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1. Introduction

A common problem faced in applications is that one can only make indirect ob-
servations of a physical process. Consequently, important quantities of interest
cannot be directly observed, but a suitable image under some transformation
is typically available. These problems are called inverse problems in the liter-
ature. Loosely speaking, the goal is to recover a quantity θ (often a function)
from a distorted version of an image Kθ, where K is some operator. Developing
valid statistical inference procedures for these inverse problems is desirable, and
in recent years several authors have worked on the construction of estimators,
structural tests, and (pointwise and uniform) confidence bands for the unknown
indirect regression function θ [see Mair and Ruymgaart (1996), Cavalier and
Tsybakov (2002), Johnstone et al. (2004), Bissantz and Holzmann (2008), Cav-
alier (2008), Birke, Bissantz and Holzmann (2010), Johnstone and Paul (2014),
Marteau and Mathé (2014), and Proksch, Bissantz and Dette (2015) among
many others]. In this paper we consider an indirect regression model of the form

Yj =
[
Kθ

]
(Xj) + εj , j = 1, . . . , n, (1.1)

where Xj is a predictor, εj is a random error and K is a convolution operator,
which will be specified later (along with the covariatesXj). Here θ is an unknown
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but square-integrable smooth function. We study a unified approach to testing
certain model assumptions regarding the distribution function of the error εj in
the indirect regression model (1.1).

Apart from specification of the operator K, many statistical techniques used
in applications for the estimation of θ depend on the error distribution. For ex-
ample, when recovering astronomical images certain defects such as cosmic-ray
hits are important to identify and remove [Section 6 of Adorf (1995)]. Here devi-
ation values between observations from pixels and an initial reconstruction are
calculated and compared with the standard deviation of the noise. A large devi-
ation indicates the presence of a possible cosmic-ray hit, and observations from
the affected pixels are discarded (or replaced by imputed values) in subsequent
iterative reconstruction procedures that improve the quality of the final recon-
structed image. Determining an unrealistic deviation depends on the structure
of the noise distribution. More recently, Bertero et al. (2009) review maximum
likelihood methods for reconstruction of distorted images, and, in their Section
5.2 on deconvolution using sparse representation, these authors note the popu-
larity of assuming an additive Gaussian white noise model for transformed data.
However, it is not known in advance whether this transformation is appropriate
for a given image. If the transformation is inappropriate, then we can expect
the Gaussian white noise model to also be inappropriate. The purpose of this
paper is to help in answering some of these questions, which could be considered
as goodness-of-fit hypotheses of specified error distributions. In particular, our
proposed methodology focuses on the important case of location-scale families,
which includes the popular Gaussian white noise model.

Problems of this type have found considerable interest in direct regression
models (this is the case where K is an identity operator and only θ appears
in (1.1)) [see Darling (1955), Sukhatme (1972) or Durbin (1973) for some early
works or del Barrio, Cuesta-Albertos and Matrán (2000) and Khmaladze and
Koul (2004) for more recent references]. However, to the best of our knowledge
the important case of testing distributional assumptions regarding the error
structure of an indirect regression model of the form (1.1) has not been con-
sidered so far. We address this problem by proposing a test, which is based on
the empirical distribution function of the standardized residuals from an esti-
mate of the regression function. The method is based on a projection principle
introduced in the seminal papers of Khmaladze (1982, 1988). This projection
is also called the Khmaladze transformation and it has been well-studied in
the literature. Exemplarily, we mention the work of Marzec and Marzec (1997),
Stute, Thies and Zhu (1998), Khmaladze and Koul (2004, 2009), Haywood and
Khmaladze (2008), Dette and Hetzler (2009), Koul and Song (2010), Müller,
Schick and Wefelmeyer (2012), and Can et al. (2015), who use the Khmaladze
transform to construct goodness-fit-tests for various problems. The work which
is most similar in spirit to our work is the paper of Koul, Song and Zhu (2018),
who consider a similar problem in linear measurement error models.

We prefer the projection approach because there is a common asymptotic
distribution describing the large sample behavior of the test statistics (without
unknown parameters to be estimated) and the procedure can be easily adapted
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to handle different problems. To obtain a better understanding of projection
principles as they relate to forming model checks, we direct the reader to con-
sider the rather elaborate work of Bickel, Ritov and Stoker (2006), who introduce
a general framework for constructing tests of general semiparametric hypotheses
that can be tailored to focus substantial power on important alternatives. These
authors investigate a so-called score process obtained by a projection principle.
Unfortunately, the resulting test statistics are generally not asymptotically dis-
tribution free, i.e. the asymptotic distributions of these test statistics generally
depend on unknown parameters and inference using them becomes more com-
plicated. The Khmaladze transform is simpler to specify and easily employed
in regression problems, since test statistics obtained from the transformation
are asymptotically distribution free with (asymptotic) quantiles immediately
available.

The article is organized as follows. A brief discussion of Sobolev spaces and
their appearance in statistical deconvolution problems is given in Section 2. In
this section we further propose an estimator of the indirect regression function
and study its statistical properties. The proposed test statistic is introduced in
Section 3. Finally, Section 4 concludes the article with a numerical study of the
proposed testing procedure and an application. The technical details and proofs
of our results can be found in Appendix A.

2. Estimating smooth indirect regressions

Consider the model (1.1) with the operator K specifying convolution between
an unknown but smooth function θ and a known distortion function ψ that
characterizes K, i.e.

[
Kθ

]
(Xj) =

∫
C

θ(u)ψ(Xj − u) du. (2.1)

Here the covariates Xj are random and have support C = [0, 1]m for some m ≥
1. The model errors ε1, . . . , εn are assumed to be independent with mean zero
and common distribution function F admitting a Lebesgue density function,
which is denoted by f throughout this paper. We also assume that ε1, . . . , εn
are independent of the i.i.d. covariates X1, . . . , Xn.

Throughout this article we will assume that the indirect regression function
θ from (1.1) is periodic and smooth in the sense that θ belongs to the subspace
of periodic, weakly differentiable functions from the class of square integrable
functions L2(C ) with support C ; see Chapter 5 of Evans (2010) for definitions
and additional discussion. For d ∈ N let I(d) be the set of multi-indices i =
(i1, . . . , im) satisfying i• = i1 + · · · + im ≤ d. To be precise, we will call a
function q ∈ L2(C ) weakly differentiable in L2(C ) of order d when there is a
collection of functions {q(i) ∈ L2(C )}i∈I(d) such that∫

C

q(u)Diϕ(u) du = (−1)i•
∫

C

q(i)(u)ϕ(u) du, i ∈ I(d),
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for every infinitely differentiable function ϕ, with ϕ and Diϕ, i ∈ I(d), vanishing
at the boundary of C and writing

Diϕ(x) =
∂i•

∂xi1
1 . . . ∂xim

m

ϕ(x), x ∈ C .

The class of weakly differentiable functions from L2(C ) of order d forms the
Sobolev space

Wd,2(C ) =

{
q ∈ L2(C ) : q(i) ∈ L2(C ), i ∈ I(d)

}
.

The periodic Sobolev space Wd,2
per are those functions from Wd,2 that are pe-

riodic on C and whose weak derivatives are also periodic on C . An orthonormal
basis for the space L2(C ) of square integrable functions is given by the Fourier
basis {ei2πk·x : x ∈ C }k∈Zm . Here k·x = k1x1+· · ·+kmxm is the common inner
product between the vectors k = (k1, . . . , km) ∈ Z

m and x = (x1, . . . , xm) ∈ C .
It follows that Wd,2

per can be equivalently represented by

Wd,2
per =

{
q ∈ Wd,2(C ) :

∑
k∈Zm

(
1 + ‖k‖2

)d|�(k)|2 < ∞
}
,

where ‖ · ‖ denotes the Euclidean norm and

�(k) =

∫
C

q(x)e−i2πk·x dx, k ∈ Z
m

are the Fourier coefficients of q [see Kühn, Sickel and Ullrich (2014) for further
discussion]. The series in the equivalent representation of Wd,2

per motivates re-
placing the degree of weak differentiability d by a real-valued smoothness index
s > 0. Throughout this article we work with the general indirect regression
model space M(s) defined as

M(s) =

{
q ∈ Ws,2

per :
∑

k∈Zm

‖k‖s||�(k)| < ∞
}
. (2.2)

We will assume that θ ∈ M(s0), for some s0 specified below, and that
ψ ∈ L2(C ) such that ψ is positive-valued and integrates to 1 so that K is a
convolution operator from L2(C ) into L2(C ). In this case we can represent Kθ
in terms of a Fourier series

Kθ(x) =
∑

k∈Zm

R(k) exp
(
i2πk · x

)
=

∑
k∈Zm

Ψ(k)Θ(k) exp
(
i2πk · x

)
, x ∈ C ,

(2.3)
where {R(k)}k∈Zm and {Θ(k)}k∈Zm are the Fourier coefficients of Kθ and θ,
respectively. In particular we have

Θ(k) =
R(k)

Ψ(k)
for all k ∈ Z

m. (2.4)
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Studying the indirect regression model (1.1) requires that we consider the
ill-posedness of the inverse problem. This phenomenon occurs because the ratio
|R(k)|/|Ψ(k)| needs to be summable when θ ∈ M(s). However, when esti-
mated Fourier coefficients {R̂(k)}k∈Zm are used |R̂(k)| does not asymptotically
vanish (with increasing ‖k‖) due to the stochastic noise from the errors εj in

model (1.1). Consequently, the ratio |R̂(k)|/|Ψ(k)| is not necessarily summable,
and this problem is therefore called ill-posed. We can see that the coefficients
{Ψ(k)}k∈Zm determine the rate at which the ratio |R̂(k)|/|Ψ(k)| expands, and,
therefore, the ill–posedness of the inverse problem here is given by the rate of
decay in the coefficients {Ψ(k)}k∈Zm of the distortion function ψ. We will as-
sume that the inverse problem is mildly to moderately ill-posed in the sense of
Fan (1991):

Assumption 1. There are finite constants b ≥ 0, γ > 0 and 0 ≤ CΨ < C∗
Ψ such

that, for every ‖k‖ > γ, the Fourier coefficients {Ψ(k)}k∈Zm of the function ψ
in (2.1) satisfy CΨ ≤ ‖k‖b|Ψ(k)| < C∗

Ψ.

Under Assumption 1, whenever θ ∈ M(s0), for some s0 > 0, it follows that
Kθ ∈ M(s0+ b) from the celebrated convolution theorem for the Fourier trans-
formation. This means that convolution of the indirect regression θ with the
distortion function ψ adds smoothness, and the resulting distorted regression
function Kθ is now smoother than θ by exactly the degree of ill-posedness b of
the inverse problem. Note that Assumption 1 is milder than that of Fan (1991)
in the sense that we allow the degree of ill-posedness b = 0 and that the scaled
Fourier coefficients can vanish. This covers the case of direct regression models
where K is the identity operator, that is Kθ = θ. Further note that we do not
have to invert the operator K in order to investigate properties of the error
distribution in the indirect regression model (1.1).

Several techniques have been developed in the literature to derive series-type
estimators [see, for example, Cavalier (2008)]. A popular regularization method
to employ is the so-called spectral cut-off method, where an indicator function
is introduced in (2.3). For example, the indicator function 1[‖cnk‖ ≤ 1] (for
some sequence {cn}n≥1 converging to 0) results in a biased version of Kθ:

(Kθ)n(x) =
∑

k∈Zm : ‖k‖≤c−1
n

R(k) exp
(
i2πk · x), x ∈ C . (2.5)

The proposed estimator is obtained by replacing the coefficients {R(k)}k∈Zm

with consistent estimators {R̂(k)}k∈Zm , which gives∑
k∈Zm : ‖k‖≤c−1

n

R̂(k) exp
(
i2πk · x

)
, x ∈ C ,

as an estimator of (Kθ)n. The sequence of smoothing parameters {cn}n≥1 is
chosen such that Kθ is consistently estimated. We can generalize this approach
as follows.

Following Politis and Romano (1999) we consider a Fourier smoothing kernel
Λ, where Λ is defined to be the Fourier transformation of some smoothing kernel
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function, say LΛ. The resulting estimate is then defined by

K̂θ(x) =
∑

k∈Zm

Λ(cnk)R̂(k) exp
(
i2πk · x

)
, x ∈ C . (2.6)

Politis and Romano (1999) use that the function x �→ c−m
n LΛ(c

−1
n x) has Fourier

coefficients {Λ(cnk)}k∈Zm . Throughout this paper we will choose Λ as follows:

Assumption 2. The Fourier smoothing kernel Λ satisfies Λ(k) = 1, for ‖k‖ ≤
1, |Λ(k)| ≤ 1, for ‖k‖ > 1, and

∫
Rm ‖u‖|Λ(u)| du < ∞.

The random covariates X1, . . . , Xn from model (1.1) are assumed to be in-
dependent with distribution function G. For simplicity we will assume that G
satisfies the following properties.

Assumption 3. Let the covariate distribution function G admit a positive
Lebesgue density function g ∈ L2(C ) satisfying infx∈C g(x) > 0, supx∈C g(x) <
∞ and that g ∈ M(s) for some s > 0.

The boundedness assumptions taken for g are common in nonparametric re-
gression because these conditions guarantee good performance of nonparametric
function estimators. The last condition ensures that the density function g sat-
isfies similar smoothness properties as the indirect regression function θ, which
allows us to use a Fourier series technique to specify a good estimator of g [see,
for example, Politis and Romano (1999)].

What remains is to define the estimates {R̂(k)}k∈Zm of the Fourier coefficients
{R(k)}k∈Zm required in the definition (2.6). Observing the representation

R(k) =

∫
C

[
Kθ

]
(x)e−i2πk·x dx = E

[
Y

g(X)
e−i2πk·X

]
, k ∈ Z

m,

the covariate density function g must be estimated. For this purpose we expand
the density function g into its Fourier series using the coefficients {φg(k)}k∈Zm ,
with φg(k) = E[exp(−i2πk ·X)]. Estimators of these coefficients are given by

φ̂g(k) =
1

n

n∑
j=1

e−i2πk·Xj , k ∈ Z
m.

From these estimators we then obtain an estimator ĝ of the unknown covariate
density function g, that is

ĝ(x) =
1

n

n∑
j=1

Wcn

(
x−Xj

)
, x ∈ C , (2.7)

with smoothing weights

Wcn

(
x−Xj

)
=

∑
k∈Zm

Λ(cnk) exp
{
i2πk ·

(
x−Xj

)}
. (2.8)
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Here (as before) the choice of Λ defines the form of the smoothing weights Wcn .
The sequence {cn}n≥1 of smoothing parameters is specified later.

We now propose to estimate the Fourier coefficients {R(k)}k∈Zm of the dis-
torted regression function Kθ by

R̂(k) =
1

n

n∑
j=1

Yj

ĝ(Xj)
e−i2πk·Xj , k ∈ Z

m,

where the density estimator ĝ is specified in (2.7). This gives for the nonpara-
metric Fourier series estimator in (2.6) the representation

K̂θ(x) =
∑

k∈Zm

Λ(cnk)R̂(k)ei2πk·x =
1

n

n∑
j=1

Yj

ĝ(Xj)
Wcn

(
x−Xj

)
, x ∈ C , (2.9)

where the smoothing weights Wcn are defined in (2.8).
The results of Lemma 2 in Appendix A show that the consistency of the esti-

mated Fourier coefficients {R̂(k)}k∈Zm is heavily dependent on the consistency
of the covariate density estimator ĝ. This fact motivates our choice of smoothing
parameters as

cn = O
(
n−1/(2s0+2b+3m) log1/(2s0+2b+3m)(n)

)
(2.10)

and requiring that the covariate density function g has a smoothness index
s = s0+b+m in Assumption 3, where s0 is the smoothness index of the function
class M(s0) to which θ belongs, b is the degree of ill-posedness of the inverse
problem and m is the dimension of the covariates. Our first result establishes

the uniform consistency of the estimator K̂θ in (2.6) and a further technical
metric space inclusion property that is useful for working with residual-based
empirical processes.

Theorem 1. Let θ ∈ M(s0) for some s0 > 0 and let Assumption 1 hold
for some degree of ill-posedness b ≥ 0. Let Assumption 2 hold for a Fourier
smoothing kernel Λ that satisfies

∫
Rm ‖u‖max{s0+b,1}|Λ(u)| du < ∞. Further let

Assumption 3 hold for s = s0+b+m and assume that the errors ε1, . . . , εn have
a finite absolute moment of order κ > 3. Choose the smoothing parameter cn as
in (2.10). Then

sup
x∈C

∣∣∣K̂θ(x)−Kθ(x)
∣∣∣ = O

(
n−(s0+b)/(2s0+2b+3m) log(s0+b)/(2s0+2b+3m)(n)

)
, a.s.,

and
K̂θ −Kθ ∈ M1(s0 + b), a.s.,

where M1(s0 + b) is the unit ball of the metric space (M(s0 + b), ‖ · ‖∞).

3. Goodness-of-fit testing the error distribution

In this section we consider the problem of goodness-of-fit testing of a location-
scale distribution of the errors in the indirect regression model (1.1) with con-
volution operator (2.1). Here the location parameter is the mean of the errors
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and equal to zero, but the scale parameter is unknown. The null hypothesis is
given by

H0 : ∃σ > 0 : f(t) =
1

σ
f∗

(
t

σ

)
, t ∈ R, (3.1)

where f∗ is a specified density function of the standardized error distribution
and σ is the unknown scale parameter. To simplify notation we write fσ for
the density function of the standardized errors Zj = εj/σ (j = 1, . . . , n) and

Fσ(t) =
∫ t

−∞ fσ(y) dy (t ∈ R) for the corresponding distribution function. With
this notation the null hypothesis in (3.1) becomes H0 : fσ = f∗ for some
σ > 0. Equivalently, we can write H0 : Fσ = F∗ for some σ > 0 by writing
F∗(t) =

∫ t

−∞ f∗(y) dy (t ∈ R) for the error distribution function specified by the
null hypothesis.

Following Neumeyer and Van Keilegom (2010), who consider a similar prob-
lem in the direct case, we propose to use the standardized residuals

Ẑj =
ε̂j
σ̂
, j = 1, . . . , n,

to form a suitable test statistic, where ε̂j = Yj − K̂θ(Xj) (j = 1, . . . , n) are the
residuals in the indirect regression model (1.1) obtained for the estimate (2.9)
and

σ̂ =

{
1

n

n∑
j=1

ε̂2j

}1/2

is a consistent estimator of the scale parameter σ [see also Akritas and Van
Keilegom (2001)]. A nonparametric estimator of F∗ is given by the empirical
distribution function of these standardized residuals,

F̂(t) =
1

n

n∑
j=1

1
[
Ẑj ≤ t

]
, t ∈ R.

The null hypothesis H0 is then rejected if a given metric between the es-
timated standardized distribution function F̂ and F∗ is large enough. A pop-
ular metric in the literature is the supremum metric, and this leads to the
Kolmogorov-Smirnov test statistic:

sup
t∈R

∣∣∣F̂(t)− F∗(t)
∣∣∣.

Critical values for the Kolmogorov-Smirnov test statistic are then determined
from asymptotic theory, but these can be difficult to work with in practice
because they depend on F∗. To avoid this problem, we will work with a different
test statistic.

Our proposed test statistic will crucially depend on the estimator F̂ satisfying
an asymptotic expansion, which is given in the following result.
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Theorem 2. Let the assumptions of Theorem 1 hold, with s0 + b > 3m/2 and
assume that the Fourier smoothing kernel Λ is radially symmetric. Let F∗ have
a finite absolute moment of order 4 or larger and a bounded Lebesgue density
f∗ that is (uniformly) Hölder continuous with exponent 3m/(2s0 +2b) < γ ≤ 1.
Finally, the function t �→ tf∗(t) is assumed to be uniformly continuous and
bounded. Then under the null hypothesis (3.1)

F̂(t)−F∗(t) =
1

n

n∑
j=1

{
1[Zj ≤ t]−F∗(t)+f∗(t)

(
Zj+t

Z2
j − 1

2

)}
+Dn(t), t ∈ R,

with supt∈R
|Dn(t)| = oP (n

−1/2).

Remark 1. A direct consequence of Theorem 2 is that, under the null hypothesis
(3.1), the stochastic process {√n(F̂(t) − F∗(t))}t∈R weakly converges in the
space 
∞([−∞, ∞]) to a Gaussian process, which is also the weak limit of the
stochastic process{

1√
n

n∑
j=1

{
1[Zj ≤ t]− F∗(t) + f∗(t)

(
Zj + t

Z2
j − 1

2

)}}
t∈R

.

This limit distribution can be easily simulated. However, it is clearly not distri-
bution free because it depends on F∗ and f∗ specified in the null hypothesis.

The Khmaladze transformation produces a standard limiting distribution: a
standard Brownian motion on [0, 1], and as a consequence we can construct
test statistics which are asymptotically distribution free, i.e. the corresponding
critical values do not depend on F∗ specified by the null hypothesis. In order
to obtain a test statistic whose critical values are independent from the distri-
bution specified in the null hypothesis, we use a particular projection of the
residual-based empirical process by viewing this quantity as an (approximate)
semimartingale with respect to its natural filtration. The projection is given by
the Doob-Meyer decomposition of this semimartingale [see page 1012 of Khmal-
adze and Koul (2004)]. For this purpose we will assume that F∗ has finite Fisher
information for location and scale, i.e.∫ ∞

−∞

(
1 + t2

)(f ′
∗(t)

f∗(t)

)2

F∗(dt) < ∞, (3.2)

writing f ′
∗ for the derivative of the Lebesgue density f∗.

To be precise, note that F∗ characteristically has mean zero and variance
equal to one. In order to introduce our test statistic we define the augmented
score function

h(t) = (1,−f ′
∗(t)/f∗(t),−(tf∗(t))

′/f∗(t))
T

and the incomplete information matrix

Γ(t) =

∫ ∞

t

h(u)h(u)T F∗(du), t ∈ R. (3.3)
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Following Khmaladze and Koul (2009) the transformed empirical process of
standardized residuals is given by

ξ̂0(t) = n1/2

{
F̂(t)−

∫ t

−∞
hT (y)Γ−1(y)

∫ ∞

y

h(z)F̂(dz)F∗(dy)

}
, t ∈ R.

We can rewrite ξ̂0 in a more computationally friendly form, i.e.

ξ̂0(t) = n1/2

{
F̂(t)− 1

n

n∑
j=1

G0

(
t ∧ Ẑj

)
h
(
Ẑj

)}
, t ∈ R,

where

G0(t) =

∫ t

−∞
hT (y)Γ−1(y)F∗(dy), t ∈ R.

Under the null hypothesis (3.1) ξ̂0 weakly converges in the space 
∞([−∞, ∞))
to B(F∗), writing B for the standard Brownian motion.

Remark 2. Under the null hypothesis ξ̂0 weakly converges in the space 
∞([−∞,
∞)), which means that it weakly converges in the spaces 
∞([−∞, t0]), for every
t0 < ∞. To work with t0 < ∞, consider that

ξ̂0(t)√
F∗(t0)

D−→ B(F∗(t))√
F∗(t0)

D
= B

(
F∗(t)

F∗(t0)

)
D
= B(u(t)),

with 0 ≤ u(t) = F∗(t)/F∗(t0) ≤ 1, for −∞ < t ≤ t0. Here we write
D−→ and

D
=

for convergence and equality in distribution, respectively. Therefore, under the
null hypothesis,

sup
−∞<t≤t0

∣∣∣∣ ξ̂(t)√
F∗(t0)

∣∣∣∣ D−→ sup
0≤u≤1

∣∣B(u)
∣∣.

Remark 3. The choice of t0 < ∞ from Remark 2 is arbitrary, which may be
avoidable in some applications (e.g. testing for normally distributed errors).
Here the matrix Γ(t0) degenerates as t0 → ∞. However, as a referee has kindly
pointed out, this does not imply that

t0 �→ hT (t0)Γ
−1(t0)

∫ ∞

t0

h(z)F̂(dz)

has singularity or is not uniquely defined at t0 = ∞. If the distribution func-
tion F∗ specified by the null hypothesis satisfies the tail conditions (a) – (c)

given on page 3180 of Khmaladze and Koul (2009), then one can show that ξ̂0
weakly converges to B(F∗) in the space 
∞([−∞, ∞]), and proceed immediately

with goodness-of-fit testing using the process ξ̂0. See also Khmaladze (2015) for
additional discussion on this issue.

Following Remark 2, we can proceed as in Stute, Thies and Zhu (1998), who

recommend using the 99% quantile from the empirical distribution function F̂
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for t0, i.e. t0 = F̂
−1(0.99) writing F̂−1 for the sample quantile function associated

with F̂. In this case, we propose to base a goodness-of-fit test for the hypothesis
(3.1) on the supremum metric between ξ̂0/(F̂(t0))

1/2 and the constant 0:

T0 = sup
−∞<t≤t0

∣∣∣∣ ξ̂0(t)

(F̂(t0))1/2

∣∣∣∣ = sup
−∞<t≤t0

∣∣∣∣ ξ̂0(t)0.995

∣∣∣∣. (3.4)

The test statistic T0 has an asymptotic distribution given by sup0≤u≤1 |B(u)|
under the null hypothesis (3.1). Following Remark 3, when it is appropriate we

can set t0 = ∞ and the test statistic T0 above becomes maxj=1,...,n |ξ̂0(Ẑ(j))|,
where Ẑ(1) ≤ . . . ≤ Ẑ(n) are the ordered, standardized residuals.

Our proposed goodness-of-fit test for the null hypothesis (3.1) is then defined
by

Reject H0 when T0 > qα, (3.5)

where qα is the upper α-quantile of the distribution of sup0≤u≤1 |B(u)|. The
value of qα may be obtained from formula (7) on page 34 of Shorack and Wellner
(1986), i.e.

P

(
sup

0≤u≤1

∣∣B(u)
∣∣ > qα

)
= 1− 4

π

∞∑
k=0

(−1)k

2k + 1
exp

(
− (2k + 1)2π2

8q2α

)
, α < 1.

For a 5%-level test, α = 0.05 and q0.05 is approximately 2.2414.

4. Finite sample properties

We conclude the article with a numerical study of the previous results with
two examples and an application of the proposed test. Throughout this section
we consider a goodness-of-fit test for normally distributed errors in the indirect
regression model (1.1), i.e.

H0 : Fσ = Φ for some σ > 0.

Note that in this case a straightforward calculation shows that the augmented
score function h and the incomplete information matrix Γ from (3.3) become
particularly simple, that is h(t) = (1, t, t2 − 1)T and

Γ(t) =

⎛
⎝1− Φ(t) φ(t) tφ(t)

φ(t) 1− Φ(t) + tφ(t) (t2 + 1)φ(t)
tφ(t) (t2 + 1)φ(t) 2(1− Φ(t)) + (t3 + t)φ(t)

⎞
⎠ , t ∈ R,

writing Φ and φ for the respective distribution and density functions of the
standard normal distribution.
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Fig 1. Perspective plots of (a) the density function g, (b) the indirect regression function θ
and (c) the distorted regression function Kθ.

4.1. Simulation study

In the first example we generate independent bivariate covariates Xj = (X1,j ,
X2,j)

T with independent and identically distributed components X1,j and X2,j

(j = 1, . . . , n) as follows. The common distribution of X1,j and X2,j is charac-
terized by the density function g(x1, x2) = g1(x1)g1(x2) ((x1, x2)

T ∈ [0, 1]2),
which is depicted in the left panel of Figure 1, where

g1(x) = 1−
√
2

4
cos(2πx)−

√
2

8
cos(4πx), x ∈ [0, 1].

One can easily verify that g is a probability density function and satisfies the
requirements of Assumption 3 for any s > 0. The random sample of covari-
ates X1, . . . , Xn is then generated from the distribution characterized by the
non-trivial density function g using a standard probability integral transform
approach. In the second example we use independently, uniformly distributed
covariates in the unit square [0, 1]2.

The distortion function ψ is taken as the product of two (normalized) Laplace
density functions restricted to the interval [0, 1], each with mean 1/2 and scale
1/10. For greater transparency, the Fourier coefficients of the distortion function
ψ are

Ψ(k) =

(
(−1)|k1| − exp(−5)

)(
(−1)|k2| − exp(−5)

)
(1 + 4π2k21/10

2)(1 + 4π2k22/10
2)(1− exp(−5))2

, k = (k1, k2)
T ∈ Z

2.

This choice indeed satisfies Assumption 1 with b = 2. When nonparametric
smoothing is performed we work with the radially symmetric spectral cutting
kernel characterized by the Fourier coefficient function Λ(cnk) = 1[‖cnk‖ ≤ 1],
k ∈ Z

2, with smoothing parameter cn chosen by minimizing the leave-one-out
cross-validated estimate of the mean squared prediction error [see, for example,
Härdle and Marron (1985)]. This choice is practical, simple to implement and
performed well in our study.

The indirect regression function is given by

θ(x1, x2) = 5 + cos(2πx1) +
3

2
cos(2πx2) +

3

2
cos(4πx1)
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Table 1

Simulated power of the goodness-of-fit test (3.5) for normally distributed errors at the 5%
level with sample sizes 100, 200, 300 and 500 and with covariates having non-trivial
distribution characterized by the density function g. The first row corresponds to

N(0, (1/2)2) distributed errors. The remaining rows display the powers of the test under the
fixed alternative error distributions: Laplace, with scale parameter σ = 1/2; centered

skew-normal, with scale parameter σ = 1 and skew parameter α = 3; Student’s t, with ν = 6
degrees of freedom.

F
n

100 200 300 500

Normal 0.048 0.098 0.072 0.052

Laplace 0.209 0.488 0.713 0.914

Skew-normal 0.136 0.388 0.577 0.828

Student’s t 0.211 0.401 0.586 0.786

Table 2

Simulated power of the goodness-of-fit test (3.5) for normally distributed errors at the 5%
level with sample sizes 100, 200, 300 and 500 and with covariates independently, uniformly

distributed in [0, 1]2. The first row corresponds to N(0, (1/2)2) distributed errors. The
remaining rows display the powers of the test under the fixed alternative error distributions:
Laplace, with scale parameter σ = 1/2; centered skew-normal, with scale parameter σ = 1

and skew parameter α = 3; Student’s t, with ν = 6 degrees of freedom.

F
n

100 200 300 500

Normal 0.039 0.033 0.032 0.048

Laplace 0.318 0.679 0.872 0.979

Skew-normal 0.226 0.558 0.740 0.943

Student’s t 0.270 0.469 0.640 0.815

− 2 cos(4πx2)− 2 cos
(
2π(x1 + x2)

)
− 1

2
cos

(
2π(x1 − x2)

)
for (x1, x2)

T ∈ [0, 1]2. This is easily seen to belong to M(s0) for any s0 >
0. Following the previous discussion, the distorted regression Kθ belongs to
M(s0+2) for any s0 > 0. In the middle and right panels of Figure 1 we display
the indirect regression function θ and the distorted regression function Kθ.

We considered four scenarios: normally distributed errors, with standard de-
viation σ = 1/2; Laplace distributed errors, with scale parameter σ = 1/2;
centered skew-normal errors, with scale parameter σ = 1 and skew parameter
α = 3 (standard deviation is 0.2265); Student’s t distributed errors, with ν = 6
degrees of freedom (standard deviation is 1.2247). The first scenario allows us
to check the level of the proposed test statistic T0, and the other three scenarios
allow for observing the simulated powers of the proposed test. Here we work
with a 5%-level test, and the quantile q0.05 is then 2.2414.

We perform 1000 simulation runs of samples of sizes 100, 200, 300 and 500.
Table 1 displays the results for the first example (when the covariates have the
non-trivial distribution characterized by the density function g) and Table 2
displays the results for the second example (when the covariates are indepen-
dently, uniformly distributed in the unit square [0, 1]2). Beginning with the first
example, at the sample size 100 the test rejected the null hypothesis in 4.8% of
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Table 3

Simulated power of the goodness-of-fit test (3.5) for Student’s t distributed errors at the 5%
level with sample sizes 100 and 200 and with covariates independently, uniformly distributed

in [0, 1]2. The first row corresponds to Student’s t distributed errors, with degrees of
freedom ν = 5, 10 and 15. The remaining rows display the powers of the test under the fixed
alternative error distributions: Laplace with scale parameter σ = 1/2; centered skew-normal
with scale parameter σ = 1 and skew parameter α = 3; centered normal with scale parameter

σ = 1/2

F n ν = 5 ν = 10 ν = 15

Student’s t
100 0.030 0.020 0.027

200 0.043 0.027 0.035

Laplace
100 0.044 0.093 0.157

200 0.035 0.258 0.390

Skew-normal
100 0.032 0.048 0.069

200 0.015 0.115 0.222

Normal
100 0.121 0.030 0.015

200 0.262 0.051 0.017

the cases (near the desired 5%) but at the sample sizes 200 and 300 the test
respectively rejected the null hypothesis in 9.8% and in 7.2% of the cases, which
are both above the desired 5% nominal level. However, at the sample size 500
the test rejected the null hypothesis in 5.2% of the cases, which is (again) near
the desired nominal level of 5%. We expect that this behavior is due to the data-
driven smoothing parameter selection. Interestingly, in the second example the
test is slightly conservative at all of the simulated sample sizes (e.g. rejecting
3.2% of the cases at sample size 300), but with sample size 500 the test rejected
the null hypothesis in 4.8% of the cases (near the nominal level of 5%), which
coincides with the first example.

Turning our attention now to the power of the test, in the first example, we
can see that the test performs well for moderate and larger sample sizes. At the
sample size 100 the test respectively rejected the alternative error distributions
Laplace, skew-normal and Student’s t in only 20.9%, 13.6% and 21.1% of the
cases, but at the sample size 500 the test respectively rejected the alternative
distributions in 91.4%, 82.8% and 78.6% of the cases. In the second example, we
can see that the power of test dramatically improves with smaller sample sizes
(rejecting the alternative distributions in 31.8%, 22.6% and 27% of the cases
at sample size 100) with less improvement at larger sample sizes (rejecting the
alternative distributions in 97.9%, 94.3% and 81.5% of the cases at the sample
size 500).

A referee kindly asked if the proposed tests could be used in another context
than checking for normally distributed errors. Here we consider a generalization
of the normal errors test from before, and test for Student’s t distributed errors.
When the degrees of freedom ν → ∞, the Student’s t distribution becomes
the standard normal distribution, and so we can expect the behavior of this
test will be similar to that of the normal errors test above for large ν, and we
can expect the power to detect an alternative normal distribution to diminish
with increasing ν. However, when ν is small, the t distribution is heavily tailed
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and detection of a normal alternative seems possible, but we can expect that
the power to detect other alternatives decreases, which is exactly the expected
behavior of directional tests such those we propose.

As before, we consider as alternatives a Laplace distribution, with scale
parameter σ = 1/2, and a centered skew-normal distribution, with scale pa-
rameter σ = 1 and skew parameter α = 3. The final alternative we consider
is a normal distribution with scale parameter σ = 1/2. As the null distri-
butions, we consider Student’s t distributions, with ν = 5, 10, and 15 de-
grees of freedom. Note that, in this case, the incomplete information matrix
Γ becomes rather complicated, and calculation of it requires the incomplete
beta function, while the augmented score function may be written as h(t) =
(1, t(ν + 1)/(t2 + ν − 2), ((t2 − 1)ν + 3)/(t2 + ν − 2))T .

The results of our study are summarized in Table 3. When the degrees of
freedom ν are small, we can see that the test has some power to detect an
alternative normal distribution (detecting in about 26% of cases when ν = 5
with samples of size 200), but the test can not effectively detect the alternative
Laplace and skew-normal distributions up to samples of size 200 (respectively
detecting in only 3.5% and 1.5% of cases). In contrast, when the degrees of
freedom ν are large, the behavior of the test is similar as before and detects the
cases of Laplace and skew-normal error distributions (respectively detecting in
39% and 22.2% of cases when ν = 15 with samples of size 200). However, as
expected, the alternative of normally distributed errors is not effectively detected
in this case (only detecting in 1.7% of cases). In conclusion, it appears that the
proposed test statistics T0 are an effective tool for testing the goodness-of-fit of
desired error distributions in indirect regression models.

4.2. An application to image reconstruction

Here we illustrate an application of the previous results using the HeLa dataset
investigated in Bissantz et al. (2009) and more recently by Bissantz et al. (2016).
This data composes an image of living HeLa cells obtained using a standard con-
focal laser scanning microscope and consists of intensity measurements (num-
bered values 0, . . . , 255) on 512×512 pixels giving a total of 262144 observations,
see Figure 2. As noted on page 41 of Bissantz et al. (2009), these image data are
(approximately) Poisson distributed. We therefore apply the Anscombe trans-
formation Y �→ 2(Y + 3/8)1/2 to obtain approximately normally distributed
data, and then apply the test (3.5) to check the assumption of normally dis-
tributed errors (at the 5% level) from a reconstruction of this image using the
previously studied results. We use the computing language R with the pack-
age OpenImageR, which allows for reading the image data and conducting our
analysis.

Since the total number of observations is quite large, we rather illustrate the
test for normal errors using two smaller sections of the original HeLa image.
To display the reconstructions of the smaller images (for visual comparison
with the original data) we apply the inverse of the Anscombe transformation
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Fig 2. HeLa image data rendered in grayscale.

Fig 3. From left to right: 32×32 pixel section of the HeLa image data rendered in grayscale, its
reconstructed version (grayscale), a normal QQ-plot of the resulting standardized regression
residuals.

to the fitted values of each regression. In both examples, the pixels are mapped
to midpoints of appropriate grids of the unit square [0, 1]2. The first image
we consider is 32 × 32 pixels composing 1024 observations and is displayed
in Figure 3 alongside its reconstructed version and a normal QQ-plot of the
resulting standardized regression residuals (see Section 3). The second image
we consider is 64 × 64 pixels composing 4096 observations and is displayed
in Figure 4 alongside its reconstructed version and a normal QQ-plot of the
resulting standardized regression residuals. In both cases, as in Section 4.1,
when nonparametric smoothing is applied the smoothing parameter is chosen
by minimizing the leave-one-out cross-validated estimate of the mean squared
prediction error.

Beginning with the first and smaller image, the martingale transform test
statistic T0 that assesses the goodness-of-fit of a normal distribution has value
1.5141, which is smaller than 2.2414, and the null hypothesis of normally dis-
tributed errors is not rejected. Inspecting the QQ-plot of these standardized
residuals it appears that the assumption of normally distributed errors is ap-
propriate, which confirms our previous finding. In this case, we can see the
reconstruction very closely mirrors the original.

Turning now to the second and larger image, the value of the test statistic
is 39.8324, which is much larger than 2.2414, and we reject the null hypothesis
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Fig 4. From left to right: 64×64 pixel section of the HeLa image data rendered in grayscale, its
reconstructed version (grayscale), a normal QQ-plot of the resulting standardized regression
residuals.

of normally distributed errors. The QQ-plot of the standardized residuals now
appears to contain systematic deviation from normality, which confirms that
the hypothesis of the normally distributed errors is inappropriate. Here we can
see the reconstruction is now not as accurate as it was for the previous case. In
conclusion, we can see the approach of using the proposed test statistics T0 for
assessing convenient forms of the error distribution is useful.

5. Concluding remarks

We have introduced goodness-of-fit tests for the distribution of the errors in a
multivariate indirect regression model suitable for location-scale families. The
methodology is completely nonparametric, and the test statistic achieves the
parametric root-n rate of convergence. In addition, the approach is asymptot-
ically distribution free, which means that no additional unknown parameters
need to be estimated, and inference is straightforward using immediately avail-
able asymptotic quantiles. Simulation studies show that the procedure works
well even at moderate-to-small sample sizes. As an application we have demon-
strated that the approach is useful in determining whether a Gaussian errors
regression model is appropriate for (transformed) image data.

An important direction for future research is how to extend the new method-
ology to address further problems appearing in statistical practice. Firstly, there
are many applications where the assumption of homoscedasticity is inappropri-
ate, and for these problems it might be more reasonable to consider a het-
eroscedastic indirect regression model of the form

Yj =
[
Kθ

]
(Xj) + σ(Xj)Zj , j = 1, . . . , n,

where now Zj is independent of Xj and has variance 1 and σ(·) is a scale
function. The distribution function F of the errors Zj is still characterized by a
location-scale family with mean 0 and variance 1. In this case, one can use the
standardized residuals Ẑj = ε̂j/σ̂(Xj) in the test statistic T0 defined in (3.4),
where σ̂ is a consistent estimate of the scale function [see, for example, Akritas
and Van Keilegom (2001) or Neumeyer and Van Keilegom (2010)]. In order to
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derive similar theoretical results as presented in this paper one has to verify
properties analogous to those of Theorem 1 and an expansion of the form

1

n

n∑
j=1

σ̂(Xj)− σ(Xj)

σ(Xj)
=

1

n

n∑
j=1

lσ(Yj , Xj) + oP (n
−1/2) (5.1)

for the estimator σ̂(·). Here lσ is a fixed function with E[lσ(Y1, X1)] = 0 and
E[l2σ(Y1, X1)] < ∞.

Secondly, a further interesting and challenging question for future research
is if the estimation of the density g can be avoided in the testing procedure.
A potential solution to this problem is to consider the truncated expansion in
(2.5) as a linear model with increasing dimension, i.e.

(Kθ)n(x) = bTn (x)γn,

where bn(x) = (exp(i2πk · x))Tk∈Kn
is a vector of Fourier basis functions and

γn = (R(k))Tk∈Kn
is a vector of coefficients, with index set Kn = {k ∈ Z

m :

‖k‖ ≤ c−1
n }. The Fourier coefficients γn can then be estimated using a penalized

least squares method to obtain standardized residuals Z̃j = (Yj − Kθ(Xj))/σ̃
and a consistent estimator σ̃, which can be used in the statistic T0.

Finally, we would like to point out that for inference about the indirect re-
gression function θ knowledge regarding the operator K is required. There are
many situations where such information is available. A prominent example is
the Radon transform [see Cavalier (2008)]. On the other hand, there are also
cases where the assumption of a known operator K is not reasonable, and it
has to be estimated as well. We expect that the methodology explored in this
article remains valid if the residuals in the statistic T0 are obtained from a com-
posite estimator K̂θ̂, where θ̂ is the resulting estimate of the indirect regression
function and K̂ is an appropriate estimate of the operator. In order to establish
theoretical results one would have to prove that K̂θ̂ admits an expansion similar
to (5.1) and additionally satisfies similar properties as those stated in Theorem

1 for the estimator K̂θ.

Appendix A

In this section we give the technical details supporting our results. We have the
following uniform convergence property for the density estimator ĝ.

Lemma 1. Let the Fourier smoothing kernel Λ be as in Assumption 2, and let
Assumption 3 hold with s > 0. Then, for any smoothing parameter sequence
{cn}n≥1 satisfying (ncmn )−1 log(n) → 0 as cn → 0 with n → ∞,

sup
x∈C

∣∣∣ĝ(x)− g(x)
∣∣∣ = O

(
csn + (ncmn )−1/2 log1/2(n)

)
, a.s. (A.1)

Proof. Write

E
[
ĝ(x)

]
− g(x) =

∑
k∈Zm

{
Λ(cnk)− 1

}
φg(k)e

i2πk·x, x ∈ C ,
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(and note that |Λ(cnk)− 1| = 0 whenever ‖k‖ ≤ c−1
n ) to see that

sup
x∈C

∣∣∣E[
ĝ(x)

]
− g(x)

∣∣∣ ≤ 2csn
∑

k∈Zm

‖k‖s|φg(k)| = O
(
csn
)
.

Using the representation LΛ(x) =
∑

k∈Zm Λ(k)ei2πk·x and the fact that
{Λ(cnk)}k∈Zm are the Fourier coefficients of the function LΛ(·/cn)/cmn we obtain

ĝ(x)− E
[
ĝ(x)

]
=

1

ncmn

n∑
j=1

{
LΛ

(
x−Xj

cn

)
− E

[
LΛ

(
x−X

cn

)]}
, x ∈ C .

One calculates directly that

Var

[
c−m
n LΛ

(
x−X

cn

)]
= O

(
c−m
n

)
, x ∈ C . (A.2)

In addition, LΛ is bounded and therefore

c−m
n sup

x∈C

∣∣∣∣LΛ

(
x−Xj

cn

)
− E

[
LΛ

(
x−X

cn

)]∣∣∣∣ = O
(
c−m
n

)
, j = 1, . . . , n. (A.3)

To continue, let {sn}n≥1 be a sequence of positive real numbers satisfying

sn = O(c
m/2+1
n ) = o(1) and partition C into parts Ci with associated cen-

ters xi (i = 1, . . . , O(s−m
n )) such that maxi=1,...,O(s−m

n ) supx∈Ci
‖x − xi‖ ≤

sn. The assertion (A.1) follows from the arguments above and by addition-

ally showing that maxi=1,...,O(s−m
n ) |ĝ(xi) − E[ĝ(xi)]| = O((ncmn )−1/2 log1/2(n))

and maxi=1,...,O(s−m
n ) supx∈Ci

|ĝ(x) − E[ĝ(x)] − ĝ(xi) + E[ĝ(xi)]| =

O((ncmn )−1/2 log1/2(n)), almost surely.
Combining (A.2) and (A.3) with Bernstein’s inequality [see, for example,

Section 2.2.2 of van der Vaart and Wellner (1996)], one chooses a large enough

positive constant C (through the choice of the quantity O((ncmn )−1/2 log1/2(n)))
such that

P

(
max

i=1,...,O(s−m
n )

∣∣ĝ(xi)− E
[
ĝ(xi)

]∣∣ > O
(
(ncmn )−1/2 log1/2(n)

))
≤ O

(
s−m
n n−C

)

is summable in n. Since O(s−m
n n−C) = O((nCc

m2/2+m
n )−1), this occurs when

C > m/2 + 2 and we have

max
i=1,...,O(s−m

n )

∣∣∣ĝ(xi)− E
[
ĝ(xi)

]∣∣∣ = O
(
(ncmn )−1/2 log1/2(n)

)
, a.s. (A.4)

Let k ∈ Z
m be arbitrary and write

φ̂g(k)− φg(k) =
1

n

n∑
j=1

{
exp(i2πk ·Xj)− E

[
exp(i2πk ·X)

]}
,



GOF testing the distribution of errors 2677

where X is a generic random variable with distribution characterized by the
density function g. The complex exponential functions are bounded in absolute
value by 1, and it is easy to verify that Var[exp(i2πk ·X)] ≤ 1. As above, use
Bernstein’s inequality choosing a large enough positive constant C (through the

choice of the quantity O(n−1/2 log1/2(n))) to find that

P

(∣∣∣∣ 1n
n∑

j=1

{
exp(i2πk ·Xj)− E

[
exp(i2πk ·X)

]}∣∣∣∣ > O
(
n−1/2 log1/2(n)

))

≤ O
(
n−C

)
is summable in n. This occurs when C > 1, independent of k. It follows that∣∣∣φ̂g(k)− φg(k)

∣∣∣ = O(n−1/2 log1/2(n)), a.s., k ∈ Z
m. (A.5)

Further, let Ci be arbitrary. For any x ∈ Ci it follows that

ĝ(x)− E
[
ĝ(x)

]
− ĝ(xi) + E

[
ĝ(xi)

]
=

∑
k∈Zm

Λ(cnk)
{
φ̂g(k)− φg(k)

}{
ei2πk·x − ei2πk·xi

}
. (A.6)

Now use Euler’s formula to write

exp
(
− i2πk · x

)
= cos

(
2πk · x

)
− i sin

(
2πk · x

)
,

and (using that sine and cosine are Lipschitz functions with constant equal to
one) derive the bound∣∣∣ exp (− i2πk · x

)
− exp

(
− i2πk · xi

)∣∣∣ ≤ 23/2π‖k‖‖x− xi‖, x ∈ Ci. (A.7)

Combining (A.5), (A.6), and (A.7), there is a positive constant C > 0, such that

max
i=1,...,O(s−m

n )
sup
x∈Ci

∣∣∣ĝ(x)− E[ĝ(x)]− ĝ(xi) + E[ĝ(xi)]
∣∣∣

≤ C(cm+1
n )−1n−1/2 log1/2(n) max

i=1,...,O(s−m
n )

sup
x∈Ci

‖x− xi‖

×
{
cmn

∑
k∈Zm

‖cnk‖
∣∣Λ(cnk)∣∣}

= O
(
(cm+1

n )−1snn
−1/2 log1/2(n)

)
= O

(
(ncmn )−1/2 log1/2(n)

)
,

almost surely, since cmn
∑

k∈Zm ‖cnk‖|Λ(cnk)| →
∫
Rm ‖u‖|Λ(u)| du < ∞ by As-

sumption 2.

With the results of Lemma 1 we can state a result on the asymptotic order
of the estimated coefficients {R̂(k)}k∈Zm , which now depend on the density
estimator ĝ.
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Lemma 2. Let θ ∈ M(s0) for some s0 > 0, and assume that the errors
ε1, . . . , εn have a finite absolute moment of order κ > 3. Let the Fourier smooth-
ing kernel Λ be as in Assumption 2, and let Assumption 3 hold for some s > 0.
Choose the sequence of smoothing parameters {cn}n≥1 such that

(ncmn )−1 log(n) → 0 and n−1/2 log1/2(n) = o(csn) with cn → 0 as n → ∞.
Then ∣∣∣R̂(k)−R(k)

∣∣∣ = O
(
csn + (ncmn )−1/2 log1/2(n)

)
, a.s., k ∈ Z

m.

Proof. Let k ∈ Z
m be arbitrary and write

R̂(k)−R(k) = T1(k) + T2(k) + T3(k) + T4(k),

with

T1(k) =
1

n

n∑
j=1

{
[Kθ](Xj)

g(Xj)
e−i2πk·Xj − E

[
[Kθ](X)

g(X)
e−i2πk·X

]}
,

T2(k) =
1

n

n∑
j=1

εj
g(Xj)

e−i2πk·Xj ,

T3(k) =
1

n

n∑
j=1

[
Kθ

]
(Xj)

{
ĝ−1(Xj)− g−1(Xj)

}
e−i2πk·Xj

and

T4(k) =
1

n

n∑
j=1

εj

{
ĝ−1(Xj)− g−1(Xj)

}
e−i2πk·Xj .

Since θ ∈ M(s0) for some s0 > 0, it follows that Kθ is bounded, and a stan-

dard argument shows that |T1(k)| is of order O(n−1/2 log1/2(n)) = o(csn +

(ncmn )−1/2 log1/2(n)), almost surely, independent of k. Analogously, |T2(k)| is
of order o(csn + (ncmn )−1/2 log1/2(n)), almost surely, independent of k. From the

result of Lemma 1 we can see that |T3(k)| is of order O(csn+(ncmn )−1/2 log1/2(n)),
almost surely, independent of k. Finally, with some technical effort one shows
that |T4(k)| is of order o(csn + (ncmn )−1/2 log1/2(n)), almost surely, independent
of k.

We are now ready to state the proof of Theorem 1.

Proof of Theorem 1. Write

K̂θ(x)−Kθ(x) =
∑

k∈Zm

Λ(cnk)
{
R̂(k)−R(k)

}
ei2πk·x

+
∑

k∈Zm

{
Λ(cnk)− 1

}
R(k)ei2πk·x, x ∈ C .

From Lemma 2 and that csn = O((ncmn )−1/2 log1/2(n)) it follows that the first
term in the display above is of order O(cs−m

n ) = O(cs0+b
n ), almost surely, since
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s = s0 + b+m. The second term in the same display is not random and easily
shown to be of order O(cs0+b

n ).

The second assertion follows from showing that K̂θ ∈ M(s0 + b) and com-

bining this fact with the first assertion. The Fourier coefficients of K̂θ are given
by

Λ(cnk)R̂(k) = Λ(cnk)R(k) + Λ(cnk)
{
R̂(k)−R(k)

}
, k ∈ Z

m,

and we can see that |Λ(cnk)R̂(k)| is bounded by

|R(k)|+
∣∣R̂(k)−R(k)

∣∣|Λ(cnk)|. (A.8)

Since θ ∈ M(s0) it follows that∑
k∈Zm

‖k‖s0+b|R(k)| =
∑

k∈Zm

‖k‖b|Ψ(k)|‖k‖s0 |Θ(k)| < ∞

and Kθ ∈ M(s0 + b). This means that we only need to show that the series
condition in the definition of M(s0+ b) is satisfied for the second term in (A.8).
This series condition results in the quantity∑

k∈Zm

∣∣R̂(k)−R(k)
∣∣‖k‖s0+b|Λ(cnk)|.

We have already used that |R̂(k) − R(k)| is of order O(csn), and by choice of
Λ the series

∑
k∈Zm ‖k‖s0+b|Λ(cnk)| is of order O(c−s0−b−m

n ) as in the proof of
Lemma 1. Combining these findings, we can see that the quantity in the display
above is of order O(cs−s0−b−m

n ) = O(1).

The proof of Theorem 2 follows from the above results with an additional

property of the distorted regression estimator K̂θ and an approximation result
for the difference σ̂2 − σ2.

Proposition 1. Choose the Fourier smoothing kernel Λ to be radially symmet-

ric. Then the estimator K̂θ enjoys the property that∣∣∣∣ 1n
n∑

j=1

{
K̂θ(Xj)−Kθ(Xj)

}
− 1

n

n∑
j=1

εj

∣∣∣∣ = 0.

If the assumptions of Theorem 1 are satisfied with s0 + b > 3m/2, then the
estimator σ̂ enjoys the property that∣∣∣∣σ̂2 − σ2 − 1

n

n∑
j=1

{
ε2j − σ2

}∣∣∣∣ = o
(
n−1/2

)
, a.s.

Proof. Write

1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}
− 1

n

n∑
j=1

εj =
1

n

n∑
j=1

Yj

{∑n
k=1 Wcn(Xk −Xj)∑n
k=1 Wcn(Xj −Xk)

− 1

}
.
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Since Λ is radially symmetric, we have that Wcn(Xj − Xk) = Wcn(Xk − Xj)
for every 1 ≤ j, k ≤ n. One combines this fact with the additional fact that |Yj |
is finite with probability 1 for each 1 ≤ j ≤ n to finish the proof of the first
assertion.

To show the second assertion we need to use the results of Theorem 1 as
follows. Write

σ̂2 − σ2 − 1

n

n∑
j=1

{
ε2j − σ2

}
= R1,n − 2R2,n,

with

R1,n =
1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}2

and

R2,n =
1

n

n∑
j=1

εj

{
K̂θ(Xj)−Kθ(Xj)

}
.

Now combine the first result of Theorem 1 with s0 + b > 3m/2 to find that
|Rn,1| = o(n−1/2), almost surely.

To continue, write

R2,n =
∑

k∈Zm

{
Λ(cnk)− 1

}
R(k)

{
1

n

n∑
j=1

εje
i2πk·Xj

}

+
∑

k∈Zm

{
R̂(k)−R(k)

}
Λ(cnk)

{
1

n

n∑
j=1

εje
i2πk·Xj

}

to see that |R2,n| is bounded by the sum of

∑
k∈Zm

|Λ(cnk)− 1||R(k)|
∣∣∣∣ 1n

n∑
j=1

εje
i2πk·Xj

∣∣∣∣ (A.9)

and ∑
k∈Zm

∣∣R̂(k)−R(k)
∣∣|Λ(cnk)|

∣∣∣∣ 1n
n∑

j=1

εje
i2πk·Xj

∣∣∣∣. (A.10)

Analogously to the proof of Lemma 2, one treats |n−1
∑n

j=1 εj exp(i2πk ·Xj)|
using a standard truncation argument and finds this quantity is of order
O(n−1/2 log1/2(n)), almost surely, independent of k ∈ Z

m. One then easily ver-

ifies that (A.9) is of order O(cs0+b
n n−1/2 log1/2(n)), almost surely, (see the proof

of Lemma 1). For (A.10), one uses Lemma 2 and handles the series term as in the

proof of Lemma 1 to show that this term is of order O(cs−m
n n−1/2 log1/2(n)) =

O(cs0+b
n n−1/2 log1/2(n)), almost surely, (since s = s0+ b+m). Therefore, |R2,n|

is of order O(cs0+b
n n−1/2 log1/2(n)) = o(n−1/2), almost surely.
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Neumeyer and Van Keilegom (2010) consider estimation of the distribution
function of the standardized errors using a residual-based empirical distribution
function based on nonparametric regression residuals obtained by local poly-
nomial smoothing. These authors obtain asymptotic negligibility of a modulus
of continuity relating their residual-based empirical distribution function to the
empirical distribution function of their regression model errors (see Lemma A.3

in that article). We obtain a similar result for the estimator F̂ (stated as a
proposition below) using analogous arguments to those of Neumeyer and Van
Keilegom (2010). These arguments have been omitted for brevity.

Proposition 2. Let the assumptions of Theorem 1 be satisfied with s0+ b > m.
Additionally, assume that F∗ admits a bounded Lebesgue density f∗ that satisfies
supt∈R

|tf∗(t)| < ∞. Then under the null hypothesis H0 in (3.1)

sup
t∈R

∣∣∣∣F̂(t)− 1

n

n∑
j=1

F∗

(
t+

σ̂ − σ

σ
t+

K̂θ(Xj)−Kθ(Xj)

σ

)

− 1

n

n∑
j=1

1[Zj ≤ t] + F∗(t)

∣∣∣∣ = oP (n
−1/2).

We are now prepared the state the proof of Theorem 2.

Proof of Theorem 2. We introduce the notation

En(t) =
1

n

n∑
j=1

{
1[Zj ≤ t]− F∗(t) + f∗(t)

(
Zj + t

Z2
j − 1

2

)}
, t ∈ R,

and write

F̂(t)− F∗(t)− En(t) = Mn(t) +Hn(t) + Ln(t) = Dn(t), t ∈ R,

where the remainder term Dn(t) is equal to the sum of

Mn(t) = F̂(t)− 1

n

n∑
j=1

F∗

(
t+

σ̂ − σ

σ
t+

K̂θ(Xj)−Kθ(Xj)

σ

)

− 1

n

n∑
j=1

1[Zj ≤ t] + F∗(t),

Hn(t) =
1

n

n∑
j=1

F∗

(
t+

σ̂ − σ

σ
t+

K̂θ(Xj)−Kθ(Xj)

σ

)
− F∗(t)

− f∗(t)
σ−1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}
− tf∗(t)

σ̂ − σ

σ
,
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and

Ln(t) = f∗(t)

{
σ−1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}
− 1

n

n∑
j=1

Zj

}

+ tf∗(t)

{
σ̂ − σ

σ
− 1

n

n∑
j=1

Z2
j − 1

2

}
.

From Proposition 2 it follows that supt∈R
|Mn(t)| = oP (n

−1/2). Proposition 1
in combination with the bounding conditions on f∗ imply that supt∈R

|Ln(t)| =
oP (n

−1/2) (note that Zj = εj/σ, j = 1, . . . , n).
To show that supt∈R

|Hn(t)| = oP (n
−1/2) and finish the proof we need to

rewrite Hn(t) = H1,n(t) +H2,n(t) +H3,n(t), with H1,n(t) equal to

σ−1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}

×
∫ 1

0

{
f∗

(
t+

σ̂ − σ

σ
t+

K̂θ(Xj)−Kθ(Xj)

σ
s

)
− f∗

(
t+

σ̂ − σ

σ
t

)}
ds,

H2,n(t) =

{
f∗

(
t+

σ̂ − σ

σ
t

)
− f∗(t)

}
σ−1

n

n∑
j=1

{
K̂θ(Xj)−Kθ(Xj)

}

and

H3,n(t) =
σ̂ − σ

σ
t

∫ 1

0

{
f∗

(
t+

σ̂ − σ

σ
ts

)
− f∗(t)

}
ds.

The Hölder continuity of f∗ guarantees that

sup
t∈R

∣∣H1,n(t)
∣∣ ≤ Cf∗

(1 + γ)σ1+γ
sup
x∈C

∣∣∣K̂θ(x)−Kθ(x)
∣∣∣1+γ

= o
(
n−1/2

)
, a.s.,

from Theorem 1 and that 3m/(2s0+2b) < γ ≤ 1, which is oP (n
−1/2) and writing

Cf∗ for the Hölder constant associated to f∗. Proposition 1 and the uniform con-
tinuity of f∗ imply that supt∈R

|H2,n(t)| = oP (n
−1/2). Finally, Proposition 1 and

the finite fourth moment assumption guarantees that σ̂ is a root-n consistent
estimator of σ, and combining this fact with the uniform continuity and bound-
edness of the function t �→ tf∗(t) implies that supt∈R

|H3,n(t)| = oP (n
−1/2).
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