 0.432 0.486 0.083
1.2 0.325 0.142 0.031 0.014 0.191 0.170 0.061 0.076 0.368 0.305 0.163 0.191
1.5 0.141 0.085 0.047 0.049 0.161 0.135 0.174 0.180 0.323 0.325 0.318 0.347
1.8 0.061 0.055 0.104 0.106 0.178 0.179 0.283 0.292 0.417 0.419 0.488 0.529
2.1 0.060 0.060 0.121 0.123 0.248 0.252 0.346 0.353 0.561 0.567 0.622 0.634
2.4 0.085 0.084 0.156 0.157 0.302 0.304 0.441 0.450 0.656 0.662 0.772 0.786
2.7 0.097 0.096 0.223 0.226 0.368 0.370 0.551 0.560 0.792 0.797 0.915 0.930

40%

0.9 2.746 1.376 0.608 0.158 2.282 1.086 0.527 0.087 2.250 1.266 0.431 0.118
1.2 0.864 0.600 0.072 0.039 0.910 0.606 0.130 0.085 0.925 0.506 0.228 0.191
1.5 0.681 0.503 0.059 0.054 0.498 0.378 0.152 0.154 0.528 0.485 0.318 0.324
1.8 0.369 0.330 0.101 0.098 0.363 0.339 0.254 0.258 0.551 0.532 0.488 0.497
2.1 0.247 0.226 0.118 0.116 0.338 0.331 0.297 0.303 0.616 0.611 0.587 0.598
2.4 0.295 0.284 0.131 0.130 0.402 0.393 0.372 0.378 0.716 0.710 0.714 0.724
2.7 0.350 0.337 0.178 0.178 0.487 0.471 0.455 0.464 0.873 0.864 0.850 0.867

60%

0.9 11.450 7.530 1.866 1.264 9.481 6.093 1.555 1.000 9.294 5.838 2.023 0.767
1.2 6.922 5.600 0.976 0.885 5.650 4.892 0.871 0.709 4.649 3.984 0.785 0.662
1.5 4.734 4.604 0.787 0.729 4.327 3.823 0.726 0.676 3.532 3.051 0.789 0.697
1.8 3.968 3.849 0.841 0.814 2.822 2.675 0.756 0.711 2.421 2.351 0.946 0.891
2.1 3.569 3.428 0.955 0.972 2.428 2.359 0.877 0.823 2.281 2.173 1.072 1.026
2.4 3.431 3.385 0.957 0.920 2.712 2.603 0.997 0.956 2.446 2.321 1.265 1.212
2.7 4.136 4.099 0.997 0.969 3.166 3.043 1.034 0.983 2.918 2.818 1.372 1.306
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Table 2. Average integrated variance (AIV ×104) estimated from 1 000 replicates of BĜx
x with n = 250 and n = 1000 in the case τCx = τFx = ∞.

Upper pannel: Normal Copula. Bottom pannel: Clayton Copula.

Tx = .1 Tx = .25 Tx = .35
θ h n = 250 n = 1000 n = 250 n = 1000 n = 250 n = 1000

g = h g �= h g = h g �= h g = h g �= h g = h g �= h g = h g �= h g = h g �= h

20%

0.9 25.033 9.210 14.408 3.398 26.750 9.235 15.656 3.515 27.752 9.117 16.448 3.559
1.2 10.312 3.793 4.302 0.945 10.633 3.426 4.534 0.827 10.724 3.072 4.662 0.730
1.5 5.537 4.444 1.934 0.807 5.385 4.176 1.968 0.723 5.187 3.902 1.959 0.640
1.8 2.878 2.882 0.708 0.711 2.556 2.560 0.614 0.619 2.264 2.266 0.543 0.548
2.1 2.691 2.693 0.645 0.648 2.378 2.382 0.569 0.571 2.069 2.075 0.497 0.499
2.4 2.504 2.514 0.614 0.616 2.194 2.202 0.539 0.542 1.920 1.927 0.469 0.472
2.7 2.438 2.449 0.589 0.591 2.106 2.115 0.509 0.511 1.812 1.819 0.446 0.448

40%

0.9 19.754 16.672 19.448 1.997 20.449 17.054 21.114 1.857 20.733 17.127 22.155 1.703
1.2 12.547 6.187 5.979 1.536 12.789 5.728 6.301 1.392 12.750 5.243 6.474 1.264
1.5 8.735 5.478 4.680 1.334 8.591 4.989 4.923 1.228 8.350 4.530 5.038 1.120
1.8 4.810 4.798 1.172 1.166 4.347 4.339 1.052 1.051 3.932 3.923 0.952 0.956
2.1 4.419 4.425 2.225 1.105 3.987 3.996 2.241 1.003 3.573 3.582 2.212 0.902
2.4 4.256 4.257 1.012 1.012 3.831 3.835 0.916 0.918 3.448 3.457 0.815 0.821
2.7 4.160 4.165 0.993 0.993 3.727 3.732 0.894 0.898 3.317 3.324 0.800 0.804

60%

0.9 39.515 30.505 15.744 6.265 40.965 30.816 16.583 6.046 41.665 30.771 17.002 5.784
1.2 17.887 15.903 8.380 4.062 17.286 15.089 8.564 3.782 16.588 14.231 8.591 3.513
1.5 14.052 13.855 6.879 3.610 13.212 13.017 6.934 3.323 12.337 12.156 6.879 3.052
1.8 12.913 11.926 3.225 3.169 11.996 10.901 2.952 2.917 11.334 10.160 2.701 2.684
2.1 11.578 11.564 3.018 2.959 10.467 10.472 2.714 2.681 9.569 9.577 2.435 2.428
2.4 10.745 10.602 2.844 2.822 9.693 9.577 2.552 2.540 8.816 8.714 2.286 2.283
2.7 10.262 10.160 2.665 2.641 9.278 9.225 2.373 2.360 8.480 8.454 2.124 2.124

20%

0.9 23.844 8.186 12.115 2.329 28.510 12.680 15.334 1.093 28.287 5.322 23.461 2.235
1.2 10.258 3.809 6.478 0.967 5.766 4.588 3.260 0.844 8.048 4.297 5.865 0.754
1.5 6.459 3.218 0.790 0.793 6.420 2.850 0.708 0.708 2.583 3.839 1.908 0.616
1.8 4.062 2.967 0.714 0.716 2.582 2.591 0.631 0.634 2.283 2.287 1.854 0.556
2.1 2.649 2.651 0.645 0.647 2.318 2.324 0.570 0.570 2.050 2.065 0.496 0.499
2.4 2.499 2.500 0.617 0.618 2.138 2.146 0.527 0.530 1.873 1.872 0.459 0.459
2.7 2.401 2.408 0.588 0.590 2.065 2.068 0.516 0.517 1.809 1.815 0.447 0.449

40%

0.9 29.534 14.413 19.150 6.339 26.838 11.294 20.597 4.213 26.139 13.168 17.852 2.914
1.2 12.588 7.344 4.891 1.605 16.057 9.181 8.617 1.456 16.231 5.245 8.918 1.334
1.5 9.609 5.360 3.532 1.328 8.377 4.862 1.205 1.207 5.740 4.483 1.097 1.093
1.8 5.864 4.788 2.257 1.154 5.476 4.285 1.066 1.068 3.867 3.876 0.970 0.968
2.1 4.466 4.469 1.079 1.078 3.979 3.963 0.973 0.973 3.525 3.534 0.885 0.889
2.4 4.187 4.179 1.030 1.029 3.732 3.736 0.909 0.906 3.395 3.405 0.809 0.809
2.7 4.029 4.033 0.981 0.983 3.583 3.580 0.874 0.878 3.202 3.206 0.782 0.786

60%

0.9 41.210 22.473 15.480 6.182 40.648 20.576 15.916 5.707 43.935 23.550 27.011 4.244
1.2 23.991 15.355 6.393 4.213 20.477 15.180 8.445 3.795 19.801 14.016 7.162 3.434
1.5 15.315 13.351 4.689 3.593 15.274 12.114 4.426 3.228 14.634 11.134 6.734 2.975
1.8 12.811 11.739 3.189 3.106 11.655 10.466 2.904 2.884 9.899 9.875 2.664 2.652
2.1 11.306 11.293 2.996 2.929 9.956 9.926 2.614 2.608 8.995 8.988 2.362 2.353
2.4 10.645 10.561 2.833 2.795 9.248 9.253 2.542 2.533 8.522 8.470 2.272 2.256
2.7 9.772 9.695 2.731 2.701 8.950 8.961 2.454 2.413 8.279 8.243 2.170 2.163
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Table 3. Average integrated square bias (AISB ×104) estimated from 1 000 replicates of B
Ĝx
x with n = 250 and n = 1000 in the case τC < τFx .

Upper pannel: Normal Copula. Bottom pannel: Clayton Copula.

Tx = .1 Tx = .25 Tx = .35
θ h n = 250 n = 1000 n = 250 n = 1000 n = 250 n = 1000

g = h g �= h g = h g �= h g = h g �= h g = h g �= h g = h g �= h g = h g �= h

0%

0.9 0.230 0.230 0.005 0.005 0.228 0.228 0.013 0.013 0.284 0.284 0.032 0.032
1.2 0.089 0.089 0.013 0.013 0.116 0.116 0.035 0.035 0.198 0.198 0.059 0.059
1.5 0.047 0.047 0.043 0.043 0.073 0.073 0.087 0.087 0.158 0.158 0.117 0.117
1.8 0.030 0.030 0.075 0.075 0.083 0.083 0.143 0.143 0.167 0.167 0.183 0.183
2.1 0.029 0.029 0.126 0.126 0.105 0.105 0.209 0.209 0.200 0.200 0.251 0.251
2.4 0.046 0.046 0.148 0.148 0.130 0.130 0.254 0.254 0.235 0.235 0.300 0.300
2.7 0.082 0.082 0.189 0.189 0.195 0.195 0.314 0.314 0.301 0.301 0.358 0.358

20%

0.9 1.454 0.729 0.608 0.036 1.437 0.696 0.644 0.039 1.543 0.761 0.739 0.065
1.2 0.464 0.184 0.091 0.010 0.466 0.192 0.085 0.027 0.584 0.276 0.138 0.057
1.5 0.150 0.125 0.022 0.030 0.147 0.126 0.058 0.072 0.245 0.221 0.103 0.114
1.8 0.061 0.060 0.049 0.051 0.093 0.092 0.108 0.113 0.197 0.194 0.168 0.172
2.1 0.049 0.047 0.086 0.087 0.103 0.100 0.159 0.163 0.228 0.224 0.225 0.229
2.4 0.059 0.058 0.097 0.098 0.121 0.120 0.190 0.194 0.264 0.261 0.269 0.272
2.7 0.072 0.073 0.121 0.122 0.167 0.169 0.233 0.238 0.305 0.306 0.320 0.324

40%

0.9 7.057 3.481 6.590 0.773 6.437 2.904 6.698 0.605 6.289 2.718 6.979 0.551
1.2 4.061 2.231 1.035 0.642 3.590 1.823 0.909 0.515 3.547 1.744 0.931 0.491
1.5 2.029 1.718 0.798 0.597 1.608 1.339 0.740 0.526 1.548 1.284 0.824 0.559
1.8 1.829 1.701 0.603 0.615 1.461 1.357 0.596 0.574 1.445 1.343 0.722 0.669
2.1 1.630 1.539 0.605 0.600 1.357 1.272 0.641 0.610 1.439 1.347 0.799 0.743
2.4 1.689 1.563 0.642 0.611 1.374 1.260 0.712 0.658 1.448 1.332 0.933 0.852
2.7 1.538 1.438 0.643 0.626 1.321 1.237 0.741 0.701 1.440 1.354 0.999 0.929

0%

0.9 0.212 0.212 0.008 0.008 0.215 0.215 0.035 0.035 0.298 0.298 0.088 0.088
1.2 0.065 0.065 0.022 0.022 0.115 0.115 0.096 0.096 0.263 0.263 0.210 0.210
1.5 0.036 0.036 0.070 0.070 0.133 0.133 0.207 0.207 0.335 0.335 0.374 0.374
1.8 0.049 0.049 0.142 0.142 0.215 0.215 0.345 0.345 0.464 0.464 0.576 0.576
2.1 0.064 0.064 0.180 0.180 0.297 0.297 0.429 0.429 0.617 0.617 0.697 0.697
2.4 0.114 0.114 0.226 0.226 0.392 0.392 0.551 0.551 0.744 0.744 0.867 0.867
2.7 0.130 0.130 0.305 0.305 0.468 0.468 0.674 0.674 0.893 0.893 1.024 1.024

20%

0.9 1.610 0.533 0.354 0.047 1.841 0.452 0.632 0.040 2.768 0.560 0.364 0.087
1.2 0.421 0.160 0.108 0.016 0.255 0.181 0.062 0.078 0.466 0.329 0.166 0.191
1.5 0.129 0.090 0.049 0.050 0.162 0.144 0.169 0.173 0.343 0.329 0.301 0.346
1.8 0.081 0.065 0.107 0.109 0.180 0.187 0.280 0.287 0.424 0.425 0.510 0.522
2.1 0.070 0.068 0.127 0.128 0.252 0.252 0.342 0.349 0.566 0.570 0.611 0.623
2.4 0.097 0.096 0.157 0.158 0.316 0.319 0.442 0.451 0.663 0.665 0.765 0.778
2.7 0.107 0.107 0.222 0.224 0.380 0.382 0.546 0.556 0.798 0.802 0.903 0.916

40%

0.9 8.009 4.098 5.463 1.269 8.886 3.196 4.665 0.943 8.132 2.789 4.685 0.759
1.2 3.588 2.221 1.990 0.706 3.255 1.710 1.865 0.691 2.935 1.569 1.852 0.690
1.5 2.634 1.901 0.875 0.671 2.095 1.520 0.840 0.684 1.720 1.367 0.976 0.805
1.8 1.888 1.535 0.750 0.723 1.517 1.384 0.869 0.824 1.541 1.406 1.038 0.989
2.1 1.444 1.332 0.760 0.749 1.341 1.277 0.885 0.849 1.522 1.440 1.151 1.108
2.4 1.649 1.531 0.756 0.752 1.485 1.400 0.998 0.974 1.634 1.548 1.288 1.250
2.7 1.776 1.674 0.840 0.812 1.649 1.571 1.038 1.014 1.872 1.791 1.403 1.357
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Table 4. Average integrated variance (AIV ×104) estimated from 1 000 replicates of BĜx
x with n = 250 and n = 1000 in the case τC < τFx . Upper

pannel: Normal Copula. Bottom pannel: Clayton Copula.

Tx = .1 Tx = .25 Tx = .35
θ h n = 250 n = 1000 n = 250 n = 1000 n = 250 n = 1000

g = h g �= h g = h g �= h g = h g �= h g = h g �= h g = h g �= h g = h g �= h

0%

0.9 3.581 3.581 0.849 0.849 3.164 3.164 0.750 0.750 2.771 2.771 0.649 0.649
1.2 2.703 2.703 0.691 0.691 2.387 2.387 0.589 0.589 2.078 2.078 0.500 0.500
1.5 2.442 2.442 0.583 0.583 2.109 2.109 0.509 0.509 1.790 1.790 0.436 0.436
1.8 2.124 2.124 0.511 0.511 1.839 1.839 0.434 0.434 1.558 1.558 0.369 0.369
2.1 1.933 1.933 0.467 0.467 1.659 1.659 0.398 0.398 1.394 1.394 0.334 0.334
2.4 1.844 1.844 0.455 0.455 1.565 1.565 0.388 0.388 1.337 1.337 0.327 0.327
2.7 1.820 1.820 0.423 0.423 1.542 1.542 0.354 0.354 1.282 1.282 0.300 0.300

20%

0.9 24.896 13.329 24.072 4.462 26.604 13.807 26.315 4.695 27.605 13.997 27.771 4.815
1.2 12.322 3.652 10.927 0.918 12.878 3.294 11.853 0.800 13.125 2.950 12.432 0.700
1.5 5.445 4.353 1.911 0.787 5.294 4.083 1.946 0.704 5.099 3.811 1.936 0.620
1.8 2.832 2.831 0.682 0.685 2.498 2.500 0.590 0.594 2.197 2.200 0.520 0.524
2.1 2.631 2.641 0.628 0.630 2.316 2.326 0.553 0.555 2.013 2.021 0.481 0.484
2.4 2.438 2.436 0.599 0.601 2.125 2.126 0.526 0.528 1.855 1.858 0.457 0.460
2.7 2.390 2.391 0.574 0.576 2.055 2.057 0.495 0.498 1.765 1.767 0.431 0.433

40%

0.9 44.135 19.743 63.494 4.405 47.572 20.341 69.854 4.422 49.689 20.560 74.010 4.372
1.2 26.871 9.619 13.628 1.718 28.587 9.369 14.703 1.524 29.528 9.043 15.368 1.364
1.5 8.899 6.801 9.151 1.501 8.618 6.285 9.786 1.333 8.284 5.806 10.156 1.188
1.8 5.181 5.136 1.325 1.293 4.574 4.536 1.142 1.123 4.068 4.038 1.010 1.000
2.1 4.700 4.698 1.278 1.252 4.118 4.120 1.105 1.088 3.630 3.641 0.963 0.953
2.4 4.587 4.577 1.189 1.173 3.998 3.999 1.017 1.013 3.528 3.533 0.876 0.876
2.7 4.440 4.411 1.178 1.156 3.860 3.842 0.998 0.986 3.378 3.366 0.856 0.851

0%

0.9 3.605 3.605 0.884 0.884 3.197 3.197 0.769 0.769 2.773 2.773 0.658 0.658
1.2 2.790 2.790 0.708 0.708 2.417 2.417 0.611 0.611 2.084 2.084 0.523 0.523
1.5 2.332 2.332 0.577 0.577 1.996 1.996 0.496 0.496 1.717 1.717 0.425 0.425
1.8 2.154 2.154 0.513 0.513 1.827 1.827 0.438 0.438 1.550 1.550 0.372 0.372
2.1 1.926 1.926 0.467 0.467 1.626 1.626 0.398 0.398 1.382 1.382 0.336 0.336
2.4 1.798 1.798 0.446 0.446 1.476 1.476 0.370 0.370 1.246 1.246 0.311 0.311
2.7 1.764 1.764 0.419 0.419 1.463 1.463 0.354 0.354 1.244 1.244 0.301 0.301

20%

0.9 26.717 9.075 17.445 4.482 31.666 7.874 26.904 3.450 42.212 8.880 19.740 3.477
1.2 12.285 3.736 11.903 0.937 8.020 4.481 6.845 0.823 11.665 5.456 7.110 0.731
1.5 5.279 3.113 0.774 0.775 5.148 2.772 0.682 0.683 5.023 2.496 3.182 0.602
1.8 5.078 2.892 0.688 0.690 3.727 2.527 0.613 0.615 2.192 2.203 0.535 0.537
2.1 2.557 2.559 0.626 0.629 2.263 2.268 0.545 0.547 1.973 1.975 0.475 0.478
2.4 2.430 2.432 0.598 0.598 2.073 2.072 0.516 0.516 1.805 1.807 0.445 0.447
2.7 2.344 2.347 0.568 0.571 1.997 2.003 0.496 0.497 1.739 1.743 0.433 0.434

40%

0.9 47.333 22.684 52.828 10.644 56.433 19.019 53.310 8.996 55.804 15.543 56.266 5.505
1.2 21.724 7.633 27.012 1.795 25.893 6.950 29.195 2.762 25.443 6.473 29.539 1.450
1.5 13.852 5.634 9.070 1.513 12.944 4.986 9.597 1.323 10.548 4.486 9.952 1.181
1.8 9.272 5.075 2.425 1.300 5.661 4.508 3.542 1.148 5.270 4.026 2.299 1.029
2.1 4.781 4.750 2.330 1.219 4.180 4.170 1.096 1.085 3.714 3.688 0.971 0.964
2.4 4.441 4.421 1.207 1.188 3.934 3.912 1.029 1.016 3.564 3.569 0.887 0.879
2.7 4.291 4.294 1.154 1.136 3.681 3.683 0.978 0.971 3.246 3.235 0.854 0.850
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The following assumption is needed to guarantee the weak convergence of BĜx
x .

(D) The partial derivatives C[1]
x (u, v) = (∂/∂u)Cx(u, v) and C[2]

x (u, v) = (∂/∂v)
Cx(u, v) exist and are continuous on (0, 1)× [0, 1] and [0, 1]× (0, 1), respec-
tively.

Appendix A.2. Weight functions

Assumptions W1–W6 below are required to establish the theoretical results pre-
sented in Section 3.

W1.
√
nh max

1≤i≤n
|wni(x, h)| = o(1);

W2.
√
nh

∣∣∣ n∑
i=1

wni(x, h)(xi−x)−h2 K2

∣∣∣ = o(1) for some K2 = K2(x) ∈ [0,∞);

W3.
√
nh

∣∣∣ n∑
i=1

wni(x, h)(xi−x)2−h2 K3

∣∣∣ = o(1) for someK3 = K3(x) ∈ (0,∞);

W4. nh

n∑
i=1

{wni(x, h)}2 −K4 = o(1) for some K4 = K4(x) ∈ (0,∞);

W5. max
i∈Inx

xi − min
i∈Inx

xi = o(1), where Inx = {i : wni(x, h) > 0};

W6.
n∑

i=1

wni(x, h)− 1 = O

(
1√
nh

)
.

In what follows, all the expectations of the form E{ψ(T1i, Y2i, Ci)} have to
be understood as taken conditional upon X = xi. Formally, for any 1 ≤ i ≤ n
and any real function ψ,

E{ψ(T1i, Y2i, Ci)} =

∫ ∫
ψ(y1, y2, c) dFxi(y1, y2) dGxi(c),

whenever the left-hand side of the integral exists.

Appendix B. Proof of Theorem 3.1

We start by observing that

F̂ Ĝx
x (y1, y2) =

n∑
i=1

δ1iφ(y1, y2, T1i, Y2i, Ĝx)wni(x, h) ,

where for any (y1, y2) ∈ Tt, (v, v′) ∈ R2 and for any function G : R → [0, 1):

φ(y1, y2, v, v
′, G) =

I(v ≤ y1, v
′ ≤ y2)

1−G(v)
.
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To prove the desired result, we apply the ideas of [18]. To this end, let first
define the operator E(·) by

E {δ1iL(y1, y2, T1i, Y2i, G)} =

∫
L(y1, y2, v, v

′, G) dHu
xi
(v, v′), (B.1)

whenever the right-hand side of the integral exists. In this definition, L, y1, y2
and G may be any stochastic elements. In other words, E should be understood
as the conditional expectation with respect to (δ1i, T1i, Y2i) only. Observe that
when L, y1, y2 and G are fixed (non random), E {δ1iL(y1, y2, T1i, Y2i, G)} =
E {δ1iL(y1, y2, T1i, Y2i, G)}.

Let start with the following decomposition:

√
nh(F̂ Ĝx

x (y1, y2)− Fx(y1, y2)) = {Ax(y1, y2)− E [Ax(y1, y2)]}
+Bx(y1, y2) + E [Ax(y1, y2)] ,

where, recalling the definition of F̂Gx
x at Equation (2.4),

Ax(y1, y2) =
√
nh

{
F̂ Ĝx
x (y1, y2)− F̂Gx

x (y1, y2)
}

(B.2)

and

Bx(y1, y2) =
√
nh

{ n∑
i=1

I(T1i ≤ y1, Y2i ≤ y2)wni(x, h)
δ1i

1−Gx(T1i)
− Fx(y1, y2)

}
=

√
nh

n∑
i=1

wni(x, h)J (1)
ix (y1, y2).

As Bx is already in the required form, we derive the asymptotic representation of

FĜx
x by showing in Appendix B.1 that Ax −E (Ax) is asymptotically negligible,

and then by proving in Appendix B.2 that

E (Ax(y1, y2)) =
√
nh

n∑
i=1

wni(x, g)J (2)
ix (y1, y2) + oa.s(1) . (B.3)

Appendix B.1. Asymptotic negligibility of Ax − E(Ax)

Hereafter, it is important to remember that the Xi’s are assumed to be fixed by
design. Therefore, the wni’s are treated as (non-stochastic) constants satisfying
assumptions (W1)–(W6) above. Also, recall from Theorem 3.1 statement that
Tt = [0, t] × R, where 0 < t < τ̄x. Let ε > 0 such that Gx(t) + ε < 1, and set
gε ≡ Gx(t) + ε. Also, let Gtε ≡ {G : R → [0, 1] nondecreasing and G(t) < gε},
and for any (y1, y2, G) ∈ Tt×Ggε , define the stochastic processes Zx ≡

∑n
i=1 Zhi,

where

Zhi(y1, y2, G) =
√
nh I(T1i ≤ y1, Y2i ≤ y2)wni(x, h)

δ1i
1−G(T1i)

. (B.4)
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We note that Zx can be viewed as a weighted process indexed by the set of
functions from R2 × {0, 1} → R given by

F =
{
(v, v′, w) �→ I(v ≤ y1, v

′ ≤ y2)
w

1−G(v)
, (y1, y2) ∈ Tt, G ∈ Ggε

}
.

Hence, each function f ∈ F may be formally identified by a triplet (y1, y2, G).
The definition of the weighted process Zx is motivated by the fact that Ax(y1, y2)

= Zx(y1, y2, Ĝx) − Zx(y1, y2, Gx). While the ε–enlargement in the definition of
the class Ggε might appear overdone, it is however required to guarantee that

Ĝx asymptotically fits into Ggε .
Finally, we equip the index set F with the semimetric ρFx defined for f =

(y1, y2, G) and f ′ = (y′1, y
′
2, G

′) as

ρFx(f, f
′) = |F1x(y1)− F1x(y

′
1)|+ |F2x(y2)− F2x(y

′
2)|+ sup

z∈[0,t]

|G(z)−G′(z)|.

Note that (F , ρ) is totally bounded for ρFx , as

I{v ≤ y1, v
′ ≤ y2}w{1−G(v)}−1 ≤ I{v ≤ t}{1−G(v)}−1 ≤ (1− gε)

−1 < ∞ .

Moreover, F ≡ 1
1−gε

is an envelope function of F (i.e for all f ∈ F , f ≤ F).
Assumptions W1, W4, W5, W6 and C1 together with Lemma E.1 imply that

the process Zx ≡ Zx − E(Zx) indexed by (F , ρFx) is asymptotically ρFx–
equicontinuous in probability. This implies that for any η > 0 and η′ > 0,
there exists δ > 0 such that

lim sup
n→∞

P
�
{

sup
ρFx (f,f

′)<δ

|Zx(f
′)− Zx(f)| > η

}
< η′. (B.5)

From there, to show the asymptotic negligibility of Ax − E(Ax), it suffices to

prove that for sufficiently large n, (a) Ĝx ∈ Ggε , and (b) with probability 1, we

have ρFx{(y1, y2, Ĝx), (y1, y2, Gx)} < δ. Indeed, if (a) and (b) hold, we obtain

sup
(y1,y2)∈Tt

∣∣√nh [Ax(y1, y2)− E{Ax(y1, y2)}]
∣∣ ≤ sup

ρFx (f,f
′)<δ

|Zx(f
′)− Zx(f)|,

and the desired result follows from Equation (B.5).
As for (a), since it is assumed that the wni’s satisfy Assumptions W1 to W5,

one can use Lemma 3 in [12] to derive an exponential inequality for the two
following random quantities supy2

∑n
i=1 wni(x, g){I(T1i ≤ y2)−H1xi(y2)} and

supy2

∑n
i=1 wni(x, g){I(T1i ≤ y2, δ1i = 0) −Hc

xi
(y2)}, and then, from standard

arguments, show that
∑n

i=1 wni(x, g){H1xi(y2) −H1x(y2)} and
∑n

i=1 wni(x, g)
{Hc

xi
(y2)−Hc

x(y2)} are O(g2). Using theses and following a similar arguments
in [19], one can prove that

sup
t∈[0,t]

|Ĝx(t)−Gx(t)| = O{(ng)−1/2(logn)1/2} a.s., (B.6)

which implies (a).

(b) follows from (B.6) as ρFx{(y1, y2, Ĝx), (y1, y2, Gx)} = supt∈[0,t] |Ĝx(t) −
Gx(t)| = oa.s(1). This concludes the proof of the asymptotic negligibility of
Ax − E(Ax).
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Appendix B.2. Asymptotic representation of E(Ax)

Using Equation (B.1), the random function Dx = E(Ax) can be expressed as

Dx(y1, y2) =
√
nh

∫ y1

0

∫ y2

0

Ĝx(v)−Gx(v)

{1−Gx(v)}{1− Ĝx(v)}

n∑
i=1

wni(x, h) dH
u
xi
(v, v′)

=
√
nh

∫ y1

0

Ĝx(v)−Gx(v)

{1−Gx(v)}{1− Ĝx(v)}

n∑
i=1

wni(x, h)

∫ y2

0

dHu
xi
(v, v′)

=
√

hg−1

∫ y1

0

Gx(v)

{1−Gx(v)}{1− Ĝx(v)}

n∑
i=1

wni(x, h)H
u[1]
xi

(v, y2) dv,

where Gx =
√
ng(Ĝx −Gx). Next, let

D̃x(y1, y2) =
√
hg−1

∫ y1

0

Gx(v)

{1−Gx(v)}2
n∑

i=1

wni(x, h)H
u[1]
xi

(v, y2) dv,

and, for any function χ ∈ l∞([0, t]), let Λx : l∞([0, t]) → l∞(Tt) be defined as

Λx(χ)(y1, y2) =

∫ y1

0

χ(v)

{1−Gx(v)}2
Hu[1]

x (v, y2) dv

=

∫ y1

0

χ(v)

1−Gx(v)
F [1]
x (v, y2) dv, (B.7)

where we used the identity Hu
x (v, y2) =

∫ v

0
{1−Gx(z)}F [1]

x (z, y2) dz. We derive

below the asymptotic representation of Dx by showing that: (a)
√
hg−1Λx(Gx)

=
√
nh

∑n
i=1 wni(x, g)J (2)

ix + oa.s(1), (b) D̃x −
√

hg−1Λx(Gx) = oa.s(1) and (c)

Dx − D̃x = oa.s(1). Note that (a), (b) and (c) together yields Equation (B.3).

To show (a), let

χix(y1) ={1−Gx(y1)}
∫ y1

0

I(T1i ≤ v)−H1x(v)

{1−H1x(v)}2
dHc

1x(v)

− {1−Gx(y1)}
∫ y1

0

I(T1i ≤ v, δ1i = 0)−Hc
1x(v)

{1−H1x(v)}2
dH1x(v)

+ {1−Gx(y1)}
I(T1i ≤ y1, δ1i = 0)−Hc

1x(y1)

1−H1x(y1)
. (B.8)

It is shown in Theorem 2.1 of [20] that if Gx and Hc
1x both satisfy Conditions

(C1) to (C5), and if ng5(log n)−1 < ∞ as n → ∞, then, for a particular choice of
wni’s, we have uniformly in t ∈ [0, t], that Gx =

√
ng

∑n
i=1 wni(x, g)χix+oa.s(1).

But, we can show that their result is true in the case where the wni’s are only
required to satisfy Assumptions W1 to W5. From this, we can conclude that,
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uniformly in t ∈ [0, t],
√

hg−1Gx =
√
nh

∑n
i=1 wni(x, g)χix + oa.s(1). So, by

continuous mapping theorem,

√
hg−1Λx (Gx) =

√
nh

n∑
i=1

wni(x, g)Λx(χix) + oa.s(1).

This proves (a), since by switching the order of integration, it is straightforward

to show that Λx(χix)(y1, y2) = J (2)
ix (y1, y2).

To show (b), we start by proving that D̃x −
√
hg−1Λx(Gx) is asymptotically

negligible. For this, we observe that for any (y1, y2) ∈ Tt,

|D̃x(y1, y2)−
√

hg−1Λx(Gx)(y1, y2)| =
∣∣∣ ∫ y1

0

Ĝx(v)−Gx(v)

{1−Gx(v)}2
Rx(v, y2) dv

∣∣∣
≤ {1−Gx(t)}−2 sup

v∈[0,t]

|Ĝx(v)−Gx(v)|
∫ y1

0

|Rx(v, y2)| dv, (B.9)

where Rx(v, y2) =
√
nh

∑n
i=1 wni(x, h){Hu[1]

x (v, y2)−H
u[1]
xi (v, y2)} .

Now condition (C6) together with W5 allows the Taylor expansion

Rx(v, y2) = Ḣu[1]
x (v, y2)

√
nh

n∑
i=1

(x− xi)wni(x, h)

−2−1
√
nh

n∑
i=1

(x− xi)
2wni(x, h) Ḧ

u[1]
zi (v, y2),

where zi lies between xi and x. Using Assumptions W2, W3, W5 and (C6), we
obtain that

∫ y1

0
|Rx(u, v)| dv = O(1). This together with Equations (B.6) and

(B.9) implies that, uniformly in (y1, y2) ∈ Tt, D̃x −
√
hg−1Λx(Gx) = oa.s(1),

which proves (b).

To show (c), note that

|Dx(y1, y2)− D̃x(y1, y2)|

=

∣∣∣∣∣√nh

∫ y1

0

{Ĝx(v)−Gx(v)}2

{1−Gx(v)}2{1− Ĝx(v)}

n∑
i=1

wni(x, h)H
u[1]
xi

(v, y2) dv

∣∣∣∣∣
≤

√
hg−1(ng)−1/2

supv∈[0,t]{Gx(v)}2

{1−Gx(t)}2{1− Ĝx(t)}

×
∫ y1

0

∣∣∣∣∣
n∑

i=1

wni(x, h)H
u[1]
xi

(v, y2)

∣∣∣∣∣ dv.
Hence, using Equation (B.6), we deduce that the latter is oa.s(1), provided that
hg−1 < ∞ and that

√
ng(logn)−1 → ∞ as n → ∞. This proves that (c) holds

and hence concludes the proof of Equation (B.3) and of Theorem 3.1.
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Appendix C. Proof of Corollary 3.3

Appendix C.1. Weak convergence of J
(1)
xh ≡

√
nh

∑n
i=1 wni(x, h)J (1)

ix

In this section, our goal is to prove that J
(1)
xh converges in l∞(Tt) to a Gaussian

process whose representation is J
(1)
x +K6b

(1)
x , where K6 is a constant such that√

nhh2 → K6 as n → ∞. For this, we first show that E
(
J
(1)
xh

)
→ K6b

(1)
x as

n → ∞ and that the covariance function of J
(1)
xh asymptotically matches the one

of J
(1)
x . From there, the result will follow from an application of Theorem 2.11.1

of [17].

We now prove that E(J
(1)
xh ) = K6b

(1)
x + o(1). Using

E

{
I(T1i ≤ y1, Y2i ≤ y2)δ1i

1−Gx(T1i)

}
= E

{
E(δ1i | Y1i, Y2i)

I(Y1i ≤ y1, Y2i ≤ y2)

1−Gx(Y1i)

}
=E

{
1−Gxi(Y1i)

1−Gx(Y1i)
I(Y1i ≤ y1, Y2i ≤ y2)

}
,

Assumptions C1 and C3, and Taylor expansion of the map z �→ Gz (under
Condition W5), we get

E{J(1)xh (y1, y2)}

=
√
nh

n∑
i=1

wni(x, h){Fxi(y1, y2)− Fx(y1, y2)}

+
√
nh

n∑
i=1

wni(x, h)(xi − x)E

{
−Ġx(Y1i)

1−Gx(Y1i)
I(Y1i ≤ y1, Y2i ≤ y2)

}

+
1

2

√
nh

n∑
i=1

wni(x, h)(xi − x)2E
{ − G̈zi(Y1i)

1−Gx(Y1i)
I(Y1i ≤ y1, Y2i ≤ y2)

}
= In,1 + In,2 + In,3, (C.1)

where zi lies between xi and x. A Taylor expansion of z �→ Fz leads to

In,1 =
√
nh

n∑
i=1

wni(x, h)(xi − x)Ḟx(y1, y2)

+
1

2
F̈x(y1, y2)

√
nh

n∑
i=1

wni(x, h)(xi − x)2 + o(1),

which, by Assumptions W2, W3, W5 and C1 and the fact that
√
nhh2 → K6,

implies that

In,1 = K6

{
K2Ḟx(y1, y2) +

K3

2
F̈x(y1, y2) + o(1)

}
, (C.2)

where the constants K2 and K3 are given in Assumptions W2 and W3.
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In view of Assumptions C1 and C5, we have that the maps z �→
∫ y1

0
Ġx(v)

{1−Gx(v)}−1F
[1]
z (v, y2) dv, z �→

∫ y1

0
Ġx(v){1−Gx(v)}−1Ḟ

[1]
z (v, y2) dv and

z �→ G̈z are uniformly continuous on V (x). Hence, by proceeding similarly as
for In,1, we deduce that

In,2 = K6

∫ y1

0

Ġx(v){1−Gx(v)}−1{K2F
[1]
x (v, y2) +K3Ḟ

[1]
x (v, y2)} dv + o(1)

In,3 = K6K3

∫ y1

0

G̈x(v){1−Gx(v)}−1F [1]
x (v, y2) dv + o(1). (C.3)

From Equations (C.1) to (C.3), we conclude that E
(
J
(1)
xh ) = K6b

(1)
x + o(1).

Now, we calculate the covariance function of J
(1)
xh . From Assumption W4 and

W5, can we show that

cov{J(1)xh (y1, y2), J
(1)
xh (y

′
1, y

′
2)}

= nh

n∑
i=1

wni(x, h)
2

(
E
[
I(T1i ≤ y1 ∧ y′1, Y2i ≤ y2 ∧ y′2)δ1i

{1−Gx(T1i)}2
]

− E

{
I(T1i ≤ y1, Y2i ≤ y2)δ1i

1−Gx(T1i)

}
E

{
I(T1i ≤ y′1, Y2i ≤ y′2)δ1i

1−Gx(T1i)

})
= K4

{∫ y1∧y′
1

0

F
[1]
x (v, y2 ∧ y′2)

1−Gx(v)
dv − Fx(y1, y2)Fx(y

′
1, y

′
2)

}
+ o(1).

We are now ready to show that J
(1)
xh is asymptotically Gaussian. To do so,

note that from the definition of Zx, we can write J
(1)
xh (y1, y2) = Zx(y1, y2, Gx)+

E{J(1)xh (y1, y2)}. As Assumptions W1, W4, W5 and C1 are satisfied, and since
{(v, v′, w) �→ I(v ≤ y1, v

′ ≤ y2)
w

1−Gx(v)
, (y1, y2) ∈ Tt, } ⊂ F (where F is de-

fined at page 5065), we deduce from the proof of Lemma E.1 that the process
{Zx(y1, y2, Gx)}(y1,y2)∈Tt

fulfils the requirements of Theorem 2.11.1 of [17]. Now,
because

cov{J(1)xh (y1, y2), J
(1)
xh (y

′
1, y

′
2)} = cov{Zx(y1, y2, Gx), Zx(y

′
1, y

′
2, Gx)}

→ cov{J(1)x (y1, y2), J
(1)
x (y′1, y

′
2)} as n → ∞,

we conclude that {Zx(y1, y2, Gx)}(y1,y2)∈Tt
converges weakly in l∞(Tt) to a

Gaussian process whose representation matches the one of J
(1)
x . The weak con-

vergence of J
(1)
xh to J

(1)
x +Kb

(1)
x follows from the fact that E(J

(1)
xh ) = Kb

(1)
x +o(1).

Appendix C.2. Asymptotic behavior of
√
nh

∑n
i=1 wni(x, g)J (2)

ix

We start by computing the mean and the covariance function of J (2)
ix . For

this, recall the definition of Λx at Equation (B.7) and the definition of χix



5070 T. Bouezmarni et al.

at Equation (B.8). Using the fact that Λx(χix)(y1, y2) = J (2)
ix (y1, y2) (see Ap-

pendix B.1), and since Λx is a linear functional, we have

n∑
i=1

wni(x, g)J (2)
ix =

n∑
i=1

wni(x, g)Λx(χix) = Λx

{
n∑

i=1

wni(x, g)χix

}
.

From there, using the linearity of Λx, we can write

E

[
Λx

{
n∑

i=1

wni(x, g)χix

}]
= Λx

[
E

{
n∑

i=1

wni(x, g)χix

}]
.

As Assumptions C1 and C3 are satisfied, we mimic the proof of Equation (3.3)
in [20] to deduce that as long as the wni’s fulfil Conditions W2, W3 and W5, we
have

E
{ n∑

i=1

wni(x, g)χix(y1)
}

= g2{1−Gx(y1)}
∫ y1

0

K2Ḣ1x(s) +
K3

2 Ḧ1x(s)

{1−H1x(s)}2
dHc

1x(s)

+ g2{1−Gx(y1)}
∫ y1

0

d {K2Ḣ
c
x(s) +

K3

2 Ḧc
x(s)}

{1−H1x(s)}
+ o(g2).

Then, we use integrations by parts to show that

Λx

[
E

{
n∑

i=1

wni(x, g)χix

}]
(y1, y2) = g2E

{
J
(2)
x (y1, y2)

}
+ o(g2). (C.4)

Focusing now on the covariance function of J (2)
ix , by adapting the proof of

Lemma A2 in [21] to the case where the wni’s are only required to satisfy
Conditions W1 to W5, we obtain using Assumptions W4 and W5 that for any
y1, y

′
1 ∈ [0, t]:

ng cov
{ n∑

i=1

wni(x, g)χix(y1),

n∑
i=1

wni(x, g)χix(y
′
1)

}
= K4{1−Gx(y1)}{1−Gx(y

′
1)}

∫ y1∧y′
1

0

{1−H1x(s)}−2 dHc
1x(s) + o(1). (C.5)

Then, recalling that ΔFx(y1, y2, v) = Fx(y1, y2)− Fx(v, y2), we have

ng cov
[
Λx

{ n∑
i=1

wni(x, g)χix

}
(y1, y2),Λx

{ n∑
i=1

wni(x, g)χix

}
(y′1, y

′
2)

]
= ng

∫ y1

0

∫ y′
1

0

∑n
i=1 w

2
ni(x, g)cov{χix(v), χix(v

′)}
{1−Gx(v)}{1−Gx(v′)}

F [1]
x (v, y2)F

[1]
x (v′, y′2) dv dv

′
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= K4

∫ y1∧y′
1

0

∫ y1

s

∫ y′
1

s

F [1]
x (v, y2)F

[1]
x (v′, y′2) dv dv

′ dHc
1x(s)

{1−H1x(s)}2
+ o(1)

= K4

∫ y1∧y′
1

0

ΔFx(y1, y2, s)ΔFx(y
′
1, y

′
2, s)

dHc
1x(s)

{1−H1x(s)}2
+ o(1)

= cov{J(2)x (y1, y2), J
(2)
x (y′1, y

′
2)}+ o(1). (C.6)

We next discuss the large sample behavior of
√
nh

∑n
i=1 wni(x, g)J (2)

ix . To this

end, we start by showing that
√
ng

∑n
i=1 wni(x, g){J (2)

ix − E(J (2)
ix )} converges

in l∞(Tt) to a Gaussian process. From there, we derive the weak limit of
√
nh∑n

i=1 wni(x, g)J (2)
ix according to whether hg−1 → 0 or g = h.

From Lemma E.2, we deduce that
√
ng

∑n
i=1 wni(x, g){χix − E(χix)} is as-

ymptotically tight in l∞([0, t]). Moreover, in view of Equation (C.5), we can use
similar arguments as those used at the end of Appendix C.1 to conclude that√
ng

∑n
i=1 wni(x, g){χix − E(χix)} converges weakly in l∞([0, t]) to a Gaussian

process.

As Λx is linear and continuous, given Lemma 3.9.8 in [17], we can say that the

sequence
√
ng

∑n
i=1 wni(x, g){J (2)

ix − E(J (2)
ix )} = Λx[

√
ng

∑n
i=1 wni(x, g){χix −

E(χix)}] is asymptotically tight in l∞(Tt) and, in view of Equations (C.6) its
tight limit is Gaussian with mean 0 and covariance function matching the one

of J
(2)
x .

Thus, in the case where hg−1 → 0 and
√
nhg2 → K5 as n → ∞ (part (a) of

the corollary), we obtain, using Equation (C.4), that

√
nh

n∑
i=1

wni(x, g)J (2)
ix =

√
hg−1

[√
ng

n∑
i=1

wni(x, g)
{
J (2)
ix − E

(
J (2)
ix

)} ]
+
√
nh

n∑
i=1

wni(x, g)E
(
J (2)
ix

)
= OP(

√
hg−1) +K5b

(2)
x + o(1)

= K5b
(2)
x + oP(1) + o(1),

while in the case where g = h and
√
nhh2 =

√
nhg2 → K6 as n → ∞ (Part (b) of

the corollary), we obtain that
√
nh

∑n
i=1 wni(x, g)J (2)

ix converges to a Gaussian

process with representation J
(2)
x +K6b

(2)
x .

Appendix C.3. Asymptotic normality of√
nh

∑n
i=1 wni(x, h)(J (1)

ix + J (2)
ix )

Let Jxh ≡
√
nh

∑n
i=1 wni(x, h)(J (1)

ix + J (2)
ix ). It is easy to see that

cov{Jxh(y1, y2),Jxh(y
′
1, y

′
2)} = nh

n∑
i=1

wni(x, h)
2cov{J (1)

ix (y1, y2),J (1)
ix (y′1, y

′
2)}
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+ nh

n∑
i=1

wni(x, h)
2cov{J (1)

ix (y1, y2),J (2)
ix (y′1, y

′
2)}

+ nh
n∑

i=1

wni(x, h)
2cov{J (1)

ix (y′1, y
′
2),J

(2)
ix (y1, y2)}

+ nh

n∑
i=1

wni(x, h)
2cov{J (2)

ix (y1, y2),J (2)
ix (y′1, y

′
2)}

=I∗n,1 + I∗n,2 + I∗n,3 + I∗n,4.

Now,

I∗n,2 = o(1)

−K4{F2x(y
′
2)− Fx(y

′
1, y

′
2)}

∫ y′
1

0

Fx(y1 ∧ v, y2)−H1x(v)Fx(y1, y2)

{1−H1x(v)}{1−Gx(v)}
dHc

1x(v)

−K4Fx(y1, y2)

∫ y′
1

0

1−Hu
1x(v)

1−H1x(v)
F [1]
x (v, y′2) dv − Fx(y1, y2)Fx(y

′
1, y

′
2)

+K4Fx(y1, y2){F2x(y
′
2)− Fx(y

′
1, y

′
2)}

∫ y′
1

0

Hu
1x(v)

{1−H1x(v)}{1−Gx(v)}
dH1x(v).

Hence, cov{Jxh(y1, y2),Jxh(y
′
1, y

′
2)} = cov{Jx(y1, y2),Jx(y

′
1, y

′
2)} + o(1). The

proof of the weak convergence of Jxh follows from similar arguments given in
the end of Appendix C.1.

Appendix D. Proof of Proposition 3.5

This section follows the lines of Theorem 1 in [22]. First, we decompose
√
nh(ĈĜx

x −Cx) = {Ãx−E (Ãx)}+{Ã′
x−E(Ã′

x)}+B̃x+E (Ãx)+E (Ã′
x), (D.1)

where, recalling the definition of Ax at Equation (B.2) and the one of F̂Gx
x at

Equation (2.4),

Ãx(u, v) = Ax

{(
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v)

}
,

Ã′
x(u, v) =

√
nh

[
F̂Gx
x

{(
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v)

}
− F̂Gx

x

{
F−1
1x (u), F−1

2x (v)
}]

and

B̃x(u, v) =
√
nh

n∑
i=1

wni(x, h)J (1)
ix {F−1

1x (u), F−1
2x (v)}.

We show next that both {Ãx−E (Ãx)} and {Ã′
x−E (Ã′

x)} are asymptotically
negligible. Then, we prove that

E {Ãx(u, v)} =
√
nh

n∑
i=1

wni(g, h)J (2)
ix

{
F−1
1x (u), F−1

2x (v)
}
+ oP(1). (D.2)

Finally, we derive the asymptotic representation of E(Ã′
x).
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Appendix D.1. Asymptotic negligibility of
√
nh{Ãx − E (Ãx)} and√

nh{Ã′
x − E (Ã′

x)}

First, using Corollary 3.3, we have uniformly in (y1, y2) ∈ Tt that

F̂ Ĝx
1x (y1)− F1x(y1) = oP(1) and F̂2x(y2)− F2x(y2) = oP(1).

Secondly, it follows from Assumption W1 that, for any sufficiently small ε > 0,

lim
n→∞

P

{
F−1
1x (u− ε) ≤

(
F̂ Ĝx
1x

)−1

(u) ≤ F−1
1x (u+ ε), u ∈ [0, H1x(t)]

}
= 1,

lim
n→∞

P

{
F−1
2x (v − ε) ≤ F̂−1

2x (v) ≤ F−1
1x (v + ε), v ∈ [0, 1]

}
= 1.

(D.3)

Now, from the definition of Zx above Equation (B.4), we note that

Ãx(u, v) = Zx

{(
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v), Ĝx

}
− Zx

{(
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v), Gx

}
and

Ã′
x(u, v) = Zx

{(
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v), Gx

}
− Zx

{
F−1
1x (u), F−1

2x (v), Gx

}
.

It follows from Equations (B.6) and (D.3) that

ρFx(f1, f2) = oP(1) and ρFx(f2, f3) = oP(1) as n → ∞,

where

f1 =

{(
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v), Ĝx

}
, f2 =

{(
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v), Gx

}
,

and f3 = {F−1
1x (u), F−1

2x (v), Gx}. Hence, the negligibility of Ãx − E(Ax) and

Ã′
x − E(A′

x) is then ensured by Lemma E.1 and the arguments used in the end
of Appendix B.1.

Appendix D.2. Asymptotic representation of E(Ãx)

Let ε > 0 be such that H1x(t + ε) < 1 and t + ε < s, where s is given in Ap-
pendix A.1. From Equation (D.3), we obtain with probability going to 1 that,(
F̂ Ĝx
1x

)−1

(u) ∈ [0, t + ε], uniformly in u ∈ [0, H1x(t)]. Thus, we get from Ap-

pendix B.2 that, uniformly in (u, v) ∈ T̃t,

E{Ãx(u, v)} =
√
nh

n∑
i=1

wni(x, g)J (2)
ix

{(
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v)

}
+ oP(1). (D.4)
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Now let y1x =
(
F̂ Ĝx
1x

)−1

(u), y′1x = F−1
1x (u), and define y2x = F̂−1

2x (v) and

y′2x = F−1
2x (v). Recall, from Appendix B.2, that

J (2)
ix (y1x, y2x) = Λx(χix)(y1x, y2x) =

∫ y1x

0

χix(v){1−Gx(v)}−1F [1]
x (v, y2x)dv .

Using the mean value theorem, we obtain that

J (2)
ix (y1x, y2x)− J (2)

ix (y′1x, y2x) = χix(y
�
1x)

F
[1]
x (y�1x, y2x)(y1x − y′1x)

1−Gx(y�1x)
,

for some y�1x between y1x and y′1x. Hence,

√
nh

n∑
i=1

wni(x, g)
{
J (2)
ix (y1x, y2x)− J (2)

ix (y′1x, y2x)
}

=
{√

nh

n∑
i=1

wni(x, g)χix(y
�
1x)

}F
[1]
x (y�1x, y2x)(y1x − y′1x)

1−Gx(y�1x)
. (D.5)

Now note that we proved in Lemma E.2 that
√
ng

∑n
i=1 wni(x, g){χix−E(χix)}

is asymptotically tight in l∞([0, t]). With ε as above, a meticulous inspection
of the arguments used there shows that this result is still true when t there is
replaced by t + ε, leading us to conclude

√
ng

∑n
i=1 wni(x, g){χix − E(χix)} is

asymptotically tight in l∞([0, t+ε]). Consequently, since y1x, y
′
1x ∈ [0, t+ε] with

probability going to 1 (see above Equation (D.4)) implies that y�1x ∈ [0, t + ε]
with probability going to 1, we have∣∣∣√nh

n∑
i=1

wni(x, g)χix(y
�
1x){1−Gx(y

�
1x)}−1F [1]

x (y�1x, y2x)
∣∣∣

≤
supy1∈[0,t+ε]

∣∣∣√nh
∑n

i=1 wni(x, g)χix(y1)
∣∣∣

1−Gx(t+ ε)
sup

(y1,y2)∈[0,t+ε]×R

F [1]
x (y1, y2)

= OP(1) ,

where, to deduce the last equality, we used Condition C2. Thus, Equations (D.3)
and (D.5) imply that

√
nh

n∑
i=1

wni(x, g)
{
J (2)
ix (y1x, y2x)− J (2)

ix (y′1x, y2x)
}
= oP(1).

Similarly, we have

√
nh

n∑
i=1

wni(x, g)
{
J (2)
ix (y′1x, y2x)− J (2)

ix (y′1x, y
′
2x)

}
= oP(1).

Therefore, Equation (D.2) can be deduced from the two last equations combined
with Equation (D.4).
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Appendix D.3. Asymptotic representation of E(Ã′
x)

From Equation (B.1), we can write

E(Ã′
x)(u, v) =

√
nh

n∑
i=1

wni(x, h)

[
Fxi

{(
F̂ Ĝx
1x

)−1

(u), F̂−1
2x (v)

}
− Fxi

{
F−1
1x (u), F−1

2x (v)
}]

.

Conditions C1, C3, W2, W3, W5 and W6 allow to mimic the proof of Theorem 1
in [22] to obtain, uniformly in (u, v) ∈ T̃t, that

E(Ã′
x)(u, v)

=
√
nh

(
Cx

[
F1x

{(
F̂ Ĝx
1x

)−1

(u)

}
, F2x

{
F̂−1
2x (v)

}]
− Cx(u, v)

)
+ oP(1). (D.6)

We next show that

ξxh ≡
√
nh

[
F1x

{(
F̂ Ĝx
1x

)−1

(u)

}
− u

]
= −

√
nh

[
F̂ Ĝx
1x

{
F−1
1x (u)

}
− u

]
+ oP(1). (D.7)

For this, note that from Equation (D.1) and Appendix D.1, we have that uni-

formly on T̃t,
√
nh(CĜx

x − Cx) = B̃x + E (Ãx) + E (Ã′
x) + oP(1). (D.8)

As the fact that Y2i ≤ F̂
(−1)
2x (1) for all i ∈ {1, . . . , n} implies

CĜx
x (u, 1) = F̂ Ĝx

1x

{(
F̂ Ĝx
1x

)−1

(u)

}
,

we deduce from (D.8) that

ξxh =
√
nh{CĜx

x (u, 1)− Cx(u, 1)}
= B̃x(u, 1) + E {Ãx(u, 1)}+ E {Ã′

x(u, 1)}+ oP(1)

=
√
nh

n∑
i=1

[
wni(x, h)J (1)

ix {F−1
1x (u), F−1

2x (1)}+ wni(x, g)J (2)
ix {F−1

1x (u), F−1
2x (1)}

]
+

√
nh

(
Cx

[
F1x

{(
F̂ Ĝx
1x

)−1

(u)

}
, F2x

{
F̂−1
2x (1)

}]
− u

)
+ oP(1)

=
√
nh

[
F̂ Ĝx
1x

{
F−1
1x (u)

}
− u

]
+

√
nh

(
Cx

[
F1x

{(
F̂ Ĝx
1x

)−1

(u)

}
, F2x

{
F̂−1
2x (1)

}]
− u

)
+ oP(1). (D.9)
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To obtain the third equality, we used the definition of B̃x, Equations (D.2)
and (D.6), while the last equation follows from Theorem 3.1.

Hence, to show Equation (D.7), we need to prove that

√
nh

[
F̂ Ĝx
1x

{(
F̂ Ĝx
1x

)−1

(u)

}
− u

]
= oP(1), uniformly in u ∈ [0, H1x(t)],

(D.10)
and

√
nh

(
Cx

[
z, F2x{F̂−1

2x (1)}
]
− z}

)
= oP(1), uniformly in z ∈ [0, 1]. (D.11)

First recall from Appendix D.2 that for any ε > 0 satisfying H1x(t + ε) < 1,

we have with probability going to 1 that
(
F̂ Ĝx
1x

)−1

(u) ∈ [0, t + ε] uniformly in

u ∈ [0, H1x(t)]. Also, note that Equation (B.6) implies that, for sufficiently large

n, 1−Ĝx(t+ε) > 1/2{1−Gx(t+ε)} almost surely. Consequently, for sufficiently
large n, we have

√
nh

∣∣∣∣F̂ Ĝx
1x

{(
F̂ Ĝx
1x

)−1

(u)

}
− u

∣∣∣∣ ≤ √
nh

maxi wni(x, h)I(T1i ≤ t+ ε)

1− Ĝx(T1i)

≤ 2
√
nh

maxi wni(x, h)

1−Gx(t+ ε)
a.s.

From there, (D.10) follows from Assumption W1.
Secondly, from the proof of Theorem 1 in [22], we have, uniformly in v ∈ [0, 1],

that

√
nh

[
F2x

{
F̂−1
2x (v)

}
− v

]
= −

√
nh

[
F̂2x

{
F−1
2x (v)

}
− v

]
+ oP(1). (D.12)

Thus,

√
nh

[
F2x

{
F̂−1
2x (1)

}
− 1

]
= −

√
nh

[
F̂2x

{
F−1
2x (1)

}
− 1

]
+ oP(1) = oP(1).

Using the inequality |Cx(u, v) − Cx(u′, v′)| ≤ |u − u′| + |v − v′| combined with
the fact that for any z ∈ [0, 1] we have Cx(z, 1) = z, we found that

√
nh

∣∣Cx [
z, F2x{F̂−1

2x (1)}
]
− z

∣∣ ≤ √
nh

∣∣F2x{F̂−1
2x (1)} − z

∣∣ = oP(1),

which proves Equation (D.11) and therefore Equation (D.7) holds.
From there, following the end of the proof of Theorem 1 in [22], as assumption

(D) is satisfied, and in view of (D.7) and (D.12), we obtain that uniformly in

(u, v) ∈ T̃t:

E(A′
x)(u, v) = −

√
nhC[1]

x (u, v)
[
F̂ Ĝx
1x

{
F−1
1x (u)

}
− u

]
−
√
nhC[2]

x (u, v)
[
F̂2x

{
F−1
2x (v)

}
− v

]
+ oP(1).
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Appendix D.4. Conclusion of the proof

Using Theorem 3.1, Equation (D.1) and collecting the results obtained in Ap-

pendix D.1 to Appendix D.3, we deduce that uniformly on l∞(T̃t):

√
nh(ĈĜx

x − Cx) =
√
nh

n∑
i=1

{wni(x, h)j
(1)
ix + wni(x, g)j

(2)
ix }+ oP(1),

where

j
(1)
ix (u, v) = J (1)

ix {F−1
1x (u), F−1

2x (v)} − C[1]
x (u, v)J (1)

ix {F−1
1x (u), F−1

2x (1)}
− C[2]

x (u, v)[I{Y2i ≤ F−1
2x (v)} − v]

and

j
(2)
ix (u, v) = J (2)

ix {F−1
1x (u), F−1

2x (v)} − C[1]
x (u, v)J (2)

ix {F−1
1x (u), F−1

2x (1)}.

Recalling, from Appendix A.2, that Inx = {i : wni(x, h) > 0}, we have, for any
i ∈ Inx, (y1, y2) ∈ Tt and y ∈ R, that

cov[J (1)
ix (y1, y2), I{Y2i ≤ y′}] = Fxi(y1, y ∧ y′)− Fxi(y1, y2)F2x(y

′)

= Fx(y1, y ∧ y′)− Fx(y1, y2)F2x(y
′) + o(1),

and

cov[J (2)
ix (y1, y2), I{Y2i ≤ y′}]

=

∫ y1

0

Hx(z, y
′)−H1x(z)F2x(y

′)

{1−H1x(z)}2
ΔFx(y1, y2, z) dH

c
1x(z)

+

∫ y1

0

Hc
x(z, y

′)−Hc
1x(z)F2x(y

′)

1−H1x(z)
F [1]
x (z, y2) dz

−
∫ y1

0

Hc
x(z, y

′)−Hc
1x(z)F2x(y

′)

{1−H1x(z)}2
ΔFx(y1, y2, z) dH1x(z) + o(1).

As such, we have, for any i ∈ Inx, (u, v) ∈ T̃t and v′ ∈ [0, 1], that

cov[J (1)
ix {F−1

1x (u), F−1
2x (v)}, I{Y2i ≤ F−1

2x (v)}] = Cx(u, v ∧ v′)− Cx(u, v)v′ + o(1),

and using that ΔFx(y1, y2, z) = Cx{F1x(y1), F2x(y2)} − Cx{F1x(z), F2x(y2)},

cov[J (2)
ix {F−1

1x (u), F−1
2x (v)}, I{Y2i ≤ F−1

2x (v′)}]

=

∫ F−1
1x (u)

0

Hx{z, F−1
2x (v′)} −H1x(z)v

′

{1−H1x(z)}2
[Cx(u, v)− Cx{F1x(z), v}] dHc

1x(z)

+

∫ F−1
1x (u)

0

Hc
x{z, F−1

2x (v′)} −Hc
1x(z)v

′

1−H1x(z)
F [1]
x {z, F−1

2x (v)} dz
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−
∫ F−1

1x (u)

0

Hc
x{z, F−1

2x (v′)} −Hc
1x(z)v

′

{1−H1x(z)}2
[Cx(u, v)− Cx{F1x(z), v}] dH1x(z)

+ o(1).

From there, the conclusion of the Proposition is obtained by using similar argu-
ments as those exposed at the end of each of Appendix C.1 to Appendix C.3.

Appendix E. Auxiliary lemmas

The following lemma is required in Appendix B.1 to establish the asymptotic

representation of FĜx
x .

Lemma E.1. Recall the definition of Zx,F and ρFx at the beginning of Ap-
pendix B.1. Suppose Assumptions W1, W4 and W5 are satisfied, and that the
maps z �→ F1z and z �→ F2z are uniformly continuous for all z in a neighbor-
hood of x. Then, process Zx ≡ Zx − EZx indexed by (F , ρFx) is asymptotically
ρFx–equicontinuous in probability.

Proof of Lemma E.1. Let ‖ · ‖F stand for the supremum norm over F . From
Theorem 2.11.1 of [17], we can conclude that Zx is tight if the following require-
ments hold:

R1:
∑n

i=1 E(‖Zhi‖2F )I{‖Zhi‖F > η} → 0 for any η > 0;
R2: supρFx (f,f

′)<δn

∑n
i=1 E[{Zhi(f)− Zhi(f

′)}2] → 0 for every δn ↓ 0.

R3:
∫ δn
0

{logN(ε,F , dn)}1/2 dε P→ 0 for every δn ↓ 0, where N(ε,F , dn) is the
covering number of the set F with respect to the random semi-metric
d2n(f, f

′) =
∑n

i=1 {Zhi(f)− Zhi(f
′)}2.

Recall from Page 5065 that each f ∈ F can be formally identified by a triplet
(y1, y2, G) with (y1, y2) ∈ Tt and G ∈ Ggε , where

Gtε = {G : R → [0, 1] nondecreasing and G(t) < gε}

and gε = Gx(t) + ε < 1. As such, throughout this proof, let f = (y1, y2, G) and
f ′ = (y′1, y

′
2, G

′).
Let’s prove that R1 to R3 hold.
Starting with R1, because Zhi(f) = 0 whenever Y1i > t and G is nondecreas-

ing, we have

Zhi(f) ≤
√
nhwni(x, h){1−G(t)}−1 ≤

√
nhwni(x, h)(1− gε)

−1 .

In view of Assumption W1, the latter is o(1). Hence, for any η > 0, there exists
a constant Nη ≥ 1 such that max1≤i≤n Zhi(f) < η for any n ≥ Nη, which proves
that requirement R1 is fulfilled.

To show that R2 holds, we assume wlog that y1 ≤ y′1 and y2 ≤ y′2. Since
I(T1i ≤ y1)δ1i ≤ I(Y1i ≤ y1), we have

Zhi(f
′)− Zhi(f)
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=
√
nh {I(T1i ≤ y′1, Y2i ≤ y′2)− I(T1i ≤ y1, Y2i ≤ y2)}

δ1iwni(x, h)

1−G′(T1i)

+
√
nhI(T1i ≤ y1, Y2i ≤ y2)δ1iwni(x, h)

G(T1i)−G′(T1i)

{1−G(T1i)} {1−G′(T1i)}

≤
√
nh

wni(x, h)

(1− gε)2

[
{I(Y1i ≤ y′1, Y2i ≤ y′2)

− I(Y1i ≤ y1, Y2i ≤ y2)}+ ‖G−G′‖[0,t]
]
.

From there, and using the inequality (a+ b)2 ≤ 2(a2 + b2), we deduce that

(nh)−1
n∑

i=1

E
[
{Zhi(f

′)− Zhi(f)}2
]

≤ 2

n∑
i=1

wni(x, h)
2

(1− gε)4
E
[
{I(Y1i ≤ y′1, Y2i ≤ y′2)

− I(Y1i ≤ y1, Y2i ≤ y2)}2 + ‖G−G′‖2[0,t]
]

≤ 2

n∑
i=1

wni(x, h)
2

(1− gε)4

{
|F1xi(y

′
1)− F1xi(y1)|

+ |F2xi(y
′
2)− F2xi(y2)|+ ‖G−G′‖2[0,t]

}
.

As Assumption W5 holds, and since the maps z �→ F1z and z �→ F2z are assumed
uniformly continuous, we deduce that maxi∈Inx |Fjxi(y

′
j)−Fjxi(yj)| = |Fjx(y

′
j)−

Fjx(yj)|+ o(1), j = 1, 2. Hence, using the above inequality, we obtain that

sup
ρFx (f,f

′)<δn

n∑
i=1

E
[
{Zhi(f

′)− Zhi(f)}2
]
≤ 2

{ n∑
i=1

wni(x, h)
2

(1− gε)4

}
{δn + o(1)} .

From AssumptionW4, we deduce that the latter display is bounded byO(1){δn+
o(1)}. Hence, requirement R2 is fulfilled as δn → 0.

To show R3, our goal is to apply Lemma 2.11.6 of [17]. First, we rewrite

{Zhi(f
′)− Zhi(f)}2 =

∫ {
I(v ≤ y1, v

′ ≤ y2)

1−G(v)
− I(v ≤ y′1, v

′ ≤ y′2)

1−G′(v)

}2

dμni,

where μni = nhwni(x, h)
2δ1iI(v = Y1i, v

′ = Y2i). Hence, the process Zn is
measurelike with respect to the random measure μni (see [17], Section 2.11).

Secondly, as Assumption W4 holds,
∑n

i=1

∫
1

1−gε
dμni = nh

∑n
i=1

wni(x,h)
2

1−gε
=

O(1). Thirdly, it is required to show that the class F satisfies the uniform
entropy condition (2.11.5) of [17]. To prove that it is the case, let

F1 = {(v, v′, w) �→ I{v ≤ y1, v
′ ≤ y}, (y1, y2) ∈ Tt, w ∈ {0, 1}}

and let F2 be the class of monotone and bounded functions over [0, 1
1−gε

]. Now

we observe that F ⊂ F1F2 = {f = f1f2, f1 ∈ F1, f2 ∈ F2}. As F1 is a VC-class
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and F2 is a VC-hull class for sets with envelope functions respectively F1 = 1
and F2 = 1

1−gε
, an application Lemma 2.6.20 of [17] allows to conclude that

F1F2 is VC-hull class for sets with envelope function F1 × F2 = F. Therefore,
using Corollary 2.6.12 of [17], we conclude that the uniform entropy condition is
fulfilled. As a result, Lemma 2.11.6 of [17] applies which proves the requirement
R3, which concludes the proof of Lemma E.1.

From Theorem 1 in [21], the process

{√ng

n∑
i=1

wni(x, g)[χix(y1)− E{χix(y1)}], y1 ∈ [0, t]}

is asymptotically tight in D[0, t], the space of right continuous functions with
left hand limits, endowed with Skorohod topology. The next lemma states that
the same result holds in l∞([0, t]) equipped with the uniform topology.

Lemma E.2. Assume that Conditions W1 to W5 and (C1) to (C3) are satisfied.
Then, with χix as in Equation (B.8), the process gx ≡ √

ng
∑n

i=1 wni(x, g){χix−
E(χix)} is asymptotically tight in l∞([0, t]).

Proof of Lemma E.2. From the definition of χix at Equation (B.8), we have

gx(y1)− E{gx(y1)} = {1−Gx(y1)}{g̃(1)x (y1)− g̃(2)x (y1) + g̃
(3)
x (y1)},

where for j = 1, 2, 3, g̃
(j)
x =

√
ng

∑n
i=1 wni(x, g)g̃

(j)
ix with

g̃
(1)
ix (y1) =

∫ y1

0

{I(T1i ≤ v)−H1xi(v)}{1−H1x(v)}−2 dHc
1x(v),

g̃
(2)
ix (y1) =

∫ y1

0

{I(T1i ≤ v, δ1i = 0)−Hc
1xi

(v)}{1−H1x(v)}−2 dH1x(v),

g̃
(3)
ix (y1) = {I(T1i ≤ y1, δ1i = 0)−Hc

1xi
(y1)}{1−H1x(y1)}−1.

Because Gx is bounded, we conclude that gx−E(gx) is asymptotically tight by

showing that g̃
(j)
x is asymptotically tight for j = 1, 2, 3.

We start with g̃
(3)
x . Mimicking the proof of Lemma 2 in [22], and in view

of the connection between asymptotic tightness and asymptotic equicontinu-
ity in l∞([0, t]) (see Theorem 1.5.7 in [17]), we can show that the process√
ng

∑n
i=1 wni(x, g){I(T1i ≤ y1, δ1i = 0)−Hc

1xi
(y1)} is asymptotically tight in

l∞([0, t]). Therefore, the asymptotic tightness of g̃
(3)
x in l∞([0, t]) is ensured by

the fact that the map y1 �→ {1−H1x(y1)}−1 is bounded and continuous on [0, t].

To prove the asymptotic tightness of g̃
(1)
x , we introduce the set

H ≡
{
fy1 : R �→ R : fy1(y

�
1) ≡

∫ y1

0

I(y�1 ≤ v)

{1−H1x(v)}2
dHc

1x(v), y1 ∈ [0, t]

}
,

which allows us to write g̃
(1)
x (y1) =

∑n
i=1[zhi(fy1)−E{zni(fy1)}], where zhi(f) =√

ngwni(x, g)f(T1i) for any f ∈ H. Now, let us equip H with a semimetric ρ
defined as

ρ(fy1 , fy1
′) = |y1 − y1

′| for fy1 , fy1
′ ∈ H.
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Next verify that the sequence zh1, . . . , zhn indexed by (H, ρ) satisfies

(a)
∑n

i=1 E
(
‖zhi‖2H

)
I {‖zhi‖H > η} → 0 for any η > 0;

(b) sup|y1−y1
′|<δn

∑n
i=1 E[{zhi(fy1)− zhi(fty1)}2] → 0 for every δn ↓ 0

(c)
∫ δn
0

{logN(ε,H, dn)}1/2 dε
P→ 0 for every δn ↓ 0, where N(ε,H, dn) is the

covering number of the set H with respect to the random semi-metric
d2n(fy1 , fy1

′) =
∑n

i=1{zhi(fy1)− zhi(fy1
′)}2.

Note that (a) is immediate, as for any y1 ∈ [0, t] we have 0 ≤ fy1 ≤ ft < ∞, and
therefore from Assumption W1, we have |zhi| ≤ o(1).

To prove (b), we note that for y1, y1
′ ∈ [0, t] with y1 ≤ y1

′, we have

n∑
i=1

E [{zhi (fy1)− zhi(fy1
′)}2

]
= ng

n∑
i=1

w2
ni(x, g)E

⎛⎝[∫ y1
′

y1

I(T1i ≤ v){1−H1x(v)}−2 dHc
1x(v)

]2
⎞⎠

≤ (y1 − y1
′)2ng

n∑
i=1

w2
ni(x, g)× κt,

where κt = 2{1 − H1x(t)}−2 supv∈[0,t]{H
c[1]
1x (v)}. Therefore, from Assumption

W4, the fact that supv∈[0,t]{H
c[1]
1x (v)} < ∞ (since Hc

1x fulfils Condition (C2)),
we conclude that (b) holds.

To prove (c), we show that for sufficiently large n, N(ε,H, dn) ≤
√
2K4κtt×

ε−1. Indeed, from Assumption W4 we have for sufficiently large n,

ng

n∑
i=1

w2
ni(x, g) ≤ 2K4 .

Now, following similar calculation in the proof of (b), we have, for any y1 ≤ y1
′

and sufficiently large n, that

d2n(fy1 , fy1
′) =

n∑
i=1

{zhi(fy1)− zhi(fy1
′)}2

≤ (y1 − y1
′)2ng

n∑
i=1

w2
ni(x, g)κt ≤ (y1 − y1

′)22K4κt .

Then, we have N(ε,H, dn) ≤ N{ε/
√
2K4κt, [0, t], | · |} =

√
2K4κttε

−1. Therefore,
we get∫ δn

0

{logN(ε,H, dn)}1/2 dε ≤
∫ δn

0

{log(
√

2K4κttε
−1)}1/2 → 0 as n → ∞.

This concludes the proof of the asymptotic tightness of g̃
(1)
x in l∞([0, t]).

Similarly we can show that g̃
(2)
x is also asymptotically tight in l∞([0, t]). This

concludes the proof of Lemma E.2.



5082 T. Bouezmarni et al.

Appendix F. Auxiliary computations

Appendix F.1. Equivalence between the conditional Kaplan-Meier

estimator of F1x and F̂ Ĝx
1x when g = h

In this section, we show that in the case where the bandwidths g and h in the

definition of F̂ Ĝx
1x are equal, then F̂ Ĝx

1x coincide with the conditional Kaplan-
Meier estimator of F1x defined as

F
(KM)
1xh (y1) =:1−

[ ∏
T(i)≤y1

{
1−

wn[i](x, h)

1− F̂1x(T(i)−)

}δ[i]
]

=1−
[ ∏
T(i)≤y1

{
1−

wn[i](x, h)

1−
∑i−1

k=1 wn[k](x, h)

}δ[i]
]
, (F.1)

where we recall that T(1) < . . . < T(n) are the ordered T1i’s, and wn[i](x, h) =
wnj(x, h) and δ[i] = δj when j satisfies Tj = T(i).

Set T(0) = 0 and Tn+1 = ∞. In oder to prove that F
(KM)
1xh = F̂ Ĝx

1x , it suffices

to show that for any 0 ≤ k ≤ n+ 1, F̂ Ĝx
1x (T(k)) = F

(KM)
1xh (T(k)). For this, we use

the following induction argument.

Basis: Trivially, F̂ Ĝx
1x (0) = F

(KM)
1xh (0) = 0. Moreover,

F̂ Ĝx
1x (T(1)) =

δ[1]wn[1](x, h){
1− wn[1](x, h)

}1−δ[1]
= δ[1]wn[1](x, h)

and

F
(KM)
1xh (T(1)) = 1−

{
1− wn[1](x, h)

}δ[1] = δ[1]wn[1](x, h).

Hence, the Basis step is verified.

Induction hypothesis: The equality F̂ Ĝx
1x (y1) = F

(KM)
1xh (y1) holds for y1 = T(0)

up to y1 = T(k).

Induction step: Let’s now show that the equality is verified for y1 = T(k+1)

assuming the induction hypothesis. From direct computations,

F
(KM)
1xh (T(k+1)) = 1−

k∏
i=1

{
1−

wn[i](x, h)

1− F̂1x(T(i−1))

}δ[i]{
1−

wn[k+1](x, h)

1− F̂1x(T(k))

}δ[k+1]

= 1 + {F̂ Ĝx
1x (T(k))− 1}

(
1−

wn[k+1](x, h)

1− F̂1x(T(k))

)δ[k+1]

,
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where the latter equation follows from the induction hypothesis. If δ[k+1] = 0,
we use the induction hypothesis to obtain

F
(KM)
1xh (T(k+1)) = F

(KM)
1xh (T(k)) = F̂ Ĝx

1x (T(k)) = F̂ Ĝx
1x (T(k+1)).

Otherwise, if δ[k+1] = 1, then

F
(KM)
1xh (T(k+1)) = F̂ Ĝx

1x (T(k)) + {1− F̂ Ĝx
1x (T(k))}

(
wn[k+1](x, h)

1− F̂1x(T(k+1))

)

= F̂ Ĝx
1x (T(k)) + {1− F

(KM)
1xh (T(k))}

(
wn[k+1](x, h)

1− F̂1x(T(k+1))

)
.

From the identity {1−F
(KM)
1xh (T(k))}{1− Ĝ1x(T(k))} = 1− F̂1x(T(k)), we deduce

that

F
(KM)
1xh (T(k+1)) = F̂ Ĝx

1x (T(k)) +
wn[k+1](x, h)

1− Ĝ1x(T(k))
.

The proof follows from the fact that Ĝ1x(T(k)) = Ĝ1x(T(k+1)) since δ[k+1] = 1.

Appendix F.2. Equivalence between the asymptotic representation of
the conditional Kaplan-Meier estimator and that of

F̂ Ĝx
1x when g = h

We next show that the asymptotic representation of limy→∞ FĜx
x (y1, y2) in the

case g = h as stated in Theorem 3.1 is the same as the one of
√
nh(F

(KM)
1xh −F1x)

derived in Theorem 2.1 of [20]. In fact, [20] stated that,
√
nh(F

(KM)
1xh − F1x) =√

nh
∑n

j=1 wni(x, h){J̃ix − J̃x}+ oa.s(1), where

J̃ix(y1) = {1− F1x(y1)}×[ ∫ y1

0

I(T1i ≤ v) dHu
1x(v)

{1−H1x(v)}2
+

I(T1i ≤ y1, δ1i = 1)

1−H1x(y1)

−
∫ y1

0

I(T1i ≤ v, δ1i = 1) dH1x(v)

{1−H1x(v)}2
]
,

and

J̃x(y1) = {1− F1x(y1)}

×
[ ∫ y1

0

H1x(v) dH
u
1x(v)

{1−H1x(v)}2
+

Hu
1x(y1)

1−H1x(y1)

−
∫ y1

0

Hu
1x(v) dH1x(v)

{1−H1x(v)}2
]
.
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To show the result, we write limy→∞{J (1)
ix (y1, y2) + J (2)

ix (y1, y2)} = J̌ix(y1) +
J̌x(y1), where

J̌ix(y1) =

∫ y1

0

I(T1i ≤ v)ΔFx(y1,∞, v)

{1−H1x(v)}2
dHc

1x(v)

+

∫ y1

0

I(T1i ≤ v, δ1i = 0) dHu
1x(v)

{1−H1x(v)}{1−Gx(v)}

−
∫ y1

0

I(T1i ≤ v, δ1i = 0)ΔFx(y1,∞, v)

{1−H1x(v)}2
dH1x(v)

+
I{T1i ≤ y1, δ1i = 1}

1−Gx(T1i)
, (F.2)

and

J̌x(y1) =

∫ y1

0

Hu
1x(v)ΔFx(y1,∞, v)

{1−H1x(v)}2
dHc

1x(v)

+

∫ y1

0

Hc
1x(v) dH

u
1x(v)

{1−H1x(v)}{1−Gx(v)}

−
∫ y1

0

Hc
1x(v)ΔFx(y1,∞, v)

{1−H1x(v)}2
dH1x(v) + F1x(y1).

We start by showing that J̌ix = J̃ix. First, as 1−H1x(v) = {1−F1x(v)}{1−
Gx(v)}, and since H1x = Hu

1x +Hc
1x, we obtain that∫ y1

0

I(T1i ≤ v)ΔFx(y1,∞, v)

{1−H1x(v)}2
dHc

1x(v)

= −{1− F1x(y1)}
∫ y1

0

I(T1i ≤ v) dHc
1x(v)

{1−H1x(v)}2

+

∫ y1

0

I(T1i ≤ v){1− F1x(v)} dHc
1x(v)

{1−H1x(v)}2

= −{1− F1x(y1)}
∫ y1

0

I(T1i ≤ v) dHc
1x(v)

{1−H1x(v)}2

+

∫ y1

0

I(T1i ≤ v) dHc
1x(v)

{1−H1x(v)}{1−Gx(v)}

= −{1− F1x(y1)}
∫ y1

0

I(T1i ≤ v) dH1x(v)

{1−H1x(v)}2

+

∫ y1

0

I(T1i ≤ v) dH1x(v)

{1−H1x(v)}{1−Gx(v)}

+ {1− F1x(y1)}
∫ y1

0

I(T1i ≤ v) dHu
1x(v)

{1−H1x(v)}2

+

∫ y1

0

I(T1i ≤ v) dHu
1x(v)

{1−H1x(v)}{1−Gx(v)}
.
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Second, using the fact that I(T1i ≤ v, δ1i = 0) = I(T1i ≤ v)− I(T1i ≤ v, δ1i =
1),Hu

1x(v) =
∫ v

0
{1−Gx(t−)} dF1x(t), and 1−H1x(v) = {1−F1x(v)}{1−Gx(v)},

we obtain by integrating by parts that,

∫ y1

0

I(T1i ≤ v, δ1i = 0) dHu
1x(v)

{1−H1x(v)}{1−Gx(v)}

=

∫ y1

0

I(T1i ≤ v)− I(T1i ≤ v, δ1i = 1) dHu
1x(v)

{1−H1x(v)}{1−Gx(v)}

=

∫ y1

0

I(T1i ≤ v) dHu
1x(v)

{1−H1x(v)}{1−Gx(v)}
+

I{T1i ≤ y1, δ1i = 1}
1−Gx(y1)

− I{T1i ≤ y1, δ1i = 1}
1−Gx(T1i)

−
∫ y1

0

I{T1i ≤ v, δ1i = 1} dH1x(v)

{1−H1x(v)}2

=

∫ y1

0

I(T1i ≤ v) dHu
1x(v)

{1−H1x(v)}{1−Gx(v)}
+ {1− F1x(y1)}

I{T1i ≤ y1, δ1i = 1}
1−H1x(y1)

− I{T1i ≤ y1, δ1i = 1}
1−Gx(T1i)

−
∫ y1

0

I{T1i ≤ v, δ1i = 1} dH1x(v)

{1−H1x(v)}{1−Gx(v)}
.

Third, using similar arguments, with the third term on the right hand side of
Equation (F.2), we found

∫ y1

0

I(T1i ≤ v, δ1i = 0)ΔFx(y1,∞, v)

{1−H1x(v)}2
dH1x(v)

= {1− F1x(y1)}
[∫ y1

0

I(T1i ≤ v) dH1x(v)

{1−H1x(v)}2
−

∫ y1

0

I(T1i ≤ v, δ1i = 1) dH1x(v)

{1−H1x(v)}2
]

−
∫ y1

0

I(T1i ≤ v) dH1x(v)

{1−H1x(v)}{1−Gx(v)}

+

∫ y1

0

I(T1i ≤ v, δ1i = 1) dH1x(v)

{1−H1x(v)}{1−Gx(v)}
.

Plugging these new expressions into Equation (F.2) demonstrates that J̌ix =

J̃ix. The proof that J̌x = J̃x is similar.
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