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1. Introduction

Variable selection problems have been extensively studied in the past twenty
years, for instance, lasso [5, 24], adaptive lasso [27], SCAD [7] and MCP [26],
square root lasso [5]. Lasso is one of the most powerful methods in linear re-
gressions, not only because of its prediction performance [24] but also due to its
convexity and efficient computability. However, as pointed out by [5], its optimal
tuning parameter λ depends on a usually unknown noise standard deviation σ,
one has to first estimate it in many applications. To overcome this problem, [4]
proposed the square root lasso by replacing the lasso’s loss function with its
square root. As a result, the corresponding tuning parameter λ does not depend
on σ at all, which is often called tuning free property.

The lasso method has been widely applied in generalized linear models, such
as �1 regularized logistic regression [20] and �1 penalized Poisson regression [14].
Poisson regression is a popular generalized linear model [17] for modeling count
data, its high dimensional versions have received more and more attention, see
[14] for the consistency of �1 penalized Poisson regression models, and [19] for the
performance bounds of compressed sensing under Poisson models. Variable se-
lection for sparse Poisson model can be performed via �1 penalized log-likelihood
method, in which the penalty parameter λ depends on the variance of Poisson
noise, like lasso. For more results on variable selection in generalized linear mod-
els, we refer the reader to [8, 11, 13, 15] and the literature therein.

In this paper, we consider a high-dimensional heteroscedastic Poisson model.
Let (x1, y1), . . ., (xn, yn) be n observed data from independent random vectors
(X1, Y1), . . ., (Xn, Yn), where Xi is an R

p-valued random vector and Yi is an
R-valued random variable for each i ∈ [n]. We assume that for i ∈ [n] and
xi ∈ R

p

Yi|Xi = xi ∼ Poisson(μ(xi)) with log(μ(xi)) = xT
i β

∗,

where β∗ ∈ R
p is an unknown parameter vector to be estimated. Inspired by

the square root lasso, we study the sparse Poisson regression by optimizing a
new �1 penalized weighted score function as the following:

β̂ = arg min
β∈Rp

{
1

n

n∑
i=1

2(yie
− 1

2x
T
i β + e

1
2x

T
i β) + λ‖β‖1

}
,

where λ > 0 is the penalty level, see more details in Section 2. Note that [27] and
[11] suggested taking into account the heteroscedasticity of Poisson observations
by introducing adapted weights in the penalty rather than a score function.

Let us first have a brief discussion on the theoretical results in this paper.
We show that the new estimator β̂ is consistent and that the penalty level λ
enjoys the tuning free property in the sense that it does not depend on the

rate parameter ex
T
i β∗

. By a moderate deviation technique due to [22] (see also
[10, 16]), we get a Gaussian approximation for λ, which provides a way to choose
penalty level directly rather than by cross-validation. Simulations show that the
estimator with this Gaussian approximated penalty performs very well.
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As an application, we apply our method to image reconstruction based on
a simulated limited-angle emission tomography data set and compare our al-
gorithm with the well-known emission tomography reconstruction algorithms.
The results show that our proposed method performs much better than others
under Poisson noise.

The rest of the paper is organized as follows. In Section 2, we introduce the
�1 penalized weighted score function for sparse Poisson regression. In Section 3,
under three regular conditions and two choices of penalty level, we give the main
theorems about the consistency of our estimator and the non-asymptotic error
bounds. By numerical simulations in Section 4.1, we compare the estimation
errors of our methods with three different selections of λ, and with the results
of lasso and adaptive lasso [11] for Poisson regression. Section 4.2 gives the
details of the application of our method to image reconstructions. We make a
conclusion remark in Section 5 and give the detailed proofs of our theoretical
results in Section A.

Notations and definitions

Now we introduce the notations and definitions which will be used throughout
the paper. For any positive integer n, we denote [n] = {1, 2, . . . , n}. For any d-

dimensional vector v = (v1, . . . , vd)
T , denote ‖v‖qq =

d∑
i=1

|vi|q for any q ∈ [1,+∞)

and ‖v‖∞ = max
i∈[d]

|vi|.

Write X = (x1, . . . , xn)
T ∈ R

n×p and Y = (y1, . . . , yn)
T ∈ R

n. Let β∗ ∈ R
p

be the parameter vector to be estimated, denote by T = supp(β∗) = {j ∈ [p] :
β∗
j �= 0} the non-zero coordinates of β∗, and let s = |T | be the number of

non-zero elements of β∗.
Denote by {an}n≥1 and {bn}n≥1 two sequences, the notation bn = O(an)

means that there exists a constant C > 0 such that bn ≤ Can for all n ≥ 1
and the notation bn = o(an) means that lim

n→∞
bn/an = 0. If f : Rp → R is a

differentiable function, we denote by ∇f the gradient of f .

Definition 1.1 (Score function). Let Z be a random variable with a likelihood
function L(θ, Z), where θ is a vector parameter. The score function with respect
to L(θ, Z) is defined by

u(θ, Z) := ∇θ logL(θ, Z).

2. �1 penalized weighted score function method

2.1. Square-root lasso revisited

Before introducing our �1 penalized weighted score function, we first briefly re-
view the square root lasso and explain it from the point of view of weighted
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score function. Recall the classical lasso for linear model [24]:

Y = Xβ∗ + ε, ε ∼ N(0, σ2In),

with

β̂ = arg min
β∈Rp

{
1

n
‖Y −Xβ‖22 + 2λ‖β‖1

}
, (2.1)

where Y ∈ R
n is the response vector, X ∈ R

n×p is the design matrix, β∗ ∈ R
p

is the parameter to be estimated, In is an n × n identity matrix, and λ > 0
is the penalty level. The lasso estimator satisfies Karush-Kuhn-Tucker(KKT)
condition as follows:

− 1

n
XT (Y −Xβ) + λκ = 0, (2.2)

where κ = (κ1, . . . , κp)
T and κj is the subgradient of |βj | for each j. Note that

κj is the sign of βj for βj �= 0 and βj ∈ [−1, 1] for βj = 0.
Observe that − 1

n‖Y −Xβ‖22 is (proportional to) the log-likelihood of a Gaus-
sian distribution, whose score function is (proportional to) 1

nX
T (Y − Xβ), to

get a bound for β̂−β∗, the following relation needs to hold with high probability
[4]:

λ > c‖ 1
n
XT (Y −Xβ∗)‖∞ =

c

n
‖XT ε‖∞,

where c > 1 is some constant. Since ε has a variance σ2, whose exact value is
often not known, to tune λ, one has to firstly estimate σ2. To overcome this
disadvantage, [4] proposed the square root lasso by replacing 1

nX
T (Y − Xβ)

with the following weighted score function:

1
nX

T (Y −Xβ)
1√
n
‖Y −Xβ‖2

,

whose distribution at β∗ does not depend on σ2 anymore. Replacing − 1
nX

T (Y −
Xβ) in (2.2) with this new score function, we get

− XT (Y −Xβ)√
n‖Y −Xβ‖2

+ λκ = 0. (2.3)

Since the gradient of 1√
n
‖Y −Xβ‖2 is − XT (Y−Xβ)√

n‖Y−Xβ‖2
, (2.3) is the KKT condition

of the following optimization problem:

β̂ = arg min
β∈Rp

{
1√
n
‖Y −Xβ‖2 + λ‖β‖1

}
. (2.4)

The above idea of treating the square root lasso as a penalized weighted score
function can be generalized to other regression problems such as heteroscedastic
models, we will give details about the application of this idea to sparse Poisson
models in the next subsection.
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2.2. �1 penalized weighted score function method for sparse Poisson
regression

Let us briefly recall the Poisson model. Let (x1, y1), . . ., (xn, yn) be n observed
data from independent random vectors (X1, Y1), . . ., (Xn, Yn), where Xi is an
R

p-valued random vector and Yi is an R-valued random variable for each i ∈ [n].
We assume that for i ∈ [n] and xi ∈ R

p

Yi|Xi = xi ∼ Poisson(μ(xi)) with log(μ(xi)) = xT
i β

∗,

where β∗ ∈ R
p is an unknown parameter vector to be estimated. Without loss

of generality, we assume that x1, . . ., xn satisfy

1

n

n∑
i=1

xij = 0 and
1

n

n∑
i=1

x2
ij = 1, for all j ∈ [p].

Under the above settings, the log-likelihood (up to a scale and a constant
shift) of Poisson distribution is defined as follows:

�(β) =
1

n

n∑
i=1

(yix
T
i β − ex

T
i β). (2.5)

Sparse Poisson regression can be solved via �1 penalized log-likelihood method
[14] and the corresponding estimator is defined by

β̄ = arg min
β∈Rp

{
− 1

n

n∑
i=1

(yix
T
i β − ex

T
i β) + λ̄‖β‖1

}
,

where λ̄ > 0 is the penalty level. The corresponding KKT condition reads as

− 1

n

n∑
i=1

xi(yi − ex
T
i β̄) + λ̄κ = 0, (2.6)

where κ is the sub-gradient of ‖β‖1. Like the lasso, to get a good estimator of
β∗ requires that

λ̄ ≥ c‖∇�(β∗)‖∞ (2.7)

holds with high probability for some constant c > 1 [14]. The score function
valued at β = β∗ is

∇�(β∗) =
1

n

n∑
i=1

xi(yi − ex
T
i β∗

),

in which yi − ex
T
i β∗

is a random variable with variance ex
T
i β∗

. This means that

λ̄ depends on β∗ and is sensitive to the value ex
T
i β∗

.
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Like (2.3), our idea is to divide yi − ex
T
i β∗

by
√
ex

T
i β∗

to make the penalty

level λ not depend on ex
T
i β∗

. More precisely, we replace yi − ex
T
i β∗

in (2.6) with
(yi−ex

T
i β)√

ex
T
i

β
and obtain

− 1

n

n∑
i=1

xi(yi − ex
T
i β)√

ex
T
i β

+ λκ = 0. (2.8)

Note that (yi−ex
T
i β∗

)√
ex

T
i

β∗ has mean 0 and variance 1 for each i ∈ [n]. It is easy to

check that the following relation holds:

∇f(β) = − 1

n

n∑
i=1

xi(yi − ex
T
i β)√

ex
T
i β

with f(β) =
1

n

n∑
i=1

2(yie
− 1

2x
T
i β + e

1
2x

T
i β),

so (2.8) is the KKT condition of the convex optimization problem:

β̂ = arg min
β∈Rp

{f(β) + λ‖β‖1} , (2.9)

where λ > 0 is a new penalty level and we will see it does not depend on ex
T
i β∗

.
To get a bound for β̂−β∗, we require that the following relation holds with high
probability:

λ ≥ c‖∇f(β∗)‖∞, (2.10)

with some constant c > 1.

3. Bounds on ‖β̂ − β∗‖1

Recall T = supp(β∗) = {j ∈ [p] : β∗
j �= 0}, define the set

Δ = {δ ∈ R
p\{0} : ‖δT c‖1 ≤ L‖δT ‖1 with some L > 1}. (3.1)

For theoretical analysis, we need a few regularity conditions as the following.

Condition (I). There is some R ∈ (0,∞) such that sup
i∈[n],j∈[p]

|xij | ≤ R.

Condition (II). There exists some constant κ > 0 such that for any δ ∈ Δ〈
δ,∇2f(β∗)δ

〉
≥ κ2‖δT ‖22.

Remark 3.1. (i) Condition (I) is a reasonable condition since the data we ob-
served are usually finite and [25] also assumed this condition when study-
ing the penalized generalized linear regressions.

(ii) Observe that

∇2f(β∗) =
1

2n

n∑
i=1

xix
T
i (yie

− 1
2x

T
i β∗

+ e
1
2x

T
i β∗

) =
1

2n
XTDX,
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where X = (x1, . . . , xn)
T ∈ R

n×p and D = diag{y1e−
1
2x

T
1 β∗

+ e
1
2x

T
1 β∗

, . . . ,

yne
− 1

2x
T
nβ∗

+ e
1
2x

T
nβ∗} ∈ R

n×n. Condition (II) is a type of restricted eigen-
value condition [3, 5], κ can take

κ = min
δ∈Δ

√
δTXTDXδ

2n‖δT ‖22
> 0. (3.2)

Since we have assumed 1
nXXT = In in our model, if mini∈[n](yie

− 1
2x

T
i β∗

+

e
1
2x

T
i β∗

) > c0 for some c0 > 0, then (3.2) clearly holds true.

Now we give a deterministic bound on the estimation error ‖β̂ − β∗‖1 under
the two conditions above.

Theorem 3.2. Let β̂ be the estimator defined by (2.9), let Condition (I) hold
and let Condition (II) hold with L = c+1

c−1 for some c > 1. If λ is chosen to

satisfy λ > cH with H = ‖∇f(β∗)‖∞ and λs ≤ 2κ2

3L(1+L) with s = |T |, then

‖β̂ − β∗‖1 ≤ 3L(1 + L)

κ2
λs, (3.3)

|f(β̂)− f(β∗)| ≤ 3L(1 + L)

κ2
λ2s. (3.4)

Remark 3.3. From (3.3), we can see that ‖β̂ − β∗‖1 = O(λs), having the same

order as the error bound of �1 penalized logistic regression [3]. |f(β̂)− f(β∗)| is
not a prediction error, but we may take it as an error measured by the function f .
For the square root lasso, using a triangle inequality, the corresponding |f(β̂)−
f(β∗)| is bounded by ‖XT (β̂ − β∗)‖2.
Remark 3.4. If xi is assumed to be drawn from a p-dimensional normal dis-
tribution, the Condition (I) may be replaced by sup

i∈[n],j∈[p]

|xij | ≤ c0
√
log p with

some positive constant c0 [18]. Let us roughly explain it as below. For A > 0,
by Chebyshev inequality,

P

(
sup

i∈[n],j∈[p]

|xij | > A

)
≤ e−θ2A2

E exp

(
θ2 sup

i∈[n],j∈[p]

|xij |2
)

≤ npe−θ2A2

E exp
(
θ2|xij |2

)
= O(p−k),

for any k > 0, as long as we choose A = c0
√
log p with c0 >

√
k+2
θ . The corre-

sponding results on estimation errors like (3.3) and (3.4) can be obtained by the
same argument as proving Theorem 3.2 (replacing R with c0

√
log p in (A.3)).

Theorem 3.2 tells us that if we can choose a λ satisfying λ > cH = c‖∇f(β∗)‖∞
and λs ≤ 2κ2

3L(1+L) with high probability, then conclusions (3.3) and (3.4) hold

with high probability. This motivates us to study how to select a good tuning
parameter λ.
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Recall H = ‖∇f(β∗)‖∞ where ∇f(β∗) = − 1
n

n∑
i=1

xi(yi−ex
T
i β∗

)√
ex

T
i

β∗ is a p-dimen-

sional random vector. Define by H(1− α|X) the 1− α quantile of H|X for any
α ∈ (0, 1). If we choose λ as follows,

exact choice : λ = cH(1− α|X), (3.5)

which implies P(λ ≥ cH) ≥ 1− α. To estimate this λ, we further assume

Condition (III). n and p satisfy that
√
n  p ≤ eo(n

1/5) and p/α > 8 for some
α ∈ (0, 1).

The upper bound p ≤ eo(n
1/5) is required for proving by a moderate deviation

technique that (2.10) holds with high probability, see more details in Lemma
3.6 below.

The next lemma gives an upper bound for the λ chosen by (3.5), and will be
proven in Appendix.

Lemma 3.5. Let λ be chosen by (3.5), then the following statements hold

(i) P(λ ≥ cH) ≥ 1− α.
(ii) Under Conditions (I) and (III), we have λ ≤ c(

√
n)−1Φ−1(1 − α

4p ) <

c
√

2 log(4p/α)
n with c > 1.

In practice, it is often hard to find the exact value of the λ, because the
distribution of H can be extremely complicated for large n. To overcome this
difficulty, we propose a Gaussian approximation to λ by a moderate devia-

tion technique. Recall H = ‖∇f(β∗)‖∞ with ∇f(β∗) = − 1
n

n∑
i=1

xi(yi−ex
T
i β∗

)√
ex

T
i

β∗ ,

note that (yi−ex
T
i β∗

√
ex

T
i

β∗ )1≤i≤n are i.i.d. random variables with mean 0 and variance

1. Inspired by Lindeberg principle, replacing these random variables by i.i.d.

N(0, 1)-distributed (zi)1≤i≤n, we get an H̃ =
∥∥∥ 1
n

n∑
i=1

xizi

∥∥∥
∞

and can expect

that H weakly converges to H̃ as n → ∞.

Motivated by the above observation, we propose an asymptotic choice of λ
as the following:

asymptotic choice : λ = c(
√
n)−1Φ−1(1− α

2p
), (3.6)

where Φ(·) is the cumulative distribution function of N(0,1) and Φ−1(·) is its in-
verse function, and c > 1 is a constant. The following lemma gives the properties
of the asymptotic choice of λ, which will be proven in Appendix.

Lemma 3.6. (i) Suppose that Conditions (I) and (III) are satisfied and λ is
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chosen by (3.6). We have

P(λ ≥ cH) ≥ 1− α(1 +O(1)(
√

2 log (2p/α)−
√
nb)3n−1/2(3K1 log p+ b))

× (1 +
1

log (p/α)
)
exp{−2(n log (p/α))1/2b+ nb2}

1−√
nb/(log (p/α))1/2

+ C1n/p
2,

where b = 2C1K1/p
3 with some positive constants C1 and K1. In partic-

ular, as n, p → ∞, we have

P(λ ≥ cH) ≥ 1− α(1 + o(1)).

(ii) For α ∈ (0, 1), we have λ < c
√

2 log(2p/α)
n with c > 1.

Combining Theorem 3.2 and Lemmas 3.5 and 3.6, we have the following
non-asymptotic results.

Theorem 3.7 (Finite-sample). Let β̂ be the estimator defined by (2.9), let
Conditions (I) and (III) both hold and let Condition (II) hold with L = c+1

c−1 for
some c > 1.

(i) If λ is chosen as (3.5) with the above c and the condition λs ≤ 2κ2

3L(1+L)

holds, then with probability at least 1− α, we have

‖β̂ − β∗‖1 ≤ 3L(1 + L)

κ2
λs, (3.7)

|f(β̂)− f(β∗)| ≤ 3L(1 + L)

κ2
λ2s. (3.8)

(ii) If λ is chosen as (3.6) with the above c and the condition λs ≤ 2κ2

3L(1+L)

holds, then for large enough n, with probability at least

1− α

(
1 +O(1)

(log p)5/2

n1/2

)
, (3.9)

the above inequalities (3.7) and (3.8) hold.

Remark 3.8. From Lemmas 3.5 and 3.6, we know that λ = O(
√

log p
n ) for both

exact and asymptotic choices. Hence, we have ‖β̂ − β∗‖1 = O(s
√

log p
n ) and

|f(β̂) − f(β∗)| = O( s log p
n ). If we assume s

√
log p
n → 0 as n, p → ∞ instead

of λs ≤ 2κ2

3L(1+L) , then the results of (i) and (ii) in Theorem 3.7 can also hold

and the probability term (3.9) of (ii) becomes 1− α(1 + o(1)). In addition, the

condition s
√

log p
n → 0 implies that s = o(

√
n

log p ). In general high-dimensional

linear regression [5] and �1 penalized logistic regression [3], they also required
the same sparsity condition.
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Remark 3.9. If we replace Condition (I) by sup
i∈[n],j∈[p]

|xij | ≤ c0
√
log p with some

positive constant c0, the results in Theorem 3.7 also hold with high probability
for both exact and asymptotic choices, but it requires a stronger condition on s,
that is s = o( log p√

n
). This proof is the same as ours in Section A only by replacing

all R with c0 log p.

4. Experiments

We use the R package “lbfgs” to solve �1 penalized convex optimization problems
[6]. The lbfgs package implements both the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) and the Orthant-Wise Quasi-Newton Limited-Memory
(OWL-QN) optimization algorithms. The L-BFGS algorithm solves the prob-
lem of minimizing an objective, given its gradient, by iteratively computing
approximations of the inverse Hessian matrix. The OWL-QN algorithm finds
the optimum of an objective plus the �1-norm of the problem’s parameters. The
package offers a fast and memory-efficient implementation of these optimization
routines, which is particularly suited for high-dimensional problems.

4.1. Toy Example

We conduct a simulation to compare the estimation errors by THREE differ-
ent ways of selecting a tuning parameter for our �1 penalized weighted score
function (LPWSF) method and also compare these results with the lasso for
Poisson regression [14] and the adaptive lasso for Poisson regression [11]. We
use R package “glmnet” to solve the sparse Poisson regression which returns �1
penalized log-likelihood estimator and R package “grplasso” to obtain the adap-
tive �1 penalized log-likelihood estimator. For data setting, we first generate a
design matrix X ∈ R

n×p with n = 100, p = 1000 and each element xij i.i.d.
from the standard normal distribution. By a linear transform, we can make X
satisfy

∑n
i=1 xij = 0, and 1

n

∑n
i=1 x

2
ij = 1, j = 1, 2, . . . , p. We set the number

of nonzero elements of β∗ as 10 and each element randomly from N(0, 1)× 0.5

and yi ∼ Poisson(exp{
∑10

j=1 xijβ
∗
j }).

Recall H =
∥∥∥ 1
n

n∑
i=1

xi(yi−ex
T
i β∗

)√
ex

T
i

β∗

∥∥∥
∞
. Let α = 0.05 and consider the following

THREE different choices of λ. (1) As defined in (3.5), λ = H(1 − α). This
tuning parameter depends on the true parameter β∗, which is unknown in real
applications, but we still list it here as a benchmark. (2) As defined in (3.6), λ =
1.1× (

√
n)−1Φ−1(1− α

2p ), this is the asymptotic choice of the tuning parameter.

(3) We use normal approximation ofH defined as H̃ = ‖ 1
n

n∑
i=1

xizi‖∞ with zi, i =

1, 2, . . . , n i.i.d. from N(0, 1), and define λ = H̃(1−α). This is an approximation
of the exact choice of tuning parameter defined in (3.5). For comparison, we
also present the result of �1 penalized log-likelihood with λ selected by cross-
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Fig 1. The errors for different tuning parameters and methods. “LPWSF.asy” is the estima-
tion errors for our proposed method with λ = 1.1 × (

√
n)−1Φ−1(1 − α

2p
). “LPWSF.exa” is

the estimation errors for our proposed method with exact choice of λ and “LPWSF.app” is
the estimation errors for the new proposed method with an approximate of the exact choice.
“lasso” denotes the estimation errors for �1 penalized log-likelihood method with λ selected
by cross-validation. “adalasso” denotes the estimation errors for adaptive �1 penalized log-
likelihood method with a theoretical penalty level λ (see equation (2.3) in [11] with γ = 1.01).

validation and adaptive �1 penalized log-likelihood with a theoretical penalty
level λ (see equation (2.3) in [11] with γ = 1.01).

We repeat each case 100 times, and compute the corresponding estimation
error ‖β̂ − β∗‖1 in every time. All the results are reported in Figure 1, from
which we see that our proposed method not only has a better performance
than the traditional �1 penalized log-likelihood method and the adaptive �1
penalized log-likelihood method but also does not need a heavy procedure like
cross-validation. Hence, our pre-specified tuning parameter works.

4.2. Image Reconstruction

Now we apply our method to an image reconstruction. The experiments are
based on a simulated limited-angle emission tomography dataset. We compare
our algorithm with the well-known emission tomography reconstruction algo-
rithms and apply the well known Shepp and Logan “head phantom” shown in
Figure 2, which consists of several ellipses with different sizes and densities.

Our goal is to reconstruct this “head phantom” by using limited-angle to-
mographic projection data, which correspond to parallel beam geometry with
384 detector pixels in a single projection and 180 angular samples spaced uni-
formly over 180 degrees. The projection data is called sinogram which can be
seen in Figure 3. Mathematically, the relationship between sinogram and the
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Fig 2. Head phantom Fig 3. Sinogram

original source (the “head phantom”) could be described using a group of linear
equations

y = Ax, (4.1)

where x is the source and y is the observed sinogram. A lot of researches have
been done to reconstruct the source x through the sinogram y. The difficulty is
that this is a singular equation with a very large number of unknown elements in
x and only a few observations in y. When noise does not exist, algorithms such
as Simultaneous Algebraic Reconstruction Technique (SART) [1], Simultaneous
Iterative Reconstruction Technique (SIRT) [9], Conjugate Gradient method for
Least Squares (CGLS) [2] and Filtered Backprojection (FBP) [23] were used.
The reconstruction can be seen from Figure 4, from which we see that CGLS
and FBP work quite well for this data.

It is also well known that limited-angle tomographic projection data consist
of Poisson noise [21, 12]. A few models have been studied for noisy data. One of
the models for data with noise is via the Poisson regression model. That is, the
projection data y follows a Poisson distribution with parameter λ that satisfies

log(λ) = Bx.

In our simulation, we take B = A/5.0, where A is the same as in Equation (4.1)
which corresponds to the previous project data without noise. For this noisy
project data, the sinogram is shown in Figure 5.

For this projection data, if we still use the linear model as in algorithms
such as SART, SIRT, CGLS and FBP, the reconstruction will be very bad, as
shown in Figure 6. By comparisons, we use our proposed method (LPWSF)
to reconstruct the original source. The reconstruction is shown in Figure 7. It
is clear that our proposed method works much better. In the experiments we
take the tuning parameter as a theoretical one λ = 1.1(

√
n)−1Φ−1(1− α

2p ), with
n = 69120, p = 160× 160 = 25600 and α = 0.05.
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Fig 4. Reconstruction from sinogram using different algorithms

Fig 5. Sinogram with Poisson noise
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Fig 6. Reconstruction from noisy sinogram using different algorithms

Fig 7. Reconstruction from noisy sinogram using different algorithms



2912 J. Jia et al.

5. Conclusion

We proposed an �1 penalized weighted score function method for sparse Poisson
regression. After adding a weight on the score function, the penalty coefficient
λ does not depend on the variance of Poisson noise anymore. A direct extension
is to generalize this idea to other types of generalized linear models, such as
negative binomial regression, exponential regression. We prove the estimator of
our new method is consistent and give its explicit convergence rate to the true
parameter. Simulations and a real application in image reconstruction indicate
that our method can be computed efficiently and perform very well.

Appendix A: Appendix

Proof of Theorem 3.2. Let δ = β̂ − β∗. Recall that T = {j : β∗
j �= 0}. By

definition of β̂, we have

f(β̂)− f(β∗) ≤ λ(‖β∗‖1 − ‖β̂‖1)
= λ[(‖β∗

T ‖1 − ‖β̂T ‖1) + (‖β∗
T c‖ − ‖β̂T c‖1)]

≤ λ(‖δT ‖1 − ‖δT c‖1).
(A.1)

Since f(β) is a convex function, we have

f(β̂)− f(β∗) ≥ δT∇f(β∗) ≥ −‖∇f(β∗)‖∞‖δ‖1 ≥ −λ

c
‖δ‖1, (A.2)

where the last inequality used the choice of λ such that λ > cH = c‖∇f(β∗)‖∞.
Combining (A.1) and (A.2), we obtain that

λ(‖δT ‖1 − ‖δT c‖1) ≥ −λ

c
(‖δT ‖1 + ‖δT c‖1),

i.e.

‖δT c‖1 ≤ c+ 1

c− 1
‖δT ‖1 = L‖δT ‖1.

Defining a new function f̃(t) = f(β∗+ tv) from R to R for any vector v ∈ R
p,

we compute its second and third order derivatives and denote them as following

f̃ ′′(t) =
d2f̃(t)

dt2
=

1

2n

n∑
i=1

(xT
i v)

2(yie
−xT

i (β∗+tv)/2 + ex
T
i (β+tv)/2),

f̃ ′′′(t) =
d3f̃(t)

dt3
= − 1

4n

n∑
i=1

(xT
i v)

3(yie
−xT

i (β∗+tv)/2 − ex
T
i (β∗+tv)/2).

By Condition (I), we obtain that

|f̃ ′′′(t)| ≤ 1

2
sup
i∈[n]

|xT
i v|f̃ ′′(t) ≤ 1

2
sup

i∈[n],j∈[p]

|xij |‖v‖1f̃ ′′(t) ≤ 1

2
R‖v‖1f̃ ′′(t).
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Setting v = δ = β̂ − β∗, we have

|f̃ ′′′(t)| ≤ 1

2
R‖δ‖1f̃ ′′(t). (A.3)

Denote R̃ = 1
2R, by Proposition 1 of [3], (A.3) and Condition (II), we have

f(β̂)− f(β∗) ≥ δT∇f(β∗) +
δT∇2f(β∗)δ

R̃2‖δ‖21
(e−R̃‖δ‖1 + R̃‖δ‖1 − 1)

≥ −‖∇f(β∗)‖∞‖δ‖1 +
δT∇2f(β∗)δ

R̃2‖δ‖21
(e−R̃‖δ‖1 + R̃‖δ‖1 − 1)

≥ −λ

c
‖δ‖1 +

κ2‖δT ‖22
R̃2‖δ‖21

(e−R̃‖δ‖1 + R̃‖δ‖1 − 1).

(A.4)

Combining (A.1) and (A.4), we have

κ2‖δT ‖22
R̃2‖δ‖21

(e−R̃‖δ‖1 + R̃‖δ‖1 − 1) ≤ λ‖δT ‖1 +
λ

c
‖δ‖1 ≤ Lλ

√
s‖δT ‖2, (A.5)

where the last inequality utilizes the relation ‖δ‖1 ≤ (1 + L)‖δT ‖1 ≤ (1 +
L)

√
s‖δT ‖2. Using this relation again, we have

e−R̃‖δ‖1 + R̃‖δ‖1 − 1 ≤ L(1 + L)λsR̃

κ2
R̃‖δ‖1. (A.6)

Setting

h =
L(1 + L)λsR̃

κ2
,

then (A.6) becomes

e−R̃‖δ‖1 + R̃‖δ‖1 − 1 ≤ hR̃‖δ‖1. (A.7)

According to the condition on λ such that λs ≤ 2κ2

3L(1+L)R , we have h ≤ 1
3 .

Denote w = R̃‖δ‖1 ≥ 0, then to solve (A.7) is equivalent to solve the inequality

e−w + w − 1 ≤ hw with w ≥ 0. By Taylor formula, we have w2

2 − w3

6 ≤ e−w +
w − 1 ≤ hw which implies {w ≥ 0 : e−w + w − 1 ≤ hw, h ≤ 1

3} ⊆ {w ≥ 0 :
w2

2 − w3

6 ≤ hw, h ≤ 1
3}. Since under the condition h ≤ 1

3 and w ≥ 0, the solution

of inequality w2

2 − w3

6 ≤ hw is 0 ≤ w ≤ 3−
√
9−24h
2 ≤ 1 or w ≥ 3−

√
9−24h
2 ≥ 2,

then

{w ≥ 0 : e−w + w − 1 ≤ hw, h ≤ 1

3
}

⊆ {w : 0 ≤ w ≤ 3−
√
9− 24h

2
, h ≤ 1

3
} ∪ {w : w ≥ 3−

√
9− 24h

2
, h ≤ 1

3
}.
(A.8)
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Define g(w) = e−w + w − 1 − hw. By the knowledge of derivative and mono-
tonicity, we have

{w ≥ 0 : g(w) ≤ 0, h ≤ 1

3
} ⊆ {w : 0 ≤ w < 2},

which and (A.8) imply

{w ≥ 0 : e−w + w − 1 ≤ hw, h ≤ 1

3
} ⊆ {w : 0 ≤ w ≤ 3−

√
9− 24h

2
, h ≤ 1

3
}

⊆ {w ≥ 0 : w ≤ 3h, h ≤ 1

3
}.

So, from (A.7), we obtain

R̃‖δ‖1 ≤ 3L(1 + L)λsR̃

κ2
,

that is,

‖δ‖1 ≤ 3L(1 + L)λs

κ2
.

Furthermore, by (A.1) and (A.2), we obtain

|f(β̂)− f(β∗)| ≤ λ‖δ‖1 ≤ 3L(1 + L)λ2s

κ2
.

We finish the proof.

Proof of Lemma 3.5. (i) By the definition of quantile, it is easy to obtain that

P(cH > λ) = P(cH > cH(1− α|X)) < α.

Then P(λ ≥ cH) ≥ 1− α.
(ii) Let tn = (

√
n)−1Φ−1(1 − α

4p ). If we can prove that P(H > tn) < α,

then by definition of quantile we have H(1− α|X) ≤ tn. By the proof of (ii) of
Lemma 3.6, we can obtain that Φ−1(1− α

4p ) <
√

2 log(4p/α). Hence, we can get
the desired result. The rest is to show

P(H > tn) < α,

as n, p → ∞ with n ≤ p ≤ eo(n
1/5).

Recall H = max
j∈[p]

| 1n
n∑

i=1

xijεi| and εi = (yi − ex
T
i β∗

)/
√
ex

T
i β∗

. Denote t =

Φ−1(1− α
4p ) and then tn = (

√
n)−1t. Observe that

P(H > tn) = P(max
j∈[p]

| 1
n

n∑
i=1

xijεi| > (
√
n)−1t)

≤ pmax
j∈[p]

P(|
n∑

i=1

xijεi| >
√
nt).

(A.9)
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Repeating the argument below (A.10), we get

P(H > tn) ≤
α

2
(1 +O(1)(

√
2 log (4p/α)−

√
nb)3n−1/2(3K1 log p+ b))

× (1 +
1

log (2p/α)
)
exp{−2(n log (2p/α))1/2b+ nb2}

1−√
nb/(log (2p/α))1/2

+ C1n/p
2,

where as n, p → ∞ with n ≤ p ≤ eo(n
1/5), notice that b,

√
nb and nb2 are o(n−2),

we have
P(H > tn) ≤

α

2
(1 + o(1)) < α.

We finish the proof.

Proof of Lemma 3.6. (i) By easy calculation, we obtain

∇f(β∗) = − 1

n

n∑
i=1

xi(yi − ex
T
i β∗

)/
√

ex
T
i β∗

.

Denote εi = (yi − ex
T
i β∗

)/
√
ex

T
i β∗

, then

H = ‖∇f(β∗)‖∞ = max
j∈[p]

| 1
n

n∑
i=1

xijεi|.

Denote a = Φ−1(1− α
2p ), then λ = c(

√
n)−1a. Hence

P(cH > λ) = P(max
j∈[p]

| 1
n

n∑
i=1

xijεi| > (
√
n)−1a)

≤ pmax
j∈[p]

P(|
n∑

i=1

xijεi| >
√
na).

(A.10)

Since yi|xi ∼ Possion(μ(xi)) with μi = μ(xi) = ex
T
i β∗

, then E(eθεi) =
exp{μie

θ/
√
μi − μi − θ

√
μi} is a positive constant for any θ < ∞. By the expo-

nential Chebyshev’s inequality, we have

P(|εi| > M) < e−M/K1

[
E(eεi/K1) + E(e−εi/K1)

]
= C1e

−M/K1 (A.11)

with some constant C1 = E(eεi/K1) + E(e−εi/K1) > 0 and K1 > 0. Denote
ε̂i = εi1{|εi|≤M} and ε̌i = εi1{|εi|>M}. Taking M = 3K1 log p, we have

P(|
n∑

i=1

xijεi| >
√
na) = P(|

n∑
i=1

xij(ε̂i + ε̌i)| >
√
na, sup

i∈[n]

|εi| ≤ M)

+ P(|
n∑

i=1

xij(ε̂i + ε̌i)| >
√
na, sup

i∈[n]

|εi| > M)

≤ P(|
n∑

i=1

xij ε̂i| >
√
na) + P( sup

i∈[n]

|εi| > M).
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Denote P1 = P(|
n∑

i=1

xij ε̂i| >
√
na) and P2 = P( sup

i∈[n]

|εi| > M), then the above

inequality can be written as

P(|
n∑

i=1

xijεi| >
√
na) ≤ P1 + P2. (A.12)

By inequality (A.11) with M = 3K1 log p, we obtain that

P2 ≤
n∑

i=1

P(|εi| > M) ≤ C1ne
−3 log p = C1n/p

3. (A.13)

To estimate the P1, we need the following moderate deviation theorem for stan-
dardized sum due to [22](see also [10, 16]), i.e.

Lemma A.1. Let η1, . . . , ηn be independent random variables with Eηi = 0 and

|ηi| ≤ 1 for all i ∈ [n]. Denote σ2
n =

n∑
i=1

Eη2i and Ln =
n∑

i=1

E|ηi|3/σ3
n. Then there

exists a positive constant A such that for all x ∈ [1, 1
A min{σn, L

−1/3
n }]

P(

n∑
i=1

ηi > xσn) = (1 +O(1)x3Ln)Φ̄(x),

where Φ̄(x) = 1 − Φ(x) and Φ(x) is the cumulative distribution function of
standard normal distribution.

Since E(εi) = E(ε̂i) + E(ε̌i) = 0, we obtain that

|E(ε̂i)| = |E(ε̌i)| ≤ E|ε̌i| = E(|ε̂i|1{|εi|>M})

=

∫ +∞

M

x dΦ(x) +

∫ −M

−∞
−x dΦ(x)

=

∫ +∞

M

∫ x

0

1 dz dΦ(x) +

∫ −M

−∞

∫ 0

x

1 dz dΦ(x)

=

∫ +∞

M

∫ +∞

z

1 dΦ(x) dz +

∫ −M

−∞

∫ z

−∞
1 dΦ(x) dz

≤
∫ +∞

M

C1e
−z/K1 dz +

∫ −M

−∞
C1e

z/K1 dz

= 2C1K1e
−M/K1

= 2C1K1/p
3,

(A.14)

where the fifth equality follows Fubini theorem and the last inequality follows
(A.11).

Denote b = 2C1K1/p
3, then |E(ε̂i)| ≤ b and

|
n∑

i=1

xijEε̂i| ≤

√√√√(

n∑
i=1

x2
ij)(

n∑
i=1

|Eε̂i|2) ≤ nb.
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Furthermore, with Condition (I) we have

|xij(ε̂i − Eε̂i)| ≤ ( sup
i∈[n],j∈[p]

|xij |)(|εi|+ |Eεi|) ≤ R(M + b).

Notice that for all i ∈ [n],

E(ε̂i − Eε̂i)
2 = Eε̂2i − (Eε̂i)

2

= Eε2i − Eε̌2i − (Eε̂i)
2

≤ Eε2i = 1,

E(ε̂i − Eε̂i)
2 = Eε2i − Eε̌2i − (Eε̂i)

2

≥ 1− 4C1K1(M +K1)e
−M/K1 − 4C2

1K
2
1e

−2M/K1

= 1− 4C1K
2
1 (3 log p+ 1)/p3 − 4C2

1K
2
1/p

3

(A.15)

where the inequality (Eε̂i)
2 ≤ 4C2

1K
2
1e

−2M/K1 follows (A.14) and the inequality
Eε̌2i ≤ 4C1K1(M + K1)e

−M/K1 can be obtained by the same arguments in
(A.14). For simplicity, denote r = 1 − 4C1K

2
1 (3 log p + 1)/p3 − 4C2

1K
2
1/p

3. For
large enough p, we have r ∈ (0, 1) and is far away from 0.

Let ηij = xij(ε̂i−Eε̂i)/R(M + b), then we have Eηij = 0, |ηij | < 1. We define
σ2
nj and Lnj and calculate them as following

σ2
nj =

n∑
i=1

Eη2ij =
1

R2(M + b)2

n∑
i=1

E(x2
ij(ε̂i − Eε̂i)

2)

=
1

R2(M + b)2

n∑
i=1

x2
ijE(ε̂i − Eε̂i)

2,

Lnj =

n∑
i=1

E|ηij |3/σ3
nj ≤

n∑
i=1

E|ηij |2/σ3
nj =

1

σnj
.

By using the bounds of E(ε̂i − Eε̂i)
2 in (A.15) and

n∑
i=1

x2
ij = n, we can estimate

the upper and lower bounds of σ2
nj as follows

rn

R2(M + b)2
≤ σ2

nj ≤
n

R2(M + b)2
,

where r ∈ (0, 1) and is far away from 0.

Then, σ2
nj = O( n

(M+b)2 ) and Lnj = O( (M+b)√
n

). Using Lemma A.1, for large

enough n, p such that
√
n  p ≤ eo(n

1/5) (Condition (III)), we have

P1 = P(|
n∑

i=1

xij(ε̂i − Eε̂i + Eε̂i)| >
√
na)

≤ P(|
n∑

i=1

xij(ε̂i − Eε̂i))| >
√
na− |

n∑
i=1

xijEε̂i|) (A.16)
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≤ P(|
n∑

i=1

xij(ε̂i − Eε̂i))

R(M + b)
| >

√
n

R(M + b)
(a−

√
nb))

≤ P(|
n∑

i=1

ηij | > σnj(a−
√
nb))

= 2(1 +O(1)(a−
√
nb)3Lnj)Φ̄(a−

√
nb)

with a−√
nb uniformly in [1, O(n1/6(log p)−1/3)]. Notice that log (p/α) < a2 <

2 log (2p/α) when p/α > 8 (Condition (III)) and for all u > 0 the inequality
u

1+u2φ(u) ≤ Φ̄(u) ≤ φ(u)
u holds where φ(·) is the density function of standard

normal distribution. Then,

Φ̄(a−
√
nb) ≤ φ(a−√

nb)

a−√
nb

= φ(a)
exp{−2a

√
nb+ nb2}

a−√
nb

=
a

1 + a2
φ(a)

1 + a2

a(a−√
nb)

exp{−2a
√
nb+ nb2}

≤ Φ̄(a)
1 + a2

a(a−√
nb)

exp{−2a
√
nb+ nb2}

=
α

2p
(1 +

1

a2
)

1

1−√
nb/a

exp{−2a
√
nb+ nb2}

≤ α

2p
(1 +

1

log (p/α)
)
exp{−2(n log (p/α))1/2b+ nb2}

1−√
nb/(log (p/α))1/2

(A.17)

and

(a−
√
nb)3Lnj = O(1)(

√
2 log (2p/α)−

√
nb)3n−1/2(3K1 log p+ b). (A.18)

Combining (A.16), (A.17) and (A.18), we have

P1 ≤ α

p
(1 +O(1)(

√
2 log (2p/α)−

√
nb)3n−1/2(3K1 log p+ b))

× (1 +
1

log (p/α)
)

1

1−√
nb/(log (p/α))1/2

exp{−2(n log (p/α))1/2b+ nb2}.

(A.19)

Thus, combining (A.10), (A.13) and (A.19), we obtain that

P(c‖∇f(β∗)‖∞ > λ) ≤ p(P1 + P2)

≤ α(1 +O(1)(
√

2 log (2p/α)−
√
nb)3n−1/2(3K1 log p+ b))

× (1 +
1

log (p/α)
)
exp{−2(n log (p/α))1/2b+ nb2}

1−√
nb/(log (p/α))1/2

+ C1n/p
2.

As n, p → ∞ with
√
n  p ≤ eo(n

1/5), notice that b,
√
nb and nb2 are all o(n−2),

hence, we have
P(c‖∇f(β∗)‖∞ > λ) ≤ α(1 + o(1)).
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(ii) Notice the fact that for any u > 0, the inequality

1− Φ(u) ≤ φ(u)

u

holds where the φ(·) is the density function of standard normal distribution. Let
u = Φ−1(1− α

2p ). If p/α > 8, it is easy to see u > 3/2. Then the above inequality
becomes

α

2p
= 1− Φ(u) ≤ φ(u)

u
=

exp{−u2/2}√
2πu

< exp{−u2/2},

i.e. u <
√
2 log (2p/α). Thus Φ−1(1− α

2p ) <
√
2 log (2p/α) and

λ = c(
√
n)−1Φ−1(1− α

2p
) < c

√
2 log (2p/α)

n
.
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