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Abstract: We consider covariance parameter estimation for a Gaussian
process under inequality constraints (boundedness, monotonicity or con-
vexity) in fixed-domain asymptotics. We address the estimation of the
variance parameter and the estimation of the microergodic parameter of
the Matérn and Wendland covariance functions. First, we show that the
(unconstrained) maximum likelihood estimator has the same asymptotic
distribution, unconditionally and conditionally to the fact that the Gaus-
sian process satisfies the inequality constraints. Then, we study the recently
suggested constrained maximum likelihood estimator. We show that it has
the same asymptotic distribution as the (unconstrained) maximum likeli-
hood estimator. In addition, we show in simulations that the constrained
maximum likelihood estimator is generally more accurate on finite samples.
Finally, we provide extensions to prediction and to noisy observations.
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1. Introduction

Kriging [37, 46] consists in inferring the values of a Gaussian random field given
observations at a finite set of points. It has become a popular method for a large
range of applications, such as geostatistics [32], numerical code approximation
[11, 40, 41] and calibration [12, 35], global optimization [25], and machine learn-
ing [37].
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When considering a Gaussian process, one has to deal with the estimation
of its covariance function. Usually, it is assumed that the covariance function
belongs to a given parametric family (see [1] for a review of classical families). In
this case, the estimation boils down to estimating the corresponding covariance
parameters. The main estimation techniques are based on maximum likelihood
[46], cross-validation [8, 9, 54] and variation estimators [5, 6, 24].

In this paper, we address maximum likelihood estimation of covariance pa-
rameters under fixed-domain asymptotics [46]. The fixed-domain asymptotics
setting corresponds to observation points for the Gaussian process that become
dense in a fixed bounded domain. Under fixed-domain asymptotics, two types of
covariance parameters can be distinguished: microergodic and non-microergodic
parameters [23, 46]. A covariance parameter is said to be microergodic if, when it
takes two different values, the two corresponding Gaussian measures are orthog-
onal [23, 46]. It is said to be non-microergodic if, even for two different values, the
corresponding Gaussian measures are equivalent. Although non-microergodic
parameters cannot be estimated consistently, they have an asymptotically neg-
ligible impact on prediction [42, 43, 45, 53]. On the contrary, it is at least possible
to consistently estimate microergodic covariance parameters, and misspecifying
them can have a strong negative impact on predictions.

It is still challenging to obtain results on maximum likelihood estimation
of microergodic parameters that would hold for very general classes of covari-
ance functions. Nevertheless, significant contributions have been made for spe-
cific types of covariance functions. In particular, when considering the isotropic
Matérn family of covariance functions, for input space dimension d = 1, 2, 3,
a reparameterized quantity obtained from the variance and correlation length
parameters is microergodic [53]. It has been shown in [26], from previous results
in [20] and [49], that the maximum likelihood estimator of this microergodic pa-
rameter is consistent and asymptotically Gaussian distributed. Anterior results
on the exponential covariance function have been also obtained in [51, 52].

In this paper, we shall consider the situation where the trajectories of the
Gaussian process are known to satisfy either boundedness, monotonicity or con-
vexity constraints. Indeed, Gaussian processes with inequality constraints pro-
vide suitable regression models in application fields such as computer networking
(monotonicity) [22], social system analysis (monotonicity) [38] and econometrics
(monotonicity or positivity) [18]. Furthermore, it has been shown that taking
the constraints into account may considerably improve the predictions and the
predictive intervals for the Gaussian process [19, 22, 38].

Recently, a constrained maximum likelihood estimator (cMLE) for the covari-
ance parameters has been suggested in [29]. Contrary, to the (unconstrained)
maximum likelihood estimator (MLE) discussed above, the cMLE explicitly
takes into account the additional information brought by the inequality con-
straints. In [29], it is shown, essentially, that the consistency of the MLE implies
the consistency of the cMLE under boundedness, monotonicity or convexity
constraints.

The aim of this paper is to study the asymptotic conditional distributions
of the MLE and the cMLE, given that the Gaussian process satisfies the con-



Maximum likelihood for constrained Gaussian process 2923

straints. We consider the estimation of a single variance parameter and the
estimation of the microergodic parameter in the isotropic Matérn family of co-
variance functions. In both cases, we show that the asymptotic conditional distri-
butions of the MLE and the cMLE are identical to the unconditional asymptotic
distribution of the MLE. Hence, it turns out that the impact of the constraints
on covariance parameter estimation is asymptotically negligible. To the best of
our knowledge, this paper is the first work on the asymptotic distribution of co-
variance parameter estimators for constrained Gaussian processes. The proofs
involve tools from asymptotic spatial statistics, extrema of Gaussian processes
and reproducing kernel Hilbert spaces. These proofs bring a significant level of
novelty compared to these in [29], where only consistency is addressed. In sim-
ulations, we confirm that for large sample sizes, the MLE and the cMLE have
very similar empirical distributions, that are close to the asymptotic Gaussian
distribution. For small or moderate sample sizes, we observe that the cMLE
is generally more accurate than the MLE, so that taking the constraints into
account is beneficial. Finally, we explore three extensions: to prediction, to the
Wendland covariance model and to the framework of noisy observations.

The rest of the manuscript is organized as follows. In Section 2, we introduce
in details the constraints, the MLE, and the cMLE. In Section 3 we provide
the asymptotic results for the estimation of the variance parameter, while the
asymptotic results for the isotropic Matérn family of covariance functions are
given in Section 4. In Section 5, we report the simulation outcomes. The exten-
sions are presented in Section 6. Concluding remarks are given in Section 7. All
the proofs are postponed to the appendix.

2. Gaussian processes under inequality constraints

2.1. Framework and purpose of the paper

We consider a parametric set of functions {kθ; θ ∈ Θ} defined from Rd to R,
where Θ is a compact set of Rp. We also assume that, for each θ ∈ Θ, there exists
a Gaussian process with continuous realizations having mean function zero and
covariance function k̃θ on [0, 1]d × [0, 1]d defined by k̃θ(u, v) = kθ(u − v) for
u, v ∈ [0, 1]d. We refer to, e.g., [3] for mild smoothness conditions on kθ ensuring
this. We consider an application

Y : (Ω,A) → (C([0, 1]d,R),B),

where (Ω,A) is a measurable space, C([0, 1]d,R) is the set of continuous functions
from [0, 1]d to R, and B is the Borel Sigma algebra on C([0, 1]d,R) corresponding
to the L∞ norm. For each θ ∈ Θ, let Pθ be a probability measure on Ω for which

Y : (Ω,A,Pθ) → (C([0, 1]d,R),B)

has the distribution of a Gaussian process with mean function zero and covari-
ance function k̃θ.
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Now consider a triangular array
(
x
(n)
i

)
n∈N,i=1,...,n

of observation points in

[0, 1]d, where we write for concision (x1, . . . , xn) =
(
x
(n)
1 , . . . , x

(n)
n

)
. We assume

that
(
x
(n)
i

)
is dense, that is supx∈[0,1]d infi=1,...,n |x− x

(n)
i | → 0 as n → ∞. Let

y be the Gaussian vector defined by yi = Y (xi) for i = 1, . . . , n. For θ ∈ Θ, let
Rθ = [kθ(xi − xj)]1�i,j�n and

Ln(θ) = −n

2
ln(2π)− 1

2
ln(|Rθ|)−

1

2
y�R−1

θ y (2.1)

be the log likelihood function. Here, |Rθ| stands for det(Rθ). Maximizing Ln(θ)
with respect to θ yields the widely studied and applied MLE [41, 46, 52, 53].

In this paper, we assume that the information {Y ∈ Eκ} is available where Eκ
is a convex set of functions defined by inequality constraints. We will consider

E0 = {f ∈ C([0, 1]d,R) s.t. � � f(x) � u, ∀x ∈ [0, 1]d},
E1 = {f ∈ C1([0, 1]d,R) s.t. ∂f(x)/∂xi � 0, ∀x ∈ [0, 1]d, i ∈ {1, . . . , d}},
E2 = {f ∈ C2([0, 1]d,R) s.t. f is convex},

which correspond to boundedness, monotonicity and convexity constraints re-
spectively. For E0, the bounds −∞ � � < u � +∞ are fixed and known.

First, we will study the conditional asymptotic distribution of the (uncon-
strained) MLE obtained by maximizing (2.1), given {Y ∈ Eκ}. Nevertheless,
a drawback of this MLE is that it does not exploit the information {Y ∈ Eκ}.
Then we study the cMLE introduced in [29]. This estimator is obtained by max-
imizing the logarithm of the probability density function of y, conditionally to
{Y ∈ Eκ}, with respect to the probability measure Pθ on Ω. This logarithm of
conditional density is given by

Ln,c(θ) =Ln(θ)− lnPθ(Y ∈ Eκ) + lnPθ(Y ∈ Eκ|y) (2.2)

=Ln(θ) +An(θ) +Bn(θ),

say, where Pθ(·) and Pθ(·| ·) are defined in Section 2.2. In [29], the cMLE is stud-
ied and compared to the MLE. The authors show that the cMLE is consistent
when the MLE is. In this paper, we aim at providing more quantitative results
regarding the asymptotic distribution of the MLE and the cMLE, conditionally
to {Y ∈ Eκ}.

2.2. Notation

In the paper, 0 < c < +∞ stands for a generic constant that may differ from
one line to another. It is convenient to have short expressions for terms that
converge in probability to zero. Following [47], the notation oP(1) (respectively
OP(1)) stands for a sequence of random variables (r.v.’s) that converges to zero
in probability (resp. is bounded in probability) as n → ∞. More generally, for
a sequence of r.v.’s Rn,

Xn = oP(Rn) means Xn = YnRn with Yn
P→ 0,

Xn = OP(Rn) means Xn = YnRn with Yn = OP(1).
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For deterministic sequences Xn and Rn, the stochastic notation reduce to the
usual o and O. For a sequence of random vectors or variables (Xn)n∈N on Rl,
that are functions of Y , and for a probability distribution μ on Rl, we write

Xn
L|Y ∈Eκ−−−−−→
n→∞

μ

when, for any bounded continuous function g : Rl → R, we have

E [g(Xn)|Y ∈ Eκ] −→
n→∞

∫
Rl

g(x)μ(dx).

We also write Xn = oP|Y ∈Eκ
(1) when for all ε > 0 we have P(|Xn| � ε|Y ∈

Eκ) → 0 as n → ∞. Finally, we write Xn = OP|Y ∈Eκ
(1) when we have

lim supn→∞ P(|Xn| � K|Y ∈ Eκ) → 0 as K → ∞.
For any two functions f(Y ) and g(Y ), let Eθ[f(Y )] (respectively

Eθ[f(Y )|g(Y )]) be the expectation (resp. the conditional expectation) with re-
spect to the measure Pθ on Ω. We define similarly Pθ(A(Y )) and Pθ(A(Y )|g(Y ))
when A(Y ) is an event with respect to Y . Let θ0 ∈ Θ be fixed. We consider θ0
as the true unknown covariance parameter and we let E[·], E[·|·], P(·), and P(·|·)
be shorthands for Eθ0 [·], Eθ0 [·|·], Pθ0(·), and Pθ0(·|·). When a quantity is said to
converge, say, in probability or almost surely, it is also implicit that we consider
the measure Pθ0 on Ω.

2.3. Conditions on the observation points

In some cases, we will need to assume that as n → ∞, the triangular array of
observation points contains finer and finer tensorized grids.

Condition-Grid. There exist d sequences
(
v
(j)
i

)
i∈N

for j = 1, . . . , d, dense

in [0, 1], and so that for all N ∈ N, there exists n0 ∈ N such that for n � n0, we

have
{
(v

(1)
i1

, . . . , v
(d)
id

), 1 � i1, . . . , id � N
}
⊂ (xi)i=1,...,n.

In our opinion, Condition-Grid is reasonable and natural. Its purpose is to
guarantee that the partial derivatives of Y are consistently estimable from y
everywhere on [0, 1]d (see, for instance, the proof of Theorems 3.2 and 3.3 for
κ = 1 in the appendix). We believe that, for the results for which Condition-
Grid is assumed, one could replace it by a milder condition and prove similar
results. Then the proofs would be based on essentially the same ideas as the
current ones, but could be more cumbersome.

In some other cases, we only need to assume that the observation points
constitute a sequence.

Condition-Sequence. For all n ∈ N and i � n, we have x
(n)
i = x

(i)
i .

Condition-Sequence implies that sequences of conditional expectations with
respect to the observations are martingales. This condition is necessary in some
of the proofs (for instance, that of Theorem 3.3) where convergence results for
martingales are used.
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3. Variance parameter estimation

3.1. Model and assumptions

In this section, we focus on the estimation of a single variance parameter when
the correlation function is known. Hence, we let p = 1, θ = σ2, and for x ∈ Rd,

kσ2(x) = σ2k1(x), (3.1)

where k1 is a fixed known function such that k̃1 defined by k̃1(u, v) = k1(u− v)
is a correlation function on [0, 1]d × [0, 1]d.

We define the Fourier transform of a function h : Rd → R by

ĥ(ω) =
1

(2π)d

∫
Rd

h(t)e−ıω�tdt,

where ı2 = −1 and we make the following assumption.

Condition-Var. Let κ be fixed in {0, 1, 2}.
- If κ = 0, k1 is α-Hölder, which means that there exist non-negative con-
stants c and α such that

|k1(t)− k1(t
′)| � c ‖t− t′‖α

for all t and t′ in Rd, where ‖.‖ is the Euclidean norm. Furthermore, the

Fourier transform k̂1 of k1 satisfies, for some fixed P < ∞,

k̂1(ω) ‖ω‖P −→
‖ω‖→∞

∞. (3.2)

- If κ = 1, the Gaussian process Y is differentiable in quadratic mean. For
i = 1, . . . , d, let k1,i = −∂2k1/∂x

2
i . Remark that the covariance function

of ∂Y/∂xi is given by k̃1,i defined by k̃1,i(u, v) = k1,i(u − v). Then k1,i
is α-Hölder for a fixed α > 0. Also, (3.2) holds with k̂1 replaced by the

Fourier transform k̂1,i of k1,i for i = 1, . . . , d.
- If κ = 2, the Gaussian process Y is twice differentiable in quadratic mean.
For i, j = 1, . . . , d, let k2,i,j = ∂4k1/(∂x

2
i ∂x

2
j ). Remark that the covari-

ance function of ∂2Y/(∂xi∂xj) is given by k̃2,i,j defined by k̃2,i,j(u, v) =
k2,i,j(u − v). Then k2,i,j is α-Hölder for a fixed α > 0. Also, (3.2) holds

with k̂1 replaced by the Fourier transform k̂2,i,j of k2,i,j for i, j = 1, . . . , d.

These assumptions make the conditioning by {Y ∈ Eκ} valid for κ = 0, 1, 2
as established in the following lemma.

Lemma 3.1. Assume that Condition-Var holds. Then for all κ ∈ {0, 1, 2} and
for any compact K in (0,+∞), we have

inf
σ2∈K

Pσ2 (Y ∈ Eκ) > 0.

Proof of Lemma 3.1. It suffices to follow the same lines as in the proof of [29,
Lemma A.6] noticing that Condition-Var implies the conditions of [29, Lemma
A.6] (see the discussion in [29]).



Maximum likelihood for constrained Gaussian process 2927

3.2. Asymptotic conditional distribution of the maximum likelihood
estimator

The log-likelihood function in (2.1) for σ2 can be written as

Ln(σ
2) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2
ln(|R1|)−

1

2σ2
y�R−1

1 y, (3.3)

where R1 = [k1(xi − xj)]1�i,j�n. Then the standard MLE is given by

σ̄2
n ∈ argmax

σ2>0

Ln(σ
2). (3.4)

Now we show that, for κ = 0, 1, 2,
√
n
(
σ̄2
n − σ2

0

)
is asymptotically Gaussian

distributed conditionally to {Y ∈ Eκ}.

Theorem 3.2. For κ = 1, 2, we assume that Condition-Grid holds. For κ =
0, 1, 2, under Condition-Var, the MLE σ̄2

n of σ2
0 defined by (3.4) conditioned on

{Y ∈ Eκ} is asymptotically Gaussian distributed. More precisely,

√
n
(
σ̄2
n − σ2

0

) L|Y ∈Eκ−−−−−→
n→+∞

N (0, 2σ4
0).

It is well known that
√
n
(
σ̄2
n − σ2

0

)
converges (unconditionally) to the

N (0, 2σ4
0) distribution. Hence, conditioning by {Y ∈ Eκ} has no impact on

the asymptotic distribution of the MLE.

3.3. Asymptotic conditional distribution of the constrained
maximum likelihood estimator

Here, we assume that the compact set Θ is [σ2
l , σ

2
u] with 0 < σ2

l < σ2
0 < σ2

u < +∞
and we consider the cMLE σ̂2

n,c of σ2
0 derived by maximizing on the compact

set Θ the constrained log-likelihood in (2.2):

σ̂2
n,c ∈ argmax

σ2∈Θ

Ln,c(σ
2). (3.5)

Now we show that the conditional asymptotic distribution of the cMLE is
the same as the asymptotic distribution of the MLE.

Theorem 3.3. For κ = 1, 2, we assume that Condition-Grid holds. For κ =
0, 1, 2, under Condition-Var and Condition-Sequence, the cMLE σ̂2

n,c of σ2
0 de-

fined in (3.5) is asymptotically Gaussian distributed. More precisely,

√
n
(
σ̂2
n,c − σ2

0

) L|Y ∈Eκ−−−−−→
n→+∞

N (0, 2σ4
0).
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4. Microergodic parameter estimation for the isotropic Matérn
model

4.1. Model and assumptions

In this section, we let d = 1, 2 or 3 and we consider the isotropic Matérn family
of covariance functions on Rd. We refer to, e.g., [46] for more details. Here
kθ = kθ,ν is given by, for x ∈ [0, 1]d,

kθ,ν(x) = σ2Kν

(
‖x‖
ρ

)
=

σ2

Γ(ν)2ν−1

(
‖x‖
ρ

)ν

κν

(
‖x‖
ρ

)
.

The Matérn covariance function is given by k̃θ,ν(u, v) = kθ,ν(u − v). The pa-
rameter σ2 > 0 is the variance of the process, ρ > 0 is the correlation length
parameter that controls how fast the covariance function decays with the dis-
tance, and ν > 0 is the regularity parameter of the process. The function κν is
the modified Bessel function of the second kind of order ν (see [2]). We assume
in the sequel that the smoothness parameter ν is known. Then θ = (σ2, ρ) and
p = 2.

Condition-ν. For κ = 0 (respectively κ = 1 and κ = 2), we assume that
ν > 0 (resp. ν > 1 and ν > 2).

We remark that Condition-ν naturally implies Condition-Var so that the
conditioning by {Y ∈ Eκ} is valid for any κ = 0, 1, 2 as established in the next
lemma. We refer to [46] for a reference on the impact of ν on the smoothness of
the Matérn function kθ,ν and on its Fourier transform.

Lemma 4.1. Assume that Condition-ν holds. Then for all κ ∈ {0, 1, 2} and for
any compact K of (0,∞)2, we have

inf
(σ2,ρ)∈K

Pσ2,ρ (Y ∈ Eκ) > 0.

Proof of Lemma 4.1. This lemma is a special case of [29, Lemma A.6].

4.2. Asymptotic conditional distribution of the maximum likelihood
estimator

The log-likelihood function in (2.1) for σ2 and ρ under the Matérn model with
fixed parameter ν can be written as

Ln(σ
2, ρ) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2
ln(|Rρ,ν |)−

1

2σ2
y�R−1

ρ,νy, (4.1)

where Rρ,ν = [Kν(‖xi − xj‖ /ρ)]1�i,j�n. Let Θ = [σ2
l , σ

2
u] × [ρl, ρu] with fixed

0 < σ2
l < σ2

u < ∞ and fixed 0 < ρl < ρu < ∞. Moreover, assume that the true
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parameters are such that σ2
l /(ρ

2ν
l ) < σ2

0/(ρ
2ν
0 ) < σ2

u/(ρ
2ν
u ). Then the MLE is

given by

(σ̂2
n, ρ̂n) ∈ argmax

(σ2,ρ)∈Θ

Ln(σ
2, ρ). (4.2)

It has been shown in [53] that the parameters σ2
0 and ρ0 can not be estimated

consistently but that the microergodic parameter σ2
0/ρ

2ν
0 can. Furthermore, it

is shown in [26] that
√
n
(
σ̂2
n/ρ̂

2ν
n − σ2

0/ρ
2ν
0

)
converges to a N

(
0, 2
(
σ2
0/ρ

2ν
0

)2 )
distribution. In the next theorem, we show that this asymptotic normality also
holds conditionally to {Y ∈ Eκ}.
Theorem 4.2. For κ = 1, 2, we assume that Condition-Grid holds. For κ =
0, 1, 2, under Condition-ν, the estimator σ̂2

n/ρ̂
2ν
n of the microergodic parameter

σ2
0/ρ

2ν
0 defined by (4.2) and conditioned on {Y ∈ Eκ} is asymptotically Gaussian

distributed. More precisely,

√
n

(
σ̂2
n

ρ̂2νn
− σ2

0

ρ2ν0

)
L|Y ∈Eκ−−−−−→
n→+∞

N
(
0, 2

(
σ2
0

ρ2ν0

)2)
.

4.3. Asymptotic conditional distribution of the constrained
maximum likelihood estimator

We turn to the constrained log-likelihood and its maximizer. We consider
two types of estimation settings obtained by maximizing the constrained log-
likelihood (2.2) under the Matérn model. In the first setting, ρ = ρ1 is fixed and
(2.2) is maximized over σ2 (in the case ρ1 = ρ0 this setting is already covered
by Theorem 3.3). In the second setting, (2.2) is maximized over both σ2 and
ρ. Under the two settings, we show that the cMLE has the same asymptotic
distribution as the MLE, conditionally to {Y ∈ Eκ}.
Theorem 4.3 (Fixed correlation length parameter ρ1). For κ = 1, 2, we assume
that Condition-Grid holds. Assume that Condition-ν and Condition-Sequence
hold. Let for ρ ∈ [ρl, ρu],

σ̂2
n,c(ρ) ∈ argmax

σ2∈[σ2
l ,σ

2
u]

Ln,c(σ
2, ρ). (4.3)

Let ρ1 ∈ [ρl, ρu] be fixed. Then σ̂2
n,c(ρ1) is asymptotically Gaussian distributed

for κ = 0, 1, 2. More precisely,

√
n

(
σ̂2
n,c(ρ1)

ρ2ν1
− σ2

0

ρ2ν0

)
L|Y ∈Eκ−−−−−→
n→+∞

N
(
0, 2

(
σ2
0

ρ2ν0

)2)
.

Theorem 4.4 (Estimated correlation length parameter). For κ = 1, 2, we
assume that Condition-Grid holds. Assume that Condition-ν holds. Let σ̂2

n,c(ρ)
be defined as in (4.3) and let (σ̂2

n,c, ρ̂n,c) be defined by

(σ̂2
n,c, ρ̂n,c) ∈ argmax

(σ2,ρ)∈Θ

Ln,c(σ
2, ρ).
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Notice that σ̂2
n,c = σ̂2

n,c(ρ̂n,c).

(i) For κ = 0, assume that one of the following two conditions hold.

a) We have ν > 1, d = 1 and max
x∈[0,1]

min
i=1,...,n

|x− xi| = o(1/
√
n).

b) We have ν > 2 and there exists a sequence (an)n∈N with an =
o(1/n1/4) as n → ∞, so that, for all x ∈ [0, 1]d, there exists d + 1
points v1, . . . , vd+1 with {v1, . . . , vd+1} ⊂ {x1, . . . , xn}, so that x be-
longs to the convex hull of v1, . . . , vd+1 and max

j=1,...,d+1
‖x− vj‖ � an.

(ii) For κ = 1, 2, assume that one of the following two conditions hold.

a) We have ν > κ+ 1, d = 1 and max
x∈[0,1]

min
i=1,...,n

|x− xi| = o(1/
√
n).

b) We have ν > κ + 2 and the observation points {x1, . . . , xn} are so
that, for all n � 2d, with N = 	n1/d
,

{x1, . . . , xn} ⊃
{(

i1
N − 1

, . . . ,
id

N − 1

)
, 0 � i1, . . . , id � N − 1

}
.

Then σ̂2
n,c/ρ̂

2ν
n,c is asymptotically Gaussian distributed for κ = 0, 1, 2. More pre-

cisely,

√
n

(
σ̂2
n,c

ρ̂2νn,c
− σ2

0

ρ2ν0

)
L|Y ∈Eκ−−−−−→
n→+∞

N
(
0, 2

(
σ2
0

ρ2ν0

)2)
.

In Theorem 4.4, we assume that ν is larger than in Condition-ν, and we
assume that the observation points have specific quantitative space filling prop-
erties. The condition (i) b) also implies that a portion of the observation points
are located in the corners and borders of [0, 1]d. Furthermore, the condition (ii)
b) implies that the majority of the observation points are located on regular
grids. We believe that these two last conditions could be replaced by milder
ones, at the cost of similar proofs but more cumbersome than the present ones.

We make stronger assumptions in Theorem 4.4 than in Theorem 4.3 because
the former is more challenging than the latter. Indeed, since ρ = ρ1 is fixed
in Theorem 4.3, we can use the equivalence of two fixed Gaussian measures in
order to obtain asymptotic properties of the conditional mean function of Y
under k1,ρ1,ν (see the developments following (B.12) in the proofs). This is not
possible anymore when considering the conditional mean function of Y under
k1,ρ̂n,c,ν , where ρ̂n,c is random. Hence, we use other proof techniques, based on
reproducing kernel Hilbert spaces, for studying this conditional mean function,
for which the above additional conditions are needed. We refer for instance to
the developments following (B.17) in the appendix for more details.

5. Numerical results

In this section, we illustrate numerically the conditional asymptotic normality
of the MLE and the cMLE of the microergodic parameter for the Matérn 5/2
covariance function. The numerical experiments were implemented using the R
package “LineqGPR” [28].
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5.1. Experimental settings

We let d = 1 in the rest of the section. Since the event {Y ∈ Eκ} can not be
simulated exactly in practice, we consider the piecewise affine interpolation Ym

of Y at t1, . . . , tm ∈ [0, 1], with m > n [29, 31]. Then, the event {Y ∈ Eκ} is
approximated by the event {Ym ∈ E ′

κ}, where E ′
0 (respectively E ′

1, E ′
2) is the set

of continuous bounded between � and u (resp. increasing, convex) functions. We
can simulate efficiently Ym conditionally to {Ym ∈ E ′

κ} by using Markov Chain
Monte Carlo procedures (see, for instance, [34]).

In Section 5, we consider the Matérn 5/2 function defined by

kθ,5/2(x) = σ2

(
1 +

√
5|x|
ρ

+
5

3

x2

ρ2

)
exp

{
−

√
5|x|
ρ

}
,

for x ∈ R and with θ = (σ2, ρ). Remark that kθ,5/2 is obtained by the param-
etrization of [28, 39] rather than that of Section 4.1. For an easy reading, we
keep the same notation.

5.2. Numerical results when ρ0 is known

We let m = 300 and x1, ..., xn be equispaced in [0, 1] in the rest of Section 5. For
κ = 0, 1, we generate N = 1, 000 trajectories of Ym given {Ym ∈ E ′

κ}. For each of
these trajectories, we compute the MLE σ̄2

m,n(ρ0) with σ̄2
m,n(ρ) = y�R−1

ρ y/n =

argmaxσ2∈(0,∞) Ln(σ
2, ρ), where Rρ =

[
k̃1,ρ,5/2(xi, xj)

]
i,j=1,...,d

for ρ ∈ (0,∞).

Then we evaluate the cMLE as follows. We let mm,n,ρ,y be the conditional mean

function of Ym given y under covariance function k̃1,ρ,5/2. We simulate nt =
1, 000 trajectories Z1, ..., Znt of a Gaussian process with zero mean function and

covariance function k̃m,n,1,ρ0,5/2, where k̃m,n,1,ρ,5/2 is the covariance function

of Ym given y under covariance function k̃1,ρ,5/2. Then we let Bn(σ
2, ρ0) be

approximated by ln
(
(1/nt)

∑nt

i=1 1mm,n,ρ0,y+σZi∈E′
κ

)
. The term An(σ

2, ρ0) can
be easily approximated as it does not depend on the trajectory of Ym under
consideration. We maximize the resulting approximation of Ln,c(σ

2, ρ0) on 1, 000

equispaced values of σ2 between (1 − 4
√
2/n)σ2

0 and (1 + 4
√

2/n)σ2
0 , yielding

the approximated cMLE estimator σ̂2
m,n,c(ρ0).

In Figure 1, we report the results for κ = 0 (boundedness constraints)
with (σ2

0 , ρ0) = (2, 0.2) and n = 20, 50, 80. We show the probability den-
sity functions obtained from the samples

{
n1/2(σ̄2

m,n(ρ0)i − σ2
0)
}
i=1,...,N

and{
n1/2(σ̂2

m,n,c(ρ0)i − σ2
0)
}
i=1,...,N

obtained as discussed above. We also plot the

probability density function of the limit N (0, 2σ4
0) distribution. We observe that

for a small number of observations, e.g. n = 20, the distribution of the cMLE is
closer to the limit distribution than that of the MLE in terms of median value.
We also observe that, as n increases, both distributions become more similar to
the limit one. Nevertheless, the cMLE exhibits faster convergence.
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Fig 1. Asymptotic conditional distributions of the variance parameter estimators under
boundedness constraints. Here (σ2

0 , ρ0) = (2, 0.2). Each panel shows: the limit distribution
N (0, 2σ4

0) (red, solid lines), the conditional distribution of the MLE (green, dashed lines),
and the conditional distribution of the cMLE (blue, dotted lines). The vertical lines represent
the median values of the distributions. Each sub-caption shows the number of observations n
used for the estimations.

In Figure 2, we report the same quantities for κ = 1 (monotonicity con-
straints) and for (σ2

0 , ρ0) = (0.52, 1). In this case, we observe that the distribu-
tions of both the MLE and the cMLE are close to the limit one even for small
values of n (n = 5, 20).

5.3. Numerical results when ρ0 is unknown

We let κ = 0, (σ2
0 , ρ0) = (2, 0.2) and n = 20, 50, 80. We proceed similarly

as in the case where ρ0 is known. To compute the MLE (σ̄2
m,n(ρ̂m,n), ρ̂m,n)

of (σ2
0 , ρ0), we maximize Ln(σ̄

2
m,n(ρ), ρ) over a finite grid of values for

ρ. To compute the cMLE (σ̂2
m,n,c(ρ̂m,n,c), ρ̂m,n,c) of (σ2

0 , ρ0), we evaluate

ln
(
(1/nt)

∑nt

i=1 1mm,n,ρ,y+σZρ,i∈E′
κ

)
over 1002 pairs (σ2

i,j , ρi)i,j=1,...,100. Here Zρ,i
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Fig 2. Asymptotic conditional distributions of the variance parameter estimators under mono-
tonicity constraints. Here (σ2

0 , ρ0) = (0.52, 1). Panel description is the same as in Figure 1.

is generated as in Section 5.2 but with ρ0 replaced by ρ, for i = 1, . . . , 100. Then
ρ1, . . . , ρ100 are equispaced in [0.1, 0.3] and for i = 1, . . . , 100, σ2

i,1, . . . , σ
2
i,100 are

equispaced in

ρ5i

[
σ2
0

ρ50
− 4

√
2√
n

σ2
0

ρ50
,
σ2
0

ρ50
+

4
√
2√
n

σ2
0

ρ50

]
.

Hence, the estimator of the microergodic parameter σ2
0/ρ

5
0 is restricted to be at

distance less than 4 times the asymptotic standard deviation of the microergodic
parameter.

In Figure 3, we show the probability density functions obtained
from the samples

{
n1/2(σ̄2

m,n(ρ̂m,n)i/ρ̂
5
m,n,i − σ2

0/ρ
5
0)
}
i=1,...,N

and{
n1/2(σ̂2

m,n,c(ρ̂m,n,c)i/ρ̂
5
m,n,c,i − σ2

0/ρ
5
0)
}
i=1,...,N

, with N = 1, 000. Similarly to

Section 5.2, we observe that the distribution of the cMLE tends to be closer to
the limit one, than that of the MLE. Moreover, the convergence with the cMLE
is faster than with the MLE in terms of median value.

6. Extensions

6.1. Results on prediction

In the next proposition, we show that, conditionally to the inequality con-
straints, the predictions obtained when taking the constraints into account are
asymptotically equal to the standard (unconstrained) Kriging predictions. Fur-
thermore, the same is true when comparing the conditional variances obtained
with and without accounting for the constraints.

Proposition 6.1. Let κ = 0, 1, 2 be fixed. Consider a Gaussian process Y on
[0, 1]d with mean function zero and covariance function k̃ of the form k̃(u, v) =
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Fig 3. Asymptotic conditional distributions of the microergodic parameter estimators for the
isotropic ν = 5/2 Matérn model under boundedness constraints. Here (σ2

0 , ρ0) = (2, 0.2).
Panel description is the same as in Figure 1, with N (0, 2σ4

0) replaced by N (0, 2(σ2
0/ρ

5
0)

2).

k(u − v) for u, v ∈ [0, 1]d, where k : Rd → R satisfies Condition-
Var (with k1 replaced by k). Assume that Condition-Sequence holds. Recall
that y = (Y (x1), . . . , Y (xn))

� is the observation vector. For x0 ∈ [0, 1]d, let

Ŷ (x0) = E[Y (x0)|y], σ̂(x0)
2 = Var(Y (x0)|y), Ŷc(x0) = E[Y (x0)|y, Y ∈ Eκ], and

σ̂c(x0)
2 = Var(Y (x0)|y, Y ∈ Eκ). Then when x0 �∈ {xi}i∈N, we have

Ŷ (x0)− Ŷc(x0)

σ̂(x0)
= oP|Y ∈Eκ

(1), (6.1)

and
σ̂(x0)

2 − σ̂c(x0)
2

σ̂(x0)2
= oP|Y ∈Eκ

(1). (6.2)

In Proposition 6.1, when taking the constraints into account or not, the pre-
dictions converge to the true values and the conditional variances converge to
zero. Thus, the results in Proposition 6.1 are given on a relative scale, by divid-
ing the difference of predictions by the conditional standard deviation (without



Maximum likelihood for constrained Gaussian process 2935

constraints), and by dividing the difference of conditional variances by the con-
ditional variance (without constraints).

Similarly as for estimation in Sections 3 and 4, the conclusion of Proposition
6.1 is that the constraints do not have an asymptotic impact on prediction.

When there is no constraints, significant results on using misspecified covari-
ance functions that are asymptotically equivalent to the true one have been
obtained in [42, 43, 45]. Let k̃, σ̂(x0), Ŷ (x0) and Ŷc(x0) be as in Proposition

6.1. Let k1 satisfy Condition-Var and let k̃1 be defined from k1 as in Proposition
6.1. Let the Gaussian measures of the Gaussian processes with mean functions
zero and covariance functions k̃ and k̃1 on [0, 1]d be equivalent (see [46]). Let

σ̂1(x0), Ŷ1(x0), Ŷc,1(x0), and σ̂c,1(x0) be defined as σ̂(x0), Ŷ (x0), Ŷc(x0) and

σ̂c(x0), when taking the conditional expectations with respect to k̃1 rather than

k̃. Then it is shown in [42, 43, 45] (see also [46, Chapter 4, Theorem 8]) that,
when x0 �∈ {xi}i∈N,

Ŷ1(x0)− Ŷ (x0)

σ̂(x0)
= oP(1) (6.3)

and
σ̂1(x0)

2 − σ̂(x0)
2

σ̂(x0)2
= o(1). (6.4)

Both expressions above mean that the predictions and conditional variances
obtained from equivalent Gaussian measures are asymptotically equivalent. A
corollary of our Proposition 6.1 is that this equivalence remains true when the
predictions and conditional variances are calculated accounting for the inequal-
ity constraints.

Corollary 6.2. Let κ = 0, 1, 2 be fixed. Consider a Gaussian process Y on
[0, 1]d with mean function zero and covariance function k̃ of the form k̃(u, v) =
k(u − v) for u, v ∈ [0, 1]d, where k : Rd → R satisfies Condition-Var. Assume

that Condition-Sequence holds. Consider a covariance function k̃1 of the form
k̃1(u, v) = k1(u−v) for u, v ∈ [0, 1]d, where k1 : Rd → R satisfies Condition-Var.

Let the Gaussian measures of Gaussian processes with mean functions zero
and covariance functions k̃ and k̃1 on [0, 1]d be equivalent. Then when x0 �∈
{xi}i∈N, we have

Ŷc,1(x0)− Ŷc(x0)

σ̂c(x0)
= oP|Y ∈Eκ

(1),

and
σ̂c,1(x0)

2 − σ̂c(x0)
2

σ̂c(x0)2
= oP|Y ∈Eκ

(1).

Finally, an important question for Gaussian processes is to assess the asymp-
totic accuracy of predictions obtained from (possibly consistently) estimated
covariance parameters. In this section, we have restricted the asymptotic anal-
ysis of prediction to fixed (potentially misspecified) covariance parameters.

When no constraints are considered, and under increasing-domain asymp-
totics, predictions obtained from consistent estimators of covariance parameters
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are generally asymptotically optimal [10, 13]. Under fixed-domain asymptotics,
without considering constraints, the predictions obtained from estimators of the
covariance parameters can be asymptotically equal to those obtained from the
true covariance parameters [36]. It would be interesting, in future work, to ex-
tend the results given in [36], to the case of inequality constraints. This could
be carried out by making Proposition 6.1 uniform over subspaces of covariance
parameters, and by following a similar approach as for proving Corollary 6.2.

6.2. Microergodic parameter estimation for the isotropic Wendland
model

In this section, we let d = 1, 2 or 3 and extend the results for the Matérn
covariance functions of Section 4 to the isotropic Wendland family of covariance
functions on [0, 1]d [15, 21]. Here kθ = kθ,s,μ, with θ = (σ2, ρ), is given by

kθ,s,μ(x) = σ2φs,μ

(
‖x‖
ρ

)
,

for x ∈ Rd with, for t � 0,

φs,μ(t) =

{
1

B(2s,μ+1)

∫ 1

‖x‖ u(u
2 − ‖x‖2)s−1(1− u)μdu if ‖x‖ < 1,

0 else.

The parameters s > 0 and μ � (d + 1)/2 + s are considered to be fixed and

known. The Wendland covariance function is given by k̃θ,s,μ(u, v) = kθ,s,μ(u−v).
The parameter s drives the smoothness of the Wendland covariance function,
similarly as for the Matérn covariance function [15]. The parameters σ2 > 0
and ρ > 0 are interpreted similarly as for the Matérn covariance functions and
are to be estimated. We remark that, for appropriate equality conditions on ν
(see Section 4), s and μ, the Gaussian measures obtained from the Wendland
and Matérn covariance functions are equivalent [15]. The Wendland covariance
function is compactly supported, which is a computational benefit [15].

Let us define the MLE (σ̂2
n, ρ̂n) in the exact same way as in Section 4.2 but

for the Wendland covariance functions, with Θ = [σ2
l , σ

2
u] × [ρl, ρu] fixed as in

Section 4.2 and with σ2
l /(ρ

1+2s
l ) < σ2

0/(ρ
1+2s
0 ) < σ2

u/(ρ
1+2s
u ).

It is shown in [15] that the parameters σ2
0 and ρ0 cannot be estimated

consistently but that the parameter σ2
0/ρ

1+2s
0 can. Furthermore,

√
n
(
σ̂2
n/ρ̂

1+2s
n − σ2

0/ρ
1+2s
0

)
converges to a N

(
0, 2
(
σ2
0/ρ

1+2s
0

)2 )
distribution.

Then, we can extend Theorem 4.2, providing the asymptotic conditional dis-
tribution of the MLE of the microergodic parameter for the Matérn model, to
the Wendland model.

Condition-s, μ. We assume that μ � d/2+7/2+s and for κ = 1 (respectively
κ = 2), we assume that s+ 1/2 > 1 (resp. s+ 1/2 > 2).
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Theorem 6.3. For κ = 1, 2, we assume that Condition-Grid holds. For κ =
0, 1, 2, under Condition-s, μ, the MLE σ̂2

n/ρ̂
1+2s
n of the microergodic parameter

σ2
0/ρ

1+2s
0 , conditioned on {Y ∈ Eκ}, is asymptotically Gaussian distributed.

More precisely,

√
n

(
σ̂2
n

ρ̂1+2s
n

− σ2
0

ρ1+2s
0

)
L|Y ∈Eκ−−−−−→
n→+∞

N
(
0, 2

(
σ2
0

ρ1+2s
0

)2)
.

Now we define the cMLEs σ̂2
n,c(ρ) and (σ̂2

n,c, ρ̂n,c) as in Section 4.3, but for
the Wendland covariance functions. Then we can extend Theorems 4.3 and 4.4
to the Wendland model.

Theorem 6.4 (Fixed correlation length parameter ρ1). For κ = 1, 2, we assume
that Condition-Grid holds. Assume that Condition-s, μ and Condition-Sequence
hold. Let ρ1 ∈ [ρl, ρu] be fixed. Then σ̂2

n,c(ρ1) is asymptotically Gaussian dis-
tributed for κ = 0, 1, 2. More precisely,

√
n

(
σ̂2
n,c(ρ1)

ρ1+2s
1

− σ2
0

ρ1+2s
0

)
L|Y ∈Eκ−−−−−→
n→+∞

N
(
0, 2

(
σ2
0

ρ1+2s
0

)2)
.

Theorem 6.5 (Estimated correlation length parameter). For κ = 1, 2, we
assume that Condition-Grid holds. Assume that Condition-s, μ holds. Assume
the same two conditions (i) and (ii) as in Theorem 4.4, but with ν replaced by
s+ 1/2. Then σ̂2

n,c/ρ̂
1+2s
n,c is asymptotically Gaussian distributed for κ = 0, 1, 2.

More precisely,

√
n

(
σ̂2
n,c

ρ̂1+2s
n,c

− σ2
0

ρ1+2s
0

)
L|Y ∈Eκ−−−−−→
n→+∞

N
(
0, 2

(
σ2
0

ρ1+2s
0

)2)
.

6.3. Noisy observations

The results above hold for a continuous Gaussian process that is observed ex-
actly. It is thus natural to ask whether similar results hold for discontinuous
Gaussian processes or for Gaussian processes observed with errors. In the next
proposition, we show that the standard model of discontinuous Gaussian pro-
cess with a nugget effect yields a zero probability to satisfy bound constraints.
Hence, it does not seem possible to define, in a meaningful way, a discontinuous
Gaussian process conditioned by bound constraints.

Proposition 6.6. Let E0 be defined as in Section 2.1 with −∞ < � or u < +∞.
Let Y be a Gaussian process on [0, 1]d of the form

Y = Yc + Yδ,

where Yc is a continuous Gaussian process on [0, 1]d and Yδ is a Gaussian process

on [0, 1]d with mean function zero and covariance function k̃δ given by

k̃δ(u, v) = δ1{u=v},
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for u, v ∈ [0, 1]d. In addition, assume that Yc and Yδ are independent. Then

P(Y ∈ E0) = 0.

This proposition can be extended to monotonicity and convexity constraints.
Hence, in the rest of this section, we consider constrained continuous Gaussian
processes observed with noise.

In the case of noisy observations, obtaining fixed-domain asymptotic results
on the (unconstrained) MLE of the covariance parameters and the noise variance
is challenging, even more so than in the noise-free context. To the best of our
knowledge, the only covariance models that have been investigated theoretically,
under fixed-domain asymptotics with measurement errors, are the Brownian
motion [44] and the exponential model [16, 17].

In the case of the exponential model, we let θ = (σ2, ρ), Θ = [σ2
l , σ

2
u]× [ρl, ρu]

with fixed 0 < σ2
l < σ2

u < ∞ and fixed 0 < ρl < ρu < ∞. We let Δ = [δl, δu] with
0 < δl < δu < ∞ being fixed. We consider the set {kσ2,ρ; (σ

2, ρ) ∈ Θ} defined by

kσ2,ρ(t) = σ2e−|t|/ρ for (σ2, ρ) ∈ Θ and t ∈ R. We let k̃σ2,ρ(u, v) = kσ2,ρ(u− v)
for u, v ∈ [0, 1]. We let Y be a Gaussian process on [0, 1] with mean function
zero and covariance function kσ2

0 ,ρ0
with (σ2

0 , ρ0) ∈ Θ. We consider the triangular
array of observation points defined by

(x1, . . . , xn) = (0, 1/(n− 1), . . . , 1),

for n � 2. We consider that the n observations are given by

yi = Y (xi) + εi,

for i = 1, . . . , n where ε1, . . . , εn are independent, independent of Y , and follow
the N (0, δ20) distribution. Then the log-likelihood is

Ln(σ
2, ρ, δ) = −n

2
ln(2π)− 1

2
ln(|Rσ2,ρ,δ|)−

1

2
y�R−1

σ2,ρ,δy,

with (σ2, ρ) ∈ Θ, δ ∈ Δ, y = (y1, . . . , yn)
� and Rσ2,ρ,δ = [k̃σ2,ρ(xi, xj)]1�i,j�n+

δ2In. The MLE is given by

(σ̂2
n, ρ̂n, δ̂

2
n) ∈ argmax

(σ2,ρ)∈Θ,δ∈Δ

Ln(σ
2, ρ, δ).

In [17], it is shown that the MLE σ̂2
n/ρ̂n of the microergodic parameter and

the MLE δ̂2n of the noise variance jointly satisfy the central limit theorem(
n1/4

(
σ̂2
n/ρ̂n − σ2

0/ρ0
)

n1/2
(
δ̂2n − δ20

) )
L−−−−−→

n→+∞
N
((

0
0

)
,

(
4
√
2δ0(σ

2
0/ρ0)

3/2 0
0 2δ40

))
.

(6.5)

Hence, the rate of convergence of the MLE of the microergodic parameter is
decreased from n1/2 to n1/4, because of the measurement errors. The rate of
convergence of the MLE of the noise variance is n1/2.

In the next proposition, we show that these rates are unchanged when con-
ditioning by the boundedness event {Y ∈ E0}.
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Proposition 6.7. Consider the setting defined above, with θ0, δ0 in the interior
of Θ×Δ. Then, as n → ∞,

n1/4
(
σ̂2
n/ρ̂n − σ2

0/ρ0
)
= OP|Y ∈E0

(1), n1/4
(
σ̂2
n/ρ̂n − σ2

0/ρ0
)
�= oP|Y ∈E0

(1),

and
n1/2

(
δ̂2n − δ20

)
= OP|Y ∈E0

(1), n1/2
(
δ̂2n − δ20

)
�= oP|Y ∈E0

(1).

It would be interesting to see whether the central limit theorem in (6.5) still
holds conditionally to {Y ∈ E0}. This would be an extension to the noisy case
of Theorems 3.2 and 4.2. Nevertheless, to prove Theorem 3.2, we have observed
that, in the noiseless case, the MLE of σ2

0 is a normalized sum of the independent
variables W 2

n,1, . . . ,W
2
n,n, with

Wn,i :=
yi − E[yi|y1, . . . , yi−1]√
Var(yi|y1, . . . , yi−1)

,

for i = 1, . . . , n. We have taken advantage of the fact that conditioning
by Wn,1, . . . ,Wn,k enables to condition by Y (x1), . . ., Y (xk) and to approx-
imately condition by the event {Y ∈ E0}, while leaving the distribution of
Wn,k+1, . . . ,Wn,n unchanged. We refer to the proof of Theorem 3.2 for more
details.

In contrast, in the noisy case, the authors of [17] show that the MLE of
σ2
0/ρ0 is also a normalized sum of the independent variables W 2

n,1, . . . ,W
2
n,n, but

each Wn,i depends on the observation vector y = (y1, . . . , yn) entirely (see [17,
Equations (3.40) and (3.42)]). Hence, it appears significantly more challenging
to address the asymptotic normality of the MLE of σ2

0/ρ0 and δ0, conditionally
to {Y ∈ E0}. We leave this question open to future work.

The constrained likelihood and the cMLE can be naturally extended to the
noisy case. Nevertheless, the asymptotic study of the cMLE, in the context of the
exponential covariance function as in Proposition 6.7, seems to require substan-
tial additional work. Indeed, to analyze the cMLE in the noiseless case for the
Matérn covariance functions, we have relied on the results of [26] and [49], that
are specific to the noiseless case. Furthermore, the martingale arguments, used
for instance in the point 4) in the proof of Theorem 3.3, require the observation
points to be taken from a sequence. Hence, these martingale arguments are not
available in the framework of this section, in which the observation points are
taken on regular grids. Finally, the RKHS arguments, used for instance in the
point 4) in the proof of Theorem 4.4, require to work with covariance functions
that are at least twice differentiable, which is not the case with the exponential
covariance functions. Hence, we leave the asymptotic study of the cMLE, in the
noisy case, open to future research.

7. Concluding remarks

We have shown that the MLE and the cMLE are asymptotically Gaussian dis-
tributed, conditionally to the fact that the Gaussian process satisfies either
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boundedness, monotonicity or convexity constraints. Their asymptotic distribu-
tions are identical to the unconditional asymptotic distribution of the MLE. In
simulations, we confirm that the MLE and the cMLE have very similar perfor-
mances when the number n of observation points becomes large enough. We
also observe that the cMLE is more accurate for small or moderate values of n.

Hence, since the computation of the cMLE is more challenging than that of
the MLE, we recommend to use the MLE for large data sets and the cMLE for
smaller ones. In the proofs of the asymptotic behavior of the cMLE, one of the
main steps is to show that Pθ(Y ∈ Eκ|y) converges to one as n goes to infinity.
Hence, in practice, one may evaluate Pθ(Y ∈ Eκ|y), for some values of θ, in
order to gauge whether this conditional probability is not too close to 1 so that
it is worth using the cMLE despite the additional computational cost. Similarly,
Proposition 6.1 (and its proof) show that if Pθ(Y ∈ Eκ|y) is close to one, then
it is approximately identical to predict new values of Y with accounting for the
constraints or not. The latter option is then preferable, as it is computationally
less costly.

Our theoretical results could be extended in different ways. First, we remark
that the techniques we have used to show that Pθ(Y ∈ Eκ) and Pθ(Y ∈ Eκ|y)
are asymptotically negligible (see (A.6) and (A.7)) can be used for more general
families of covariance functions. Hence, other results on the (unconditional)
asymptotic distribution of the MLE could be extended to the case of constrained
Gaussian processes in future work. These types of results exist for instance for
the product exponential covariance function [52].

Also, in practice, computing the cMLE requires a discretization of the con-
straints, for instance using a piecewise affine interpolation as in Section 5, or a
finite set of constrained points [19]. Thus it would be interesting to extend our
results by taking this discretization into account.

Finally, in this paper, we have focused on Gaussian processes that are either
observed directly or with an additive Gaussian noise. These contexts are rel-
evant in practice when applying Gaussian processes to computer experiments
[41] and to regression problems in machine learning [37]. Nowadays, it has also
become standard to study other more complex models of latent Gaussian pro-
cesses, for instance in Gaussian process classification [33, 37]. Some authors have
also considered latent Gaussian processes subjected to inequality constraints for
modelling point processes [30]. It would be interesting to obtain asymptotic re-
sults similar to those in our article, for latent Gaussian processes. This could be
a challenging problem, as few asymptotic results are available even for uncon-
strained latent Gaussian process models. We remark that some of the techniques
we have used in this paper could be useful when considering latent Gaussian
processes under constraints. These techniques are, in particular, Lemmas A.1
and A.2 and their applications.

Appendix A: Additional notation and intermediate results

For a > 0, let fa : (0,∞) → R be defined by fa(t) = − ln(t) − a/t. We will
repeatedly use the fact that fa has a unique global maximum at a and f ′′

a (t) =
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1/t2 − 2a/t3.
In addition, let ξ∗ = inf

x∈[0,1]d
ξ(x), ξ∗ = sup

x∈[0,1]d
ξ(x), and ξ∗∗ = sup

x∈[0,1]d
|ξ(x)| for

any stochastic process ξ : [0, 1]d → R.
Now we establish three lemmas that will be useful in the sequel.

Lemma A.1. Let (Xn)n∈N be a sequence of r.v.’s and (mk,n)n,k∈N, k�n and
(Mk,n)n,k∈N, k�n be two triangular arrays of r.v.’s. We consider a random vector
(m,M)� such that m � mk,n � Mk,n � M for all k � n. We assume that
P(m = �) = P(M = u) = 0 and P(� � m � M � u) > 0 for some fixed � and
u ∈ R. Moreover, we consider a sequence (kn)n∈N so that, kn � n, kn →n→∞ ∞
and

(mkn,n,Mkn,n)
� a.s.−−−−−→

n→+∞
(m,M)�. (A.1)

Then for any a ∈ R,

lim
n→+∞

∣∣∣P(Xn � a|� � mkn,n � Mkn,n � u)− P(Xn � a|� � m � M � u)
∣∣∣ = 0.

(A.2)

Proof of Lemma A.1. For the sake of simplicity, we denote by Ek,n (respectively
E) the event {� � mk,n � Mk,n � u} (resp. {� � m � M � u}). Then

|P(Xn � a|Ekn,n)− P(Xn � a|E)| � |P(Xn � a, Ekn,n)− P(Xn � a, E)|
P(Ekn,n)

+

∣∣∣∣ 1

P(Ekn,n)
− 1

P(E)

∣∣∣∣P(Xn � a, E).

(A.3)

(i) By (A.1), P(Ekn,n) goes to P(E) = P(� � m � M � u) > 0 as n goes
to +∞. Thus 1/P(Ekn,n) is well-defined for large values of n and bounded as
n → ∞. Moreover, by trivial arguments of set theory, one gets

|P(Xn � a, Ekn,n)− P(Xn � a, E)| � P(Ekn,nΔE) = P(Ekn,n \ E)

since P(E \ Ekn,n) = 0. Now let ε > 0. One has

P(Ekn,n \ E) = P(� � mkn,n � Mkn,n � u, (m,M) /∈ [�, u]2)

� P(� � mkn,n � Mkn,n � u, m < �) + P(� � mkn,n � Mkn,n � u, M > u)

� P(� � mkn,n, m < �) + P(Mkn,n � u, M > u).

One may decompose P(� � mkn,n, m < �) into

P(�+ ε � mkn,n, m < l) + P(� � mkn,n � �+ ε, m < l)

� P(|mkn,n −m| > ε) + P(� � mkn,n � �+ ε).
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The first term in the right hand-side goes to 0 as n goes to infinity. By Porte-
manteau’s lemma and (A.1),

lim sup
n→+∞

P(� � mkn,n � �+ ε) � P(� � m � �+ ε) −→
ε→0

0.

We handle similarly the term P(Mkn,n � u, M > u). Hence, in the r.h.s. of
(A.3), the first term goes to 0 as n → ∞.

(ii) Now we turn to the control of the second term in (A.3). Upper bounding

P(Xn � a, E) by 1, it remains to control
∣∣∣ 1
P(Ekn,n)

− 1
P(E)

∣∣∣ which is immediate by

the convergence in distribution of (mkn,n,Mkn,n)
� as n goes to infinity (implied

by the a.s. convergence) and the fact that P(E) > 0 and P(m = �) = P(M =
u) = 0. The proof is now complete.

Lemma A.2. Consider three sequences of random functions fn, gn, hn :
[xinf , xsup] → R, with 0 < xinf < xsup < ∞ fixed. Consider that for all
x ∈ [xinf , xsup], fn(x), gn(x), and hn(x) are functions of Y and x only. Let

x̂n ∈ argmax
x∈[xinf ,xsup]

fn(x).

Assume the following properties.

(i) There exists A > 0, B > 0 and δ > 0 such that

fn(x)− fn(x̂n) � −An(x− x̂n)
2, ∀x ∈ [xinf , xsup]; |x− x̂n| � δ (A.4)

and

sup
|x−x̂n|>δ

x∈[xinf ,xsup]

fn(x)− fn(x̂n) � −Bn, (A.5)

with probability going to 1 as n → ∞.
(ii) There exists C > 0 such that for all x1, x2 ∈ [xinf , xsup]

|gn(x1)− gn(x2)| � C|x1 − x2|, (A.6)

with probability going to 1 as n → ∞.
(iii) One has, for κ = 0, 1, 2,

sup
x1,x2∈[xinf ,xsup]

|hn(x1)− hn(x2)| = oP|Y ∈Eκ
(1). (A.7)

Then, with

̂̂xn ∈ argmax
x∈[xinf ,xsup]

{fn(x) + gn(x) + hn(x)}

we have

√
n|̂̂xn − x̂n| = oP|Y ∈Eκ

(1) . (A.8)
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Proof of Lemma A.2. Let ε > 0. First, we have, with probability (conditionally
to {Y ∈ Eκ}) going to 1 as n → ∞, from (A.4), (A.6) and (A.7)

sup
|x−x̂n|�ε/

√
n

|x−x̂n|�1/n1/4

(fn(x) + gn(x) + hn(x)− fn(x̂n)− gn(x̂n)− hn(x̂n))

� −An

(
ε√
n

)2

+
C

n1/4
+ oPY ∈Eκ(1) = −Aε2 + oP|Y ∈Eκ

(1).

Second, from (A.4), (A.6) and (A.7), we have, with probability (conditionally
to {Y ∈ Eκ}) going to 1 as n → ∞,

sup
|x−x̂n|�1/n1/4

|x−x̂n|�δ

(fn(x) + gn(x) + hn(x)− fn(x̂n)− gn(x̂n)− hn(x̂n))

� −An

(
1

n1/4

)2

+ Cδ + oP|Y ∈Eκ
(1) −→

n→∞
−∞.

Third, from (A.5), (A.6) and (A.7), we have, with probability (conditionally
to {Y ∈ Eκ}) going to 1 as n → ∞,

sup
|x−x̂n|�δ

(fn(x) + gn(x) + hn(x)− fn(x̂n)− gn(x̂n)− hn(x̂n))

� −Bn+ C(xsup − xinf ) + oP|Y ∈Eκ
(1) −→

n→∞
−∞.

Finally, for all ε > 0 there exists c > 0 so that, with probability (conditionally
to {Y ∈ Eκ}) going to 1 as n → ∞,

sup
|x−x̂n|�ε/

√
n

(fn(x) + gn(x) + hn(x)− fn(x̂n)− gn(x̂n)− hn(x̂n)) � −c.

Hence, we have, by definition of ̂̂xn

√
n|̂̂xn − x̂n| = oP|Y ∈Eκ

(1) .

Lemma A.3. Let {kθ; θ ∈ Θ} be the set of functions in Section 2 where Θ is
compact. Assume that kθ satisfies Condition-Var in the case κ = 0, where c and
α can be chosen independently of θ. Let Zn,θ be a Gaussian process with mean
function zero and covariance function (x1, x2) → Covθ(Y (x1), Y (x2)|y). Then,
we have

sup
θ∈Θ

E

[
sup

x∈[0,1]d
|Zn,θ(x)|

]
→

n→∞
0.

Proof of Lemma A.3. This result is proved as an intermediate result in the proof
of [29, Lemma A.3]. There, the result was for fixed θ, but it can be made uniform
over θ ∈ Θ with no additional difficulties.

Appendix B: Proofs for Sections 3 and 4 - Boundedness

We let κ = 0 throughout Section B.



2944 F. Bachoc et al.

B.1. Estimation of the variance parameter

Proof of Theorem 3.2 under boundedness constraints. 1) Let mk,n = min
i=1,...,k

yi,

Mk,n = max
i=1,...,k

yi, and (m,M)� = (Y∗, Y
∗)�, where Y∗ and Y ∗ have been defined

in Appendix A. We clearly have m � mkn,n � Mkn,n � M . Since (xi)i∈N is
dense, for any sequence (kn)n∈N so that kn → ∞ as n → ∞ and kn � n, we
have (mkn,n,Mkn,n)

� → (m,M)� a.s. as n → ∞ (up to re-indexing x1, . . . , xn).

2) Let k ∈ N be fixed. We have

√
n
(
σ̄2
n − σ2

0

)
=

1√
n

(
y�R−1

1 y − nσ2
0

)
.

Writing the Gaussian probability density function of y as the product of the
conditional probability density functions of yi given y1, . . . , yi−1 leads to

1√
n

(
y�R−1

1 y − nσ2
0

)
=

σ2
0√
n

n∑
i=1

(
(yi − E[yi|y1, . . . , yi−1])

2

Var(yi|y1, . . . , yi−1)
− 1

)
.

The terms in the sum above are independent. Indeed,

Cov(yl, yi − E[yi|y1, . . . , yi−1]) = 0, for any l � i− 1

and the Gaussian distribution then leads to independence. Therefore,

1√
n

(
y�R−1

1 y − nσ2
0

)
=

σ2
0√
n

k∑
i=1

(
(yi − E[yi|y1, . . . , yi−1])

2

Var(yi|y1, . . . , yi−1)
− 1

)

+
σ2
0√
n

n∑
i=k+1

(
(yi − E[yi|y1, . . . , yi−1])

2

Var(yi|y1, . . . , yi−1)
− 1

)
.

The first term is oP(1) being the sum of k r.v.’s (whose variances are all equal to
2) divided by the square root of n. Because Pσ2(� � min

i=1,...,k
yi � max

i=1,...,k
yi � u) >

0, the first term is also oP(1) conditionally to
{
� � min

i=1,...,k
yi � max

i=1,...,k
yi � u

}
.

The second term is equal to σ2
0/
√
n times the sum of n−k independent variables

with zero mean and variance 2 and is also independent of y1, . . . , yk. Hence, from
the central limit theorem and Slutsky’s lemma [47, Lemma 2.8], we obtain that

1√
n

(
y�R−1

1 y − nσ2
0

) L|y∈E0,k−−−−−−→
n→∞

N (0, 2σ4
0),

where E0,k :=
{
y : � � min

i=1,...,k
yi � max

i=1,...,k
yi � u

}
and

L|y∈E0,k−−−−−−→
n→∞

is defined

similarly as
L|Y ∈E0−−−−−→
n→∞

.
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3) Hence, for x ∈ R, there exists a sequence τn −→
n→∞

∞ satisfying τn = o(n)

as n → ∞ so that:

P

(√
n
(
σ̄2
n − σ2

0

)
� x
∣∣∣� � min

i=1,...,τn
yi � max

i=1,...,τn
yi � u

)
−→
n→∞

P (V � x)

with V ∼ N (0, 2σ4
0). The above display naturally holds. Indeed, if

(Sτ,n)n∈N,τ=1,...,n is a triangular array of numbers so that, for any fixed τ ,
Sτ,n → S as n → ∞, where S does not depend on τ , then there exists a se-
quence τn → ∞ so that Sτn,n → S as n → ∞.

Therefore, from Lemma A.1,

P
(√

n
(
σ̄2
n − σ2

0

)
� x
∣∣ � � Y (x) � u, ∀x ∈ [0, 1]d

)
−→
n→∞

P (V � x) .

This concludes the proof.

Proof of Theorem 3.3 under boundedness constraints. We apply Lemma A.2 to
the sequences of functions fn, gn and hn defined by fn(σ

2) = Ln(σ
2), gn(x) =

An(σ
2), and hn(σ

2) = Bn(σ
2). Here we recall that for σ2 ∈ Θ,

An(σ
2) = − lnPσ2 (Y ∈ E0) and Bn(σ

2) = lnPσ2 (Y ∈ E0| y) .

In order to apply Lemma A.2, we need to check that the conditions (A.4) to
(A.7) hold.

1) By (3.3), one has

Ln(σ
2) = −n

2
ln 2π − n

2
ln(σ2)− 1

2
ln(|R1|)−

1

2σ2
y�R−1

1 y.

Now y�R−1
1 y is the square of the norm of a Gaussian vector with variance-

covariance matrix σ2
0In, where In stands for the identity matrix of dimension

n. Thus one can write y�R−1
1 y as the sum of the squares of n independent and

identically distributed r.v.’s εi, where εi is Gaussian distributed with mean 0
and variance σ2

0 . We prove that (A.4) is satisfied. One may rewrite Ln(σ
2) as

Ln(σ
2) = −n

2
ln(2π)− 1

2
ln(|R1|) +

n

2
fσ2

0+oP(1)(σ
2), (B.1)

where the oP(1) above does not depend on σ2 and fa has been introduced in
Appendix A. By a Taylor expansion and the definition of σ̄2

n, we have, with
probability going to 1 as n → ∞,

Ln(σ
2)− Ln(σ̄

2
n) = (σ2 − σ̄2

n)L′
n(σ̄

2
n) +

1

2
(σ2 − σ̄2

n)
2L′′

n(σ̃
2)

=
n

4
f ′′
σ2
0+oP(1)

(σ̃2)(σ2 − σ̄2
n)

2

=
n

4

(
1

σ̃4
− 2

σ2
0 + oP(1)

σ̃6

)
(σ2 − σ̄2

n)
2,
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with σ̃2 in the interval with endpoints σ2 and σ̄2
n. Hence, non-random constants

A > 0 and δ > 0 exist for which (A.4) is satisfied.

2) Second, let us prove that (A.5) holds with the previous δ > 0 and for
some B > 0. From (B.1), 2Ln/n+ln(2π)+(1/n) ln(|R1|) converges uniformly on
[σ2

l , σ
2
u] as n goes to infinity to fσ2

0
. The function fσ2

0
attains its unique maximum

at σ2
0 , which implies the result since σ̄2

n converges to σ2
0 in probability. Hence

(A.5) hods.

3) Now we consider (A.6). Let us introduce the Gaussian process Yr with

mean function zero and covariance function k̃1. Let σ
2
1 � σ2

2 . Then, one has:∣∣∣ exp{−An(σ
2
1)
}
− exp

{
−An(σ

2
2)
} ∣∣∣ = ∣∣∣P(σ1Yr ∈ E0)− P(σ2Yr ∈ E0)

∣∣∣
� P

(
u

σ2
� Yr(x) �

u

σ1
, ∀x ∈ [0, 1]d

)
+ P

(
�

σ2
� Yr(x) �

�

σ1
, ∀x ∈ [0, 1]d

)
� c

∣∣∣∣ 1σ1
− 1

σ2

∣∣∣∣
� c|σ2

2 − σ2
1 |

by Tsirelson theorem in [7]. Then, from Lemma 3.1, (A.6) holds.

4) We turn to

Bn(σ
2) = lnPσ2(Y ∈ E0|y) = lnPσ2(� � Y (x) � u, ∀x ∈ [0, 1]d|y).

Let mn,y and σ2k̃n be the conditional mean and covariance functions of Y given
y, under the probability measure Pσ2 . Using Borell-TIS inequality [4], with Zn,σ2

a Gaussian process with mean function zero and covariance function σ2k̃n, we
obtain

Pσ2(Y ∗ > u|y) � Pσ2

(
Z∗
n,σ2 > u− sup

x∈[0,1]d
mn,y(x)|y

)
� Pσ2

(
Z∗∗
n,σ2 > u− sup

x∈[0,1]d
mn,y(x)|y

)

� exp

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩−

((
u− sup

x∈[0,1]d
mn,y(x)− E[Z∗∗

n,σ2 ]

)
+

)2

2 sup
x∈[0,1]d

E[Zn,σ2(x)2]

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ . (B.2)

But by Lemma A.3, sup
σ2∈[σ2

l ,σ
2
u]

E[Z∗∗
n,σ2 ] → 0 as n → +∞. Additionally, one can

simply show that sup
x∈[0,1]d

E[Zn,σ2(x)2] = sup
x∈[0,1]d

σ2k̃n(x, x) goes to zero uniformly
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in σ2 ∈ [σ2
l , σ

2
u] as n → ∞. By [14, Proposition 2.8] and because the sequence

of observation points is dense,

sup
x∈[0,1]d

|mn,y(x)− Y (x)| a.s.−−−−−→
n→+∞

0

from which we deduce that on {Y ∗ < u− δ}, a.s.

lim sup
n→+∞

(
u− sup

x∈[0,1]d
mn,y(x)

)
� δ.

Consequently, (B.2) leads to

1{Y ∗<u−δ} sup
σ2∈[σ2

l ,σ
2
u]

Pσ2(Y ∗ > u|y) a.s.−−−−−→
n→+∞

0. (B.3)

Similarly, taking −Y instead of Y , one may prove easily that

1{Y∗>l+δ} sup
σ2∈[σ2

l ,σ
2
u]

Pσ2(Y∗ < l|y) a.s.−−−−−→
n→+∞

0. (B.4)

Then, we deduce that

1{�+δ<Y (x)<u−δ, ∀x∈[0,1]d} sup
σ2∈[σ2

l ,σ
2
u]

Pσ2(Y ∗ > u or Y∗ < �|y) a.s.−−−−−→
n→+∞

0. (B.5)

Now let ε > 0, ε′ = 2| ln(1 − ε)| and E0,δ := {f ∈ C([0, 1]d,R) s.t. � + δ �
f(x) � u− δ, ∀x ∈ [0, 1]d}. We have:

P

(
sup

σ2∈[σ2
l ,σ

2
u]

Pσ2 (Y ∗ > u or Y∗ < �|y) � ε, Y ∈ E0,δ
)

−→
n→+∞

0

= P

(
inf

σ2∈[σ2
l ,σ

2
u]
Bn(σ

2) � −ε′/2, Y ∈ E0,δ
)

= P

(
sup

σ2∈[σ2
l ,σ

2
u]

|Bn(σ
2)| � ε′/2, Y ∈ E0,δ

)
� P

(
sup

σ2
1 ,σ

2
2∈[σ2

l ,σ
2
u]

|Bn(σ
2
1)−Bn(σ

2
2)| � ε′, Y ∈ E0,δ

)
by the triangular inequality and (B.5). Therefore,

P

(
sup

σ2
1 ,σ

2
2∈[σ2

l ,σ
2
u]

|Bn(σ
2
1)−Bn(σ

2
2)| � ε′, Y ∈ E0

)
=P

(
sup

σ2
1 ,σ

2
2∈[σ2

l ,σ
2
u]

|Bn(σ
2
1)−Bn(σ

2
2)| � ε′, Y ∈ E0,δ

)
(B.6)

+ P

(
sup

σ2
1 ,σ

2
2∈[σ2

l ,σ
2
u]

|Bn(σ
2
1)−Bn(σ

2
2)| � ε′, Y ∈ E0 \ E0,δ

)
. (B.7)
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As already shown, the term (B.6) converges to 0 as n → +∞ for any fixed δ > 0.
For (B.7), we have

sup
t1,t2∈R

t1 �=t2

|Pσ2
0
(Y ∗ � t1)− Pσ2

0
(Y ∗ � t2)|

|t1 − t2|
< +∞.

This follows from Tsirelson theorem in [7]. Hence for all ε > 0, there exists
δ∗ > 0 such that,

Pσ2
0
(Y ∗ ∈ [u− δ∗, u]) � ε. (B.8)

Similarly, for all ε > 0, there exists δ∗ > 0 such that,

Pσ2
0
(Y∗ ∈ [�+ δ∗, �]) � ε. (B.9)

Taking δ = min(δ∗, δ
∗), we conclude the proof of (A.7).

5) Finally, we remark that with probability going to one as n → ∞, σ̄2
n =

argmax
σ2∈[σ2

l ,σ
2
u]

Ln(σ
2). Hence, one may apply Lemma A.2 to obtain

√
n|σ̂2

n,c − σ̄2
n| = oP|Y ∈E0

(1) .

By Theorem 3.2 and Slutsky’s lemma, we conclude the proof.

B.2. Isotropic Matérn process

Before proving Theorems 4.2, 4.3 and 4.4, we establish an intermediate result
useful in the sequel.

Lemma B.1. For ρ ∈ [ρl, ρu], let

σ̄2
n(ρ) ∈ argmax

σ2∈(0,∞)

Ln(σ
2, ρ)

and

σ̂2
n(ρ) ∈ argmax

σ2∈[σ2
l ,σ

2
u]

Ln(σ
2, ρ).

Then, we have

sup
ρ1,ρ2∈[ρl,ρu]

∣∣∣∣ σ̄2
n(ρ1)

ρ2ν1
− σ̄2

n(ρ2)

ρ2ν2

∣∣∣∣ = oP(1/
√
n) (B.10)

and

sup
ρ1,ρ2∈[ρl,ρu]

∣∣∣∣ σ̂2
n(ρ1)

ρ2ν1
− σ̂2

n(ρ2)

ρ2ν2

∣∣∣∣ = oP(1/
√
n). (B.11)
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Proof of Lemma B.1. We have σ̄2
n(ρ1)/(ρ

2ν
1 ) = (1/n)(1/(ρ2ν1 ))y�R−1

ρ1,νy so that

from [26, Lemma 1], we get
σ̄2
n(ρ1)

ρ2ν
1

� σ̄2
n(ρ2)

ρ2ν
2

for ρ1 � ρ2. Thus,

sup
ρ1,ρ2∈[ρl,ρu]

∣∣∣∣ σ̄2
n(ρ1)

ρ2ν1
− σ̄2

n(ρ2)

ρ2ν2

∣∣∣∣ = ∣∣∣∣ σ̄2
n(ρl)

ρ2νl
− σ̄2

n(ρu)

ρ2νu

∣∣∣∣ .
Then, it is shown in the proof of [49, Theorem 3] (see, also, [48] for its proof)
that ∣∣∣∣ σ̄2

n(ρl)

ρ2νl
− σ̄2

n(ρ0)

ρ2ν0

∣∣∣∣ = oP(1/
√
n)

and similarly for ρu. Hence, (B.10) follows. Also, let pσ2
l ,σ

2
u
be the function from

(0,∞) to [σ2
l , σ

2
u] defined by pσ2

l ,σ
2
u
(t) = min(max(t, σ2

l ), σ
2
u). Then, since σ2 →

Ln(σ
2, ρ) is first increasing and then decreasing, we have σ̂2

n(ρ) = pσ2
l ,σ

2
u
(σ̄2

n(ρ)).

Notice that pσ2
l ,σ

2
u
is continuous and bounded by σ2

u. Hence, (B.11) follows.

Proof of Theorem 4.2 under boundedness constraints. Because σ2
l /(ρ

2ν
l ) <

σ2
0/(ρ

2ν
0 ) < σ2

u/(ρ
2ν
u ), we have σ̂2

n = σ̂2
n(ρ̂n) with the notation of Lemma B.1.

Also, with probability going to 1 as n → ∞, σ̄2
n(ρ̂n) = σ̂2

n(ρ̂n) with the notation
of Lemma B.1. From Lemma B.1 and with the notation therein, we have

√
n

(
σ̂2
n(ρ̂n)

ρ̂2νn
− σ2

0

ρ2ν0

)
=
√
n

(
σ̂2
n(ρ0)

ρ2ν0
− σ2

0

ρ2ν0

)
+

√
n

(
σ̂2
n(ρ̂n)

ρ̂2νn
− σ̂2

n(ρ0)

ρ2ν0

)
=

1√
n

1

ρ2ν0

(
y�R−1

ρ0,νy − nσ2
0

)
+ oP(1),

where we have used that, with probability going to 1 as n → ∞, σ̂2
n(ρ0) =

σ̄2
n(ρ0). Then we conclude by applying Theorem 3.2 when κ = 0 and with

K0 = Kν(·/ρ0).

Proof of Theorem 4.3 under boundedness constraints. We apply Lemma A.2 to
the sequences of functions fn, gn and hn defined by fn(σ

2) = Ln(σ
2, ρ1), gn(x) =

An(σ
2, ρ1), and hn(σ

2) = Bn(σ
2, ρ1).

1) We have, with σ2
1 so that σ2

1/ρ
2ν
1 = σ2

0/ρ
2ν
0 ,

Ln(σ
2, ρ1) = −n

2
ln(2π)− n

2
ln(σ2)− 1

2
ln(|Rρ1,ν |)−

1

2σ2
y�R−1

ρ1,νy

=− n

2
ln(2π)− n

2
ln(σ2)− 1

2
ln(|Rρ1,ν |)−

1

2σ2

[
ρ2ν1
ρ2ν0

y�R−1
ρ0,νy + oP(

√
n)

]
from (B.10) in Lemma B.1, observing that σ̄2

n(ρ1) = (1/n)y�R−1
ρ1,νy. Thus

Ln(σ
2, ρ1) =

− n

2
ln(2π)− n

2
ln(σ2)− 1

2
ln(|Rρ1,ν |)−

σ2
1

2σ2

[
1

σ2
0

y�R−1
ρ0,νy + oP(

√
n),

]
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where (1/σ2
0)y

�R−1
ρ0,νy is a sum of the squares of independent standard Gaussian

variables. Hence, we show (A.4) and (A.5) exactly as for the proof of Theorem
3.3 when κ = 0.

2) Assumption (A.6) is satisfied since it has been established in the proof of
Theorem 3.3 when κ = 0 (for any ρ0 ∈ (0,∞)) and does not involve y.

3) We turn to Bn(σ
2, ρ1) = lnP(σ2,ρ1)(Y ∈ E0|y). Similarly to the proof of

Theorem 3.3 when κ = 0, we have that, for any δ > 0:

P(σ2
1 ,ρ1)

(
1{�+δ�Y (x)�u−δ, ∀x∈[0,1]d} sup

σ2∈[σ2
l ,σ

2
u]

∣∣Bn(σ
2, ρ1)

∣∣ →
n→∞

0

)
= 1. (B.12)

Now, for (σ2, ρ) ∈ (0,∞)2, we recall that P(σ2,ρ) is the measure on Ω for which

Y : (Ω,A,Pσ2,ρ) → (C([0, 1]d,R),B) has the distribution of a Gaussian pro-

cess on [0, 1]d with mean function zero and covariance function k̃σ2,ρ,ν . By
[53, Theorem 2], the measures P(σ2

0 ,ρ0) and P(σ2
1 ,ρ1) are equivalent as soon as

σ2
0/ρ

2ν
0 = σ2

1/ρ
2ν
1 meaning that for any set A ∈ A,

P(σ2
0 ,ρ0)(A) = 1 ⇔ P(σ2

1 ,ρ1)(A) = 1.

Then, one gets

P(σ2
0 ,ρ0)

(
1{�+δ�Y (x)�u−δ, ∀x∈[0,1]d} sup

σ2∈[σ2
l ,σ

2
u]

∣∣Bn(σ
2, ρ1)

∣∣ →
n→∞

0

)
= 1

which can also be written as

1{�+δ�Y (x)�u−δ, ∀x∈[0,1]d} sup
σ2∈[σ2

l ,σ
2
u]

∣∣Bn(σ
2, ρ1)

∣∣ a.s.−−−−→
n→∞

0.

This implies (A.7), as for the proof of Theorem 3.3 when κ = 0.

4) From a special case of Theorem 4.2 when κ = 0 and with ρl = ρu = ρ1,
we have √

n
(
σ̂2
n(ρ1)− σ2

1

) L|Y ∈E0−−−−−→
n→+∞

N (0, 2σ4
1).

Therefore, by Lemma A.2 and Slutsky’s lemma, we conclude the proof of
Theorem 3.3 when κ = 0.

Proof of Theorem 4.4 under boundedness constraints. Let κ = 0 in this proof.
We apply Lemma A.2 to the sequences of functions fn, gn and hn defined by
fn(x) = Ln(xρ̂

2ν
n,c, ρ̂n,c), gn(x) = An(xρ̂

2ν
n,c, ρ̂n,c), and hn(x) = Bn(xρ̂

2ν
n,c, ρ̂n,c).

1) We naturally have

σ̂2
n,c

ρ̂2νn,c
∈ argmax

x∈[σ2
l /ρ̂

2ν
n,c,σ

2
u/ρ̂

2ν
n,c]

Ln,c(xρ̂
2ν
n,c, ρ̂

2ν
n,c).
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Also, we have

Ln(xρ̂
2ν
n,c, ρ̂n,c) =− n

2
ln(2π)− n

2
ln(xρ̂2νn,c)−

1

2
ln(|Rρ̂n,c,ν |)−

1

2xρ̂2νn,c
y�R−1

ρ̂n,c,ν
y

=− n

2
ln(2π)− n

2
ln(ρ̂2νn,c)−

1

2
ln(|Rρ̂n,c,ν |)

− n

2
ln(x)− 1

2x

[
y�R−1

ρ0,νy

ρ2ν0
+ oP(

√
n)

]

from (B.10) in Lemma B.1, observing that σ̄2
n(ρ) = (1/n)y�R−1

ρ,νy. Thus

Ln(xρ̂
2ν
n,c, ρ̂n,c) =− n

2
ln(2π)− n

2
ln(ρ̂2νn,c)

− 1

2
ln(|Rρ̂n,c,ν |) +

n

2
f(σ2

0/ρ
2ν
0 )+Vn+oP(1/

√
n)(x), (B.13)

where
√
nVn converges in distribution to a centered Gaussian distribution with

variance 2(σ2
0/ρ

2ν
0 )2. Here Vn and the above oP(1/

√
n) do not depend on x.

Hence, we show (A.4) and (A.5) exactly as for the proof of Theorem 3.3 when
κ = 0.

2) One can also see that δ > 0 can be chosen so that σ2
l /ρ

2ν
l + δ � σ2

0/ρ
2ν
0 �

σ2
u/ρ

2ν
u − δ. Furthermore, let xinf = σ2

l /ρ
2ν
l and xsup = σ2

u/ρ
2ν
u . Then, from

(B.13), one can show that with

σ̃2
n(ρ̂n,c)

ρ̂2νn,c
∈ argmax

x∈[xinf ,xsup]

Ln(xρ̂
2ν
n,c, ρ̂n,c) (B.14)

we have:

σ̃2
n(ρ̂n,c)

ρ̂2νn,c
=

σ̂2
n(ρ̂n,c)

ρ̂2νn,c
, (B.15)

with probability going to 1 as n → ∞. It is convenient to introduce σ̃2
n(ρ̂n,c)

because this yields a non-random optimization domain in (B.14). Hence, from
Theorem 4.2 when κ = 0 and from Lemma B.1,

√
n

(
σ̃2
n(ρ̂n,c)

ρ̂2νn,c
− σ2

0

ρ2ν0

)
L|Y ∈E0−−−−−→
n→+∞

N
(
0, 2

(
σ2
0

ρ2ν0

)2
)
.

Let also
σ̃2
n,c(ρ̂n,c)

ρ̂2νn,c
∈ argmax

x∈[xinf ,xsup]

Ln,c(xρ̂
2ν
n,c, ρ̂

2ν
n,c).

Then, if we show (A.6) and (A.7), we can show similarly as for (B.15) that:

σ̃2
n,c(ρ̂n,c)

ρ̂2νn,c
=

σ̂2
n,c

ρ̂2νn,c
,
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with probability going to 1 as n → ∞. Hence, from Lemmas A.2 and B.1 and
Slutsky’s lemma, we can obtain, if (A.6) and (A.7) hold,

√
n

(
σ̂2
n,c

ρ̂2νn,c
− σ2

0

ρ2ν0

)
L|Y ∈E0−−−−−→
n→+∞

N
(
0, 2

(
σ2
0

ρ2ν0

)2
)
.

Therefore, in order to conclude the proof, it is sufficient to prove (A.6) and
(A.7).

3) We turn to (A.6). Let σYρ be a Gaussian process with mean function zero

and covariance function k̃σ2,ρ,ν . Then we have, from Lemma 4.1,

|gn(x1)− gn(x2)|
� c
∣∣P(x1ρ̂

2ν
n,cYρ̂n,c

∈ E0)− P(x2ρ̂
2ν
n,cYρ̂n,c

∈ E0)
∣∣

� c |x1 − x2| sup
ρ∈[ρl,ρu]

t1,t2∈[l/(xsupρ
2ν
u ),u/(xinfρ

2ν
l )]

t1 �=t2

∣∣P(Y ∗
ρ � t1)− P(Y ∗

ρ � t2)
∣∣

|t1 − t2|
.

We introduce the following notation:

Fρ(t) = P( sup
x∈[0,1]d

Yρ(x) � t)

and assume that

sup
ρ∈[ρl,ρu]

t∈[l/(xsupρ
2ν
u ),u/(xinfρ

2ν
l )]

sup
ε>0

Fρ(t+ ε)− Fρ(t)

ε
= +∞.

Therefore, there exists a sequence (ρk, tk, εk)k∈N such that

Fρk
(tk + εk)− Fρk

(tk)

εk
−−−−−→
k→+∞

+∞. (B.16)

We extract from (ρk, tk, εk)k∈N a subsequence (still denoted (ρk, tk, εk)k∈N) such
that (ρk)k is convergent and we denote by ρ its limit. Let Φ be the cumulative
distribution function of a standard Gaussian random variable. Then by the mean
value theorem,

Φ−1 ◦ Fρk
(tk + εk)− Φ−1 ◦ Fρk

(tk)

εk
� Fρk

(tk + εk)− Fρk
(tk)

εk
inf

p∈[0,1]

(
Φ−1

)′
(p)

−−−−−→
k→+∞

+∞

noticing that inf
p∈[0,1]

(
Φ−1

)′
(p) > 0 and using (B.16).
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But, using the concavity of Φ−1 ◦ Fρ (see [27, Theorem 10 in Section 11]),
one gets

Φ−1 ◦ Fρk
(tk + εk)− Φ−1 ◦ Fρk

(tk)

εk

� Φ−1 ◦ Fρk

(
l

xsupρ2νu

)
− Φ−1 ◦ Fρk

(
l

xsupρ2νu
− 1

)
→

k→∞
Φ−1 ◦ Fρ

(
l

xsupρ2νu

)
− Φ−1 ◦ Fρ

(
l

xsupρ2νu
− 1

)
.

The convergence comes from the continuity of the function ρ → Fρ(t) for a fixed
t (see the proof of [29, Lemma A.6]). From Lemma 4.1, the above limit is finite,
which is contradictory with (B.16). Hence, (A.6) is proved.

4) Finally, we turn to (A.7). We let mn,ρ,y and σ2k̃n,ρ be the mean and

covariance functions of Y given y under covariance function k̃σ2,ρ,ν . Our first
aim is to show that, for any ε > 0, with probability going to 1 as n → ∞,

sup
ρ∈[ρl,ρu]

sup
x∈[0,1]d

(mn,ρ,y(x)− Y ∗) � ε (B.17)

and

sup
ρ∈[ρl,ρu]

sup
x∈[0,1]d

(Y∗ −mn,ρ,y(x)) � ε. (B.18)

Now we use tools from the theory of reproducing kernel Hilbert spaces
(RKHSs) and refer to, e.g., [50] for the definitions and properties of RKHSs
used in the rest of the proof. For ρ ∈ [ρl, ρu], the function mn,ρ,y belongs to the

RKHS of the covariance function k̃1,ρ,ν . Its RKHS norm ‖mn,ρ,y‖k̃1,ρ,ν
can be

simply shown to satisfy

‖mn,ρ,y‖2k̃1,ρ,ν
= y�R−1

ρ,νy.

Hence, from Lemma B.1, observing that σ̄2
n(ρ) = (1/n)y�R−1

ρ,νy, we have, with
probability going to 1 as n → ∞,

sup
ρ∈[ρl,ρu]

‖mn,ρ,y‖k̃1,ρ,ν
� c

√
n. (B.19)

Consider the case a). Since ν > 1, the covariance function k̃1,ρ,ν is twice
continuously differentiable on [0, 1]. Hence, we have from [55, Theorem 1],

sup
ρ∈[ρl,ρu]

sup
x∈[0,1]

|m′
n,ρ,y(x)| � c sup

ρ∈[ρl,ρu]

‖mn,ρ,y‖k̃1,ρ,ν
� c

√
n

with probability going to 1 as n → ∞. Hence, since for i = 1, . . . , n mn,ρ,y(xi) =
yi � Y ∗, and from the assumption max

x∈[0,1]
min

i=1,...,n
|x − xi| = o(1/

√
n), it follows
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that (B.17) holds. Similarly, one can show that, with probability going to 1 as
n → ∞, (B.18) holds.

Consider the case b). Since ν > 2, the covariance function k̃1,ρ,ν is four times
continuously differentiable on [0, 1]d. Hence, we have also from [55, Theorem 1],

sup
ρ∈[ρl,ρu]

max
i,j=1,...,d

sup
x∈[0,1]d

∣∣∣∣∂2mn,ρ,y

∂xi∂xj
(x)

∣∣∣∣ � c sup
ρ∈[ρl,ρu]

‖mn,ρ,y‖k̃1,ρ,ν
� c

√
n, (B.20)

with probability going to 1 as n → ∞. For ε > 0, consider the event{
sup

ρ∈[ρl,ρu]

sup
x∈[0,1]d

(mn,ρ,y(x)− Y ∗) � ε

}
. (B.21)

Then, there exists ρ̄ ∈ [ρl, ρu] and x̄ ∈ [0, 1]d for which mn,ρ̄,y(x̄) � Y ∗ + ε. Let
Hxmn,ρ̄,y be the Hessian matrix of mn,ρ̄,y at x and ‖Hxmn,ρ̄,y‖ be its largest
singular value.

• For d = 1, we consider {v1, v2} ⊂ {x1, . . . , xn} for which v1 � x̄ � v2
with |v1− v2| � 2an (the existence is assumed in the case b)). Then, necessarily
v1 < x̄ < v2. Because, mn,ρ̄,y(v1) � max

i=1,...,n
yi � Y ∗, it follows that there exists

w1 ∈ [v1, x̄] for which m′
n,ρ̄,y(w1) � ε/an. Similarly there exists w2 ∈ [x̄, v2]

for which m′
n,ρ̄,y(w2) � −ε/an. Hence, there exists w3 ∈ [v1, v2] for which

m′′
n,ρ̄,y(w3) � −ε/a2n so that sup

x∈[0,1]

‖Hxmn,ρ̄,y‖ � cε/a2n.

• For d = 2, we consider {v1, v2, v3} ⊂ {x1, . . . , xn} for which x̄ belongs to the
convex hull of v1, v2, v3. Then, if x̄ belongs to one of the three segments with end
points v1, v2 or v2, v3 or v1, v3, from the previous step with d = 1, it follows that
sup

x∈[0,1]2
‖Hxmn,ρ̄,y‖ � cε/a2n. Consider now that x̄ does not belong to one of these

segments and consider the (unique) intersection point r of the line with direction
v1− x̄ and of the segment with endpoints v2 and v3. If mn,ρ̄,y(r) � Y ∗+ ε/2, by
considering the triplet (v1, x̄, r), from the reasoning of the case d = 1, it follows
that sup

x∈[0,1]2
‖Hxmn,ρ̄,y‖ � cε/a2n. If mn,ρ̄,y(r) � Y ∗ + ε/2, by considering the

triplet (v2, r, v3), it also follows that sup
x∈[0,1]2

‖Hxmn,ρ̄,y‖ � cε/a2n.

• For d = 3, we consider {v1, v2, v3, v4} ⊂ {x1, . . . , xn} for which x̄ belongs to
the convex hull of v1, v2, v3, v4. Let ch(z1, z2, z3) be the convex hull of z1, z2, z3 ∈
[0, 1]d (a two-dimensional triangle). If x̄ belongs to one of the four triangles
ch(v1, v2, v3), ch(v1, v2, v4), ch(v1, v3, v4), ch(v2, v3, v4), then from the previous
step with d = 2, it follows that sup

x∈[0,1]3
‖Hxmn,ρ̄,y‖ � cε/a2n. Now if x̄ does

not belongs to one of these triangles, then there exists a plane Pl containing
x̄, intersecting ch(v1, v2, v3), ch(v1, v2, v4), ch(v1, v3, v4), and being parallel to
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ch(v2, v3, v4). Let E be the intersection of this plane Pl and of ch(v1, v2, v3) ∪
ch(v1, v2, v4)∪ ch(v1, v3, v4). If there exists x ∈ E so that mn,y,ρ̄(x) � Y ∗ + ε/2,
then from the previous step with d = 2, it follows that sup

x∈[0,1]3
‖Hxmn,ρ̄,y‖ �

cε/a2n. If for all x ∈ E, mn,y,ρ̄(x) � Y ∗ + ε/2, then there exists z1, z2, z3 ∈ E so
that x̄ ∈ ch(z1, z2, z3) and hence we obtain sup

x∈[0,1]3
‖Hxmn,ρ̄,y‖ � cε/a2n.

Hence eventually, in all the configurations of the case b), we have
sup

x∈[0,1]d
‖Hxmn,ρ̄,y‖ � cε/a2n, under the event (B.21). Hence, from (B.20), (B.17)

follows in the case b). Analogously, (B.18) holds in that case.

Similarly to the proof of (A.7) in the proof of Theorem 3.3 when κ = 0,
one can show that sup

(σ2,ρ)∈Θ̄

E[Z∗∗
n,σ2,ρ] → 0 as n → +∞ and that

sup
x∈[0,1]d

E[Zn,σ2,ρ(x)
2] = σ2 sup

x∈[0,1]d
k̃n,ρ(x, x) goes to zero uniformly in (σ2, ρ) ∈ Θ̄

as n → ∞ for any compact Θ̄ ⊂ (0,∞)2. Here Zn,σ2,ρ is defined as in Lemma
A.3. We also have as in the proof of Theorem 3.3 when κ = 0 that

Pσ2,ρ(Y
∗ > u|y) � exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−

((
u− sup

x∈[0,1]d
mn,ρ,y(x)− E[Z∗∗

n,σ2,ρ]

)
+

)2

2 sup
x∈[0,1]d

E[Zn,σ2,ρ(x)2]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

Similarly, we bound the probability of the event {Y∗ < �} conditionally to y.
Hence, we conclude (as in the proof of Theorem 3.3 when κ = 0), also from
(B.8) and (B.9), that

sup
(σ2,ρ)∈Θ̄

|Bn(σ
2, ρ)| = oP|Y ∈E0

(1).

Consequently, (A.7) follows and the proof is concluded.

Appendix C: Proofs for Sections 3 and 4 - Monotonicity

We let κ = 1 throughout Appendix C.

C.1. Estimation of the variance parameter

Proof of Theorem 3.2 under monotonicity constraints. The proof is similar to
that of Theorem 3.2 when κ = 0 and is also divided into the three steps 1), 2)
and 3).
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1) For n ∈ N, let Nn be the greatest integer such that Condition-Grid holds.
Now we define

mi,n = min

{
1

v
(i)
ji

− v
(i)
ji−1

(
Y
(
v
(1)
j1

, . . . , v
(i−1)
ji−1

, v
(i)
ji
, v

(i+1)
ji+1

, . . . , v
(d)
jd

)

− Y
(
v
(1)
j1

, . . . , v
(i−1)
ji−1

, v
(i)
ji−1, v

(i+1)
ji+1

, . . . , v
(d)
jd

))
,

jk ∈ {1, . . . , Nn}, ∀k ∈ {1, . . . , d}�{i}, ji ∈ {2, . . . , Nn}
}

for all i = 1, . . . , d. Since Nn → ∞ as n → ∞, mi,n
a.s.−−−−−→

n→+∞
inf

x∈[0,1]d
∂Y (x)/∂xi

since Y is C1 a.s. by Condition-Var. Now we notice that mi,n = gi,n(y1, . . . , yn)
and we define mk,i,n = gi,k(y1, . . . , yk). One can see that a slightly different
version of Lemma A.1 can be shown (up to re-indexing x1, . . . , xn) with mk,n =
min{mk,1,n, . . . ,mk,d,n},m = infx∈[0,1]d mini=1,...,d ∂Y (x)∂xi, andMk,n = M =
u = +∞. After applying this different version, points 2) and 3) in the proof of
Theorem 3.2 when κ = 0 remain unchanged. This concludes the proof.

Proof of Theorem 3.3 under monotonicity constraints. The proof is similar to
that of Theorem 3.3 when κ = 0 and is also divided into the five steps 1) to
5). We apply Lemma A.2 to the sequences of functions fn, gn and hn defined
by fn(σ

2) = Ln(σ
2), gn(x) = An(σ

2) and hn(σ
2) = Bn(σ

2). Here we recall that
for σ2 ∈ Θ,

An(σ
2) = − lnPσ2 (Y ∈ E1) and Bn(σ

2) = lnPσ2 (Y ∈ E1| y) .

In order to apply Lemma A.2, we need to check that the conditions (A.4) to
(A.7) hold.

1) and 2) The proof that (A.4) and (A.5) are satisfied is identical to the
proof for Theorem 3.3 when κ = 0, as (A.4) and (A.5) do not involve the event
{Y ∈ E1}.

3) Let us introduce the Gaussian process Yr with mean function zero and

covariance function k̃1. Then we have

An(σ
2) = − lnP

(
∀x ∈ [0, 1]d, ∀i = 1, . . . , d, σ

∂

∂xi
Yr � 0

)
.

Hence An(σ
2) does not depend on σ2 so that (A.6) holds.

4) We turn to

Bn(σ
2) = lnPσ2

(
∀x ∈ [0, 1]d, ∀i = 1, . . . , d,

∂

∂xi
Y � 0

∣∣∣∣ y)
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For i = 1, . . . , d, let m
(1,i)
n,y and σ2k̃

(1,i)
n be the conditional mean and covariance

function of ∂Y/∂xi given y, under the probability measure Pσ2 . We obtain using

Borell-TIS inequality [4] and a union bound, with Z
(1,i)
n,σ2 a Gaussian process with

mean function zero and covariance function σ2k̃
(1,i)
n ,

Pσ2

(
∃x ∈ [0, 1]d, ∃i = 1, . . . , d,

∂

∂xi
Y (x) � 0

∣∣∣∣ y)
�

d∑
i=1

Pσ2

(
sup

x∈[0,1]d

(
−Z

(1,i)
n,σ2(x)

)
� inf

x∈[0,1]d
m(1,i)

n,y (x)

∣∣∣∣∣ y
)

�
d∑

i=1

Pσ2

(
sup

x∈[0,1]d

∣∣∣Z(1,i)
n,σ2(x)

∣∣∣ � inf
x∈[0,1]d

m(1,i)
n,y (x)

∣∣∣∣∣ y
)

�
d∑

i=1

exp

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
−

((
inf

x∈[0,1]d
m

(1,i)
n,y (x)− E

[
supx∈[0,1]d

∣∣∣Z(1,i)
n,σ2(x)

∣∣∣])
+

)2

2 sup
x∈[0,1]d

E[Z
(1,i)
n,σ2(x)2]

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
.

(C.1)

One can see that Lemma A.3 can also be shown when Zn,θ is replaced

by Z
(1,i)
n,θ (here θ = σ2). Hence supσ2∈[σ2

l ,σ
2
u]
E

[
supx∈[0,1]d

∣∣∣Z(1,i)
n,σ2(x)

∣∣∣] goes to

0 as n → ∞. Additionally, one can simply show that sup
x∈[0,1]d

E[Z
(1,i)
n,σ2(x)

2] =

sup
x∈[0,1]d

σ2k̃
(1,i)
n (x, x) goes to zero uniformly in σ2 ∈ [σ2

l , σ
2
u] as n → ∞.

One can see that the proof of [14, Proposition 2.8] can be adapted to establish
that, for i = 1, . . . , d,

sup
x∈[0,1]d

∣∣∣∣m(1,i)
n,y (x)− ∂

∂xi
Y (x)

∣∣∣∣ a.s.−−−−−→
n→+∞

0

from which we deduce that on the set {Y ∈ E1,δ}, where

E1,δ :=
{
f ∈ C1([0, 1]d,R) s.t. ∂f(x)/∂xi � δ, ∀x ∈ [0, 1]d, i ∈ {1, . . . , d}

}
,

we have a.s., for i = 1, . . . , d,

lim inf
n→+∞

(
inf

x∈[0,1]d
m(1,i)

n,y (x)

)
� δ.

Consequently, from (C.1), on {Y ∈ E1,δ}, we have:

sup
σ2∈[σ2

l ,σ
2
u]

Pσ2

(
∃x ∈ [0, 1]d, ∃i = 1, . . . , d,

∂

∂xi
Y (x) � 0

∣∣∣∣ y) a.s.−−−−−→
n→+∞

0. (C.2)
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Similarly as in the proof of Theorem 3.3 when κ = 0, we can show, by
applying Tsirelson theorem in [7] to the processes ∂Y/∂xi, that

Pσ2
0

(
Y ∈ E1 ∩ Ec

1,δ

)
→
δ→0

0.

Hence we conclude the proof of (A.7) as for Theorem 3.3 when κ = 0.

5) We conclude the proof as in 5) for Theorem 3.3 when κ = 0.

C.2. Isotropic Matérn process

Proof of Theorem 4.2 under monotonicity constraints. The proof is the same as
for Theorem 4.2 when κ = 0 and is concluded by applying Theorem 3.2 when
κ = 1.

Proof of Theorem 4.3 under monotonicity constraints. The proof is similar to
that of Theorem 4.3 when κ = 0 and is also divided into the four steps 1) to
4). We apply Lemma A.2 to the sequences of functions fn, gn and hn defined
by fn(σ

2) = Ln(σ
2, ρ1), gn(x) = An(σ

2, ρ1), and hn(σ
2) = Bn(σ

2, ρ1).

1) The proof that (A.4) and (A.5) are satisfied is identical to the proof of
Theorem 4.3 when κ = 0, as (A.4) and (A.5) do not involve the event {Y ∈ E1}.

2) Let us introduce the Gaussian process Yr with mean function zero and

covariance function k̃1,ρ1,ν . Then we have

An(σ
2, ρ1) = − lnP

(
∀x ∈ [0, 1]d, ∀i = 1, . . . , d, σ

∂

∂xi
Yr(x) � 0

)
.

Hence An(σ
2, ρ1) does not depend on σ2 so that (A.6) holds.

3) We turn to Bn(σ
2, ρ1). We conclude to (A.7) following the same lines as

in the proof of Theorem 4.3 when κ = 0 and using the equivalence of measures.

4) We conclude the proof of Theorem 4.3 when κ = 1 similarly as in the
proof of Theorem 4.3 when κ = 0 using Theorem 4.2 when κ = 1.

Proof of Theorem 4.4 under monotonicity constraints. The proof follows the
similar four steps of the proof Theorem 4.4 when κ = 0. We apply Lemma A.2
to the sequences of functions fn, gn and hn defined by fn(x) = Ln(xρ̂

2ν
n,c, ρ̂n,c),

gn(x) = An(xρ̂
2ν
n,c, ρ̂n,c), and hn(x) = Bn(xρ̂

2ν
n,c, ρ̂n,c).

1) The proof that (A.4) and (A.5) are satisfied is identical to the proof of
Theorem 4.4 when κ = 0, as (A.4) and (A.5) do not involve the event {Y ∈ E1}.

2) Similarly as in the proof of Theorem 4.4 when κ = 0, we show that
Theorem 4.4 when κ = 1 holds if (A.6) and (A.7) are satisfied.
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3) Similarly as in the proof of Theorem 4.3 when κ = 1, we show that (A.6)
holds.

4) Finally, we turn to (A.7). First, consider the case a). Recall the notation
Y ′
∗ = inf

x∈[0,1]
Y ′(x) from Appendix A. We proceed similarly as in the proof of

Theorem 4.4 when κ = 0. Since Eρ[Y
′(x)|y] = m′

n,ρ,y(x), it is then sufficient
to show that, for all i = 1, . . . , d, for any ε > 0, with probability going to 1 as
n → ∞,

sup
ρ∈[ρl,ρu]

sup
x∈[0,1]

(
Y ′
∗ −m′

n,ρ,y(x)
)
� ε (C.3)

in order to prove (A.7) as in the proof of Theorem 4.4 when κ = 0. Analogously,
since ν > 2, (B.20) holds. Consider x̄, ρ̄ so that m′

n,ρ̄,y(x̄) � Y ′
∗ − ε. There

exists i, j ∈ {1, . . . , n}, xi < xj such that |xi − x̄| � an and |xj − x̄| � an.
We have mn,ρ̄,y(xj) − mn,ρ̄,y(xi) = Y (xj) − Y (xi) � (xj − xi)Y

′
∗ . Thus from

the mean value theorem, there exists w ∈ [0, 1] so that |x̄− w| � 2an and∣∣m′
n,ρ̄,y(w)−m′

n,ρ̄,y(x̄)
∣∣ � ε. Hence there exists z ∈ [0, 1] so that m′′

n,ρ̄,y(z) �
ε/(2an). Hence (C.3) holds from (B.20).

Second, consider the case b). We shall only address the case d = 3, the cases
d = 1, 2 being treated similarly. For all i = 1, 2, 3, let us define Y (1,i) = ∂Y/∂xi

and Y
(1,i)
∗ = inf

x∈[0,1]3
Y (1,i)(x) following the notation of Appendix A. Let also

m
(1,i)
n,ρ,y(x) = Eρ[Y

(1,i)(x)|y] = ∂mn,ρ,y(x)/∂xi. First, we want to show that, for
all i = 1, 2, 3, for any ε > 0, with probability going to 1 as n → ∞,

sup
ρ∈[ρl,ρu]

sup
x∈[2/n1/3,1−2/n1/3]3

(
Y

(1,i)
∗ −m(1,i)

n,ρ,y(x)
)
� ε. (C.4)

Assume that there exists i ∈ {1, 2, 3} and x̄, ρ̄ for which m
(1,i)
n,ρ̄,y(x̄) � Y

(1,i)
∗ − ε.

There exists {i1, . . . , i8} ∈ {1, . . . , n} so that, x̄ belongs to the hypercube C with
vertices xj , j ∈ {i1, . . . , i8}. We refer to Figure 4 for an illustration. This hyper-
cube lies between two adjacent hypercubes Cl, Cr (with vertices in {x1, . . . , xn}
and edge lengths 1/

(
	n1/3
 − 1

)
) which are obtained by translations (to the left

and to the right) in the direction i. Note that C,Cl, Cr are disjoint and that
the pairs C,Cl and C,Cr each have a common face which is orthogonal to the
direction i. We now consider the 8 vertices v1, . . . , v8 of Cl and Cr which are
parallel to the direction i. For any j = 1, . . . , 8, the endpoints of vj can be writ-
ten as xa, xb with (xa)k = (xb)k for k �= i and with (xa)i < (xb)i. Then we have

mn,ρ̄,y(xb)−mn,ρ̄,y(xa) = Y (xb)−Y (xa) � Y
(1,i)
∗ ((xb)i−(xa)i). Hence, from the

mean value theorem, there exists wj ∈ vj for which m
(1,i)
n,ρ̄,y(wj) � Y

(1,i)
∗ . Also,

it can be shown that x̄ belongs to ch(w1, . . . , w8). In addition, it can also be
shown that x̄ belongs to ch(z1, . . . , z4), with {z1, . . . , z4} ⊂ {w1, . . . , w8}. Since
m

(1,i)
n,ρ̄,y(zj) � Y

(1,i)
∗ for j = 1, . . . , 4 and since m

(1,i)
n,ρ̄,y(x̄) � Y

(1,i)
∗ − ε, we show

(C.4) as in the proof of Theorem 4.4 b) when κ = 0.
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Fig 4. The point x̄ belongs to the hypercube C (in black, central) that lies between the hy-
percubes Cl (in green, left) and Cr (in blue, right). The mean value theorem ensures the
existence of the 8 points wj , j = 1, . . . , 8, and x̄ belongs to the convex hull ch(w1, . . . , w8).
Furthermore, x̄ also belongs to ch(z1, . . . , z4), with {z1, . . . , z4} ⊂ {w1, . . . , w8} (in red).

We have, for i = 1, 2, 3,

P(σ2,ρ)

(
inf

x∈[0,1]3
Y (1,i)(x) � 0

∣∣∣∣ y)
�P(σ2,ρ)

(
inf

x∈[2/n1/3,1−2/n1/3]3
Y (1,i)(x) � δ/2

∣∣∣∣ y)
+ P(σ2,ρ)

(
inf

x∈[0,1]3
Y (1,i)(x) � 0, inf

x∈[2/n1/3,1−2/n1/3]3
Y (1,i)(x) > δ/2

∣∣∣∣ y)
=:P1 + P2,

say. As in the proof of Theorem 4.4 b) when κ = 0, we can show from (C.4)
that 1

Y
(1,i)
∗ �δ

sup
(σ2,ρ)∈Θ̄

P1 goes to zero in probability so that it is sufficient to

show sup
(σ2,ρ)∈Θ̄

P2 goes to zero in probability where Θ̄ is any compact set of

(0,∞)2. We have, with Y (2,j,i)(x) = ∂2Y (x)/(∂xj∂xi), and with m
(2,j,i)
n,ρ,y (x) =

∂2mn,ρ,y(x)/(∂xj∂xi) = E[Y (2,j,i)(x)|y],

P2 �P(σ2,ρ)

(
max

j=1,2,3
sup

x∈[0,1]3

∣∣∣Y (2,j,i)(x)
∣∣∣ � cn1/3

∣∣∣∣∣ y
)

�P(σ2,ρ)

(
max

j=1,2,3
sup

x∈[0,1]3

∣∣∣m(2,j,i)
n,ρ,y (x)

∣∣∣ � (c/2)n1/3

∣∣∣∣∣ y
)

+ P(σ2,ρ)

(
max

j=1,2,3
sup

x∈[0,1]3

∣∣∣m(2,j,i)
n,ρ,y (x)− Y (2,j,i)(x)

∣∣∣ � (c/2)n1/3

∣∣∣∣∣ y
)
.
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Using the Borell-TIS inequality as in the proof of 3.3 when κ = 1, we can show
that

sup
ρ,σ2∈Θ̄

P(σ2,ρ)

(
max

j=1,2.3
sup

x∈[0,1]3

∣∣∣m(2,j,i)
n,ρ,y (x)− Y (2,j,i)(x)

∣∣∣ � (c/2)n1/3

∣∣∣∣∣ y
)

= oP(1).

Now consider that there exist ρ̄ ∈ [ρl, ρu], j̄ ∈ {1, 2, 3} and x̄ ∈ [0, 1]3 so that

|m(2,j̄,i)
n,ρ̄,y (x̄)| � (c/2)n1/3. If j̄ = i, then by applications of the mean value

theorem, by using that mn,ρ,y(x) = Y (x) for x ∈ {x1, . . . , xn}, we can show

that there exists w̄ ∈ [0, 1]3 so that ‖w̄ − x̄‖ � cn−1/3 and
∣∣∣m(2,j̄,i)

n,ρ̄,y (w̄)
∣∣∣ �

2maxi,j∈{1,2,3} Y
(2,j,i)∗∗ where with the notation of Appendix A, Y (2,j,i)∗∗ :=

sup
x∈[0,1]3

|Y (2,j,i)(x)|. Hence there exists r̄ ∈ [0, 1]3 so that max
j,k∈{1,2,3}

|m(3,k,j,i)
n,ρ,y (r̄)| �

cn2/3 where m
(3,k,j,i)
n,ρ,y (x) = ∂3/(∂xk∂xj∂xi)mn,ρ,y(x).

If j̄ �= i, we can consider z̄ ∈ {x1, . . . , xn} so that ‖z̄ − x̄‖ � cn−1/3. We
also consider 9 additional points (z̄k,l)k,l∈{1,2,3} ⊂ {x1, . . . , xn} so that z̄k,l =

x̄+ l/(	n1/3
 − 1)vk where v1 = ei with ei the i-th base column vector, v2 = ej̄
and v3 = ei + ej̄ . By applications of the mean value theorem, we can show that

there exist w̄1 for which
∣∣∣m(2,i,i)

n,ρ̄,y (w̄1)
∣∣∣ � 3Y (2,i,i)∗∗, w̄2 for which

∣∣∣m(2,j̄,j̄)
n,ρ̄,y (w̄2)

∣∣∣ �
3Y (2,j̄,j̄)∗∗ and w̄3 for which

∣∣∣m(2,i,i)
n,ρ̄,y (w̄3) +m

(2,j̄,j̄)
n,ρ̄,y (w̄3) + 2m

(2,j̄,i)
n,ρ̄,y (w̄3)

∣∣∣ �

12maxi,j∈{1,2} Y
(2,j,i)∗∗. If |m(2,j̄,i)

n,ρ̄,y (w̄3)| � (c/4)n1/3, then there exists r̄ ∈
[0, 1]3 so that max

j,k∈{1,2,3}
|m(3,k,j,i)

n,ρ,y (r̄)| � cn2/3. If |m(2,j̄,i)
n,ρ̄,y (w̄3)| � (c/4)n1/3, then

|m(2,i,i)
n,ρ̄,y (w̄3)| � (c/4)n1/3 − 6maxi,j∈{1,2} Y

(2,j,i)∗∗ or |m(2,j̄,j̄)
n,ρ̄,y (w̄3)| �

(c/4)n1/3 − 6maxi,j∈{1,2} Y
(2,j,i)∗∗. In all the cases, there exists r̄ ∈ [0, 1]3 so

that max
j,k∈{1,2,3}

m
(3,k,j,i)
n,ρ,y (r̄) � cn2/3.

We have also from [55, Theorem 1], and since ν > 3,

sup
ρ∈[ρl,ρu]

max
i,j,k=1,2,3

sup
x∈[0,1]3

∣∣∣∣ ∂3

∂xi∂xj∂xk
mn,ρ,y(x)

∣∣∣∣ � c sup
ρ∈[ρl,ρu]

‖mn,ρ,y‖k1,ρ,ν
� c

√
n

(C.5)
with probability going to 1 as n → ∞ from (B.19).

Hence, we have that with probability going to 1 as n → ∞,

sup
σ2,ρ

P(σ2,ρ)

(
max

j=1,2,3
sup

x∈[0,1]3
|m(2,j,i)

n,ρ,y (x)| � (c/2)n1/3

∣∣∣∣∣ y
)

= 1{maxj=1,2,3 sup
x∈[0,1]3

m
(2,j,i)
n,ρ,y (x)�(c/2)n1/3} = 0.

This proves that (A.7) holds so that the proof is complete.

Appendix D: Proofs for Sections 3 and 4 - Convexity

We let κ = 2 throughout Appendix D.
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D.1. Estimation of the variance parameter

Proof of Theorem 3.2 under convexity constraints. The proof is similar to that
of Theorem 3.2 when κ = 1, where the finite differences of order one are replaced
by finite differences of order two.

Proof of Theorem 3.3 under convexity constraints. The proof is similar to that
of Theorem 3.3 when κ = 0 introducing the Gaussian process V defined on
S1 × Rd by V (v, x) = v�HY (x)v where S1 = {v ∈ Rd, ‖v‖ = 1} and observing
that

E2 =

{
f ∈ C([0, 1]d,R), ∀x ∈ [0, 1]d, inf

v∈R
d

‖v‖=1

v�Hf(x)v � 0

}
,

where Hf(x) represents the Hessian matrix of f at x which means that
Hf(x)i,j = ∂2f(x)/(∂xi∂xj).

D.2. Isotropic Matérn process

Proof of Theorem 4.2 under convexity constraints. The proof is the same as for
Theorem 4.2 when κ = 0 and is concluded by applying Theorem 3.3 when
κ = 2.

Proof of Theorem 4.3 under convexity constraints. The proof is similar to that
of Theorem 4.3 when κ = 0.

Proof of Theorem 4.4 under convexity constraints. The proof follows the simi-
lar four steps of the proof Theorem 4.4 when κ = 0. Points 1) to 3) are identical.
Turning to (A.7), point 4) can be treated similarly as in the proof of Theorem 4.4
when κ = 1 but with more cumbersome notation and arguments. In order to
ease the reading of the paper, we omit this technical proof.

Appendix E: Proofs for Section 6

Proof of Proposition 6.1. We have

Ŷ (x0)− Ŷc(x0)

σ̂(x0)
= E

[
Y (x0)− Ŷ (x0)

σ̂(x0)

∣∣∣∣∣ y
]
−

E
[

Y (x0)−Ŷ (x0)
σ̂(x0)

1{Y ∈Eκ}

∣∣∣ y]
P(Y ∈ Eκ|y)

.

Now let En(x0) = (Y (x0)− Ŷ (x0))/σ̂(x0). We have∣∣∣∣∣ Ŷ (x0)− Ŷc(x0)

σ̂(x0)

∣∣∣∣∣
�
∣∣E [En(x0)(1− 1{Y ∈Eκ})

∣∣ y]∣∣+ ∣∣E [En(x0)1{Y ∈Eκ}
∣∣ y]∣∣ ∣∣∣∣1− 1

P(Y ∈ Eκ|y)

∣∣∣∣
=: |A|+ |B||C|,
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say. By Cauchy-Schwarz’s inequality, we have

|A| � E[En(x0)
2|y]1/2P(Y �∈ Eκ|y)1/2.

In the above display, the first square root is 1 by definition and the second one
is a oP|Y ∈Eκ

(1), as shown in the point 4) in the proof of Theorem 3.3.

By Jensen’s inequality, we have |B| � E[En(x0)
2|y]1/2 = 1. Finally, |C| =

oP|Y ∈Eκ
(1), since P(Y �∈ Eκ|y) = oP|Y ∈Eκ

(1), as above. This completes the proof
of (6.1).

We also have

σ̂(x0)
2 − σ̂c(x0)

2

σ̂(x0)2

= E

[
(Y (x0)− Ŷ (x0))

2

σ̂(x0)2
− (Y (x0)− Ŷc(x0))

2

σ̂(x0)2

∣∣∣∣∣ y
]

+ E

[
(Y (x0)− Ŷc(x0))

2

σ̂(x0)2

∣∣∣∣∣ y
]
− E

[
(Y (x0)− Ŷc(x0))

2

σ̂(x0)2

∣∣∣∣∣ y, Y ∈ Eκ

]
=: D + E − F,

say. We have

D = E

[
Ŷc(x0)− Ŷ (x0)

σ̂(x0)

(
2
Y (x0)− Ŷ (x0)

σ̂(x0)
+

Ŷ (x0)− Ŷc(x0)

σ̂(x0)

)∣∣∣∣∣ y
]

= −
(
Ŷ (x0)− Ŷc(x0)

σ̂(x0)

)2

= oP|Y ∈Eκ
(1),

from (6.1). We also have

|E − F | �
∣∣∣∣∣E
[
(Y (x0)− Ŷc(x0))

2

σ̂(x0)2
1{Y �∈Eκ}

∣∣∣∣∣ y
]∣∣∣∣∣

+

∣∣∣∣∣E
[
(Y (x0)− Ŷc(x0))

2

σ̂(x0)2
1{Y ∈Eκ}

∣∣∣∣∣ y
]∣∣∣∣∣ |C|

=:|G|+ |H||C|,

say. By Cauchy-Schwarz’s inequality, we have

|G| �
∣∣∣∣∣E
[
(Y (x0)− Ŷ (x0))

2

σ̂(x0)2
1{Y �∈Eκ}

∣∣∣∣∣ y
]∣∣∣∣∣

+

∣∣∣∣∣E
[

1{Y �∈Eκ}
Ŷ (x0)− Ŷc(x0)

σ̂(x0)

(
2
Y (x0)− Ŷ (x0)

σ̂(x0)
+

Ŷ (x0)− Ŷc(x0)

σ̂(x0)

)∣∣∣∣∣ y
]∣∣∣∣∣
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�P(Y �∈ Eκ|y)1/2E
[
(Y (x0)− Ŷ (x0))

4

σ̂(x0)4

∣∣∣∣∣ y
]1/2

+

(
Ŷ (x0)− Ŷc(x0)

σ̂(x0)

)2

P(Y �∈ Eκ|y)

+ 2

∣∣∣∣∣ Ŷ (x0)− Ŷc(x0)

σ̂(x0)

∣∣∣∣∣E
[∣∣∣∣∣Y (x0)− Ŷ (x0)

σ̂(x0)

∣∣∣∣∣ y
]

=oP|Y ∈Eκ
(1),

since P(Y �∈ Eκ|y) = oP|Y ∈Eκ
(1), using (6.1) and the fact that conditionally to

the observation vector y, (Y (x0) − Ŷ (x0))/σ̂(x0) is distributed as a standard
Gaussian random variable. As |C| = oP|Y ∈Eκ

(1), it remains to show that |H| =
OP|Y ∈Eκ

(1) which is done by using that

|H| � E

[
(Y (x0)− Ŷ (x0))

2

σ̂(x0)2

∣∣∣∣∣ y
]
+ |D| = 1 + |D|

and that D = oP|Y ∈Eκ
(1) as established above.

Proof of Corollary 6.2. It is shown in the point 3) in the proof of Theorem 4.3
that P1(Y �∈ Eκ|y) = oP|Y ∈Eκ

(1), where the conditional probability P1(·|·) is

calculated with respect to k̃1. Hence, using (6.3) and (6.4), one can show that

Proposition 6.1 remains true when σ̂(x0), Ŷ (x0), Ŷc(x0), σ̂c(x0), and E[·|·] are
replaced by σ̂1(x0), Ŷ1(x0), Ŷc,1(x0), σ̂c,1(x0), and E1[·|·]. Then, the corollary is
a consequence of this updated Proposition 6.1 and of (6.3) and (6.4).

Proof of Theorems 6.3, 6.4 and 6.5. The proof is the same as in the Matérn
case in Theorems 4.2, 4.3 and 4.4. In particular, when 1 + 2s = ν, the Matérn
and Wendland covariance functions have the same smoothness, see [15, Theorem
1]. Hence, a lemma similar as Lemma 4.1 holds. We also remark that a lemma
similar as Lemma B.1 can be proved, by using [15, Lemma 1] together with
the results given in the proof of [15, Theorem 8] (see the online supplementary
material to this paper).

Proof of Proposition 6.6. Without loss of generality, we can consider that u <
+∞. Recall the notation Y ∗∗

c = supx∈[0,1]d |Yc(x)| < +∞ a.s. of Appendix A.

Let (xi)i∈N be any sequence of two-by-two distinct points in [0, 1]d. We have

P
(
∀x ∈ [0, 1]d, � � Y (x) � u

)
� P (∀i ∈ {1, . . . , n}, Yc(xi) + Yδ(xi) � u)

= E [P (∀i ∈ {1, . . . , n}, Yc(xi) + Yδ(xi) � u|Yc(x1), . . . , Yc(xn))]

� E [P (∀i ∈ {1, . . . , n}, Yδ(xi) � |u|+ Y ∗∗
c |Yc(x1), . . . , Yc(xn))]

= E [P (Yδ(x1) � |u|+ Y ∗∗
c |Y ∗∗

c )
n
] .
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The above probability goes to zero as n → ∞ for any Y ∗∗
c < ∞. Thus by

dominated convergence, the above expectation goes to zero as n → ∞. This
concludes the proof.

Proof of Proposition 6.7. Let Xn := n1/4
(
σ̂2
n/ρ̂n − σ2

0/ρ0
)
. For K � 0, we have

lim sup
n→∞

P (|Xn| � K|Y ∈ E0) � lim sup
n→∞

P (|Xn| � K)

P (Y ∈ E0)
→

K→∞
0,

from (6.5) and because P (Y ∈ E0) > 0 does not depend on K from Lemma 3.1.
Hence Xn = OP|Y ∈E0

(1). Moreover, let ε > 0. Then,

lim inf
n→∞

P (|Xn| � ε|Y ∈ E0) �
1− lim sup

n→∞
P (|Xn| < ε)− P (Y �∈ E0)

P (Y ∈ E0)

→
ε→0

1− P (Y �∈ E0)
P (Y ∈ E0)

= 1,

since the asymptotic variance is non-zero in (6.5). Hence Xn �= oP|Y ∈E0
(1).

By the same arguments, the same conclusions hold for the MLE of the noise
variance.
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