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Abstract: We study estimation and prediction of Gaussian processes with
covariance model belonging to the generalized Cauchy (GC) family, under
fixed domain asymptotics. Gaussian processes with this kind of covari-
ance function provide separate characterization of fractal dimension and
long range dependence, an appealing feature in many physical, biological
or geological systems. The results of the paper are classified into three
parts.

In the first part, we characterize the equivalence of two Gaussian mea-
sures with GC covariance functions. Then we provide sufficient conditions
for the equivalence of two Gaussian measures with Matérn (MT) and GC
covariance functions and two Gaussian measures with Generalized Wend-
land (GW) and GC covariance functions.

In the second part, we establish strong consistency and asymptotic dis-
tribution of the maximum likelihood estimator of the microergodic param-
eter associated to GC covariance model, under fixed domain asymptotics.
The last part focuses on optimal prediction with GC model and specifically,
we give conditions for asymptotic efficiency prediction and asymptotically
correct estimation of mean square error using a misspecified GC, MT or
GW model.

Our findings are illustrated through a simulation study: the first com-
pares the finite sample behavior of the maximum likelihood estimation of
the microergodic parameter of the GC model with the given asymptotic
distribution. We then compare the finite-sample behavior of the predic-
tion and its associated mean square error when the true model is GC and
the prediction is performed using the true model and a misspecified GW
model.
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1. Introduction

Two fundamental steps in geostatistical analysis are estimating the parameters
of a Gaussian stochastic process and predicting the process at new locations. In
both steps, the covariance function covers a central aspect. For instance, mean
square error optimal prediction at an unobserved site depends on the knowledge
of the covariance function. Since a covariance function must be positive definite,
practical estimation generally requires the selection of some parametric families
of covariances and the corresponding estimation of these parameters.

The maximum likelihood (ML) estimation method is generally considered the
best method for estimating the parameters of covariance models. Nevertheless,
the study of the asymptotics properties of ML estimation, is complicated by
the fact that more than one asymptotic frameworks can be considered when
observing a single realization [37]. The increasing domain asymptotic framework
corresponds to the case where the sampling domain increases with the number
of observed data and where the distance between any two sampling locations
is bounded away from 0. The fixed domain asymptotic framework, sometimes
called infill asymptotics [6], corresponds to the case where more and more data
are observed in some fixed bounded sampling domain.

General results for the asymptotics properties of the ML estimator, under
increasing domain asymptotic framework and some mild regularity conditions,
are given in [21] and [3]. Specifically, they show that ML estimates are consistent
and asymptotically Gaussian with asymptotic covariance matrix equal to the
inverse of the Fisher information matrix.

Under fixed domain asymptotics, no general results are available for the
asymptotic properties of ML estimation. Yet, some results have been obtained
when assuming the covariance belongs to Matérn (MT) [22] or Generalized
Wendland (GW) [12] models. Both families allow for a continuous parameteri-
zation of smoothess of the underlying Gaussian process, the GW family being
additionally compactly supported [4]. Specifically, when the smoothness param-
eter is known and fixed, not all parameters can be estimated consistently, when
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d = 1, 2, 3, with d the dimension of the Euclidean space. Instead, the ratio of
variance and scale (to the power of a function of the smoothing parameter),
sometimes called microergodic parameter is consistently estimable. This follows
from results given in [36] for the MT model and [4] for the GW model.

Asymptotic results for ML estimation of the microergodic parameter of the
MT model can be found in [36], [7], [32] when the scale parameter is assumed
known and fixed. [19] give strong consistency and asymptotic distribution of
the microergodic parameter when estimating jointly the scale and the variance
parameters and by means of a simulation study they show that the asymptotic
approximation is considerably improved in this case. Similar results for the
microergodic parameter of the GW model can be found in [4].

In terms of prediction, under fixed domain asymptotic, [27, 28] provides con-
ditions under which optimal predictions under a misspecified covariance function
are asymptotically efficient, and mean square errors converge almost surely to
their targets. Stein’s conditions translates into the fact that the true and the
misspecified covariances must be compatible, that is the induced Gaussian mea-
sures are equivalent [26, 17]. A weaker condition, based on ratio of spectral
densities, is given in [29].

In this paper we study ML estimation and prediction of Gaussian processes,
under fixed domain asymptotics, using Generalized Cauchy (GC) covariance
model. GC family of covariance models has been proposed in [13] and deeply
studied in [20]. It is particularly attractive because Gaussian processes with
such covariance function allow for any combination of fractal dimension and
Hurst coefficient, an appealing feature in many physical, biological or geological
systems (see [14] and [13] and the references therein).

In particular, we offer the following results. First, we characterize the equiva-
lence of two Gaussian measures with covariance functions belonging to the GC
family and sharing the same smoothness parameter. A consequence of this result
is that, as in MT and GW covariance models, when the smoothness parameter is
known and fixed, not all parameters can be estimated consistently, under fixed
domain asymptotics. Then we give sufficient conditions for the equivalence of
two Gaussian measures where the state of truth is represented by a member
of the MT or GC family and the other Gaussian measure has a GC covariance
model.

We then assess the asymptotic properties of the ML estimator of the mi-
croergodic parameter associated with the GC family. Specifically, for a fixed
smoothness parameter, we establish strong consistency and asymptotic distri-
bution of the microergodic parameter assuming the scale parameter fixed and
known. Then, we generalize these results when jointly estimating with ML the
variance and the scale parameter.

Finally, using results in [27] and [29], we study the implications of our results
on prediction, under fixed domain asymptotics. One remarkable implication is
that when the true covariance belongs to the GC family, asymptotic efficiency
prediction and asymptotically correct estimation of mean square error can be
achieved using a compatible compactly supported GW covariance model.

The remainder of the paper is organized as follows. In Section 2 we re-
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view some results about MT, GW and GC covariance models. In Section 3
we first characterize the equivalence of Gaussian measure under the GC co-
variance model. Then we give sufficient conditions for the equivalence of two
Gaussian measures with MT and GC and two Gaussian measures with GW and
GC covariance models. In Section 4 we establish strong consistency and asymp-
totic distribution of the ML estimation of the microergodic parameter of the GC
models, under fixed domain asymptotics. Section 5 discuss the consequences of
our results in terms of prediction, under fixed domain asymptotics. Section 6
provides two simulation studies: the first show how well the given asymptotic
distribution of the microergodic parameter apply to finite sample cases, when
estimating with ML a GC covariance model under fixed domain asymptotics.
The second compare the finite-sample behavior of the prediction when using two
compatible GC and GW models, when the true model is GC. The final Section
provides a discussion on the consequence of our results and open problems for
future research.

2. Matérn, Generalized Wendland and Generalized Cauchy
covariance models

This section depicts the main features of the three covariance models involved
in the paper. We denote {Z(s), s ∈ D} a zero mean Gaussian stochastic process
on a bounded set D of Rd, with stationary covariance function C : Rd → R. We
consider the family Φd of continuous mappings φ : [0,∞) → R with 0 < φ(0) <
∞, such that

cov (Z(s), Z(s′)) = C(s′ − s) = φ(‖s′ − s‖),

with s, s′ ∈ D, and ‖ · ‖ denoting the Euclidean norm. Gaussian processes with
such covariance functions are called weakly stationary and isotropic.

[25] characterized the family Φd as being scale mixtures of the characteristic
functions of random vectors uniformly distributed on the spherical shell of Rd,
with any probability measure, F :

φ(r) =

∫ ∞

0

Ωd(rξ)F (dξ), r ≥ 0,

with Ωd(r) = r−(d−2)/2J(d−2)/2(r) and Jν is Bessel function of the first kind of
order ν. The family Φd is nested, with the inclusion relation Φ1 ⊃ Φ2 ⊃ . . . ⊃
Φ∞ being strict, and where Φ∞ :=

⋂
d≥1 Φd is the family of mappings φ whose

radial version is positive definite on any d-dimensional Euclidean space.
The MT function, defined as:

Mν,α,σ2(r) = σ2 2
1−ν

Γ(ν)

( r

α

)ν

Kν

( r

α

)
, r ≥ 0,

is a member of the family Φ∞ for any positive values of α and ν. Here, Kν is a
modified Bessel function of the second kind of order ν, σ2 is the variance and α
a positive scaling parameter.
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We also define Φb
d as the family that consists of members of Φd being ad-

ditionally compactly supported on a given interval, [0, b], b > 0. Clearly, their
radial versions are compactly supported over balls of Rd with radius b. For a
given κ > 0, the GW correlation function is defined as [4, 12]:

ϕμ,κ,β,σ2(r) =

{
σ2

B(2κ,μ+1)

∫ 1

r/β
u(u2 − (r/β)2)κ−1(1− u)μ du, 0 ≤ r/β < 1,

0, r/β ≥ 1,

(2.1)
where B denotes the beta function, σ2 is the variance and β > 0 is the compact
support. Equivalent representations of (2.1) in terms of Gauss hypergeometric
function or Legendre polynomials are given in [16]. Closed form solutions of
integral (2.1) can be obtained when κ = k with k ∈ N, the so called original
Wendland functions [33], and, using some results in [24], when κ = k+0.5, the
so called missing Wendland functions.

Arguments in [12] and [35] show that, for a given κ > 0, ϕμ,κ,β,σ2 ∈ Φβ
d if

and only if μ ≥ (d+ 1)/2 + κ.
In this special case κ = 0 the GW correlation function is defined as:

ϕμ,0,β,σ2(r) = (1− r/β)
μ
+ =

{
(1− r)

μ
, 0 ≤ r/β < 1,

0, r/β ≥ 1,

and arguments in [15] show that ϕμ,0,β,σ2 ∈ Φ1
d if and only if μ ≥ (d+ 1)/2.

The parameters ν > 0 and κ ≥ 0 are crucial for the differentiability at
the origin and, as a consequence, for the degree of the differentiability of the
associated sample paths in the MT and GW models. In particular for a positive
integer k, the sample paths of a Gaussian process are k times differentiable if
and only if ν > k in the MT case and if and only if κ > k−1/2 in the GW case.

The smoothness of a Gaussian process can also be described via the Hausdorff
or fractal dimension of a sample path. The fractal dimension D ∈ [d, d+ 1) is a
measure of the roughness for non-differentiable Gaussian processes and higher
values indicating rougher surfaces. For a given covariance function φ ∈ Φd if
1 − φ(r) ∼ rχ as r → 0 for some χ ∈ (0, 2] then the sample paths of the
associated random process have fractal dimension D = d + 1 − χ/2. Here χ
is the so called fractal index that governs the roughness of sample paths of a
non-differentiable Gaussian process.

In the case of a MT model χ = 2ν so D = d + 1 − ν if 0 < ν < 1 and
d otherwise [2, 14]. Thus the MT model permits the full range of allowable
values for the fractal dimension. In the case of GW family χ = 2κ + 1, so that
in this case D = d + 0.5 − κ if 0 ≤ κ < 0.5 and d otherwise. Thus the GW
model does not allow to cover the full range of allowable values for the fractal
dimension.

Long-memory dependence can be defined trough the asymptotic behavior of
the covariance function at infinity. Specifically, for a given covariance function
φ ∈ Φd, if the power-law φ(r) ∼ r−ε+d as r → ∞ holds for some ε ∈ (0, d] the
stochastic process is said to have long memory with Hurst coefficient H = ε/2.
MT and GW covariance models do not posses this feature.
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A celebrated family of members of Φ∞ is the GC class [13], defined as:

Cδ,λ,γ,σ2(r) = σ2
(
1 + (r/γ)δ

)−λ/δ
, r ≥ 0, (2.2)

where the conditions δ ∈ (0, 2] and λ > 0, γ > 0, σ2 > 0 are necessary and
sufficient for Cδ,λ,γ,σ2 ∈ Φ∞. The parameter δ is crucial for the differentiability
at the origin and, as a consequence, for the degree of the differentiability of
the associated sample paths. Specifically, for δ = 2, they are infinitely times
differentiable and they are not differentiable for δ ∈ (0, 2).

The GC family represents a breaking point with respect to earlier litera-
ture based on the assumption of self similarity, since it decouples the fractal
dimension and the Hurst effect. Specifically, the sample paths of the associated
stochastic process have fractal dimension D = d + 1 − δ/2 for δ ∈ (0, 2) and if
λ ∈ (0, d] it has long memory with Hurst coefficient H = λ/2. Thus, D and H
may vary independently of each other [13, 20].

Fourier transforms of radial versions of members of Φd, for a given d, have
a simple expression, as reported in [30] and [34]. For a member φ of the family
Φd, we define its isotropic spectral density as

φ̂(z) =
z1−d/2

(2π)d

∫ ∞

0

ud/2Jd/2−1(uz)φ(u)du, z ≥ 0, (2.3)

and through the paper we use the notation Ĉδ,λ,γ,σ2 , M̂ν,α,σ2 and ϕ̂μ,κ,β,σ2 for
the spectral density associated with Cδ,λ,γ,σ2 , Mν,α,σ2 and ϕμ,κ,β,σ2 . A well-
known result about the spectral density of the Matérn model is the following:

M̂ν,α,σ2(z) =
Γ(ν + d/2)

πd/2Γ(ν)

σ2αd

(1 + α2z2)ν+d/2
, z ≥ 0. (2.4)

Define the function 1F2 as:

1F2(a; b, c; z) =

∞∑
k=0

(a)kz
k

(b)k(c)kk!
, z ∈ R,

which is a special case of the generalized hypergeometric functions qFp [1], with
(q)k = Γ(q + k)/Γ(q) for k ∈ N ∪ {0}, being the Pochhammer symbol. The
spectral density of ϕμ,κ,β,σ2 for κ ≥ 0 is given by [4]:

ϕ̂μ,κ,β,σ2(z) = σ2Lβd
1F2

(
λ;λ+

μ

2
, λ+

μ

2
+

1

2
;− (zβ)2

4

)
, z ≥ 0 (2.5)

where λ = (d + 1)/2 + κ, and L = (Γ(2κ + μ + 1)Γ(κ)Γ(2κ + d))(2dπ
d
2Γ(κ +

d
2 )Γ(μ+ 2λ)Γ(2κ))−1.

For two given functions g1(x) and g2(x), with g1(x) � g2(x) we mean that
there exist two constants c and C such that 0 < c < C < ∞ and c|g2(x)| ≤
|g1(x)| ≤ C|g2(x)| for each x. The next result follows from [20] and describe the
spectral density of the GC covariance function and its asymptotic behaviour.
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Theorem 1. Let Cδ,λ,γ,σ2 be the function defined at Equation (2.2). Then, for
γ > 0, σ2 > 0, λ > 0, δ ∈ (0, 2) and z > 0:

1.

Ĉδ,λ,γ,σ2(z) = − σ2γd/2+1z−d

2d/2−1πd/2+1
Im

∫ ∞

0

K(d−2)/2(γt)

(1 + exp(iπδ2 )(t/z)δ)λ/δ
td/2dt,

2.
Ĉδ,λ,γ,σ2(z) = �z−(d+δ) −O(z−(d+2δ)) for z → ∞,

3.
Ĉδ,λ,γ,σ2(z) � z−(d+δ) for z → ∞,

where � =
2δσ2λΓ( δ+d

2 )Γ( δ+2
2 ) sin(πδ

2 )

δγδπ
d
2
+1

.

The existence of the spectral density (2.3) is guaranteed if the integral on
the right part of (2.3) is convergent. If the integral does not converge, a gener-
alized covariance function should be considered and the spectral density must
be defined as the Fourier transform of a covariance function in the Schwartz
space of test functions [11]. [20] show that if λ ∈ (0, d], i.e. under long range

depeendence, Ĉδ,λ,γ,σ2(z) diverge when z → 0+.

3. Equivalence of Gaussian measures with Generalized Cauchy,
Matérn and Generalized Wendland covariance models

Equivalence and orthogonality of probability measures are useful tools when as-
sessing the asymptotic properties of both prediction and estimation for stochas-
tic processes. Denote with Pi, i = 0, 1, two probability measures defined on
the same measurable space {Ω,F}. P0 and P1 are called equivalent (denoted
P0 ≡ P1) if P1(A) = 1 for any A ∈ F implies P0(A) = 1 and vice versa. On the
other hand, P0 and P1 are orthogonal (denoted P0 ⊥ P1) if there exists an event
A such that P1(A) = 1 but P0(A) = 0. For a stochastic process {Z(s), s ∈ R

d},
to define previous concepts, we restrict the event A to the σ-algebra generated
by {Z(s), s ∈ D} where D ⊂ R

d. We emphasize this restriction by saying that
the two measures are equivalent on the paths of {Z(s), s ∈ D}.

Gaussian measures are completely characterized by their mean and covariance
function. We write P (ρ) for a Gaussian measure with zero mean and covariance
function ρ. It is well known that two Gaussian measures are either equivalent
or orthogonal on the paths of {Z(s), s ∈ D} [17].

Let P (ρi), i = 0, 1 be two zero mean Gaussian measures with isotropic co-
variance function ρi and associated spectral density ρ̂i, i = 0, 1, as defined
through (2.3). Using results in [26] and [17], [31] has shown that, if for some
a > 0, ρ̂0(z)z

a is bounded away from 0 and ∞ as z → ∞, and for some finite
and positive c, ∫ ∞

c

zd−1

{
ρ̂1(z)− ρ̂0(z)

ρ̂0(z)

}2

dz < ∞, (3.1)
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then for any bounded subset D ⊂ R
d, P (ρ0) ≡ P (ρ1) on the paths of Z(s), s ∈

D. For the rest of the paper, we denote with P (Mν,α,σ2), P (ϕμ,κ,β,σ2),
P (Cδ,λ,γ,σ2) a zero mean Gaussian measure induced by a MT, GW and GC
covariance function respectively. The following Theorem is due to [36]. It char-
acterizes the compatibility of two MT covariance models sharing a common
smoothness parameter ν.

Theorem 2. For a given ν > 0, let P (Mν,αi,σ2
i
), i = 0, 1, be two zero mean

Gaussian measures. For any bounded infinite set D ⊂ R
d, d = 1, 2, 3,

P (Mν,α0,σ2
0
) ≡ P (Mν,α1,σ2

1
) on the paths of Z(s), s ∈ D, if and only if

σ2
0

α2ν
0

=
σ2
1

α2ν
1

. (3.2)

The following Theorem is a generalization of Theorem 4 in [4] and it char-
acterizes the compatibility of two GW covariance models sharing a common
smoothness parameter κ. We omit the proof since the result can be obtained
using the same arguments.

Theorem 3. For a given κ ≥ 0, let P (ϕμi,κ,βi,σ2
i
), i = 0, 1, be two zero mean

Gaussian measures and let μi > d+κ+1/2. For any bounded infinite set D ⊂ R
d,

d = 1, 2, 3, P (ϕμ0,κ,β0,σ2
0
) ≡ P (ϕμ1,κ,β1,σ2

1
) on the paths of Z(s), s ∈ D if and

only if
σ2
0

β2κ+1
0

μ0 =
σ2
1

β2κ+1
1

μ1. (3.3)

The first relevant result of this paper concerns the characterization of the
compatibility of two GC functions sharing a common smoothness parameter.

Theorem 4. For a given δ ∈ (d/2, 2), let P (Cδ,λi,γi,σ2
i
) i = 0, 1 be two zero

mean Gaussian measures. For any bounded infinite set D ⊂ R
d, d = 1, 2, 3,

P (Cδ,λ0,γ0,σ2
0
) ≡ P (Cδ,λ1,γ1,σ2

1
) on the paths of Z(s), s ∈ D if and only if

σ2
0

γδ
0

λ0 =
σ2
1

γδ
1

λ1. (3.4)

Proof. Let us start with the sufficient part of the assertion. From Theorem 1
point 3, k < zd+δĈδ,λ0,γ0,σ2

0
(z) < K as z → ∞. Let

B(z) :=
Ĉδ,λ1,γ1,σ2

1
(z)− Ĉδ,λ0,γ0,σ2

0
(z)

Ĉδ,λ0,γ0,σ2
0
(z)

.

In order to prove the sufficient part, we need to find conditions such that for
some positive and finite c, ∫ ∞

c

zd−1B2(z)dz < ∞ (3.5)
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We proceed by direct construction, and, using Theorem 1 Point 2 we find that
as z → ∞,

|B(z)| ≤ zd+δ

k
|�1z−(d+δ) −O(z−(d+2δ))− �0z

−(d+δ) +O(z−(d+2δ))|

≤ 1

k
|�1 − �0 +O(z−δ)|

where �i =
2δσ2

i λiΓ(
δ+d
2 )Γ( δ+2

2 ) sin(πδ
2 )

δγδ
i π

d
2
+1

, with i = 0, 1.

Then we obtain,∫ ∞

c

zd−1B2(z)dz ≤ zd+δ

k2

∫ ∞

c

zd−1
(
�1 − �0 +O(z−δ)

)2
dz

We conclude that (3.5) is true if δ > d/2 and �0 = �1. This last condition
implies (3.4). Moreover since δ < 2, the condition δ > d/2 can be satisfied only
for d = 1, 2, 3. The sufficient part of our claim is thus proved. The necessary
part follows the arguments in the proof of [36].

An immediate consequence of Theorem 4 is that, for a fixed δ ∈ (d/2, 2), the
parameters λ, γ and σ2 cannot be estimated consistently. Nevertheless the mi-
croergodic parameter σ2λ/γδ is consistently estimable. In Section 4, we establish
the asymptotic properties of ML estimation associated with the microergodic
parameter of the GC model.

The second relevant result of this paper give sufficient conditions for the
compatibility of a GC and a MT covariance model.

Theorem 5. For given δ ∈ (d/2, 2), let P (Cδ,λ1,γ1,σ2
1
) and P (Mν,α,σ2

0
) be two

zero mean Gaussian measures. If ν = δ/2 and

σ2
0

α2ν
=

(
Γ2(δ/2) sin(πδ/2)

21−δπ

)
σ2
1

γδ
1

λ1, (3.6)

then for any bounded infinite set D ⊂ R
d, d=1, 2, 3, P (Mν,α,σ2

0
)≡P (Cδ,λ1,γ1,σ2

1
)

on the paths of Z(s), s ∈ D,

Proof. The spectral density of the MT model is given by:

M̂ν,α,σ2
0
(z) =

Γ(ν + d/2)

πd/2Γ(ν)

σ2αd

(1 + α2z2)ν+d/2
, z ≥ 0. (3.7)

It is known that M̂ν,α,σ2
0
(z)za is bounded away from 0 and ∞ as z → ∞ for

some a > 0 [36]. Let

K(z) :=
Ĉδ,λ1,γ1,σ2

1
(z)− M̂ν,α,σ2

0
(z)

M̂ν,α,σ2
0
(z)

.
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In order to prove the sufficient part we need to find conditions such that for
some positive and finite c, ∫ ∞

c

zd−1K2(z)dz < ∞. (3.8)

Let �−1
2 =

Γ(ν+d/2)σ2
0α

−2ν

πd/2Γ(ν)
. Using asymptotic expansion of (3.7) and Theo-

rem 1, point 2, as z → ∞:

K(z) =
∣∣∣�−1

2

[
�1z

−(d+δ) −O(z−(d+2δ))](α−2 + z2)ν+
d
2 − 1

∣∣∣
=

∣∣∣�−1
2

[
�1z

−(d+δ) −O(z−(d+2δ))]z2ν+d((αz)−2 + 1)ν+
d
2 − 1

∣∣∣
=

∣∣∣�−1
2

[
�1z

−(d+δ) −O(z−(d+2δ))]z2ν+d
[
1 + (ν + d/2)(αz)−2

+O(z−2)
]
− 1

∣∣∣
=

∣∣∣�−1
2 �1z

2ν−δ − 1 + �−1
2 �1(ν + d/2)α−2z2ν−δ−2 +O(z2ν−δ−2)

−O(z2ν−2δ)−O(z2ν−2δ−2)
∣∣∣

≤
∣∣∣�−1

2 �1z
2ν−δ − 1

∣∣∣+ �−1
2 �1(ν + d/2)α−2z2ν−δ−2 +O(z2ν−2δ)

+O(z2ν−2δ−2) +O(z2ν−δ−2).

Then, if 2ν = δ and �−1
2 �1 = 1 we obtain,∫ ∞

c

zd−1K2(z)dz ≤
∫ ∞

c

zd−1
(
(ν + d/2)α−2z−2 +O(z−δ)

)2
dz

and the second term of the inequality is finite for δ > d/2. Moreover since
δ < 2, the condition δ > d/2 can be satisfied only for d = 1, 2, 3. Then for
a given δ ∈ (d/2, 2) and d = 1, 2, 3, inequality (3.8) is true if ν = δ/2 and
�−1
2 �1 = 1. This last two conditions implies (3.6).

Remark I. As expected, compatibility between GC and MT covariance models
is achieved only for a subset of the parametric space of ν that leads to non
differentiable sample paths and in particular for d/4 < ν < 1, d = 1, 2, 3.

The following are sufficient conditions given in [4] concerning the compati-
bility of a MT and a GW covariance models.

Theorem 6. For given ν ≥ 1/2 and κ ≥ 0, let P (Mν,α,σ2
0
) and P (ϕμ,κ,β,σ2

1
) be

two zero mean Gaussian measures. If ν = κ+ 1/2, μ > d+ κ+ 1/2, and

σ2
0

α2ν
= μ

(
Γ(2κ+ μ+ 1)

Γ(μ+ 1)

)
σ2
1

β2κ+1
, (3.9)

then for any bounded infinite set D ⊂ R
d, d = 1, 2, 3, P (Mν,α,σ2

0
) ≡ P (ϕμ,κ,β,σ2

1
)

on the paths of Z(s), s ∈ D.
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Putting together Theorem 5 and Theorem 6 we obtain the next new result
that establish sufficient conditions for the compatibility of a GW and GC co-
variance function:

Theorem 7. For given δ ∈ (d/2, 2) ∩ [1, 2) let P (Cδ,λ,γ,σ2
0
) and P (ϕμ,κ,β,σ2

1
) be

two zero mean Gaussian measures. If κ+ 1/2 = δ/2, μ > d+ κ+ 1/2 and(
Γ(2κ+ μ+ 1)

Γ(μ+ 1)

)
σ2
1

β2κ+1
μ =

(
Γ2(δ/2) sin(πδ/2)

21−δπ

)
σ2
0

γδ
λ, (3.10)

then for any bounded infinite set D ⊂ R
d, d = 1, 2, 3, P (Cδ,λ,γ,σ2

0
) ≡ P (ϕμ,κ,β,σ2

1
)

on the paths of Z(s), s ∈ D.

Remark II. As expected, compatibility between GC and GW covariance mod-
els is achieved only for a subset of the parametric space of κ that leads to
non differentiable sample paths and in particular 0 ≤ κ < 1/2, d = 1, 2 and
1/4 ≤ κ < 1/2, d = 3.

4. Asymptotic properties of the maximum likelihood estimation for
the Generalized Cauchy model

We now focus on the microergodic parameter σ2λ/γδ associated with the GC
family. The following results fix the asymptotic properties of its ML estimator.
In particular, we shall show that the microergodic parameter can be estimated
consistently, and then assess the asymptotic distribution of the ML estimator.

Let D ⊂ R
d be a bounded subset of Rd and Sn = {s1, . . . , sn ∈ D ⊂ R

d}
denote any set of distinct locations. Let Zn = (Z(s1), . . . , Z(sn))

′ be a finite
realization of Z(s), s ∈ D, a zero mean stationary Gaussian process with a given
parametric covariance function σ2φ(·; τ ), with σ2 > 0, τ a parameter vector and
φ a member of the family Φd, with φ(0; τ ) = 1.

We then write Rn(τ ) = [φ(‖si − sj‖; τ )]ni,j=1 for the associated correlation
matrix. The Gaussian log-likelihood function is defined as:

Ln(σ
2, τ ) = −1

2

(
n log(2πσ2) + log(|Rn(τ )|) +

1

σ2
Z ′

nRn(τ )
−1Zn

)
. (4.1)

Under the GC model, the Gaussian log-likelihood is obtained with φ(·; τ ) ≡
C1,λ,δ,γ and τ = (λ, δ, γ)′. Since in what follows δ and λ are assumed known and
fixed, for notation convenience, we write τ = γ. Let σ̂2

n and γ̂n be the maximum
likelihood estimator obtained maximizing Ln(σ

2, γ) for fixed δ and λ.
In order to prove consistency and asymptotic Gaussianity of the microergodic

parameter, we first consider an estimator that maximizes (4.1) with respect to
σ2 for a fixed arbitrary scale parameter γ > 0, obtaining the following estimator

σ̂2
n(γ) = argmax

σ2

Ln(σ
2, γ) = Z ′

nRn(γ)
−1Zn/n. (4.2)

Here Rn(γ) is the correlation matrix coming from the GC family C1,λ,δ,γ . The
following result offers some asymptotic properties of ML estimator of the mi-
groergodic parameter σ̂2

n(γ)λ/γ
2δ both in terms of consistency and asymptotic

distribution. The proof is omitted since it follows the same steps in [4] and [32].



3036 M. Bevilacqua and T. Faouzi

Theorem 8. Let Z(s), s ∈ D, be a zero mean Gaussian process with covariance
function belonging to the GC family, i.e. Cσ2

0 ,λ,δ,γ0
, with δ ∈ (d/2, 2), d = 1, 2, 3

and λ > d. Suppose (σ2
0 , γ0) ∈ (0,∞) × (0,∞). For a fixed γ > 0, let σ̂2

n(γ) as
defined through Equation (4.2). Then, as n → ∞,

1. σ̂2
n(γ)λ/γ

δ a.s−→ σ2
0λ/γ

δ
0 and

2. n
1
2 (σ̂2

n(γ)λ/γ
2δ − σ2

0λ/γ
δ
0)

D−→ N (0, 2(σ2
0λ/γ

δ
0)

2).

The second type of estimation considers the joint maximization of (4.1) with
respect to (σ2, γ) ∈ (0,∞) × I where I = [γL, γU ] and 0 < γL < γU < ∞. The
solution of this optimization problem is given by (σ̂2

n(γ̂n), γ̂n) where

σ̂2
n(γ̂n) = Z ′

nRn(γ̂n)
−1Zn/n

and γ̂n = argmaxγ∈I PLn(γ). Here PLn(γ) is the profile log-likelihood:

PLn(γ) = −1

2

(
log(2π) + n log(σ̂2

n(γ)) + log |Rn(γ)|+ n
)
. (4.3)

We now establish the asymptotic properties of the sequence of random vari-
ables σ̂2

n(γ̂n)λ/γ̂
δ
n in a special case. The following Lemma is needed in order to

establish consistency and asymptotic distribution.

Lemma 1. For any γ1 < γ2, γi ∈ I = [γL, γU ], i = 1, 2 and δ ∈ (0, 1] and λ > d
then σ̂2

n(γ1)/γ
δ
1 ≤ σ̂2

n(γ2)/γ
δ
2 for each n.

Proof. The proof follows [19] and [4] which use the same arguments in the MT
and GW cases. Let 0 < γ1 < γ2, with γ1, γ2 ∈ I. Then, for any Zn,

σ̂2
n(γ1)/γ

δ
1 − σ̂2

n(γ2)/γ
δ
2 =

1

n
Z ′

n(Rn(γ1)
−1γ−δ

1 −Rn(γ2)
−1γ−δ

2 )Zn

is nonnegative if the matrix Rn(γ1)
−1γ−δ

1 −Rn(γ2)
−1γ−δ

2 is positive semi-definite
and this happens if and only if the matrix B = Rn(γ2)γ

δ
2−Rn(γ1)γ

δ
1 with generic

element
Bij = γδ

2Cδ,λ,γ2,1(‖si − sj‖)− γδ
1Cδ,λ,γ1,1(‖si − sj‖),

is positive semi-definite. From Theorem 3.3 of [8], this happens if δ ∈ (0, 1] and
λ > d.

We now establish strong consistency and asymptotic distribution of the se-
quence of random variables σ̂2

n(γ̂n)λ/γ̂
δ
n.

Theorem 9. Let Z(s), s ∈ D ⊂ R
d, be a zero mean Gaussian process with

a Cauchy covariance model Cσ2
0 ,λ,δ,γ0

with d = 1 and δ ∈ (1/2, 1], λ > 1 or

d = 2 and δ = 1, λ > 2 Suppose (σ2
0 , γ0) ∈ (0,∞) × I where I = [γL, γU ]

with 0 < γL < γU < ∞. Let (σ̂2
n, γ̂n)

′ maximize (4.1) over (0,∞) × I. Then as
n → ∞,

1. σ̂2
n(γ̂n)λ/γ̂

δ
n

a.s−→ σ2
0(γ0)λ/γ

δ
0 and

2.
√
n(σ̂2

n(γ̂n)λ/γ̂
δ
n − σ2

0(γ0)λ/γ
δ
0)

D−→ N (0, 2(σ2
0(γ0)λ/γ

δ
0)

2).
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Proof. The proof follows [19] and [4] which use the same arguments in the MT
and GW cases. Let Gn(x) = σ̂2

n(x)/x
δ and define the sequences Gn(γL) and

Gn(γU ). Since γL ≤ γ̂n ≤ γU for every n, then, using Lemma 1, Gn(γL) ≤
Gn(γ̂n) ≤ Gn(γU ) for all n with probability one. Combining this with Theorem
8 implies the result.

5. Prediction using Generalized Cauchy model

We now consider prediction of a Gaussian process at a new location s0, using
GC model, under fixed domain asymptotic. Specifically, we focus on two prop-
erties: asymptotic efficiency prediction and asymptotically correct estimation of
prediction variance. [27] shows that both asymptotic properties hold when the
Gaussian measures are equivalent. Let P (Cσ2

i ,λi,δ,γi
), i = 0, 1 be two zero mean

Gaussian measures. Under P (Cσ2
0 ,λ0,δ,γ0

), and using Theorem 4, both properties

hold when σ2
0λ0γ

−δ
0 = σ2

1λ1γ
−δ
1 , δ ∈ (d/2, 2) and d = 1, 2, 3.

Similarly, let P (Mν,α,σ2
2
) and P (Cσ2,λ,δ,γ) be two Gaussian measures with

MT and Cauchy model. Using Theorem 5, under P (Mν,α,σ2
2
) both properties

hold when (3.6) is true, δ ∈ (d/2, 2), d = 1, 2, 3. In addition, let P (ϕμ,κ,β,σ2
3
) a

Gaussian measure with GW model. Using Theorem 7, under P (ϕμ,κ,β,σ2
3
) both

properties hold when (3.10) is true, μ > d + κ + 1/2, δ ∈ (d/2, 2) ∩ [1, 2) and
d = 1, 2, 3.

Actually, [29] gives a substantially weaker condition, based on the ratio of
spectral densities, for asymptotic efficiency prediction based on the asymptotic
behaviour of the ratio of the isotropic spectral densities. Now, let

Ẑn(δ, λ, γ) = cn(δ, λ, γ)
′Rn(δ, λ, γ)

−1Zn (5.1)

be the best linear unbiased predictor at an unknown location s0 ∈ D ⊂ R
d,

under the misspecified model Cδ,λ,γ,σ2 , where cn(δ, λ, γ) = [Cδ,λ,γ,1(‖s0−si)‖]ni=1

and Rn(δ, λ, γ) = [Cδ,λ,γ,1(‖si − sj)‖]ni,j=1 is the correlation matrix.
If the correct model is P (Cδ,λ0,γ0,σ2

0
), then the mean squared error of the

predictor is given by:

Varδ,λ0,γ0,σ2
0

[
Ẑn(δ, λ, γ)− Z(s0)

]
= σ2

0

(
1− 2cn(δ, λ, γ, )

′Rn(δ, λ, γ)
−1cn(δ, λ0, γ0)

+ cn(δ, λ, γ)
′Rn(δ, λ, γ)

−1Rn(δ, λ0, γ0)Rn(δ, λ, γ)
−1cn(δ, λ, γ)

)
. (5.2)

If γ0 = γ and λ0 = λ, i.e., true and wrong models coincide, this expression
simplifies to

Varδ,λ0,γ0,σ2
0

[
Ẑn(δ, λ0, γ0)− Z(s0)

]
(5.3)

= σ2
0

(
1− cn(δ, λ0, γ0)

′Rn(δ, λ0, γ0)
−1cn(δ, λ0, γ0)

)
.

Varν,α,σ2
2

[
Ẑn(δ, λ, γ)−Z(s0)

]
, Varν,α,σ2

2

[
Ẑn(ν, α)−Z(s0)

]
, Varμ,κ,β,σ2

3

[
Ẑn(δ, λ, γ)

− Z(s0)
]
and Varμ,κ,β,σ2

3

[
Ẑn(μ, κ, β) − Z(s0)

]
can be similarly defined under,
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respectively, P (Mν,α,σ2
2
) and P (ϕμ,κ,β,σ2

3
), where Ẑn(ν, α) and Ẑn(μ, κ, β) are

the best linear unbiased predictor using respectively the MT and GW models.
The following results are an application of Theorems 1 and 2 of [29].

Theorem 10. Let P (Cδ,λ0,γ0,σ2
0
), P (Cδ,λ1,γ1,σ2

1
), P (ϕμ,κ,β,σ2

3
), P (Mν,α,σ2

2
) be

four Gaussian probability measures on D ⊂ R
d with δ ∈ (d/2, 2) and d = 1, 2, 3.

Then, for all s0 ∈ D:

1. Under P (Cδ,λ0,γ0,σ2
0
), as n → ∞,

Varδ,λ0,γ0,σ2
0

[
Ẑn(δ, λ1, γ1)− Z(s0)

]
Varδ,λ0,γ0,σ2

0

[
Ẑn(δ, λ0, γ0)− Z(s0)

] −→ 1, (5.4)

for any fixed γ1 > 0 and if σ2
0λ0γ

−δ
0 = σ2

1λ1γ
−δ
1 , then as n → ∞,

Varδ,λ1,γ1,σ2
1

[
Ẑn(δ, λ1, γ1)− Z(s0)

]
Varδ,λ0,γ0,σ2

0

[
Ẑn(δ, λ1, γ1)− Z(s0)

] −→ 1. (5.5)

2. Under P (Mν,α,σ2
2
), if ν = δ

2 as n → ∞,

Varν,α,σ2
2

[
Ẑn(δ, λ1, γ1)− Z(s0)

]
Varν,α,σ2

2

[
Ẑn(ν, α)− Z(s0)

] −→ 1, (5.6)

for any fixed γ1 > 0 and if
(
π−12δ−1Γ2(δ/2) sin(πδ/2)

)
σ2
1λγ

−δ
1 = σ2

2α
−2ν ,

then as n → ∞

Varδ,λ1,γ1,σ2
1

[
Ẑn(δ, λ1, γ1)− Z(s0)

]
Varν,α,σ2

2

[
Ẑn(δ, λ1, γ1)− Z(s0)

] −→ 1. (5.7)

3. Under P (ϕμ,κ,β,σ2
3
), if κ+1/2 = δ/2, μ > d+κ+1/2 and δ ∈ (d/2, 2)∩[1, 2)

as n → ∞,

U1(β) =
Varμ,κ,β,σ2

3

[
Ẑn(δ, λ1, γ1)− Z(s0)

]
Varμ,κ,β,σ2

3

[
Ẑn(μ, κ, β)− Z(s0)

] −→ 1, (5.8)

for any fixed γ1 > 0 and if
(
Γ(2κ+ μ+ 1)Γ−1(μ+ 1)

)
σ2
3μβ

−(2κ+1) =(
π−12δ−1Γ2(δ/2) sin(πδ/2)

)
σ2
1λγ

−δ
1 , then as n → ∞

U2 =
Varδ,λ1,γ1,σ2

1

[
Ẑn(δ, λ1, γ1)− Z(s0)

]
Varμ,κ,β,σ2

3

[
Ẑn(δ, λ1, γ1)− Z(s0)

] −→ 1. (5.9)

Proof. Since Ĉσ2,λ,δ,γ(z) is bounded away from zero and infinity and as z → ∞,

Ĉδ,λ1,γ1,σ2
1
(z)

Ĉδ,λ0,γ0,σ2
0
(z)

=
�1z

−(d+δ) −O(z−(d+2δ))

�0z−(d+δ) −O(z−(d+2δ))
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where �i, i = 0, 1 are defined in the Proof of Theorem 4, then, if δ ∈ (d/2, 2)
and d = 1, 2, 3

lim
z→∞

Ĉδ,λ1,γ1,σ2
1
(z)

Ĉδ,λ0,γ0,σ2
0
(z)

=
�1
�0

=
σ2
1λ1γ

−δ
1

σ2
0λ0γ

−δ
0

, (5.10)

and using Theorem 1 of [29], we obtain (5.4). If σ2
1λ0γ

−δ
1 = σ2

0λ1γ
−δ
0 , using

Theorem 2 of [29], we obtain (5.5).

Similarly, since M̂ν,α,σ2
2
(z) is bounded away from zero and infinity and as

z → ∞

Ĉδ,λ1,γ1,σ2
1
(z)

M̂ν,α,σ2
2
(z)

= �−1
2

[
�1z

−(d+δ) −O(z−(d+2δ))](α−2 + z2)ν+
d
2

= �−1
2 �1z

2ν−δ + �−1
2 �1(ν + d/2)α−2z2ν−δ−2 +O(z2ν−δ−2)

−O(z2ν−2δ)−O(z2ν−2δ−2) (5.11)

where �−1
2 is defined in the Proof of Theorem 5, then if 2ν = δ, δ ∈ (d/2, 2) and

d = 1, 2, 3

lim
z→∞

Ĉδ,λ1,γ1,σ2
1
(z)

M̂ν,α,σ2
2
(z)

= �−1
2 �1 =

Γ2(δ/2) sin(πδ/2)σ2
1λ1γ

−δ
1

21−δπσ2
2α

−2ν
.

Using Theorem 1 of [29], we obtain (5.6). If(
2δ−1Γ2(δ/2) sin(πδ/2)π−1

)
σ2
1λ1γ

−δ
1 = σ2

2α
−2ν , (5.12)

using Theorem 2 of [29], we obtain (5.7).
Similarly, since ϕ̂μ,κ,β,σ2

3
(z) is bounded away from zero and infinity, if 2κ+1 =

δ, μ > d+ δ/2, δ ∈ (d/2, 2) ∩ [1, 2), d = 1, 2, 3 and using the asymptotic results
on the spectral density of the GW model in [4], we have that for F (z) :=
Ĉ
δ,λ1,γ1,σ2

1
(z)

ϕ̂
μ,κ,β,σ2

3
(z) as z → ∞:

F (z) =
(σ2Lβd)−1(�z−(d+δ) −O(z−(d+2δ)))

c3(zβ)−(d+1)−2κ{1+O(z−2)}+c4(zβ)−(μ+ d+1
2 +κ){cos(zβ−c5)+O(z−1)}

=
�

σ2Lβ−(2κ+1)c3
=

2δ−1Γ2(δ/2) sin(πδ/2)π−1σ2
1λ1γ

−δ
1

Γ(2κ+ μ+ 1)Γ−1(μ)σ2
3β

−(2κ+1)

with � defined in Theorem 1, c3 = Γ(μ+2λ)Γ−1(μ) and c4, c5 positive constants
and L defined in (2.5). Then, using Theorem 1 of [29], we obtain (5.8). If(

Γ(2κ+ μ+ 1)

Γ(μ+ 1)

)
σ2
3μβ

−(2κ+1) =

(
Γ2(δ/2) sin(πδ/2)

21−δπ

)
σ2
1λ1γ

−δ
1 (5.13)

and using Theorem 2 of [29], we obtain (5.9).
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The implication of Point 1 is that under P (Cδ,λ0,γ0,σ2
0
), performing prediction

with P (Cδ,λ1,γ1,σ2
1
) with an arbitrary γ1 > 0 gives asymptotic prediction effi-

ciency, if δ ∈ (d/2, 2), d = 1, 2, 3. Moreover, if σ2
0γ

−δ
0 = σ2

1γ
−δ
1 then asymptotic

prediction efficiency and asymptotically correct estimates of error variance are
achieved. By virtue of Point 2, under P (Mν,α,σ2

2
), prediction with Cδ,λ1,γ1,σ2

0
,

with an arbitrary γ1 > 0, gives asymptotic prediction efficiency, if ν = δ/2,
δ ∈ (d/2, 2), d = 1, 2, 3. Moreover if (5.12) is true then asymptotic prediction
efficiency and asymptotically correct estimates of error variance are achieved.
Finally, Point 3 implies that under P (ϕμ,κ,β,σ2

3
), prediction with P (Cδ,λ1,γ1,σ2

0
),

with an arbitrary γ1 > 0, gives asymptotic prediction efficiency, if κ+1/2 = δ/2,
δ ∈ (d/2, 2) ∩ [1, 2), d = 1, 2, 3. Moreover, if (5.13) is true, then asymptotic
prediction efficiency and asymptotically correct estimates of error variance are
achieved.

Theorem 10 is still valid interchanging the role of the correct model with the
wrong model. For instance point 3 can be rewritten as follows.

Theorem 11. Let P (Cδ,λ1,γ1,σ2
1
), P (ϕμ,κ,β,σ2

3
) be two Gaussian probability mea-

sures on D ⊂ R
d, d = 1, 2, 3. Then, for all s0 ∈ D and under P (Cδ,λ1,γ1,σ2

1
), if

κ = δ
2 − 1

2 , μ > d+ κ+ 1/2 and δ ∈ (d/2, 2) ∩ [1, 2) as n → ∞,

U(β) =
Varδ,λ1,γ1,σ2

1

[
Ẑn(μ, κ, β)− Z(s0)

]
Varδ,λ1,γ1,σ2

1

[
Ẑn(δ, λ1, γ)− Z(s0)

] −→ 1, (5.14)

for any fixed β > 0 and if (5.13) is true, then as n → ∞

U2 =
Varμ,κ,β,σ2

3

[
Ẑn(μ, κ, β)− Z(s0)

]
Varδ,λ1,γ1,σ2

1

[
Ẑn(μ, κ, β)− Z(s0)

] −→ 1. (5.15)

One remarkable implication of Theorem 11 is that when the true covariance
belongs to the GC family, asymptotic efficiency prediction and asymptotically
correct estimation of mean square error can be achieved, under suitable condi-
tions, using a compactly supported GW covariance model.

6. Simulations and illustrations

The main goals of this section are twofold: on the one hand, we compare the
finite sample behavior of the ML estimation of the microergodic parameter of
the GC model with the asymptotic distributions given in Theorems 8 and 9.
On the other hand, we compare the finite sample behavior of MSE prediction
of a zero mean Gaussian process with GC covariance model, using a compatible
GW covariance model (Theorem 11).

For the first goal we have considered 4000 points uniformly distributed over
[0, 1] and then we randomnly select a sequence of n = 250, 500, 1000 points. For
each n we simulate using Cholesky decomposition and then we estimate with
ML, 500 realizations from a zero mean Gaussian process with GC model. For
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the GC covariance model, Cδ,λ,γ0,σ2
0
we fix σ2

0 = 1 and in view of Theorem 9, we
fix δ = 0.75 and λ = 1.5. Then we fix γ0 such that the practical range of the
GC models is 0.3, 0.6 and 0.9. For a given correlation, with practical range x,
we mean that the correlation is approximatively lower than 0.05 when r > x.

For each simulation, we consider δ and λ as known and fixed, and we estimate
with ML the variance and scale parameters, obtaining σ̂2

i and γ̂i, i = 1, . . . , 1000.
In order to estimate, we first maximize the profile log-likelihood (4.3) to get γ̂i.
Then, we obtain σ̂2

i (γ̂i) = z′
iR(γ̂i)

−1zi/n, where zi is the data vector of simu-
lation i. Optimization was carried out using the R [23] function optimize where
the parametric space was restricted to the interval [ε, 10γ0] and ε is slightly
larger than machine precision, about 10−15 here.

Using the asymptotic distributions stated in Theorems 8 and 9, Table 1 com-
pares the sample quantiles of order 0.05, 0.25, 0.5, 0.75, 0.95, mean and variance
of

√
n/2

(
σ̂2
i (x)γ

δ
0/(σ

2
0x

δ) − 1
)
for x = γ̂i, γ0, 0.75γ0, 1.25γ0 with the associated

theoretical values of the standard Gaussian distribution, for n = 500, 1000, 2000.
As expected, the best approximation is achieved overall when using the true

scale parameter, i.e., x = γ0. In the case of x = γ̂i, the sample distribution
converge to the the asymptotic distribution given in Theorem 9 when increas-
ing n, even if the convergence seems to be slow. Note that, for a fixed n, when
increasing the practical range the convergence to the standard Gaussian distri-
bution is faster. In particular, for n = 2000 and practical range equal to 0.9 the
asymptotic distribution given in Theorem 9 is a satisfactory approximation of
the sample distribution. When using scale parameters that are too small or too
large with respect to the true compact support (x = 0.75γ0, 1.25γ0), the con-
vergence to the asymptotic distribution given in Theorem 8 is very slow. These
results are consistent with [19] and [4] and when generating confidence inter-
vals for the microergodic parameter we strongly recommend jointly estimating
variance and compact support and using the asymptotic distribution given in
Theorem 9.

As for the second goal, using the results given in Theorem 11, we now com-
pare asymptotic prediction efficiency and asymptotically correct estimation of
prediction variance using ratios U(β) and U2 defined in (5.14) and (5.15) re-
spectively. Specifically, we consider as true model Cδ,λ1,γ1,σ2

1
setting σ2

1 = 1,
δ = 1.2, 1.8, λ1 = 5 and γ1 such that the practical range is 0.3, 0.6, 0.9. As
wrong model, following the conditions in Theorem 11, we consider ϕμ,κ,β,σ2

3

with σ2
3 = 1, κ = (δ − 1)/2, μ = 2+ κ and the “equivalent” compact support is

obtained as:

β∗
1 =

[
γ−δ
1

σ2
1λ1

σ2
3μ

2δ−1sin(πδ/2)Γ2(δ/2)Γ(μ+ 1)

Γ(2κ+ μ+ 1)π

]−1/(2κ+1)

.

For instance if δ = 1.2 and γ1 is such that the practical range is equal to 0.3
then β∗

1 = 0.204. Figure 1, top left part, compares the GW and GC covariance
model in this case. The right part compares the GW and GC covariance model
under the same setting but with δ = 1.8. In Figure 1, bottom part, we also
show two realizations from a Gaussian random process with the two compatible
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Table 1

Sample quantiles, mean and variance of
√

n/2(σ̂2
i (x)γ

δ
0/(σ

2
0x

δ)− 1), i = 1, . . . , 1000, for
x = γ̂, γ0, (5/4)γ0, (3/4)γ0 when δ = 0.75, λ = 1.5 and n = 500, 1000, 2000, compared with
the associated theoretical values of the standard Gaussian distribution when d = 1. Here γ0

is chosen such that the practical range (PR) is 0.3, 0.6, 0.9.

PR x n 5% 25% 50% 75% 95% Mean Var

0.3 γ̂ 500 -1.806 -0.715 0.052 0.898 2.011 0.115 1.366
1000 -1.756 -0.724 -0.006 0.880 2.071 0.067 1.377
2000 -1.749 -0.757 0.075 0.751 1.779 0.022 1.205

γ0 500 -1.481 -0.622 -0.012 0.746 1.647 0.055 0.998
1000 -1.613 -0.745 -0.092 0.696 1.532 -0.040 1.018
2000 -1.615 -0.681 -0.015 0.658 1.567 -0.016 1.005

5
4
γ0 500 -0.900 -0.025 0.640 1.399 2.348 0.687 1.086

1000 -1.083 -0.178 0.453 1.281 2.202 0.518 1.068
2000 -1.152 -0.216 0.483 1.143 2.088 0.479 1.038

3
4
γ0 500 -1.809 -0.982 -0.383 0.351 1.247 -0.320 0.951

1000 -1.923 -1.076 -0.418 0.346 1.182 -0.375 0.990
2000 -1.884 -0.962 -0.306 0.363 1.237 -0.314 0.987

0.6 γ̂ 500 -1.685 -0.667 0.055 0.868 2.026 0.124 1.274
1000 -1.678 -0.728 0.009 0.849 2.007 0.060 1.280
2000 -1.692 -0.688 0.043 0.723 1.771 0.028 1.154

γ0 500 -1.481 -0.622 -0.012 0.746 1.647 0.055 0.998
1000 -1.613 -0.745 -0.092 0.696 1.532 -0.040 1.018
2000 -1.616 -0.681 -0.015 0.658 1.567 -0.016 1.005

5
4
γ0 500 -1.104 -0.249 0.426 1.165 2.105 0.460 1.053

1000 -1.281 -0.388 0.252 1.058 1.949 0.308 1.049
2000 -1.341 -0.391 0.296 0.954 1.875 0.289 1.025

3
4
γ0 500 -1.693 -0.847 -0.247 0.487 1.391 -0.187 0.968

1000 -1.810 -0.947 -0.293 0.472 1.312 -0.250 1.000
2000 -1.778 -0.858 -0.197 0.474 1.355 -0.200 0.994

0.9 γ̂ 500 -1.654 -0.651 0.076 0.848 1.979 0.130 1.232
1000 -1.688 -0.730 0.026 0.835 1.975 0.067 1.230
2000 -1.656 -0.712 0.051 0.708 1.751 0.032 1.131

γ0 500 -1.481 -0.622 -0.012 0.746 1.647 0.055 0.998
1000 -1.613 -0.745 -0.092 0.696 1.532 -0.040 1.018
2000 -1.613 -0.681 -0.015 0.658 1.567 -0.016 1.005

5
4
γ0 500 -1.193 -0.339 0.311 1.069 1.988 0.364 1.039

1000 -1.360 -0.475 0.170 0.973 1.845 0.222 1.041
2000 -1.414 -0.465 0.219 0.882 1.797 0.212 1.020

3
4
γ0 500 -1.644 -0.791 -0.189 0.547 1.452 -0.130 0.975

1000 -1.761 -0.901 -0.245 0.532 1.364 -0.199 1.004
2000 -1.736 -0.814 -0.154 0.518 1.402 -0.154 0.997

N(0, 1) -1.645 -0.674 0 0.674 1.645 0 1
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Fig 1. Top left: a C1.2,5,γ1,1 model (continous line) and a compatible ϕ2.1,0.1,β∗
1 ,1 model

(dotted line). Top right: A C1.8,5,γ1,1 model (continous line) and a compatible ϕ2.4,0.4,β∗
1 ,1

model (dotted line). In both cases γ1 is chosen such that the practical range is 0.3 and β∗
1

is computed using the equivalence condition. Bottom part: two realizations from two Gaus-
sian random process with covariances as shown in top left part (C1.2,5,γ1,1 on the left and
ϕ2.1,0.1,β∗

1 ,1 on the right).

covariance functions shown in top left part. The two simulation are performed
using cholesky decomposition and they share the same Gaussian simulation. It
is apparent that the two realizations look very similar.

Then we randomly select nj = 50, 100, 500, 1000, j = 1, . . . , 100 location
sites without replacement from 5000 points uniformly distributed over [0, 1]2

and, for each j, we compute the ratio U1j(xβ
∗
1 ), x = 1, 0.5, 2 and the ratio

U2j , j = 1, . . . , 500, using closed form expressions in Equation (5.2) and (5.3)
when predicting the location site (0.26, 0.48)T . We consider x = 1, 0.5, 2 in
order to investigate the effect of considering an arbitrary scale parameter on the
convergence of ratio (5.14).

Table 2 shows the empirical means Ū1(xβ
∗
1) =

∑100
j=1 U1j(xβ

∗
1)/100 for x =

1, 0.5, 2, and Ū2 =
∑100

j=1 U2j/100 for nj , j = 1, . . . , 100. Overall, the speed of
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Table 2

Ū1(x), x = 0.5β∗
1 , 2β

∗
1 , β

∗
1 and Ū2 as defined in (5.14) and (5.15), when considering a GC

model with increasing practical range (PR) (0.3, 0.6, 0.9), smoothness parameter δ = 1.2, 1.8
and n = 50, 100, 500, 1000. Here β∗

1 is the compact support parameter of the GW model
computed using the equivalence condition.

δ n PR = 0.3 PR = 0.6 PR = 0.9

1.2 Ū1(0.5β
∗
1 ) 50 1.164 1.256 1.155

100 1.237 1.172 1.080
500 1.126 1.043 1.027
1000 1.068 1.029 1.018

Ū1(2β
∗
1 ) 50 1.002 1.035 1.050

100 1.007 1.052 1.047
500 1.055 1.036 1.024
1000 1.047 1.025 1.016

Ū1(β
∗
1 ) 50 0.969 1.038 1.052

100 0.999 1.056 1.048
500 1.059 1.037 1.024
1000 1.049 1.026 1.017

Ū2 50 0.973 0.987 0.996
100 0.979 0.993 0.998
500 0.994 0.998 0.999
1000 0.996 0.999 1.000

1.8 Ū1(0.5β
∗
1 ) 50 2.696 2.055 1.512

100 2.533 1.575 1.232
500 1.423 1.084 1.035
1000 1.215 1.040 1.018

Ū1(2β
∗
1 ) 50 2.812 2.045 1.508

100 2.548 1.566 1.231
500 1.411 1.083 1.035
1000 1.209 1.039 1.018

Ū1(β
∗
1 ) 50 2.810 2.045 1.509

100 2.550 1.566 1.231
500 1.413 1.083 1.035
1000 1.210 1.039 1.018

Ū2 50 0.944 0.946 0.950
100 0.958 0.947 0.973
500 0.960 0.993 0.999
1000 0.977 0.998 1.000

convergence for both Ū1(xβ
∗
1), x = 1, 0.5, 2 and Ū2 is faster when increasing the

dependence i.e. the practical range. Additionally, as expected, a too conservative
choice of the arbitrary compact support (0.5β∗

1 in our simulations) deteriorates
the convergence of the ratio Ū1. These results are consistent with the results
in [4].

It is interesting to note that the speed of convergence is clearly affected by
the magnitude of δ. In particular for δ = 1.8 the convergence of both ratios is
slower, in particular for Ū1(xβ

∗
1), x = 1, 0.5, 2. For instance, when the practical
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range is equal to 0.3, n = 1000 is not sufficient to attain the convergence for
Ū1(xβ

∗
1 ), x = 1, 0.5, 2.

7. Concluding remarks

In this paper we studied estimation and prediction of Gaussian processes with
covariance models belonging to the GC family, under fixed domain asymptotics.
Specifically, we first characterize the equivalence of two Gaussian measures with
CGmodels and then we establish strong consistency and asymptotic Gaussianity
of the ML estimator of the associated microergodic parameter when considering
both an arbitrary and an estimated scale parameter. Simulation results show
that for a finite sample, the choice of an arbitrary scale parameter can result
in a very poor approximation of the asymptotic distribution. These results are
consistent with those in [19] in the MT case and [4] in the GW case.

We then give sufficient conditions for the equivalence of two Gaussian mea-
sures with GW and GC model and two Gaussian measures with MT and GC
model and we study the consequence of these results on prediction under fixed
domain asymptotics.

One remarkable consequence of our results on optimal prediction is that the
mean square error prediction of a Gaussian process with a GC model can be
achieved using a GW model under suitable conditions.

Then, under fixed domain asymptotics, a misspecified GW model can be used
for optimal prediction when the true covariance model is GC or MT [4]. GW is
an appealing model from computational point of view since the use of covari-
ance functions with a compact support, leading to sparse matrices ([9], [18]), is
a very accessible and scalable approach and well established and implemented
algorithms for sparse matrices can be used when estimating the covariance pa-
rameters and/or predicting at unknown locations (e.g., [10]). An alternative
strategy to produce sparse matrices is trough covariance tapering of the GC
model but as outlined in [4], this kind of method is essentially an obsolete ap-
proach.

As highlighted in Section 1, the parameter δ is crucial for the differentiability
at the origin and, as a consequence, for the degree of differentiability of the
associated sample paths. Specifically, for δ = 2, they are infinitely times differ-
entiable and they are not differentiable for δ ∈ (0, 2). We do not offer results on
equivalence of Gaussian measures when δ = 2 and 0 < λ < ∞ for the GC family.
Nevertheless, it can be shown that C

2,λ,
√

λγ/2,1
(r) → e−r2/γ as λ → ∞. This re-

sult is consistent with the MT and GW cases when considering the smoothness
parameters going to infinity. Specifically, Mν,

√
α/(2

√
ν),1(r) → e−r2/α as ν → ∞

and ϕμ,κ,g(β),1(r) → e−r2/β as κ → ∞, where g(β) =
√
β(μ + 2κ + 1)Γ(κ +

1/2)(2Γ(k + 1))−1 [5].
Thus, rescaled versions of GC, MT and GW converge to a squared exponential

model when δ = 2 and λ → ∞, ν → ∞ and κ → ∞ respectively. Now, let
P (Gαi,σ2

i
), i = 0, 1 two zero mean Gaussian measures with squared exponential

covariance function. In this case Ĝα,σ2(z) = σ2(α/2)d/2e−αz2/4 and using (3.1),
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it can be shown that the equivalence condition is given by σ2
0 = σ2

1 , α0 = α1.
Additionally,

lim
z→∞

Ĝα1,σ2
1
(z)

Ĝα0,σ2
0
(z)

=

⎧⎨⎩ 0, if α1 > α0

+∞, if α1 < α0

σ2
1/σ

2
0 , if α1 = α0

and this implies that, under P (Gα0,σ2
0
) and predicting with P (Gα1,σ2

1
), asymp-

totic prediction efficiency is achieved only when α0 = α1 and asymptotically cor-
rect estimates of error variance are achieved under the trivial condition σ2

0 = σ2
1 ,

α0 = α1.
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