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Abstract: We consider tail empirical processes of long memory stochas-
tic volatility models with heavy tails and leverage. We study the limiting
behaviour of the tail empirical process with both fixed and random lev-
els. We show a dichotomous behaviour for the tail empirical process with
fixed levels, according to the interplay between the long memory parame-
ter and the tail index; leverage does not play a role. On the other hand,
the tail empirical process with random levels is not affected by either long
memory or leverage. The tail empirical process with random levels is used
to construct a family of estimators of the tail index, including the famous
Hill estimator and harmonic mean estimators. The paper can be viewed
as an extension of [21]; while the presence of leverage in the model cre-
ates additional theoretical problems, the limiting behaviour remains un-
changed.
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1. Introduction

The tail empirical process (TEP) is an important tool used in nonparamet-
ric estimation of extremal quantities, like the Hill estimator of the index of
regular variation or various risk measures. In this article, we consider a long
memory stochastic volatility model with leverage. The model consists of two
building blocks: volatility and noise. Informally speaking, by leverage we mean
that volatility and noise are not independent. This model is of interest in fi-
nance. Our goal is to study weak convergence for the tail empirical processes
associated with heavy tailed long memory stochastic volatility sequences with
leverage. These results are not only of theoretical interest, but are applicable
to different statistical procedures based on intermediate extremes. A similar
problem was studied in the case of independent, identically distributed ran-
dom variables in [15], or for weakly dependent sequences in [14], [13], [26], [24].
In [21] the authors considered heavy tailed, long memory stochastic volatil-
ity (LMSV) models and obtained asymptotic results for tail empirical pro-
cesses. This was extended later on to the multiparameter situation in [22].
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However, in the latter two articles leverage was excluded, greatly simplifying
theoretical considerations. As evidenced in [23], the presence of long memory,
heavy tails and leverage may affect the limiting behaviour of relevant statis-
tics.

It turns out that in the present setting, leverage does not affect the lim-
iting behaviour of the tail empirical process, and hence the results are com-
parable to those in [21] where leverage is not present. The limiting behaviour
depends only on the interplay between the tail index α and the strength of
long memory. However, it should be pointed out clearly that the extension from
models without leverage to those with leverage is highly nontrivial from a the-
oretical point of view. In [21] the authors were able to exploit independence
between volatility and noise. Here this approach is not applicable and instead
we use the Doob decomposition of the tail empirical process into martingale
and long memory parts. This makes the proof of tightness technically very in-
volved.

Furthermore, as in [21], for applications we must replace unobservable quan-
tiles with appropriate order statistics. It turns out that the limiting behaviour of
the resulting TEP with random levels is not affected by either long memory or
leverage. This, through integral functionals, allows us to obtain limiting results
for different estimators of the tail index, including the classical Hill estimator
(see [10] for results in the i.i.d. case) or the more general class of harmonic mean
estimators (see [2] again for results in the i.i.d. case). A comprehensive numer-
ical study of different estimators of the tail index in the case of long memory
and heavy tails (but no leverage) is presented in [25].

In summary, our contribution in this paper is twofold. From a theoretical
point of view, our most important contribution is the proof of weak convergence
of the tail empirical process (with fixed and random levels) in the presence
of heavy tails, long memory and leverage. Due to the complicated dependence
structure of the process, the proof is not at all straightforward. From a practical
point of view, the key result is that the asymptotic behaviour of the TEP with
random levels is unaffected by the presence of long memory and/or leverage in
the model, and so in applications the log returns may be handled exactly as if
they were i.i.d. heavy-tailed random variables. This greatly enhances the utility
of the LMSV model with leverage considered here.

The rest of the paper is organized as follows. In Section 2 we introduce the
model and state all relevant assumptions. In Section 3 we state our main result
on convergence of the tail empirical process with fixed levels (Theorem 3.2).
This theorem is complemented by the corresponding result for random levels
(Theorem 3.8). In Section 4 we prove weak convergence of integral functionals
of the tail empirical process, which provides a unified approach to central limit
theorems for estimators of the tail index (Theorem 4.2). In Section 5, we discuss
the role of the various assumptions and provide an illustrative example. We end
with a brief conclusion and directions for further research in Section 6. Proofs
are given in Section 7 and relevant technical details on regular variation and
long memory sequences can be found in Appendix A.
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2. Long memory stochastic volatility model with leverage

One of the common features of financial data is that returns are uncorrelated,
but their squares, or absolute values, are (highly) correlated, a property re-
ferred to as long memory. A second widely accepted feature is that log-returns
are heavy tailed, in the sense that some moment of the log-returns is infinite.
A third important feature is leverage. In the financial time series context, lever-
age is understood as negative dependence between previous returns and future
volatility; see (12). The leverage effect has been well documented in the eco-
nomic literature. As stated in [16], any mathematical model approximating the
evolution of asset price should be able to generate the leverage effect. See more
details in Section 2.2 below.

Motivated by these empirical findings, one of the common modelling ap-
proaches is to represent log-returns {Xj} as a stochastic volatility sequence
Xj = σjZj , where {Zj} is an i.i.d. noise sequence and {σ2

j } is the conditional
variance or, more generally, a certain process which stands as a proxy for the
volatility. In such a process, long memory can only be modelled through the se-
quence {σj}, while the tails can be modelled either through the sequence {Zj}
or through {σj}, or both. The well known GARCH processes belong to this class
of models. The volatility sequence {σj} is heavy tailed unless the distribution
of Z0 has finite support, and leverage can be present. However, long memory of
squares cannot be modelled by the GARCH processes, since such models (under
the appropriate technical conditions) are mixing. See [17, Chapter 3].

Consequently, the so-called long memory stochastic volatility (LMSV) model
was introduced in [5]. An overview of such models is given in [11] and [12]. In
the classical LMSV model, {Zj} is a sequence of i.i.d. standard normal random
variables, independent of the volatility sequence {σj}, assumed to be of the form
σj = exp(Yj), where {Yj} is a long memory Gaussian sequence. However, the
independence assumption excludes the possibility of modelling leverage effects.
We thus consider the long memory stochastic volatility model with leverage:

Xj = φ(Yj)Zj , j ∈ Z. (1)

We make the following assumptions.

2.1. Assumptions

A(i) The sequence {Yj} is strictly stationary and ergodic long memory Gaus-
sian, that is

Yj =
∞∑
i=1

aiεj−i ,

where {εj} is a sequence of i.i.d. standard normal random variables and

ai = id−1�a(i),
∞∑
i=1

a2i = 1 .
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As a consequence, γY (j) = Cov(Y0, Yj) ∼ j2d−1�Y (j). Note that �a and
�Y are slowly varying functions at infinity such that:

�Y (j) = �2a(j)B(1− 2d, d),

where B(a, b) denotes the Beta function and 0 < d < 1
2 is referred to as

the long memory parameter (for details, see [1]). Furthermore, we assume
that {(εj , Zj)} is a sequence of i.i.d. random vectors. For each fixed j, εj
and Zj may be dependent, but due to the construction above, the random
variables Yj and Zj are independent. However, there can be dependence
between the sequences {Zj} and {Yj}, allowing for leverage in the model.
See more discussion in Section 2.2.

A(ii) The random variables Zj are i.i.d. with tail distribution function F̄Z :

F̄Z(x) = c∗x−α exp

(∫ x

1

η∗(u)

u
du

)
, x > 0, (2)

where α, c∗ > 0 and η∗(·) is either nonnegative or nonpositive, regularly
varying at infinity with index −κ, κ > 0. It is also assumed that η∗ is
bounded – that is, there exists β > 0 such that ∀ x > 0,

|η∗(x)| ≤ β. (3)

We shall refer to a function of the form (2) as second-order regular vary-
ing at infinity with parameters −α,−κ and rate function η∗. This set of
functions is denoted by 2RV∞(−α,−κ, η∗).

A(iii) The function φ is a nonnegative measurable function and φ(Y ) is not
equal to 0 with probability one. We denote by m the Hermite rank of φα.
(For more details on Hermite rank, see [1] pg. 108.)

A(iv) Let kn → ∞ be an increasing sequence of positive integers such that
kn/n → 0 and let un be defined by un = F̄−1

X (kn/n), where F̄−1
X is

the inverse function of the tail distribution function F̄X of X. (As will
be argued below, F̄X is continuous). For ease of notation, we suppress
dependence of kn on n, which is the standard practice in the extreme
value literature.

A(v) For all n ≥ 1, define {an,m} and {bn,m} as follows:

an,m :=

(√
nF̄Z(un) +

n

bn,m

)
1{m(1−2d)<1} +

√
n1{m(1−2d)>1} ,

bn,m := n1−m( 1
2−d)

√
2m!(�Y (n))m

[(2d− 1)m+ 1][(2d− 1)m+ 2]
.

We assume that

an,mη∗
(
F̄−1
X (k/n)

)
= an,mη∗(un) →

n→∞
0 . (4)
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A(vi) For α, β, κ > 0 as above, there exists ε > 0 such that

E
(
(φ(Y ))2α+2β

)
+ E

(
(φ(Y ))2α−2β

)
< ∞, (5a)

E
(
(φ(Y ))α+κ+ε

)
+ E

(
(φ(Y ))α+κ−ε

)
< ∞. (5b)

For clarity throughout the remainder of the article, when referring
to the long memory stochastic volatility model with leverage, we sup-
pose that all the assumptions A(i) to A(vi) are satisfied. However, some
results do not require all the assumptions. See more discussion in Section 5.

Remark 2.1. The elementary consequence of A(ii) is that the second-order
regular variation of Z also implies that F̄Z is regularly varying at infinity with
index −α – that is

Jx(t) :=
F̄Z(xt)

F̄Z(x)
→

x→∞
T (t) := t−α, (6)

uniformly on compact subsets of (0,∞). Furthermore, by (5a), an application
of Breiman’s Lemma (see [6]) gives

F̄X(x) = E
(
F̄Z (x/φ(Y1))

)
∼

x→∞
E(φα(Y ))F̄Z(x). (7)

Therefore, F̄X is also regularly varying at infinity with index −α and

Tx(t) :=
F̄X(xt)

F̄X(x)
→

x→∞
T (t) = t−α . (8)

Moreover F̄Z(x)/F̄X(x) is bounded away from zero and infinity, that is, there
exists λ > 0 such that for all x > 0,

1/λ <
F̄Z(x)

F̄X(x)
< λ . (9)

Furthermore, A(ii) implies that F̄Z is continuous. So is F̄X , by (7). Finally, as
will be shown by eqs. (29a) and (29b), (4) controls bias. In particular, for any
τ0 > 0 we have

an,m sup
t>τ0

|Jun(t)− T (t)| →
n→∞

0 and an,m sup
t>τ0

|Tun(t)− T (t)| →
n→∞

0 . (10)

Let {Gj} be the minimal filtration generated by the independent and identically
distributed random vectors {(εj , Zj)}, that is

Gj := σ ({(εk, Zk) : k ≤ j}) , j ∈ Z .

As a consequence, Xj is Gj-adapted, Yj is Gj−1-measurable and we have

E(1{Xj>x}‖Gj−1) = E(1{φ(Yj)Zj>x}‖Gj−1) = F̄Z(x/φ(Yj)), x > 0 . (11)
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2.2. Leverage

In the financial literature, leverage is understood as an asymmetric behaviour
of stock prices. More specifically, increase in volatility is (negatively) associated
with a movement of stock prices. The original modelling approach to leverage
is due to [19]. The authors consider the model

Xj = σjZj , log σ2
j = Yj , Yj = ρYj−1 + εj−1 ,

where ρ ∈ (−1, 1), {(εj , Zj)} are i.i.d. normal vectors with mean zero, unit
variance and correlation ω. Writing the logarithm of the volatility as

Yj+1 = ρYj + ωσ−1
j Xj + (εj − ωZj) ,

and noting that E (εj − ωZj‖Xj , σj) = E(εj − ωZj‖Zj) = 0 we conclude

E
(
log σ2

j+1‖Xj , σj

)
= ρYj + ωσ−1

j Xj

and thus

E
(
log σ2

j+1‖Xj

)
= μ+ ωνXj , (12)

where μ, ν are constants. Thus, the expected log-volatility is a linear function
of Xj whenever ω �= 0. Of course, our model extends the AR(1) assumption on
the sequence {Yj} allowing for long memory.

Other modeling approaches to leverage can be found e.g. in [28] or [7]. The
only difference lies in alternative specifications in the equation for log σ2

j , allow-
ing for an additional random term.

3. Tail empirical process

In this section, we present two main results: Theorem 3.2 and Theorem 3.8.
They both pertain to weak convergence of the tail empirical process of the long
memory stochastic volatility model with leverage in (1). The first one deals with
deterministic levels whereas the second one with random levels (order statistics).
We note different limiting behaviour – in particular, while the limiting behaviour
of the tail empirical process with deterministic levels could be affected by long
memory, this is not the case for the process with random levels. Furthermore,
neither of the tail empirical processes is affected by the presence of leverage.

Recall that k = kn → ∞ is an increasing sequence of positive integers such
that k/n → 0, as n → ∞ and un is defined by k = nF̄X(un).

3.1. Deterministic levels

Definition 3.1. Given a sequence (kn) as above, the empirical tail distribution
function of {Xj} is defined as:

T̃n(t) :=
1

k

n∑
j=1

1{Xj>unt} =
1

k

n∑
j=1

1{φ(Yj)Zj>unt}, t > 0.
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In the sequel, let Vj,n(t) := 1{φ(Yj)Zj>unt}. We note that (cf. (8))

Tun(t) = E
(
T̃n(t)

)
=

F̄X(unt)

F̄X(un)
and lim

n→∞
Tun(t) = t−α = T (t) .

The tail empirical process (with deterministic levels) is defined by

S̃n(t) = k
(
T̃n(t)− Tun(t)

)
=

n∑
j=1

[Vj,n(t)− E (Vj,n(t))] , t > 0 .

Our goal is to determine the asymptotic behaviour of S̃n under suitable nor-
malizations. The structure of the model considered in (1) suggests the following
martingale-long memory Doob decomposition:

S̃n(t) := Mn(t) + Ln(t), t > 0, (13)

where the summands Mn and Ln are defined as follows:

Mn(t) :=

n∑
j=1

[Vj,n(t)− E (Vj,n(t)‖Gj−1)] , (14a)

Ln(t) :=

n∑
j=1

[E (Vj,n(t)‖Gj−1)− E (Vj,n(t))] . (14b)

We will call Mn and Ln the martingale and long memory parts, respec-
tively. To establish weak convergence of S̃n under suitable normalizations, we
will establish weak convergence for Mn and Ln, suitably normalized. This will
then determine the appropriate normalization for S̃n (cf. Theorem 3.2). The fi-
nite dimensional convergence of Mn will be handled with a classical martingale
central limit theorem (cf. Theorem 2.5 in [20]), while tightness requires tedious
technical arguments. The process Ln will be handled with a limit theorem for
Hermite polynomials (cf. [1, p. 223, 229]). In what follows, define

μφ,α(m) = E(Hm(Y )φα(Y )) ,

where Hm denotes the Hermite polynomial of order m.

Theorem 3.2. Let {Xj} be the long memory stochastic volatility model with
leverage given in (1).

• If m(1− 2d) < 1 and
bn,m

n

√
k → 0 as n → ∞, then

S̃n(t)√
k

d−−−−→
n→∞

(W ◦ T )(t), (15)

in D(0,∞) equipped with the Skorokhod J1 topology, where W (·) denotes
a standard Brownian motion on (0,∞).
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• If m(1− 2d) < 1 and
bn,m

n

√
k → ∞ as n → ∞, then

n

kbn,m
S̃n(t)

d−−−−→
n→∞

μφ,α(m)

m!E(φα(Y ))
T (t)ξm,d+1/2(1),

in D(0,∞) equipped with the Skorokhod J1 topology, where ξm,d+1/2(1) is
a Hermite-Rosenblatt random variable.

• If m(1− 2d) > 1, then (15) holds.

The proof of this theorem can be found in Section 7.2.

Remark 3.3. We note that leverage has no effect on the limiting distribution.
Long memory affects the limiting behaviour. We have a dichotomous behaviour,
according to strength of long memory (that is, the value of the parameter d that
appears explicitly in the definition of bn,m). In the long memory case, the limiting
random variable, ξm,d+1/2(1), is Hermite-Rosenblatt with the Hurst parameter

d+ 1
2 (see Definition 3.24 in [1]). It is a non-Gaussian limit unless m = 1.

Remark 3.4. We note that thanks to Assumption A(v), the effect of bias
introduced by replacing Tun(t) by T (t) is negligible (see (10)), and so the process

S̃∗
n(t) : = k

(
T̃n(t)− T (t)

)
, t > 0

has the same limiting behaviour as S̃n.

Remark 3.5. The upper quantile (un) depends on the unknown distribution
FX and so its value is not known. This means that the empirical tail distribution
function T̃n cannot be observed, and so we introduce a data-based version in
the next section.

3.2. Random levels

In this section we consider the tail empirical process with random levels that is
used to construct estimators of the tail index.

Let X1, . . . , Xn be a sample from the stochastic volatility model with lever-
age defined in (1). Let X(1) ≤ · · · ≤ X(i) ≤ · · · ≤ X(n) be the correspond-
ing order statistics. Let Fn,X be the usual empirical distribution function and
F̄n,X(x) = 1−Fn,X(x). Since F̄X is continuous, un = F̄−1

X (k/n) for k = kn and
F̄−1
n,X (k/n) = X(n−k), and so it is then natural to approximate un with X(n−k).

Definition 3.6. Let {Xj} be the long memory stochastic volatility model with
leverage given in (1).

• The empirical tail distribution function with random levels of {Xj} is

T̂n(t) :=
1

k

n∑
j=1

1{Xj>X(n−k)t}, t > 0. (16)
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• The tail empirical process with random levels of {Xj} is

Ŝn(t) := k
(
T̂n(t)− T (t)

)
. (17)

We aim at studying the asymptotic behaviour of Ŝn. First, we need an ex-
tension to Theorem 3.2, the next lemma.

Lemma 3.7. Let {Xj} be the long memory stochastic volatility model with
leverage given in (1).

• If m(1− 2d) < 1 and
bn,m

n

√
k → 0, or m(1− 2d) > 1, then(

S̃∗
n(t)√
k

,
√
k

(
X(n−k)

un
− 1

))
d−−−−→

n→∞

(
(W ◦ T )(t) , W (1)

α

)
. (18)

• If m(1− 2d) < 1 and
bn,m

n

√
k → ∞ then(

n

kbn,m
S̃∗
n(t) ,

n

bn,m

(
X(n−k)

un
− 1

))
d−−−−→

n→∞

(
μφ,α(m)

m!E(φα(Y ))
T (t)ξm,d+1/2(1),

μφ,α(m)

αm!E(φα(Y ))
ξm,d+1/2(1)

)
.

These two joint weak convergences hold in D(0,∞)× R.

Now, we state the result for random levels. Notice that by introducing random
levels, the tail empirical process vanishes at 1 and ∞, which forces the limiting
process to be of a bridge type. More surprisingly, the introduction of random
levels appears to cause the effect of long memory to disappear. The reason for
this, as will be seen in the proof, is that the limiting behaviour of Ŝn follows
informally from the continuous mapping theorem applied to S̃∗

n and X(n−k)/un.

Thanks to the degenerate structure of the limiting process for S̃∗
n (that is, a

random variable scaled by a deterministic function), the long memory effect
cancels out. Note however that long memory does play a role in assumption (4)
which controls bias. This can affect the choice of k; see Example 5.1.

Once again, the presence of leverage does not affect the limit.

Theorem 3.8. Let {Xj} be the long memory stochastic volatility model with
leverage given in (1). Then,

Ŝn(t)√
k

d−−−−→
n→∞

W (T (t))− T (t)W (1), (19)

in D(0,∞) equipped with the Skorokhod J1 topology. The limiting process
W (T (·))− T (·)W (1) is a centered time-changed Brownian bridge on [1,∞).

We refer to Section 7.3 for the proof of this result.
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4. Integral functionals

The power of weak convergence theory comes from the fact that many diverse
results emerge as corollaries of a basic convergence theorem. As we shall see in
Theorem 4.1, our main convergence Theorem 3.8 can be extended to integral
functionals of the tail empirical process with random levels. This in turn yields
a unified approach to establishing weak convergence of estimators of the tail
index (cf. Section 4.1). In what follows, r denotes a nonnegative integer.

Theorem 4.1. Let {Xj} be the long memory stochastic volatility model with
leverage given in (1). If α > 2(1− r), then

1√
k

∫ ∞

1

Ŝn(t)

tr
dt

d−−−−→
n→∞

∫ ∞

1

W (T (t))−W (1)T (t)

tr
dt. (20)

The proof (see Section 7.3) is not trivial due to the fact that the infinite
integral is not a continuous functional.

4.1. Tail index estimation

We consider the long memory stochastic volatility model with leverage defined in
(1). Since the tail distribution of X is regularly varying with index −α, then this
raises the question of estimating the index of regular variation α. Therefore, we
restrict our attention to the harmonic moment estimators (HME) γ̂r,k of order
r of γ := 1/α. We aim at studying their asymptotic normality. For this purpose,
we begin with their construction. Recalling that T (t) = t−α, we have for r ≥ 0,

ζr :=

∫ ∞

1

T (t)

tr
dt =

1

α+ r − 1
· (21)

If ζ̂r,k denotes an estimator of ζr, then the plug-in method and (16) yield

ζ̂r,k =

∫ ∞

1

T̂n(t)

tr
dt =

∫ ∞

1

1

k

n∑
j=1

1{X(j)>X(n−k)t}
dt

tr
=

1

k

n∑
j=1

∫ ∞

1

1{
X(j)

X(n−k)
>t

} dt

tr
·

Furthermore, since t ≥ 1, we have

ζ̂r,k =
1

k

k∑
j=1

∫ X(n−j+1)
X(n−k)

1

dt

tr

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1

r−1

⎛⎝1− 1
k

k∑
j=1

(
X(n−k)

X(n−j+1)

)r−1
⎞⎠ if r �= 1,

1
k

k∑
j=1

ln

(
X(n−j+1)

X(n−k)

)
if r = 1.
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To derive the estimators of γ = 1/α, we solve for 1/α in (21) and obtain

ζr =
1

α+ r − 1
⇒ 1

α
=

ζr
1 + (1− r)ζr

·

Thanks to the plug-in method, we derive the HMEs below:

γ̂r,k =
ζ̂r,k

1 + (1− r)ζ̂r,k
(22)

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
1

r−1

⎛⎜⎝
⎛⎝ 1

k

k∑
j=1

(
X(n−k)

X(n−j+1)

)r−1
⎞⎠−1

− 1

⎞⎟⎠ if r �= 1 ,

1
k

k∑
j=1

ln

(
X(n−j+1)

X(n−k)

)
if r = 1 .

(23)

• The HME that corresponds to r = 1 is the Hill estimator of γ = 1/α.
• The HME that corresponds to r = 2 is the t-Hill estimator of γ, that is

γ̂2,k =

⎛⎝1

k

k∑
j=1

X(n−k)

X(n−j+1)

⎞⎠−1

− 1 .

The main result of this section, the asymptotic normality of γ̂r,k, is a simple
application of the delta method and Theorem 4.1.

Theorem 4.2. Let {Xj} be the long memory stochastic volatility model with
leverage in (1). If α > 2(1− r), then

√
k (γ̂r,k − γ)

d−−−−→
n→∞

(α+ r − 1)

(α3(α+ 2r − 2))
1/2

N ,

where N is a standard normal random variable.

5. Comments and example

• The Gaussian assumption on Yj can be easily replaced by assuming that
Yj is an infinite order moving average process. Instead of using Hermite
polynomials, convergence of the long memory part will be concluded using
tools such as Appell polynomials or a version of martingale approximation.
See [1, Section 4.2.5].

• We excluded the case of d = 0 which yields short memory. It is justified in
[8] that in the case of short memory, the stochastic volatility sequence {Xj}
is mixing and limiting results for tail empirical processes can be concluded
from [26]. For the tail empirical process with deterministic levels, instead
of A(ii), only regular variation is needed, while the moment conditions
(5a)-(5b) can be replaced with a weaker assumption, E ((φ(Y ))α+ε) < ∞
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for some ε > 0, in order to guarantee that the tail function F̄X is regularly
varying. For the tail empirical process with random levels and for the Hill
estimator, a version of second-order regular variation is needed.
Our method of proof uses second-order regular variation for the tail em-
pirical process with deterministic levels. Possibly, with another method of
proof, this could be avoided, although second-order regular variation will
likely still be needed for the tail empirical process with random levels.

• More specifically, for finite dimensional convergence of the martingale part
(Proposition 7.1) the moment condition (5a) is not needed, but second-
order regular variation plays a crucial role in the proof. The bias condition
(4) is not used.

• Lemma 7.2 does not require any distributional assumption on Z. Also,
the moment conditions are not needed. Lemma 7.3 requires the moment
assumption (5a). Only regular variation of Z is needed, second-order reg-
ular variation is not required. Lemma 7.4 again requires only (5a). In
summary, tightness of the martingale part (Proposition 7.5) requires only
regular variation and the moment condition (5a).

• Thus, weak convergence of the martingale part requires all assumptions
except for (4).

• Weak convergence of the long memory part (Proposition 7.6) needs (5b)
and second order regular variation with (4).

Example 5.1. Let the tail distribution function, F̄Z , be of the form:

F̄Z(x) =

{
1
2

(
x−α + x−αδ

)
, x ≥ 1 ,

1 , 0 < x < 1 ,

where α > 0, δ > 1.

1. Notice that F̄Z fulfills (2) and (3). In fact, for all x ≥ 1,

F̄Z(x) = x−α exp

(∫ x

1

α(δ − 1)t−α(δ−1)−1dt

1 + t−α(δ−1)

)
.

Therefore, F̄Z ∈ 2RV∞(−α,−α(δ − 1), η∗), where the rate function is
defined by

η∗(x) = x−α(δ−1) α(δ − 1)

1 + x−α(δ−1)
=

α(δ − 1)

1 + xα(δ−1)
∼

x→∞
α(δ − 1)x−α(δ−1).

Note that η∗ is nonnegative, regularly varying at infinity with index−α(δ−
1) and is bounded on [1,∞) by β = α(δ − 1).

2. Finally to get a sense of (4), denote by c a generic, nonnegative constant
that can be different at each appearance. We will assume for simplicity
that m = 1 and we will ignore the slowly varying function in the definition
of bn,1. Recall also that Z and X are tail equivalent and k = nF̄X(un).
Thus, in order to verify (4) is suffices to show that

an,1η
∗(F̄−1

X (k/n)) → 0 ,
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or equivalently

{
√
k + n1/2−d}η∗(F̄−1

X (k/n)) → 0 .

Since F̄−1
X (y) ∼ cy−1/α as y → 0 and η∗ is regularly varying with index

−α(δ − 1), this in turn is equivalent to

{
√
k + n1/2−d}

(
k

n

)δ−1

→ 0 .

Thus we get the following restrictions on the choice of k:

k = o
(
n1− 1

2δ−1

)
, k = o

(
n1− 1/2−d

δ−1

)
.

The first restriction is the same as in i.i.d. case, while the second condition
(stemming from long memory) may be more restrictive for small d. In

summary, if k = o(n1− 1
2δ−2 ), then bias is negligible.

6. Conclusion

In this article, we have considered the heavy-tailed long memory stochastic
volatility model with leverage given in (1). We have studied the limiting be-
haviour of the tail empirical process with both fixed and random levels (Theo-
rems 3.2 and 3.8). We have shown a dichotomous behaviour for the tail empirical
process with fixed levels, according to the interplay between the long memory
parameter d and the tail index α; leverage does not play a role in the limit-
ing results, but makes the proofs technically involved. On the other hand, the
tail empirical process with random levels is unaffected by either long memory or
leverage. Further, we have proven the weak convergence of the corresponding in-
tegral functionals (Theorem 4.1). The tail empirical process with random levels
is used to construct a family of estimators of the tail index, including the famous
Hill estimator and harmonic mean estimators. Consequently, all HMEs of the
tail index of {Xj} remain valid for this model and have the same asymptotic
behaviour as in the case of i.i.d. observations (Theorem 4.2).

There are several directions for further research on long memory stochas-
tic volatility models with leverage. For example, the asymptotic behaviour of
estimators of risk measures will be affected by long memory, since the scaled in-
termediate order statistics are affected by long memory (cf. Lemma 3.7). Other
topics of interest include: detection of changes in the model and bootstrap tech-
niques for the model.

7. Proofs

In this section, we gather the proofs of all our results. Recall that k = nF̄X(un).
Throughout the subsequent proofs, we define

ρn :=
X(n−k)

un
·
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7.1. Some technical results

We start with some technical results used in the proofs.

Potter’s bounds Regular variation of F̄Z and F̄X yields different versions of
Potter’s bounds (cf. [27], [4, p. 25]). We state them the way they are used in
this paper. First, for all ε > 0, there exists D(ε) > 1 such that ∀ x ≥ 1, t > 0,

Jx(t) ≤ D(ε)max
(
1, t−(α+ε)

)
. (24)

Further ∀ C > 1, ε > 0, there exists δ = δ(C; ε) ≥ 0 such that for x ≥ δ, t > 0,

Tx(t) ≤ C
(
t−(α+ε) ∨ t−(α−ε)

)
. (25)

Notice that (9) in conjunction with (25) yield

F̄Z(xt)

F̄X(x)
≤ λC

(
t−(α+ε) ∨ t−(α−ε)

)
.

Derivatives It follows from (2) and (3) that there exists M > 0 such that for
all x ≥ 1 and t > 0,

J ′
x(t) →

x→∞
T ′(t) = −αt−α−1 (26a)

|J ′
x(t)| ≤ M

(
t−(α+β+1) ∨ t−(α−β+1)

)
. (26b)

As a consequence, for all x ≥ 1 and t > 0,

d

dt
E (Jx(t/φ(Y ))) = E

(
d

dt
Jx(t/φ(Y ))

)
. (27)

The bound in (26b) is transferred to Tx(t). Indeed, we have

Tx(t) =
F̄Z(x)

F̄X(x)
E

(
F̄Z (xt/φ(Y ))

F̄Z(x)

)
=

F̄Z(x)

F̄X(x)
E (Jx (t/φ(Y ))) .

By taking the derivative with respect to x and using (27), we obtain

T ′
x(t) =

F̄Z(x)

F̄X(x)

d

dt
E (Jx (t/φ(Y ))) =

F̄Z(x)

F̄X(x)
E ((1/φ(Y ))J ′

x (t/φ(Y ))) .

Therefore, (26b) in conjunction with (9) yield that

|T ′
x(t)| ≤ λM

(
t−(α+β+1) ∨ t−(α−β+1)

) (
E

(
[φ(Y )]α+β

)
+ E

(
[φ(Y )]α−β

))
.

Thus by (5a), K0 := λM
(
E

(
[φ(Y )]α+β

)
+ E

(
[φ(Y )]α−β

))
< ∞ and hence

|T ′
x(t)| ≤ K0

(
t−(α+β+1) ∨ t−(α−β+1)

)
.
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Second-order regular variation of X By (7), regular variation of Z is
transferred to X. The same applies to second-order regular variation [21, p.117].
Indeed, we have F̄X ∈ 2RV∞(−α,−κ, η̃), with the rate function η̃ defined as

η̃(x) =
E (φα(Y )η∗(x/φ(Y ))�∗(x/φ(Y )))

E (φα(Y )�∗(x/φ(Y )))
∼

x→∞

E (φα+κ(Y ))

E (φα(Y ))
η∗(x). (28)

Bias Convergence in (6) or (8) induces bias in statistical inference. This bias
is controlled with help of second-order regular variation. From [21] we have that
for all ε > 0, there exist C(ε) > 0, C1(ε) > 0 such that for all x ≥ 1, t > 0,

|Jx(t)− T (t)| ≤ C(ε)
(
t−(α+κ+ε) ∨ t−(α+κ−ε)

)
|η∗(x)| , (29a)

|Tx(t)− T (t)| ≤ C1(ε)
(
t−(α+κ+ε) ∨ t−(α+κ−ε)

)
|η̃(x)| . (29b)

Thus, (4) and (29a) imply that for all τ0 > 0,

an,m sup
t>τ0

|Jun(t)− T (t)| →
n→∞

0 . (30)

By (28) and (29b), the above bound also holds when Jun is replaced with Tun

and F̄Z with F̄X . Therefore, (10) is justified.

7.2. Proof of Theorem 3.2: TEP with deterministic levels

Recall that the proof of Theorem 3.2 is based on the martingale-long memory
Doob decomposition (13). Therefore, Propositions 7.1, 7.5 and 7.6 below will
prove Theorem 3.2.

7.2.1. Weak convergence of the martingale part

In this subsection, we state and prove in Proposition 7.1 finite dimensional
convergence of {Mn} defined in (14a), its tightness in Proposition 7.5. The
proof of fidi convergence is straightforward, but tightness requires tedious and
technical calculations due to dependence between {Yj} and {Zj}.

Finite dimensional convergence

Proposition 7.1. Let {Xj} be the long memory stochastic volatility model with
leverage given in (1). Then for any set of points t1, . . . , tk > 0,(

Mn(ti)√
k

)
1≤i≤k

d−−−−→
n→∞

(W ◦ T (ti))1≤i≤k , (31)

where W is a standard Brownian motion.
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Proof. By the Cramér-Wold device, proving (31) is equivalent to showing:

m∑
i=1

aiMn(ti)√
k

d−−−−→
n→∞

m∑
i=1

aiW ◦ T (ti), (32)

for all a1, . . . , am ∈ R and t1, . . . , tm > 0. We have

m∑
i=1

aiMn(ti) =

m∑
i=1

n∑
j=1

ai�jMn(ti) =

n∑
j=1

m∑
i=1

ai�jMn(ti)

=:

n∑
j=1

�jMn(t1, . . . , tk),

where �jMn(t) := Vj,n(t) − E(Vj,n(t)‖Gj−1) and �jM
∗
n(t) = �jMn(t)/

√
k. It

is clear that {�jMn} is a martingale difference sequence. Now by Theorem 2.5
in [20], to prove (32) it is sufficient to show that for all t1, . . . , tm, ε > 0,

n∑
j=1

E
(
(�jM

∗
n(t1, . . . , tm))2‖Gj−1

) p−−−−→
n→∞

m∑
i=1

a2i t
−α
i + 2

∑
i<q

aiaq(ti ∨ tq)
−α,

(33a)
n∑

j=1

E
(
(�jM

∗
n(t1, . . . , tm))21{|�jM∗

n(t1,...,tm)|>ε‖Gj−1}
) p−−−−→

n→∞
0. (33b)

To prove (33a), it is enough to show that for all ti, tq > 0,

n∑
j=1

E (�jM
∗
n(ti)�jM

∗
n(tq)‖Gj−1)

p−−−−→
n→∞

(ti ∨ tq)
−α . (34)

It follows from the definition of �jM
∗
n that

E (�jM
∗
n(ti)�jM

∗
n(tq)‖Gj−1) =

1

nF̄X(un)
Cov (Vj,n(ti), Vj,n(tq)‖Gj−1)

=
E (Vj,n(ti)Vj,n(tq)‖Gj−1)

nF̄X(un)
− E (Vj,n(ti)‖Gj−1)E (Vj,n(tq)‖Gj−1)

nF̄X(un)
·

Consequently, to establish (34) it is sufficient to prove

1

nF̄X(un)

n∑
j=1

E (Vj,n(ti)Vj,n(tq)‖Gj−1)
p−−−−→

n→∞
(ti ∨ tq)

−α, (35a)

1

nF̄X(un)

n∑
j=1

E (Vj,n(ti)‖Gj−1)E (Vj,n(tq)‖Gj−1)
p−−−−→

n→∞
0. (35b)

We start with (35a). Note that (11) in conjunction with (6) yield

1

nF̄X(un)

n∑
j=1

E(Vj,n(ti)Vj,n(tq)‖Gj−1) =
1

nF̄X(un)

n∑
j=1

F̄Z

(
un[φ(Yj)]

−1(ti ∨ tq)
)



Long memory stochastic volatility models with leverage 3469

=
F̄Z(un)

nF̄X(un)

n∑
j=1

(
Jun (ti ∨ tq/φ(Yj))− (ti ∨ tq)

−αφα(Yj)
)

︸ ︷︷ ︸
Bn

+
F̄Z(un)

n(ti ∨ tq)αF̄X(un)

n∑
j=1

φα(Yj)︸ ︷︷ ︸
An

.

Ergodicity, Slutsky’s Theorem and (7) yield An →
n→∞

(ti ∨ tq)
−α, w.p.1.

On the other hand, by (7), showing that Bn
p−−−−→

n→∞
0, is equivalent to proving

B∗
n :=

1

n

n∑
j=1

(Jun (ti ∨ tq/φ(Yj))− T (ti ∨ tq/φ(Yj)))
p−−−−→

n→∞
0.

Stationarity of {Yj} and (29a) yield

E(|B∗
n|) ≤ E (|Jun (ti ∨ tq/φ(Y ))− T (ti ∨ tq/φ(Yj))|)

≤ D(ε)(ti ∨ tq)
−(κ+α+ε) ∨ (ti ∨ tq)

−(κ+α−ε)|η∗(un)| →
n→∞

0,

where D(ε) = C(ε)
(
E

(
(φ(Y ))

κ+α+ε
)
+ E

(
(φ(Y ))

κ+α−ε
))

is a constant de-

pending on ε but not on n. Thus, B∗
n

p−−−−→
n→∞

0. Hence (35a) is proven.

Now, we deal with (35b). By (11), (6) and (24), we have ∀ δ > 0,

1

nF̄X(un)

n∑
j=1

E (Vj,n(ti)‖Gj−1)E (Vj,n(tq)‖Gj−1)

=
F̄ 2
Z(un)

nF̄X(un)

n∑
j=1

Jun (ti/φ(Yj)) Jun (tq/φ(Yj))

≤ C(δ)B(δ)F̄ 2
Z(un)

nF̄X(un)

n∑
j=1

(
1 ∨ t

−(δ+α)
i φ(δ+α)(Yj)

)(
1 ∨ t−(δ+α)

q φ(δ+α)(Yj)
)

≤ C(δ)B(δ)F̄ 2
Z(un)

nF̄X(un)

×
n∑

j=1

(
1 +

(
t
−(α+δ)
i + t−(α+δ)

q

)
φ(α+δ)(Yj) + (titq)

−(α+δ)φ2(α+δ)(Yj)
)

=
F̄ 2
Z(un)

F̄X(un)

(
R(δ) +

K(ti, δ) +G(tq, δ)

n

n∑
j=1

φ(δ+α)(Yj)

+
I(ti, tq, δ)

n

n∑
j=1

φ2(δ+α)(Yj)

)
,
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where C(δ), B(δ), R(δ),K(ti, δ), G(tq, δ) and I(ti, tq, δ) are constants depending
on ti, tq and δ but not on n. By regular variation of (Xj)j and (Zj)j , ergodicity
and Slutsky’s Theorem, we conclude that (35b) holds. This concludes the proof
of (33a). It remains to show (33b). We observe that

|�jM
∗
n(t)| =

|�jM
∗
n(t)|√
k

≤ 1√
k

→
n→∞

0.

So, for arbitrary ε > 0, 1{|�jM∗
n(t)|>ε} = 0, for all n sufficiently large. Thus,

(33b) is proven.

Tightness We consider for ease of notation the following setup:

Vj,n(s, t) := Vj,n(s)− Vj,n(t) = 1{uns<φ(Yj)Zj<unt}, (36a)

�jMn(s, t) := Vj,n(s, t)− E (Vj,n(s, t)‖Gj−1) , (36b)

Mn(s, t) := Mn(s)−Mn(t) =

n∑
j=1

�jMn(s, t), (36c)

�jM
∗
n(s, t) :=

�jMn(s, t)√
k

and M∗
n(s, t) :=

Mn(s, t)√
k

, (36d)

for all 0 < s < t < ∞. We state and prove Lemmas 7.2 to 7.4. These results will
serve as ingredients for the proof of tightness in Proposition 7.5.

Lemma 7.2. Let {Xj} be the long memory stochastic volatility model with
leverage given in (1). Then,

E
(
(M∗

n(s, t))
4
)

≤ 2λ2C4E
(
(Jun (s/φ(Y ))− Jun (t/φ(Y )))

2
)

+
16C4

k
|Tun(s)− Tun(t)| , (37)

where C4 is a constant defined in Rosenthal’s inequality (cf. [18, p. 23-24]) and
λ is as in (9).

Proof. Since {�jMn} is a martingale difference sequence, then Rosenthal’s in-
equality ([18, p. 23-24]) holds and there exists a constant C4 such that

E
(
(M∗

n(s, t))
4
)

≤ C4

⎛⎜⎝ n∑
j=1

E
(
(�jM

∗
n(s, t))

4
)
+ E

⎛⎜⎝
⎛⎝ n∑

j=1

E
(
(�jM

∗
n(s, t))

2 ‖Gj−1

)⎞⎠2
⎞⎟⎠
⎞⎟⎠ .

Note that if V is a nonnegative random variable, then for any σ-field F , we have

E
(
(V − E (V ‖F))

4
)
≤ 8E

(
V 4

)
. (38)
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This along with stationarity of (�jM
∗
n(s, t))j yield

n∑
j=1

E
(
(�jM

∗
n(s, t))

4
)
≤

8E
(
(V1,n(t, s))

4
)

n
(
F̄X(un)

)2 ≤ 8 |Tun(s)− Tun(t)|
nF̄X(un)

· (39)

On the other hand, we have

E

⎛⎜⎝
⎛⎝ n∑

j=1

E
(
(�jM

∗
n(s, t))

2 ‖Gj−1

)⎞⎠2
⎞⎟⎠

= E

⎛⎝ n∑
j=1

(
E

(
(�jM

∗
n(s, t))

2 ‖Gj−1

))2

⎞⎠
+ 2E

⎛⎝ n∑
i<j

E
(
(�iM

∗
n(s, t))

2 ‖Gi−1

)
E

(
(�jM

∗
n(s, t))

2 ‖Gj−1

)⎞⎠ .

First, stationarity of (�jM
∗
n(s, t))j , Jensen’s inequality, and (38) yield

E

⎛⎝ n∑
j=1

(
E

(
(�jM

∗
n(s, t))

2 ‖Gj−1

))2

⎞⎠ = nE

((
E

(
(�1M

∗
n(t, s))

2 ‖G0

))2
)

≤ nE
(
(�1M

∗
n(s, t))

4
)
≤ 8E (V1,n(t, s))

n
(
F̄X(un)

)2 =
8 |Tun(s)− Tun(t)|

nF̄X(un)
·

Second, Cauchy-Schwartz’s inequality and stationarity of (�jM
∗
n(s, t))j yield

2E

⎛⎝ n∑
i<j

E
(
(�iM

∗
n(s, t))

2 ‖Gi−1

)
E

(
(�jM

∗
n(s, t))

2 ‖Gj−1

)⎞⎠
≤ 2n(n− 1)(

nF̄X(un)
)2E ((

E
(
(�1Mn(s, t))

2 ‖G0

))2
)

≤ 2

(
F̄Z(un)

F̄X(un)

)2

E

((
F̄Z (uns/φ(Y ))

F̄Z(un)
− F̄Z (unt/φ(Y ))

F̄Z(un)

)2
)
.

Therefore, using (9), it follows that for n ≥ 1,

E

⎛⎜⎝
⎛⎝ n∑

j=1

E
(
(�jM

∗
n(s, t))

2 ‖Gj−1

)⎞⎠2
⎞⎟⎠ ≤ 8 |Tun(s)− Tun(t)|

nF̄X(un)
(40)

+ 2λ2E
(
(Jun (s/φ(Y ))− Jun (t/φ(Y )))

2
)
.

Thus, (39) and (40) imply that (37) holds.
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Lemma 7.3. Let {Xj} be the long memory stochastic volatility model with
leverage given in (1). Then for all 0 < a ≤ s, t ≤ b < ∞, there exists a positive
constant Ca,b,4 such that

E
(
(M∗

n(s, t))
4
)
≤ Ca,b,4

(
|s− t|

nF̄X(un)
+ (s− t)2

)
. (41)

Proof. The mean value theorem in conjunction with (26b) yield that there exists
s < τ = τ(ω) < t, such that:

E
(
(Jun (s/φ(Y ))− Jun (t/φ(Y )))

2
)

= (s− t)2E
((

J ′
un

(
[φ(Y )]−1τ

)
[φ(Y )]−1

)2)
≤ (M(s− t))

2
E

(((
[φ(Y )]−1τ

)−(α+β+1) ∨
(
[φ(Y )]−1τ

)−(α−β+1)
[φ(Y )]−1

)2
)

≤ (M(s− t))
2
E

((
[φ(Y )]α+β

τα+β+1
∨ [φ(Y )]α−β

τα−β+1

)2
)

≤ Ca,b (s− t)
2
,

where Ca,b =
(
M max

(
a−α−1

(
a−β ∨ bβ

)))2
E

((
[φ(Y )]α+β + [φ(Y )]α−β

)2)
.

The constant is finite by (5a). Hence, (37) becomes:

E
(
(M∗

n(s, t))
4
)

≤ 16C4

nF̄X(un)
|Tun(s)− Tun(t)|+ 2λ2C4Ca,b(s− t)2 .

Again by the mean value theorem, there exists τ∗ ∈ (s, t) such that:

E
(
(M∗

n(s, t))
4
)
≤ 16C4

nF̄X(un)
|s− t|T ′

un
(τ∗) + 2λ2C4Ca,b(s− t)2

≤ 16C4K0

nF̄X(un)

(
a−α−1

(
a−β ∨ bβ

))
|s− t|+ 2λ2C4Ca,b(s− t)2.

Hence, (41) follows by taking

Ca,b,4 = max
(
16C4K0

(
a−α−1

(
a−β ∨ bβ

))
, 2λ2C4Ca,b

)
.

Note now that the process M∗
n defined in (36d) satisfies

M∗
n(t) = M◦

n(t)−M◦◦
n (t),

where M◦
n and M◦◦

n are two non-increasing processes such that ∀ t > 0,

M◦
n(t) =

1√
k

n∑
j=1

Vj,n(t) , M◦◦
n (t) =

1√
k

n∑
j=1

F̄Z (unt/φ(Yj)) .

Lemma 7.4. Let {Xj} be the long memory stochastic volatility model with
leverage in (1). Then

max
0≤i≤ln

|M◦◦
n (a+ ti+1,n)−M◦◦

n (a+ ti,n)|
p−−−−→

n→∞
0 (42)
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where ln = [(b− a)k], ti,n := i/k and tln+1 := b−a. Note that [x] stands for the
integer part of the real number x.

Proof. It follows from (6) that

M◦◦
n (t) :=

1√
k

n∑
j=1

F̄Z (unt/φ(Yj)) =
√
k

F̄Z(un)

nF̄X(un)

n∑
j=1

Jun (t/φ(Yj)) .

Let Δi = M◦◦
n (a+ ti+1,n)−M◦◦

n (a+ ti,n). It follows that for 0 ≤ i ≤ ln−1,

|M◦◦
n (a+ ti+1,n)−M◦◦

n (a+ ti,n)|

=

∣∣∣∣M◦◦
n

(
a+

i+ 1

nF̄X(un)

)
−M◦◦

n

(
a+

i

nF̄X(un)

)∣∣∣∣
=

√
k

F̄Z(un)

nF̄X(un)

n∑
j=1

∣∣∣∣Jun

(
a+ ti+1,n

φ(Yj)

)
− Jun

(
a+ ti,n
φ(Yj)

)∣∣∣∣
≤ λ

n

n∑
j=1

∣∣∣∣Jun

(
a+ ti+1,n

φ(Yj)

)
− Jun

(
a+ ti,n
φ(Yj)

)∣∣∣∣√k,

where the last inequality holds by (9). The mean value theorem and (26b) yield
that there exists τi,n,j = τi,n,j(ω) ∈ (ti,n, ti,n+1) such that if i ≤ ln−1,

|M◦◦
n (a+ ti+1,n)−M◦◦

n (a+ ti,n)|

≤ λ
n∑

j=1

1

nF̄X(un)φ(Yj)

∣∣∣∣J ′
un

(
a+ τi,n,j
φ(Yj)

)∣∣∣∣√k

≤ λM

n
√
k

n∑
j=1

1

φ(Yj)

((
a+ τi,n,j
φ(Yj)

)−α−β−1

∨
(
a+ τi,n,j
φ(Yj)

)−α+β−1
)

≤ λM√
k
max

(
a−α−1

(
a−β ∨ bβ

)) 1

n

n∑
j=1

(
φα+β(Yj) + φα−β(Yj)

)
.

Consequently, we have

max
0≤i≤ln−1

|Δi| ≤
λM√
k
max

(
a−α−1

(
a−β ∨ bβ

))⎛⎝ 1

n

n∑
j=1

(
φα+β(Yj) + φα−β(Yj)

)⎞⎠
and the latter expression converges to zero in probability, by the Law of Large
Numbers and (5a). For i = ln, since M◦◦

n is monotone and b < a+ ln+1
nF̄X(un)

, we

obtain∣∣M◦◦
n

(
a+ tln+1,n

)
−M◦◦

n (a+ tln,n)
∣∣ = |M◦◦

n (b)−M◦◦
n (a+ tln,n)|

≤
∣∣∣∣M◦◦

n

(
a+

ln + 1

nF̄X(un)

)
−M◦◦

n

(
a+

ln
nF̄X(un)

)∣∣∣∣ .
By the same argument as above the last term converges to zero in probabil-
ity.
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We wrap up this subsection with the statement and proof of Proposition 7.5.

Proposition 7.5. Let {Xj} be the long memory stochastic volatility model with
leverage in (1). The process Mn is tight in D(0,∞).

Proof. The proof consists of verifying all three conditions of Theorem A.1, which
is a restatement of Theorem 1.1 in [9, p. 2-3]. For this, let γ = 4, δ = 2, cn =
1/nF̄X(un) and ξn = M∗

n. First, letting s = a and t → ∞ in the statement of
Lemma 7.2 we obtain via (24)

E
(
(M∗

n(a))
4
)

≤ 2λ2C4E
(
(Jun (a/φ(Y )))

2
)
+

16C4

nF̄X(un)
Tun(a)

≤ 2λ2C4C
2(β)

(
1 + a−2(α+β)E

(
φ2(α+β)(Y ) )) + o(1).

This proves (55). Second, from Lemma 7.3, if |s− t| ≥ cn = 1/k, then

E
(
(M∗

n(s, t))
4
)
≤ Ca,b,4

(
|s− t|

nF̄X(un)
+ (s− t)2

)
≤ 2Ca,b,4(s− t)2 .

This proves (56). Third, Lemma 7.4 yields (42) on the interval [a, b]. Hence, by
Theorem A.1 and the remark following, the process M∗

n is tight in D[a, b], where
0 < a < b < ∞. Since a, b are arbitrary this implies tightness on D(0,∞).

7.2.2. Long memory part

This subsection deals with the weak convergence of the long memory process
Ln defined in (14b).

Proposition 7.6. Let {Xj} be the long memory stochastic volatility model with
leverage given in (1).

• If m(1− 2d) < 1, then

n

kbn,m
Ln(t)

d−−−−→
n→∞

μφ,α(m)

m!E (φα(Y ))
T (t)ξm,d+1/2(1) in D(0,∞). (43)

• If m(1− 2d) > 1, then

√
n

k
Ln(t)

d−−−−→
n→∞

t−α σN
E (φα(Y ))

in D(0,∞), (44)

where the limiting variance is defined as follows:

σ2 =

∞∑
i=m

μ2(i)

i!
σ2
i < ∞ and σ2

i = lim
n→∞

Var

⎛⎝ 1√
n

n∑
j=1

Hi(Yj)

⎞⎠ ∈ (0,∞).
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Proof. Notice that E (V1,n(t)) = E
(
F̄Z(unt/φ(Y ))

)
. By (14b) and (6), we have

Ln(t)

F̄Z(un)
=

n∑
j=1

[Jun (t/φ(Yj))− E (Jun (t/φ(Yj)))] =

3∑
j=1

Ln,j(t), (45)

where the summands Ln,j ’s are respectively defined as follows:

Ln,1(t) :=

n∑
j=1

[Jun (t/φ(Yj))− T (t/φ(Yj))] , (46a)

Ln,2(t) :=

n∑
j=1

[T (t/φ(Yj))− E (T (t/φ(Yj)))] , (46b)

Ln,3(t) :=

n∑
j=1

[E (T (t/φ(Yj)))− E (Jun (t/φ(Yj)))] . (46c)

We start by establishing weak convergence of Ln,2. Note that (6) yields

Ln,2(t) = t−α
n∑

j=1

(φα(Yj)− E(φα(Yj))) = t−α
n∑

j=1

ψα(Yj),

where ψα(·) := φα(·)− E(φα(·)). This function is of Hermite rank m. Indeed,

μφ,α(m) = E (Hm(Y )ψα(Y )) = E (Hm(Y )φα(Y )) .

By [1, p. 223, 229], if m(1− 2d) < 1, then for t > t0 > 0,

Ln,2(t)

bn,m
=

t−α

bn,m

n∑
j=1

ψα(Yj)
d−−−−→

n→∞

μφ,α(m)

m!
T (t)ξm,d+1/2(1),

in the uniform topology on every compact subset of (0,∞). It remains to show
that Ln,1 + Ln,3 is negligible, when divided by bn,m. By stationarity of {Yj},
(29a), (4) and (5b), we have for every t0 > 0,

E

(
sup
t>t0

|Ln,1(t)|
bn,m

)
≤ n

bn,m
E

(
sup
t>t0

|Jun (t/φ(Y ))− T (t/φ(Y ))|
)

≤ C(ε)E

(
sup
t>t0

(
(t/φ(Y ))

−(κ+α+ε) ∨ (t/φ(Y ))
−(κ+α−ε)

)) n

bn,m
|η∗(un)|

≤ H(ε) sup
t>t0

(
t−(κ+α+ε) ∨ t−(κ+α−ε)

) n

bn,m
|η∗(un)| →

n→∞
0 ,

where H(ε) = C(ε) (E (φα+κ+ε(Y )) + E (φα+κ−ε(Y ))) < ∞ and does not de-

pend on n. This allows us to conclude that E

(
sup
t>t0

|Ln,1(t)|
bn,m

)
= o (1).

Finally, we deal with the third summand Ln,3. Notice that

sup
t>t0

|Ln,3(t)|
bn,m

≤ E

(
sup
t>t0

|Ln,1(t)|
bn,m

)
→

n→∞
0.
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All in all, (Ln,1 + Ln,3)/bn,m is negligible on compact subsets of (0,∞). So,

Ln(t)

bn,mF̄Z(un)E (φα(Y ))

d−−−−→
n→∞

μφ,α(m)

m!E (φα(Y ))
T (t)ξm,d+1/2(1) in D(0,∞).

Slutsky’s lemma and (7) complete the proof of (43) for the case m(1− 2d) < 1.
Now, assume that m(1 − 2d) > 1. We keep the same notation and the decom-
positions as for the previous case. By [1, p. 223, 229], if m(1− 2d) > 1, then

Ln,2(t)√
n

d−−−−→
n→∞

σt−αN in D(0,∞),

with σ ∈ (0,∞). Furthermore, it follows from (4) that

E

(
sup
t>t0

|Ln,1(t)|√
n

)
≤ K(ε) sup

t>t0

(
t−(ρ+α+ε) ∨ t−(ρ+α−ε)

) n√
n
|η∗(un)| →

n→∞
0.

The corresponding argument applies to Ln,3. Thus,

Ln(t)√
nF̄Z(un)E (φα(Y ))

d−−−−→
n→∞

t−α σN
E (φα(Y ))

in D(0,∞).

Since F̄X(un) ∼ E (φα(Y )) F̄Z(un) (by Breiman lemma) and F̄X(un) = k/n,
Slutsky’s lemma finishes the proof of (44) for m(1− 2d) > 1.

7.2.3. Conclusion of proof of Theorem 3.2

Propositions 7.1 and 7.5 imply weak convergence of the martingale part, Propo-
sition 7.6 gives weak convergence of the long memory part. The final statement
of Theorem 3.2 comes from comparing the rates of convergence of the martingale
and long memory parts.

7.3. Proof of Theorems 3.8 and 4.1: TEP with random levels

In this section we present the proofs of Theorems 3.8 and 4.1.

Proof of Theorem 3.8. Recall the notation from Definition 3.1. The process Ŝn

defined in (17) can be decomposed as follows:

Ŝn(t) = Ŝn,1(t) + Ŝn,2(t) + Ŝn,3(t),

where the summands Ŝn,j ’s are respectively defined as follows for j = 1, 2, 3:

Ŝn,1(t) = nF̄X(un)
(
T̃n (ρnt)− Tun (ρnt)

)
, (47a)

Ŝn,2(t) = nF̄X(un) (Tun (ρnt)− T (ρnt)) , (47b)

Ŝn,3(t) = nF̄X(un) (T (ρnt)− T (t)) . (47c)
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Since Ŝn,1(t) = S̃n (ρnt), T̃n (ρn) = 1 and T (ρnt) = T (ρn)T (t), then

Ŝn(t) =
(
S̃n (ρnt)− T (t)S̃n (ρn)

)
+ T (t)S̃n (ρn) + Ŝn,2(t) + Ŝn,3(t) (48)

=
(
S̃n (ρnt)− T (t)S̃n (ρn)

)
−nF̄X(un)T (t) (Tun (ρn)− T (ρn)) + Ŝn,2(t).

The “martingale-long memory Doob decomposition” in (13) yields

S̃n (ρnt)− T (t)S̃n (ρn)√
k

=

(
Mn(ρnt)− T (t)Mn(ρn)√

k

)
+

(
Ln(ρnt)− T (t)Ln(ρn)√

k

)
.

Since weak convergence to a continuous limit implies uniform convergence on
compact sets, then by virtue of (31) and (18), we conclude that

Mn(ρnt)− T (t)Mn(ρn)√
k

d−−−−→
n→∞

W (T (t))− T (t)W (1) in D(0,∞),

since Mn(ρnt)/
√
k

d−−−−→
n→∞

W (T (t)) in D(0,∞) and Mn(ρn)/
√
k

d−−−−→
n→∞

W (T (1)).

It remains to show negligibility of the second term, that is

sup
t≥t0

(
Ln(ρnt)− T (t)Ln(ρn)√

k

)
= oP (1) .

For this purpose, recall the decomposition (45) and (46a), (46b) (46c).

Ln(ρnt)− T (t)Ln(ρn)√
k

=
F̄Z(un)√

k

3∑
j=1

(Ln,j(ρnt)− T (t)Ln,j(ρn)) .

Notice that Ln,2(ρnt)− T (t)Ln,2(ρn) = 0. In what follows, set

Θn,j := sup
t≥t0

(
F̄Z(un) |Ln,j(ρnt)− T (t)Ln,j(ρn)|√

k

)
, j = 1, 3

We start dealing with negligibility of Θn,1. We have

|Ln,1(ρnt)− T (t)Ln,1(ρn)| ≤
n∑

j=1

|Jun (ρnt/φ(Yj))− T (ρnt/φ(Yj))|

+ T (t)

n∑
j=1

|Jun (ρn/φ(Yj))− T (ρn/φ(Yj))|

≤ nC(ε)Λ(t)|η∗(un)| (50)

×

⎛⎝ρ−(α+κ+ε)
n

⎛⎝ 1

n

n∑
j=1

φδ1(Yj)

⎞⎠+ ρ−(α+κ−ε)
n

⎛⎝ 1

n

n∑
j=1

φδ2(Yj)

⎞⎠⎞⎠
︸ ︷︷ ︸

ζn

,
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where δ1 = α+ κ− ε, δ2 = α+ κ+ ε and Λ(t) := t−(α+κ+ε) ∨ t−(α+κ−ε) + t−α.
Therefore using ergodicity, we obtain for all t0 > 0,

Θn,1 ≤ C(ε) sup
t≥t0

Λ(t)

√
F̄Z(un)

F̄X(un)

√
nF̄Z(un)|η∗(un)|ζn = oP (1).

Furthermore since ρn = 1 + oP (1), so are ρ
−(α+κ+ε)
n and ρ

−(α+κ−ε)
n , by the

Continuous Mapping Theorem. Hence, ζn = OP (1). On account of (7) and (4),√
F̄Z(un)

F̄X(un)

√
nF̄Z(un)|η∗(un)| = o(1).

As for the third term, we use (29a) and Jensen’s inequality to get

|Ln,3(t)| ≤ λ0n|η∗(un)|
(
t−(α+κ+ε) ∨ t−(α+κ−ε)

)
,

for some finite constant λ0. Therefore, we have

|Ln,3(ρnt)− T (t)Ln,3(ρn)| ≤ λ0n|η∗(un)|Λ(t)
(
ρ−(α+κ+ε)
n ∨ ρ−(α+κ−ε)

n

)
. (51)

The same argument as the one used for Θn,1 yields ∀ t0 > 0, Θn,3 = oP (1).

Proof of Theorem 4.1. To prove (20), we need to check the assumptions of The-
orem 25.5 in [3, p. 332]. As such, let M ≥ 1. We have

1√
k

∫ ∞

1

Ŝn(t)

tr
dt =

1√
k

∫ M

1

Ŝn(t)

tr
dt+

1√
k

∫ ∞

M

Ŝn(t)

tr
dt .

Since the integral functionals are continuous only over compact intervals, then
the continuous mapping theorem and (19) yield

1√
k

∫ M

1

Ŝn(t)

tr
dt

d−−−−→
n→∞

∫ M

1

W (T (t))−W (1)T (t)

tr
dt.

Since α > 2(1− r), then we have

V ar

(∫ ∞

1

W (T (t))−W (1)T (t)

tr
dt

)
=V ar

(∫ ∞

1

W (T (t))

tr
dt

)
+

V ar (W (1))

(α+ r − 1)2

− 2

α+ r − 1
Cov

(
W (1),

∫ ∞

1

W (T (t))

tr
dt

)
=

α

(α+ r − 1)2(α+ 2r − 2)
< ∞.

This implies that the limiting process in (20) is Gaussian since it is a continuous
linear functional of a Gaussian process. In addition, we have

lim
M→∞

V ar

(∫ ∞

M

W (T (t))−W (1)T (t)

tr
dt

)
= 0.
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Therefore, we conclude the following∫ M

1

W (T (t))−W (1)T (t)

tr
dt

d−−−−→
M→∞

∫ ∞

1

W (T (t))−W (1)T (t)

tr
dt.

Thus, Theorem 25.5 in [3, p. 332] suggests that it remains to show ∀ ε ≥ 0,

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣ 1√
k

∫ ∞

M

Ŝn(t)

tr
dt

∣∣∣∣∣ ≥ ε

)
= 0. (52)

For this purpose, we consider (48) and (47b). We have for all ε ≥ 0,

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣ 1√
k

∫ ∞

M

Ŝn(t)

tr
dt

∣∣∣∣∣ ≥ ε

)

≤ lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣
∫ ∞

M

S̃n (ρnt)− T (t)S̃n (ρn)

tr
√
k

dt

∣∣∣∣∣ ≥ ε

3

)

+ lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∫ ∞

M

nF̄X(un)T (t) (Tun (ρn)− T (ρn))

tr
√
k

dt

∣∣∣∣ ≥ ε

3

)
+ lim

M→∞
lim sup
n→∞

P

(∣∣∣∣∣
∫ ∞

M

Ŝn,2(t)

tr
√
k

dt

∣∣∣∣∣ ≥ ε

3

)
So, (52) holds if these three upper bounds vanish. For ease of notation, let

AM
n : = P

(∣∣∣∣∣
∫ ∞

M

S̃n(ρnt)− T (t)S̃n(ρn)

tr
√
k

dt

∣∣∣∣∣ ≥ ε

)

= P

(
|ρn|r−1

∣∣∣∣∣
∫ ∞

Mρn

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

)
.

Since ρn = 1 + oP (1), then it suffices to deal with

ÃM
n = P

(∣∣∣∣∣
∫ ∞

Mρn

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

)
.

We have ÃM
n ≤ ÃM,1

n + ÃM,2
n , where ÃM,j

n , j = 1, 2 are defined by:

ÃM,1
n = P

(∣∣∣∣∣
∫ M

Mρn

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

2

)
, (53a)

ÃM,2
n = P

(∣∣∣∣∣
∫ ∞

M

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

2

)
· (53b)

We start with the summand defined in (53a). Let δ ≥ 0. We have

ÃM,1
n ≤ P

(∣∣∣∣∣
∫ M

Mρn

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

2
, |ρn − 1| < δ

)
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+ P

(∣∣∣∣∣
∫ M

Mρn

S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

dv

∣∣∣∣∣ ≥ ε

2
, |ρn − 1| ≥ δ

)

≤ P

(∫ M(1+δ)

M(1−δ)

∣∣∣∣∣ S̃n(v)− T (v/ρn) S̃n(ρn)

vr
√
k

∣∣∣∣∣ dv ≥ ε

2

)
+ P (|ρn − 1| ≥ δ) .

Since ρn = 1 + oP (1), then lim sup
n→∞

P (|ρn − 1| ≥ δ) = 0. Therefore, we get

lim
M→∞

lim sup
n→∞

ÃM,1
n ≤ 2

ε
lim

M→∞

∫ M(1+δ)

M(1−δ)

E (|W (T (v))− T (v)W (1)|)
vr

dv

≤ 2

ε
lim

M→∞

√
2/π

∫ M(1+δ)

M(1−δ)

(
v−(α/2+r) + v−(α+r)

)
dv = 0,

as long as α > 2(1 − r). Note that these two facts have been used in the last

inequality: W (T (v))
d
= v−α/2N and E|N | =

√
2/π. Thus, ÃM,1

n is negligible.
Now, we deal with the summand defined in (53b). By virtue of (13), we have

ÃM,2
n ≤ P

(∣∣∣∣∫ ∞

M

Mn(v)− T (v/ρn)Mn(ρn)

vr
√
k

dv

∣∣∣∣ ≥ ε

4

)
(54a)

+P

(∣∣∣∣∫ ∞

M

Ln(v)− T (v/ρn)Ln(ρn)

vr
√
k

dv

∣∣∣∣ ≥ ε

4

)
. (54b)

We deal with the martingale part (54a) first. We have

P

(∣∣∣∣∫ ∞

M

Mn(v)− T (v/ρn)Mn(ρn)

vr
√
k

dv

∣∣∣∣ ≥ ε

4

)
≤ BM,1

n +BM,2
n ,

where the summands BM,j
n ’s are respectively defined as follows for j = 1, 2:

BM,1
n = P

(∣∣∣∣∫ ∞

M

Mn(v)

vr
√
k

dv

∣∣∣∣ ≥ ε

8

)
,

BM,2
n = P

(∣∣∣∣Mn(ρn)√
k

∣∣∣∣ ραn ∫ ∞

M

dv

vα+r
≥ ε

8

)
.

Since {ΔjMn} is a stationary martingale difference sequence, then

BM,1
n ≤ 64

ε2k

n∑
j=1

V ar

(∫ ∞

M

ΔjMn(v)

vr
dv

)
≤ 64n

ε2k
E

((∫ ∞

M

Δ1Mn(v)

vr
dv

)2
)

≤ 128

ε2

∫ ∞

M

(∫ ∞

s

E (V1,n(t))

trF̄X(un)
dt

)
ds

sr

=
128

ε2

∫ ∞

M

(∫ ∞

s

E
(
F̄Z(unt/φ(Y ))

)
trF̄X(un)

dt

)
ds

sr

≤ 128λCk

kε2
E

(∫ ∞

M

∫ ∞

s

t−α+εφα−ε(Y ) ∨ t−α−εφα+ε(Y )

tr
dt

)
ds

sr
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≤ 128λC

ε2
E

(
φα−ε(Y ) + φα+ε(Y )

)(∫ ∞

M

∫ ∞

s

t−α+ε

tr
dt

)
ds

sr

=
1

ε2
O(M−α+ε−2r+2) .

As M → ∞, the latter expression vanishes whenever α > 2(1 − r) and ε <
α− 2(1− r). Since BM,1

n decreases as ε increases, it is negligible for all ε > 0.
We can omit ραn when dealing with BM,2

n since ρn = 1 + oP (1). So,

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣Mn(ρn)√
k

∣∣∣∣ > (α+ r − 1)Mα+r−1ε/8

)
= lim

M→∞
P

(
|W (1)| > (α+ r − 1)Mα+r−1ε/8

)
= 0,

since α > 2(1− r) > 0. So, the term BM,2
n is negligible.

Now, we deal with the long memory part, (54b). Recall (46a)-(46c). Then,

P

(∣∣∣∣∫ ∞

M

Ln(v)− T (v/ρn)Ln(ρn)

vr
√
k

dv

∣∣∣∣ ≥ ε

4

)
≤

3∑
j=1

IMn,j ,

where the summands In,j , j = 1, 2, 3 are defined by:

IMn,j := P

(
F̄Z(un)

∫ ∞

M

|Ln,j(v)− T (v/ρn)Ln,j(ρn)|
vr
√
k

dv ≥ ε

12

)
.

Since |Ln,2(ρnt)− T (t)Ln,2(ρn)| = 0, then IMn,2 = 0. Now consider IMn,1.

IMn,1 ≤ P

(
C(ε)nF̄Z(un)|η∗(un)|√

k
ζn

∫ ∞

M

Λ(v/ρn)

vr
dv ≥ ε

12

)
.

By ergodicity, ζn = OP (1). Notice also that∫ ∞

M

Λ(v/ρn)

vr
dv ≤ ραn

∫ ∞

M

v−(α+r) dv + ρκ+α+ε
n

∫ ∞

M

v−(κ+α+ε+r) dv

+ ρκ+α−ε
n

∫ ∞

M

v−(κ+α−ε+r) dv = OP (1)O(M−(α+r)+ε+1) .

Since
√
k|η∗(un)| → 0, as n → ∞ and (7) holds, then we conclude that

C(ε)nF̄Z(un)|η∗(un)|√
k

(∫ ∞

M

Λ(v/ρn)

vr
dv

)
ζn

p−−−−→
n→∞

0.

This shows that lim
n→∞

IMn,1 = 0, for all M ≥ 1. Finally, consider IMn,3. By (51),

IMn,3 = P

(
F̄Z(un)

∫ ∞

M

|Ln,3(v)− T (v/ρn)Ln,3(ρn)|
vrk

≥ ε

12

)
≤ P

(
nλ0F̄Z(un)|η∗(un)|√

k

(
ρ−(κ+α+ε)
n ∨ ρ−(κ+α−ε)

n

)∫ ∞

M

Λ(v/ρn)

vr
dv ≥ ε

12

)
.
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Hence, IMn,3 is negligible by the same argument as for IMn,1. This means that (54b)

is negligible. In summary, Ã2
n,M is negligible.

To complete the proof, we are left to deal with the two remaining upper
bounds of (52). Notice that

√
k {Tun(ρn)− T (ρn)} = oP (1), by (30). In addition,

using the fact that
∫∞
M

t−(α+r)dt < ∞, we obtain

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∫ ∞

M

kT (t) (Tun (ρn)− T (ρn))

tr
√
k

dt

∣∣∣∣ ≥ ε

3

)
= 0.

Recall (47b). The change of variable z = ρnt and (29b) yield∫ ∞

M

Ŝn,2(t)

tr
√
k

dt = ρr−1
n

√
k

∫ ∞

ρnM

∣∣∣∣Tun(z)− T (z)

zr

∣∣∣∣ dz

≤ C1ρ
r−1
n

√
k|η̃(un)|

∫ ∞

ρnM

(
z−α−κ−r+ε ∨ z−α−κ−r−ε

)
dv

= C1ρ
r−1
n

√
k|η̃(un)|

(ρnM)
−(α+κ+r−ε)+1

α+ κ+ r − ε− 1
·

Since α > 2(1 − r), α + κ + r − 1 > 0, ρn = 1 + oP (1) and
√
k|η̃(un)| → 0, as

n → ∞, by (28) and (4), then we conclude that

lim
M→∞

lim sup
n→∞

P

(∣∣∣∣∣
∫ ∞

M

Ŝn,2(t)

tr
√
k

dt

∣∣∣∣∣ ≥ ε

3

)
= 0.

Appendix A

Theorem A.1. [9, p.2] Let (ξn)n≥1 be real valued stochastic processes defined
on [0, 1] and whose paths are in the Skorokhod space D[0, 1] almost surely.
Furthermore, let all the finite dimensional distributions of (ξn)n converge, as
n → ∞, to the corresponding ones of a process ξ. Assume that there are con-
stants 1 < δ ≤ γ, c > 0, and a nonnegative sequence cn → 0, as n → ∞ such
that, for all n ≥ 1, we have

E (|ξn(0)|γ) ≤ c (55)

E (|ξn(t)− ξn(s)|γ) ≤ c|t− s|δ, (56)

whenever |t − s| ≥ cn. Furthermore, assume that the processes (ξn)n can be
written as the differences of nondecreasing processes (ξ◦n)n and (ξ◦◦n )n, and let
the processes (ξ◦◦n )n be such that:

max
j=1,...,ln

|ξ◦◦n (tj+1)− ξ◦◦n (tj)|
p−−−−→

n→∞
0,

where tj = jcn, for all j = 0, 1, . . . , ln with ln := [1/cn] and tln+1 := 1. Then
the sequence of processes (ξn)n converges weakly to ξ in D[0, 1]. Moreover, the
limiting stochastic process ξ has continuous paths almost surely.

We note that the statement above is also valid for nonincreasing processes
(ξ◦n)n and (ξ◦◦n )n and is easily extended to processes on any interval [a, b].
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