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Abstract: The nonparametric measurement error model (NMEM) postu-
lates that Xi = Δ + εi, i = 1, 2, . . . , n; Δ ∈ � with εi, i = 1, 2, . . . , n, IID
from F (·) ∈ Fc,0, where Fc,0 is the class of all continuous distributions with
median 0, so Δ is the median parameter of X. This paper deals with the
problem of constructing a confidence region (CR) for Δ under the NMEM.
Aside from the NMEM, the problem setting also arises in a variety of situ-
ations, including inference about the median lifetime of a complex system
arising in engineering, reliability, biomedical, and public health settings, as
well as in the economic arena such as when dealing with household income.
Current methods of constructing CRs for Δ are discussed, including the
T -statistic based CR and the Wilcoxon signed-rank statistic based CR, ar-
guably the two default methods in applied work when a confidence interval
about the center of a distribution is desired. A ‘bottom-to-top’ approach
for constructing CRs is implemented, which starts by imposing reasonable
invariance or equivariance conditions on the desired CRs, and then op-
timizing with respect to their mean contents on subclasses of Fc,0. This
contrasts with the usual approach of using a pivotal quantity constructed
from test statistics and/or estimators and then ‘pivoting’ to obtain the CR.
Applications to a real car mileage data set and to Proschan’s famous air-
conditioning data set are illustrated. Simulation studies to compare per-
formances of the different CR methods were performed. Results of these
studies indicate that the sign-statistic based CR and the optimal CR fo-
cused on symmetric distributions satisfy the confidence level requirement,
though they tended to have higher contents; while three of the bootstrap-
based CR procedures and one of the newly-developed adaptive CR tended
to be a tad more liberal, but with smaller contents. A critical recommenda-
tion for practitioners is that, under the NMEM, the T -statistic based and
Wilcoxon signed-rank statistic based CRs should not be used since they
either have very degraded coverage probabilities or inflated contents under
some of the allowable error distributions under the NMEM.
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1. Introduction and motivation

Given a univariate distribution function H, the two most common measures of
central tendency are the mean μ =

∫
xH(dx), provided it exists (

∫
|x|H(dx) <

∞), and the median Δ = inf{x ∈ � : H(x) ≥ 1/2}. The mean need not al-
ways exist, whereas the median always exists. Under symmetric distributions,
and when the mean exists, then the mean and the median coincide. This paper
is concerned with making statistical inference about the median Δ of a distri-
bution. A popular model leading to the problem of making inference about the
median of a distribution is the so-called measurement error model. In this model
Δ represents a quantity of interest which is unknown, and when one measures
its value, the observed value x is a realization of the random variable

X = Δ+ ε, (1.1)

where ε represents a measurement error with a continuous distribution F (ε)
whose median equals zero. As such, the distribution of X is H(x) = F (x −
Δ). Typically, F (·) is assumed to be a zero-mean normal distribution, but this
assumption may not tenable in many situations. For instance, in dealing with
event times in biomedical, reliability, engineering, economic, and social settings,
the error distribution need not even be symmetric. This is also the case when
dealing with economic indicators such as per capita income, retirement savings,
etc., or even when dealing with measures of research productivity such as the h-
index, though the population in this case is discrete (see, for instance, [15]). As
such, a general model is to simply assume that the error distribution F belongs
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to the class of all continuous distributions with medians equal to zero. This class
will be denoted by Fc,0.

Another situation where this problem arises is when dealing with a complex
engineering system, such as the motherboard of a laptop computer or some
technologically-advanced car (e.g., a Tesla Model S sedan). Such a system will be
composed of many different components configured according to some structure
function, with the components having different failure-time distributions and
some of them possibly acting dependently on each other. Of main interest for
such a system will be its time-to-failure (also called lifetime) denoted by X.
Because of the complexity of the system, it may not be feasible to analyze the
distribution of X by taking into account each of the failure time distributions
of the components and the system’s structure function which represents the
configuration of the components to form the system. Thus a simplified and
practically feasible viewpoint is to assume that the system’s life distribution is
some continuous distribution H. One may then be interested in the median Δ
of this distribution H.

Thus, in these situations, the observable random variable X is assumed to
have a distribution H(x) = F (x − Δ) with F (·) ∈ Fc,0 and Δ ∈ � being
the median of X. This will be referred to as the one-population nonparametric
measurement error model, abbreviated NMEM. This is the simplest among the
measurement error models. The goal is to infer about the parameter of interest
Δ with F (·) acting as an infinite-dimensional nuisance parameter. We shall be
interested in this paper in the construction of a confidence region (CR) for Δ
based on a random sample of observations of X.

The problem of constructing confidence regions (usually intervals) for Δ in
the NMEM is an old and well-trodden nonparametric statistical problem that
has been addressed in many works. See, for instance, the textbooks [19, 9] which
both discuss the confidence interval (CI) for Δ based on the sign statistic, a CI
first presented in [20]. Many of the CIs for Δ are derived by starting with an
appropriate test statistic for testing a hypothesis about Δ or an estimator of
Δ and creating an appropriate pivotal quantity for Δ. Section 2 will briefly
discuss several of these “off-the-shelf” CIs for Δ that have been proposed in
the literature. More generally, quantiles instead of just the median may be of
interest. The methods developed here could be adaptable to making inferences
about quantiles.

It could be argued that, in many situations, a confidence region for a param-
eter is preferable than an associated point estimate, since it addresses simul-
taneously the issue of closeness to the truth (measured through the content of
the region) and the sureness about such closeness to the truth (measured by
the confidence region coefficient). Of course, as is typically done, one usually
accompanies a point estimate (PE) by an estimate of its standard error (ESE),
but then the user will still need to deduce closeness to the truth and assess
the level of confidence about this closeness to the truth based on the PE and
the ESE, a non-trivial activity if to be done properly. For more discussions on
desirability of confidence regions see, for instance, the introduction in [5] and
chapter 5 in [4].
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We introduce some notations and definitions. Let X1, X2, . . . , Xn be inde-
pendent and identically distributed (IID) random variables (a random sample)
from F (x − Δ), where Δ ∈ � and F ∈ Fc,0. The mathematical problem is
to construct a confidence region (CR) for the parameter θ(F,Δ) = Δ with F
an infinite-dimensional nuisance parameter. Denote by X the range space of
X = (X1, . . . , Xn) which will be endowed with a σ-field X . We also denote by
B the Borel σ-field of �, and this will be endowed with the σ-field of subsets of
B consisting of its countable and co-countable subsets, with this σ-field denoted
by B.

Definition 1. Fix an α ∈ (0, 1). Let X = (X1, . . . , Xn) ∈ X be IID from
F (x−Δ). A measurable mapping Γ : (X,X ) → (B,B) is called a 100(1− α)%
region estimator or confidence region (CR) for Δ if P(F (·),Δ){Δ ∈ Γ(X)} ≥ 1−α
for every (F (·),Δ) ∈ Fc,0 ×�.

Remark: In Definition 1 we emphasize that we are dealing with the large class
of distributions Fc,0 which places a stringent condition on the confidence level
condition. One may restrict to a smaller subclass of Fc,0, such as the class of
continuous symmetric at zero distributions, denoted by F

sym
c,0 . Such a restriction

may admit better CRs than those obtained under the larger class Fc,0 since
any CR satisfying the confidence level condition under Fc,0 will also satisfy the
confidence level condition under Fsym

c,0 . ‖

Remark: In later developments, we will allow the CR Γ to also depend on a
randomizer U , a standard uniform random variable independent of X. This is
to be able to achieve exactly the desired confidence level 1− α. In such a case,
Γ : (X × [0, 1],B⊗ σ[0, 1]) → (B,B) and Γ(x, u) will be the realized CR when
X = x and U = u. However, even if we allow for randomized CRs, we will
usually suppress writing the U in Γ(X, U) and simply write Γ(X). ‖

Aside from satisfying the desired confidence coefficient in Definition 1, the
quality of a CR depends on some measure of its content. Let ν(·) be Lebesgue
measure on (�,B). We will measure the content of a CR Γ for Δ via

C[Γ; (F (·),Δ)] = E(F (·),Δ)ν[Γ(X)]. (1.2)

In Definition 2 below we have the notion of uniformly best CRs. Our goal is
to determine those CRs for Δ that possess such optimality properties.

Definition 2. Let F̄c,0 be a subclass of Fc,0. A 100(1− α)% CR Γ∗ for Δ is a
uniformly best CR for Δ under the subclass F̄c,0 if for any other 100(1 − α)%
CR Γ,

C[Γ∗; (F (·),Δ)] ≤ C[Γ; (F (·),Δ)]

for all (F (·),Δ) ∈ F̄c,0×�. If F̄c,0 = Fc,0, then Γ∗ will be said to be the uniformly
best CR for Δ.

A major contribution of this work is a rigorous construction, starting from
basic principles and considerations (what we call as a ‘bottom-to-top’ approach),
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of 100(1 − α)% randomized region estimators. Thus, in contrast to the deriva-
tion of existing CIs which starts by creating pivotal quantities from known test
statistics and/or estimators, our CRs arise from sufficiency, invariance, and op-
timality considerations. The region estimators we propose are of form

Γ(X,U) ≡ Γ(X,U ;α) =

⎡
⎣ ⋃
{k∈{0,1,...,n}: b(k;n,1/2)>c∗ l̂(k)}

[
X(k), X(k+1)

)⎤⎦⋃
⎧⎨
⎩{U ≤ γ} ∩

⎡
⎣ ⋃
{k∈{0,1,...,n}: b(k;n,1/2)=c∗ l̂(k)}

[
X(k), X(k+1)

)⎤⎦
⎫⎬
⎭ ,

where b(k;n, 1/2) =
(
n
k

)
2−n and l̂(k) is an appropriate estimator of l(k;F ) =

E{X(k+1) −X(k)}, with X(i)s the order statistics of the random sample, and U
is a standard uniform variable independent of the Xis. The constant c∗ is the
infimum over all c ∈ � satisfying P{b(B;n, 1/2) > cl̂(B)} ≤ 1 − α, where B is
a binomial random variable with parameters n and 1/2; while γ ∈ [0, 1] is the
randomization probability determined by α. Both c∗ and γ may also depend
on the sample data x, since l̂(k) may depend on x. A specific form of l̂(k) that
leads to a reasonable CR is given by

l̂(k) =

(
n

k

)∫ ∞

−∞
F̂ (w)k[1− F̂ (w)]n−kdw

where F̂ (w) =
∑n

i=1 I{Xi − Δ̂ ≤ w}/n, the empirical distribution function of

Xi − Δ̂, i = 1, 2, . . . , n, with Δ̂ being the sample median. This specific CR will
be developed in section 6. Prior to the development of these specific CRs, in
section 3 we utilize invariance ideas to derive the general form of the almost-
optimal equivariant CR for Δ under the NMEM but still under the assumption
that F is known. Then, we address the question of how to deal with the fact
that F is not actually known, leading to the region estimator above. Two other
region estimators which are focused toward the class of symmetric distributions
and the class of negative exponential distributions, but still valid under NMEM,
will be developed in sections 4 and 5, respectively. We demonstrate these region
estimators, together with existing ‘off-the-shelf’ confidence regions reviewed in
Section 2, by applying them to two real data sets in section 7. Section 8 will
present the results of simulation studies comparing the performance of these
region estimators under different underlying distributions by examining their
mean contents and their achieved coverage probabilities. In these studies, the
procedure focused on symmetric distributions performed quite robustly under
varied distributions, even for the non-symmetric distributions, in terms of cover-
age probability. Its mean content was also smaller than that for the CI developed
from the sign statistic. Interestingly, this procedure, which is Γ10 in Table 2 on
page 2370, has both its c∗ and γ not dependent on x. The simulation studies
of the performance of the different CRs is the second major contribution of this
work. The results demonstrate which CRs are viable under the NMEM. Section
9 will provide some concluding remarks.
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2. Brief review of existing ‘off-the-shelf ’ median CRs

In this section we briefly review existing methods for constructing frequentist-
based 100(1− α)% CRs for Δ under the NMEM. For a sample realization x =
(x1, . . . , xn), we define the usual sample statistics:

x̄ =
1

n

n∑
i=1

xi; s2 = s2(x) =
1

n− 1

n∑
i=1

(xi − x̄)2; Δ̂ = med(x).

X̄, S2, and Δ̂ will then represent the random versions of these sample statistics.
We let φ(·), Φ(·), and Φ−1(·) denote the standard normal density, distribution,
and quantile functions, respectively. We will use the conventional notation zβ =
Φ−1(1−β) for the (1−β)th quantile of Φ(·). The functions T (·; k) and T −1(·; k)
will denote the distribution and quantile functions, respectively, of a Student’s
T random variable with degrees-of-freedom k, and its (1− β)th quantile will be
denoted by tk;β .

Arguably, the most commonly-used CR for the center of a distribution, which
is Δ for symmetric distributions, is the T -based CR given by

Γ1(X) =

[
X̄ ± tn−1;α/2

S√
n

]
. (2.1)

However, this CR is actually not valid under the NMEM since it does not satisfy
the condition P(F,Δ){Δ ∈ Γ(X)} ≥ 1 − α for all (F (·),Δ) ∈ Fc,0 × �. We still
included this CR since it is typically the first choice to use by practitioners when
constructing a confidence interval for μ or Δ and we would like to examine and
compare its performance with other CRs under the NMEM.

The nonparametric analog of the T -based CR is the CR constructed from
the Wilcoxon signed-rank statistic W+ ([19]). The Walsh averages associated
with the random sample Xis are Wij = (Xi + Xj)/2 for i ≤ j. Then the W+

statistic for testing the null hypothesis H0 : Δ = Δ0 can be represented in
terms of these Walsh averages via W+(Δ0) =

∑
i≤j I{Wij ≤ Δ0}. Denoting by

W(1) ≤ W(2) ≤ . . . ≤ W((n)(n+1)/2) the order statistics of the Walsh averages,
the Wilcoxon signed-rank based nonparametric CR for Δ is given by

Γ2(X) = [W(k1+1),W(k2+1)) (2.2)

where, with W+(·) denoting the null distribution of W+ and obtainable using
the function object psignrank in R [18],

k1 = sup{w : W+(w) ≤ α/2} and k2 = inf{w : W+(w) ≥ 1− α/2}.

The CR Γ2 is valid under F
sym
c,0 , but not under Fc,0. Just like the T -based CR

Γ1, we also include this in the comparisons since it is a CR that will also tend
to be used in practical work.

In contrast, the nonparametric CR derived from the sign statistic is valid
under Fc,0 (see [20, 19, 9]). As before, let B(·) be the binomial distribution with
parameters n and 1/2. Let

k1 = sup{w : B(w) ≤ α/2} and k2 = inf{w : B(w) ≥ 1− α/2}.
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Then, this sign statistic-based CR is

Γ3(X) = [X(k1+1), X(k2+1)). (2.3)

Another CR of Δ is developed from the asymptotic normality of the sample
median Δ̂. For X1, X2, . . . , Xn IID from a distribution F (·) with density f(·),
this asymptotic distribution (cf., [19]) is given by

Δ̂ ∼ AN

[
Δ,

1

n

1

4f(Δ)2

]
.

If f̂(Δ̂;X) is an estimator of f(Δ), then an asymptotic confidence interval for
Δ is

Γ4(X) =

[
Δ̂± zα/2

(
1

√
n2f̂(Δ̂;X)

)]
. (2.4)

Kernel-based estimators of the density f are available in R using the function
object density ([18]), and coupled with the approx function object, f(Δ) could
then be estimated. This is how we implemented this CR in the illustrations and
in the simulation studies.

Instead of relying on asymptotic approximations, one may resort to boot-
strapping approaches. Let X∗

k = (X∗
k1, . . . , X

∗
kn) be the kth bootstrap sample

out of BREPS bootstrap samples. Denote its sample median by Δ̂∗
k. The ba-

sic bootstrap CR using the sample median obtains the α/2th and (1 − α)/2th
quantiles of {Δ̂∗

k − Δ̂, k = 1, 2, . . . , BREPS}, denoted by κ∗
1−α/2 and κ∗

α/2,

respectively, and constructs the CR (cf., [6]) via

Γ5(X) = [Δ̂− κ∗
α/2, Δ̂− κ∗

1−α/2]. (2.5)

The next bootstrapped-based CR is derived using the studentized median as
pivot and with its standard error estimated by S∗

boot, the standard deviation of

{Δ̂∗
k, k = 1, 2, . . . , BREPS}. The CR is constructed via

Γ6(X) =
[
Δ̂± tn−1;α/2(S

∗
boot)

]
. (2.6)

The bootstrap percentile CR also uses the bootstrap distribution of Δ̂. De-
noting by

B∗(t) =
1

BREPS

BREPS∑
k=1

I{Δ̂∗
k ≤ t}

the (empirical) bootstrap distribution, the percentile bootstrap CR is

Γ7(X) =
[
B∗−1(α/2),B∗−1(1− α/2)

]
(2.7)

where B∗−1(·) is the bootstrap quantile function.
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This percentile bootstrap CR is usually bettered by so-called bias-corrected
CRs. See, for instance, chapter 5 of [4] and chapter 11 of [6]. The first improve-
ment is provided by the bias-corrected (BC) CR which is

Γ8(X) =
[
B∗−1 (Φ(2z0 +Φ−1(α/2))

)
,B∗−1 (Φ(2z0 +Φ−1(1− α/2))

)]
(2.8)

where p0 = B∗(Δ̂) and z0 = Φ−1(p0). On the other hand, the BCa method
(bias-corrected and accelerated) CR takes the form

Γ9(X) =

[
B∗−1

(
Φ

[
z0 +

z0 +Φ−1(α/2)

1− a(z0 +Φ−1(α/2))

])
,

B∗−1

(
Φ

[
z0 +

z0 +Φ−1(1− α/2)

1− a(z0 +Φ−1(1− α/2))

])]
(2.9)

where the acceleration coefficient a can be estimated using jackknifed samples
estimates Δ̂(i), i = 1, 2, . . . , n, via

â =
1

6

∑n
i=1(Δ̂(i) − Δ̂())

2[∑n
i=1(Δ̂(i) − Δ̂())2

]3/2
with Δ̂() =

1
n

∑n
i=1 Δ̂(i), where Δ̂(i) is the sample median of the ith jackknifed

sample X−i ≡ (X1, . . . , Xi−1, Xi+1, . . . , Xn).
These CRs from Γ1 to Γ9, together with the CRs developed in the succeeding

sections, will be used in the illustrations and in the simulation studies. For a
peek, see Table 2 on page 2370.

3. Development of optimal CRs

In this section, we present the development of the general form of our CRs by
invoking the Sufficiency Principle, Invariance Principle, and optimality consid-
erations.

3.1. Invariant models and equivariant CRs

We first review the notions of invariant statistical models and equivariant CRs
(see, for instance, [14]). We do this review in a more general framework than the
concrete NMEM which is the focus of this paper. We note that sufficiency and
invariance were major ideas utilized by Peter Hooper in several of his papers
dealing with confidence sets and prediction sets, cf., [11, 10, 12].

Let X be an observable random element taking values in a sample space X.
The class of probability models governing X is P, which consists of probability
measures P s on the measurable space (X,F), with F a suitable σ-field of subsets
of X. Let τ : P → T be a functional, with τ(P ) being the parameter of interest.
Let T be a σ-field of subsets of T, and let σT be the countable/co-countable
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σ-field of subsets of T . A 100(1 − α)% region estimator or confidence region
(CR) for τ(P ) is a set-valued mapping Γ : (X,F) → (T , σT ), such that

P{τ(P ) ∈ Γ(X)} ≥ 1− α, ∀P ∈ P. (3.1)

Let G = {g : X → X} be a family of (measurable) transformations on X

that forms a group under an operation · and with identity element 1G ≡ 1. Let
Ḡ = {ḡ : P → P} be a group of transformations on P such that there exists a
homomorphism h̄ : G → Ḡ and let 1 ≡ 1Ḡ = h̄(1G) be the identity element in
Ḡ. The statistical model is said to be (G, Ḡ)-invariant if

P{gX ∈ A} = ḡP{X ∈ A}, ∀g ∈ G;A ∈ F . (3.2)

In addition, let G̃ = {g̃ : T → T} be a group of transformations on T such that
there exists a homomorphism h̃ : G → G̃. The parametric functional τ(P ) is
said to be (Ḡ, G̃)-equivariant if τ(ḡP ) = g̃τ(P ) for all g ∈ G,P ∈ P. Employing
a decision-theoretic framework, define a loss function L on T× T given by the
0/1 loss function

L(τ, C) = 1− I{τ ∈ C}.

We shall say that the loss function is G̃-invariant if L(g̃τ, g̃C) = L(τ, C) for every
g ∈ G, τ ∈ T, and C ∈ T . Given a confidence region Γ(X), its risk function is

R(P,Γ) ≡ EP {L(τ(P ),Γ(X))} = 1− P{τ(P ) ∈ Γ(X)}.

As such, the condition for a 100(1 − α)% confidence region Γ(X) is equivalent
to having R(P,Γ) = EP {L(τ(P ),Γ(X))} ≤ α for every P ∈ P. When a (G, Ḡ)-
invariant statistical model is coupled with a G̃-invariant loss function, then
we would say that the statistical problem of constructing a confidence region
Γ(·) is (G, Ḡ, G̃)-invariant. A confidence region Γ(X) is then said to be (G, G̃)-
equivariant if for every g ∈ G and x ∈ X, we have that

Γ(gx) = g̃Γ(x) ≡ {g̃t : t ∈ Γ(x)}.

The Principle of Invariance then dictates that we should only utilize (G, G̃)-
equivariant confidence regions.

For an invariant confidence region problem, if Γ(·) is equivariant, then we
have that, for every g ∈ G,

P{τ(P ) ∈ Γ(X)} = EP {1− L(τ(P ),Γ(X))} = EP {1− L(g̃τ(P ), g̃Γ(X))}
= EP {1− L(τ(ḡP ),Γ(gX)} = EḡP {1− L(τ(ḡP ),Γ(X))}
= (ḡP ){τ(ḡP ) ∈ Γ(X)}.

Furthermore, if the group Ḡ is transitive over P, meaning that for any given
P0 ∈ P we have {ḡP0 : ḡ ∈ G} = P, then it suffices to consider an arbitrary
element P0 ∈ P to determine P{τ(P ) ∈ Γ(X)} for all P ∈ P since this equals
the value using the arbitrary P0.
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Recall that we also need to measure the quality of a confidence region by
measuring its content using the quantity C(Γ, P ) = EP [ν(Γ(X))], where ν(·)
is a measure on (T, T ), e.g., Lebesgue measure. We seek those confidence re-
gions with small C(Γ, P ). Observe that for an equivariant Γ(·) in an invariant
statistical model, we have for every g ∈ G that

C(Γ, P ) = EP [ν(Γ(X))] = EP

[
ν
(
g̃−1Γ(gX)

)]
= EḡP

[
ν
(
g̃−1Γ(X)

)]
.

If it so happens that ν[g̃−1Γ(x)] = ξ(g)ν[Γ(x)] for all x ∈ X and g ∈ G and
for some ξ : G → �, then there is the possibility of finding a Γ(·) that satis-
fies the required confidence level and minimizes the content. We shall call this
condition as quasi-invariance of ν with respect to (G, G̃). However, if (G, G̃)-
quasi-invariance of ν does not hold, then a uniformly best confidence region may
not exist. But, a uniformly best confidence region on a subfamily P0 ⊂ P may
still exist among the class of 100(1−α)% confidence regions over P. In [11, 10]
quasi-invariance of the measure ν was imposed, but in some settings this may
be unnatural such as in the NMEM under consideration in the current paper.

3.2. Towards optimal CRs for the median

Consider now the problem of constructing a CR for the median Δ under the

NMEM: Xi = Δ+ εi, i = 1, . . . , n; εi
IID∼ F (·) ∈ Fc,0,Δ ∈ �. Prior to invoking

invariance, we first reduce the problem via the Sufficiency Principle. Thus, we
may assume that the observable random vector is X() = (X(1), X(2), . . . , X(n)),
the vector of order statistics which is a complete sufficient statistic under the
class of distributions Fc,0 (cf., [14]). The appropriate sample space is therefore
X = {(v1, v2, . . . , vn) : v1 ≤ v2 ≤ . . . ≤ vn}. A word on our notation: even
though we had reduced to X(), in the sequel, when we write PF or EF , this
means that the common distribution of the Xis is F . For measuring the content
of a region for Δ we use Lebesgue measure ν on �.

The first invariance reduction is obtained through location-invariance. The
problem is invariant with respect to translations with the groups of transforma-
tions being, for every c ∈ �,

x() �→ x() + c; (F,Δ) �→ (F,Δ+ c); and θ �→ θ + c.

A CR Γ(X()) is location-equivariant if, for every c ∈ �, Γ(x() + c) = Γ(x()) + c,
where x() + c = (x(1) + c, . . . , x(n) + c). Observe that for a location-equivariant
Γ(·), we have for every c ∈ � that

P(F,Δ){Δ ∈ Γ(X())} = P(F,Δ){Δ ∈ Γ(X() + c)− c}
= P(F,Δ){Δ+ c ∈ Γ(X() + c)} = P(F,Δ+c){Δ+ c ∈ Γ(X())}
= P(F,0){0 ∈ Γ(X())}

by taking c = −Δ to obtain the last equality. The problem has thus been reduced
to considering X() to be the order statistics of size n from F (·) and we seek a
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location-equivariant Γ(x()) such that, for every F ∈ Fc,0, PF {0 ∈ Γ(X())} ≥
1 − α. In addition, we seek to minimize EF ν[Γ(X())] over all F ∈ Fc,0. Note
that Lebesgue measure ν in � is location-invariant, that is, ν(B) = ν(B+ c) for
every B ∈ B and c ∈ �.

We remark at this stage that if we know the distribution F (·), then we could
determine the optimal CR for Δ under this known distribution and no further
invariance reduction will be needed. To demonstrate, suppose that F is the
normal distribution with mean zero and variance σ2 which could be taken to be
σ2 = 1, so F (·) = Φ(·). Then, we seek a location-equivariant Γ∗(x()) satisfying
PΦ{0 ∈ Γ∗(X())} ≥ 1 − α and with EΦ

∫
� I{w ∈ Γ∗(X())}dw minimized. By

order statistics theory (cf., [3]), under Φ, the joint density function of X() is
given by f(x()) = n!

∏n
i=1 φ(x(i))I{x() ∈ X}. Thus, we want PΦ{0 ∈ Γ∗(X())} =∫

I{0 ∈ Γ∗(x())}f(x())dx() ≥ 1− α. On the other hand, we obtain

EΦ

∫
�
I{w ∈ Γ∗(X())}dw =

∫
X

∫
�
I{w ∈ Γ∗(x())}f(x())dwdx()

=

∫
X

∫
�
I{0 ∈ Γ∗(x() − w)}f(x())dwdx()

=

∫
X

I{0 ∈ Γ∗(x())}h(x())dx(),

where

h(x()) = n!
(2π)−(n−1)/2

√
n

exp

{
−1

2

n∑
i=1

(x(i) − x̄)2

}

obtained by letting u = w; y(i) = x(i) − w, i = 1, 2, . . . , n, and noting that

∫
�

n∏
i=1

exp

{
−1

2
(y(i) + u)2

}
du = exp

{
−1

2

n∑
i=1

(y(i) − ȳ)2

} √
2π√
n
.

The problem is then to find a location-equivariant Γ∗(x()) that will minimize∫
X
I{0 ∈ Γ∗(x())}h(x())dx() subject to the condition that

∫
I{0 ∈ Γ∗(x())}f(x())dx() ≥ 1− α.

The solution to this constrained minimization problem (see the optimization
result in Theorem 2 on page 2361) is the well-known z-confidence interval for
the normal mean given by Γ∗(x()) = [x̄± zα/2(1/

√
n)] with zα = Φ−1(1− α).

However, since F is known only to belong to Fc,0, a further invariance re-
duction is needed. This is achieved through strictly increasing continuous trans-
formations with 0 as a fixed point. Let M denote the collection of functions
m(·) that are strictly increasing continuous functions on � with m(0) = 0. The
groups of transformations are given by

x() �→ (m(x(1)),m(x(2)), . . . ,m(x(n))); F �→ Fm−1; and Δ �→ m(Δ).
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Γ(x()) is then equivariant with respect to these groups of transformations if

Γ(m(x(1)), . . . ,m(x(n))) = mΓ(x(1), . . . , x(n)) ≡ {m(w) : w ∈ Γ(x())},
so that for every m ∈ M and x() ∈ X, we have Γ(x()) = m−1Γ(m(x())). We
then have that, for every m ∈ M and F ∈ Fc,0,

PF {0 ∈ Γ(X())} = PF {0 ∈ m−1Γ(m(X()))}
= PF {0 ∈ Γ(m(X()))} since m(0) = 0

= PFm−1{0 ∈ Γ(X())}.
Observe, however, that

EF ν[Γ(X())] = EF ν[m
−1Γ(m(X()))] = EFm−1ν[m−1Γ(X())]

and we do not have in this situation quasi-invariance of the measure ν with
respect to the groups of monotone transformations.

The group of transformations M with F �→ Fm−1 is transitive over Fc,0.
Thus, we may simply pick an arbitrary F0 ∈ Fc,0, which could be taken to be
F0 = U [−1, 1], the uniform distribution over [−1, 1]. Indeed, if X ∼ F ∈ Fc,0,
then with mF (v) = 2F (v)− 1, we have m(X) ∼ U [−1, 1]. Thus,

PF {0 ∈ Γ(X())} = PF0{0 ∈ Γ(X())} and EF ν[Γ(X())] = EF0ν[m
−1Γ(X())].

We emphasize again that in the second equation we could not drop the term
m−1 nor factor it out from inside the ν(·) measure. This will prevent us from
obtaining a uniformly (over Fc,0) best confidence region for Δ.

Next, we obtain a representation of Γ(x()) by choosing a specific member of
M that depends on x(). For an x(), define m(x())(w) for w ∈ {x(i) − x(n), i =
1, 2, . . . , n} via

m(x())(w) =
n∑

i=1

I{x(i) − x(n) ≤ w} − n,

and for w ∈ � define it such that it is strictly increasing and continuous over
all w ∈ �. Observe that for j = 1, 2, . . . , n,

m(x())(x(j) − x(n)) = j − n and m(x())(−x(n)) = B(x())− n, (3.3)

where B(x()) =
∑n

j=1 I{x(j) ≤ 0} =
∑n

j=1 I{xj ≤ 0}. Note that m(x())(0) =

n− n = 0 and observe that m(x())
−1(j − n) = x(j) − x(n), j = 1, 2, . . . , n.

Lemma 1. With m(x())(·) defined as above, a location-equivariant (LE) and
M-equivariant (ME) Γ(x()) has representation

Γ(x()) = m(x())
−1[Γ0 − n] + x(n) (3.4)

where Γ0 is some region in �. Thus, the LE and ME Γ(·)s are determined by
Γ0s, which are subsets of �. In fact, given a Γ0 ⊂ �, we have

Γ(x()) =
⋃

k∈[Γ0∩{0,1,...,n}]

[
x(k), x(k+1)

)
(3.5)

whose Lebesgue measure is ν[Γ(x())] =
∑

k∈[Γ0∩{0,1,...,n}]
[
x(k+1) − x(k)

]
.
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Proof. We utilize the location-equivariance (LE) and M-equivariance (ME) of
Γ(·). We have

Γ(x()) = Γ(x() − x(n)) + x(n) (by LE)

= m(x())
−1Γ(m(x())(x() − x(n))) + x(n) (by ME)

= m(x())
−1Γ(1− n, 2− n, . . . , (n− 1)− n, n− n) + x(n)

= m(x())
−1[Γ(1, 2, . . . , n− 1, n)− n] + x(n) (again, by LE)

= m(x())
−1[Γ0 − n] + x(n),

where Γ0 = Γ(1, 2, . . . , n). To establish (3.5), given a Γ0 ⊂ �, observe that

{0 ∈ Γ(x())} ⇐⇒ {0 ∈ m(x())
−1[Γ0 − n] + x(n)}

⇐⇒ {m(x())(−x(n)) ∈ Γ0 − n}
⇐⇒ {(B(x())− n) ∈ (Γ0 − n)} by (3.3)

⇐⇒ {B(x()) ∈ Γ0}.
It now follows that

{w ∈ Γ(x())} ⇐⇒ {0 ∈ Γ(x() − w)} [by LE property]

⇐⇒ {B(x() − w) ∈ Γ0} [preceding result]

⇐⇒

⎧⎨
⎩w ∈

⋃
k∈Γ0∩{0,1,...,n}

{v : B(x() − v) = k}

⎫⎬
⎭

⇐⇒

⎧⎨
⎩w ∈

⋃
k∈Γ0∩{0,1,...,n}

[x(k), x(k+1))

⎫⎬
⎭ .

Thus, given a Γ0 ⊂ �, Γ(x()) =
⋃

k∈Γ0∩{0,1,...,n}[x(k), x(k+1)) establishing (3.5).

The last result about the Lebesgue measure of Γ(x()) is immediate since the
intervals {[x(k), x(k+1)), k ∈ Γ0 ∩ {0, 1, . . . , n}} are disjoint.

3.3. Optimal CRs

Next, we tackle the problem of choosing an ‘optimal’ (properly defined) re-
gion Γ0, which then determines Γ(x()) via the representation in Lemma 1.
Recall that the goal is to find Γ(·) such that with F0 = U [−1, 1], PF0{0 ∈
Γ(X())} ≥ 1 − α and, for every F ∈ Fc,0, EF {ν[Γ(X())]} is minimized, or if
this is not possible, is made small. Note that under F0, B = B(X()) = B(X) =∑n

i=1 I{Xi ≤ 0} has a binomial distribution with parameters (n, 1/2), denoted
by B(·;n, 1/2), and with associated probability mass function b(k;n, 1/2) =(
n
k

)
2−nI{k ∈ {0, 1, . . . , n}}. From the proof of Lemma 1, we have that {0 ∈

Γ(X())} = {B(X()) ∈ Γ0}, so that

1− α ≤ PF0{0 ∈ Γ(X())} = PF0{B ∈ Γ0}

=

n∑
k=0

I{k ∈ Γ0}b(k;n, 1/2) =
n∑

k=0

δ0(k)b(k;n, 1/2)
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where we let δ0(k) = I{k ∈ Γ0}, k = 0, 1, . . . , n. The expected Lebesgue measure
of Γ(X()) is

EF ν[Γ(X())] =

n∑
k=0

I{k ∈ Γ0}[EF (X(k+1))− EF (X(k))] =

n∑
k=0

δ0(k)l(k;F )

with X(0) ≡ EF [X(0)] ≡ inf{v ∈ � : F (v) > 0} and X(n+1) ≡ EF [X(n+1)] ≡
sup{v ∈ � : F (v) < 1}, and

l(k;F ) = EF (X(k+1))− EF (X(k)), k = 0, 1, . . . , n. (3.6)

Assume first that we know the values of {l(k) ≡ l(k;F ), k = 0, 1, . . . , n}. We
now allow for randomized confidence regions in order to achieve optimality,
that is, we allow for Γ0 and Γ to depend on a randomizer U which is a standard
uniform random variable independent of the Xis. We remark that in [11, 10,
12] randomized procedures were also allowed to enable achieving optimality,
similarly to the Neyman-Pearson theory of most powerful tests (cf., [14]).

Define the right-continuous non-increasing [0, 1]-valued function, for t ∈ �,

G(t) = P{b(B;n, 1/2) > tl(B;F )} =

n∑
k=0

I{b(k;n, 1/2) > tl(k;F )}b(k;n, 1/2).

For a given α ∈ (0, 1), define

c = inf{t : G(t) ≤ 1− α} and γ =
(1− α)−G(c)

G(c−)−G(c)
.

Define the function δ∗0 over {0, 1, . . . , n} × [0, 1] via

δ∗0((k, u)) = I{b(k;n, 1/2) > cl(k;F )}+ I{b(k;n, 1/2) = cl(k;F )}I{u ≤ γ}.

The optimal Γ0 then satisfies δ∗0(k, u) = I{k ∈ Γ∗
0(u)}.

Theorem 2. Let F ∈ Fc,0 and let {l(k;F ), k = 0, 1, . . . , n} be as defined in
(3.6). Then EF [δ

∗
0(B,U)] = 1−α. Furthermore, if δ0 is any other {0, 1}-valued

function in {0, 1, . . . , n} × [0, 1] with EF [δ0(B,U)] ≥ 1− α, then

E

{
n∑

k=0

[δ∗0(k, U)l(k;F )]

}
≤ E

{
n∑

k=0

[δ0(k, U)l(k;F )]

}
,

where the expectation is with respect to the randomizer U .

Proof. From the form of δ∗0 , we have

EF [δ
∗
0(B,U)] = P{b(B;n, 1/2) > cl(B;F )}+ γP{b(B;n, 1/2) = cl(B;F )}

= G(c) +

[
(1− α)−G(c)

G(c−)−G(c)

]
[G(c−)−G(c)] = 1− α.
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Let δ0 be any other function on {0, 1, . . . , n}× [0, 1] with EF [δ0(B,U)] ≥ 1−α.
From the definition of δ∗0 , we observe that for each (k, u) ∈ {0, 1, . . . , n}× [0, 1],

[b(k;n, 1/2)− cl(k;F )][δ∗0(k, u)− δ0(k, u)] ≥ 0.

Summing over k = 0, 1, . . . , n, and integrating over u ∈ [0, 1], we find that

EF {δ∗0(B,U)− δ0(B,U)}

≥ c

[
n∑

k=0

∫ 1

0

l(k;F )δ∗0(k, u)du−
n∑

k=0

∫ 1

0

l(k;F )δ0(k, u)du

]
.

Since c ≥ 0 and by condition we have EF {δ∗0(B,U)− δ0(B,U)} ≤ 0, then

n∑
k=0

∫ 1

0

l(k;F )δ∗0(k, u)du ≤
n∑

k=0

∫ 1

0

l(k;F )δ0(k, u)du

which completes the proof of the theorem.

Remark: We note that this proof is similar to that of the Neyman-Pearson
Lemma except for the fact that the {l(k;F ) : k = 0, 1, . . . , n} is not a distribu-
tion function. ‖

Therefore, the optimal Γ0, possibly using a randomizer U ∼ U [0, 1], is

Γ∗
0(u) = [{k ∈ {0, 1, . . . , n} : b(k;n, 1/2) > cl(k;F )}]

⋃
[{u ≤ γ} ∩ {k ∈ {0, 1, . . . , n} : b(k;n, 1/2) = cl(k;F )}] .

The associated optimal confidence region for Δ, possibly randomized, is

Γ∗(X(), U) =

⎡
⎣ ⋃
{k∈{0,1,...,n}: b(k;n,1/2)>cl(k;F )}

[X(k), X(k+1))

⎤
⎦⋃

⎡
⎣{U ≤ γ} ∩

⎧⎨
⎩

⋃
{k∈{0,1,...,n}: b(k;n,1/2)=cl(k;F )}

[X(k), X(k+1))

⎫⎬
⎭
⎤
⎦ . (3.7)

Note that if we drop the term in the pair of brackets containing {U ≤ γ} in
(3.7), we obtain

Γ∗(X()) =
⋃

{k∈{0,1,...,n}: b(k;n,1/2)≥cl(k;F )}
[X(k), X(k+1)), (3.8)

which is a conservative confidence region for Δ in the sense that P(F,Δ){Δ ∈
Γ∗(X())} ≥ 1 − α. If 100(1 − α)% is a natural confidence coefficient (cf., [19])
associated with the binomial distribution, then we may still obtain an exact
confidence region.
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3.4. Implementation aspects

The optimal confidence region required knowledge of the l(k;F )s, or at the
very least the ordering of the k ∈ {0, 1, . . . , n} for inclusion in the Γ∗

0, which
is determined by the magnitude of the ratios r(k;F ) ≡ b(k;n, 1/2)/l(k;F ), k =
0, 1, . . . , n. In general, l(k;F ) will depend on the unknown true distribution F ,
hence the values of l(k;F )s or the r(k;F )s will not be known. In this case, we
will not be able to determine Γ∗(·). We describe two approaches to circumvent
this problem.

(i) Restrict F to belong to a subclass of the family of continuous distributions,
say F̄c,0 ⊂ Fc,0 and determine the l(k;F )s or the r(k;F )s for this class.
This is then tantamount to satisfying the confidence level condition over
the whole of Fc,0, but focusing only on the subclass F̄c,0 for minimizing
the expected Lebesgue measure of the confidence region.

(ii) Utilize the observed sample data to estimate l(k;F ) by l̂(k), then use

these l̂(k)s in the expression of Γ∗(X(), U). There are several ways to ac-
complish this which are discussed below. However, it should be pointed
out that when estimates are plugged-in, data double-dipping ensues and
the achieved confidence level may not anymore satisfy the condition of
being at least equal to 1− α.

The next two sections will deal with these two approaches towards developing
the region estimators.

4. Optimal CRs focused on symmetric distributions

4.1. For uniform distributions

We illustrate the different approaches for dealing with the situation of unknown
l(k;F ), k = 0, 1, . . . , n. Let us consider approach (i) first. Suppose that we con-
sider the subfamily of uniform distributions. It suffices to consider F = U [−α, α]

for α > 0. Note that X ∼ U [−α, α] iff X
d
= (2V − 1)α with V ∼ U [0, 1]. Thus,

X(k)
d
= (2V(k) − 1)α and it is well-known that E(V(k)) = k/(n + 1). As such

E(X(k)) = (2k/(n+ 1)− 1)α, hence

l(k;F ) =
2α

n+ 1
[(k + 1)− k] =

2α

n+ 1
, k = 0, 1, . . . , n.

Consequently, the ratios of interest are

r(k;F ) =
b(k;n, 1/2)

l(k;F )
=

(
n
k

)
2−n

(2α/(n+ 1))
∝
(
n

k

)
, k = 0, 1, . . . , n.

Hence, the optimal Γ∗
0 is of form Γ∗

0 =
{
k ∈ {0, 1, . . . , n} :

(
n
k

)
> c
}
where c is

the smallest value such that P{B ∈ Γ∗
0} ≤ 1 − α. Since the mapping from
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k ∈ {0, 1, . . . , n} into
(
n
k

)
is symmetric about n/2 and decreases as |k − n/2|

increases, then Γ∗
0 = {k ∈ {0, 1, . . . , n} : |k − n/2| < d} for d satisfying

d = sup
{
e : P{|B − n

2
| < e} ≤ 1− α

}
= sup

{
e : P{B <

n

2
+ e} ≤ 1− α/2

}
.

This implies that (n/2)+d is the (1−α/2)th quantile of B(·;n, 1/2), denoted by
bn,1/2;α/2, obtainable via the qbinom function in R ([18]). Letting k2 = bn,1/2;α/2
and k1 = n− k2, then

P{k1 < B < k2} ≤ 1− α ≤ P{k1 ≤ B ≤ k2}.

With

γ =
(1− α)− P{k1 < B < k2}

2Pr{B = k2}
,

the resulting randomized confidence region for Δ is

Γ∗
10(X(), U) =

{ [
X(k1+1), X(k2)

)
if U > γ[

X(k1), X(k2+1)

)
if U ≤ γ

. (4.1)

This Γ∗
10 CR procedure is the randomized version of the sign-statistic based

CR, given in (2.3) and denoted by Γ3, which was developed by Thompson [20].
Observe that c and γ for this Γ∗

10 CR do not depend on the data x, but they
do depend on the sample size n.

4.2. For general symmetric distributions

We assumed the uniform family of distributions in the preceding subsection.
A question arises whether we obtain the same CR if F belongs to the subfamily
F
sym
c,0 of Fc,0 of continuous symmetric at zero distributions. For instance, the

classes of normal, Cauchy, logistic, double exponential, symmetric mixtures of
distributions all belong to this subclass. It turns out that Γ∗

10 is also optimal for
this larger (relative to the class of uniform distributions) subclass as a conse-
quence of Theorem 3 below. The CR based on the Wilcoxon signed-rank statistic
is valid for Fsym

c,0 [see (2.2)]; however, this CR is not a legitimate competitor of
Γ∗
10(X(), U) under the class Fc,0 since it does not satisfy the confidence level

requirement under non-symmetric distributions, which are allowed under the
NMEM.

Theorem 3. Let X1, . . . , Xn be IID from F ∈ F
sym
c,0 and define l(k;F ) =

EF (X(k+1)) − EF (X(k)), k = 0, 1, . . . , n, with X(0) = inf{x ∈ � : F (x) > 0}
and X(n+1) = sup{x ∈ � : F (x) < 1}. Let

r(k;F ) =

(
n
k

)
2−n

l(k;F )
, k = 0, 1, . . . , n.
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(i) If n is even, then r(k;F ) is maximized at k = n/2 and it decreases from
the maximum as |k − n/2| increases.

(ii) If n is odd, then r(k;F ) is maximized at k ∈ {(n − 1)/2, (n + 1)/2} and
decreases when (n−1)/2−k increases for k ≤ (n−1)/2 or when k−(n+1)/2
increases for k ≥ (n+ 1)/2.

The results stated in Theorem 3 appear intuitive when the distribution F ∈
F
sym
c,0 is unimodal. What is surprising is that the results also hold when F is

bi-modal or multi-modal. For instance, if we take a symmetric mixture of a
N(−μ, σ) and a N(μ, σ), even when μ is quite large relative to σ, the results
still hold true. We present a mathematical proof of Theorem 3. To do so we first
establish an identity analogous to that given by Pearson in a paper of [7].

Lemma 4. Let X(1) < . . . < X(n) be the associated order statistics for a random
sample of size n from a continuous distribution F . For k = 0, 1, 2, . . . , n− 1, n,
and provided that the expectations are well-defined with possibly a value of ∞,
then

l(k;F ) ≡ EF (X(k+1))− EF (X(k)) =

(
n

k

)∫ ∞

−∞
F (x)k(1− F (x))n−kdx.

Proof. Recall that for a positive-valued continuous random variable W , we have
E(W ) =

∫∞
0

[1− FW (w)]dw, hence for a general continuous W ,

E(W ) =

∫ ∞

0

[1− FW (w)]dw −
∫ 0

−∞
FW (w)dw.

For k ∈ {1, 2, . . . , n}, we also recall that P{X(k) ≤ y} =
∑n

j=k

(
n
j

)
F (y)j [1 −

F (y)]n−j . Using these expressions, we immediately find that

l(k;F ) = E[X(k+1)]− E[X(k)] = E[X+
(k+1) −X+

(k)]− E[X−
(k+1) −X−

(k)]

=

∫ ∞

0

[(1− P{X(k+1) ≤ y})− (1− P{X(k) ≤ y})]dy −
∫ 0

−∞
[P{X(k+1) ≤ y} − P{X(k) ≤ y}]dy

=

(
n

k

)[∫ ∞

0

F (y)k[1− F (y)]n−kdy +

∫ 0

−∞
F (y)k[1− F (y)]n−kdy

]

=

(
n

k

)∫ ∞

−∞
F (y)k[1− F (y)]n−kdy.

We now prove Theorem 3.

Proof. Using the representation in Lemma 4, we have for k = 0, 1, . . . , n, that

r(k;F ) = 2−n

{∫ ∞

−∞
(1− F (x))n−kF (x)kdx

}−1

.
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Let Q(k;F ) =
∫∞
−∞(1 − F (x))n−kF (x)kdx. We prove the results by showing

that Q(k;F ) is symmetric about n/2 and that it first decreases then increases
with the maximum occurring at values of k that depends on whether n is odd
or even. Making the transformation u = F (x) in the expression of Q(k;F ) and
denoting by f the density function of F , we have

Q(k;F ) =

∫ 1

0

(1− u)n−kuk

f [F−1(u)]
du

=

∫ 1/2

0

(1− u)n−kuk

f [F−1(u)]
du+

∫ 1

1/2

(1− u)n−kuk

f [F−1(u)]
du.

In the last integral, let w = 1 − u and note that since F ∈ F
sym
c,0 , F−1(u) =

−F−1(1− u) so that f [F−1(u)] = f [−F−1(u)] = f [F−1(1− u)]. Consequently,

Q(k;F ) =

∫ 1/2

0

(1− u)n−kuk + (1− u)kun−k

f [F−1(u)]
du.

Letting c(u) = 1/f [F−1(u)] and D(k;F ) = Q(k;F ) − Q(k + 1;F ), it follows
that

D(k;F ) =

∫ 1/2

0

c(u)(1− 2u)
[
(1− u)n−k−1uk − (1− u)kun−k−1

]
du

=

∫ 1/2

0

c(u)(1− 2u)(1− u)n−k−1uk

[
1−

(
u

1− u

)n−(2k+1)
]
du.

In the last integral, all terms in the integrand outside the brackets are nonneg-
ative. Let b(u, α) = 1 − [u/(1− u)]α for α ∈ �, u ∈ [0, 1/2]. For this function,
we have

lim
u↓0

b(u;α) =

⎧⎨
⎩

1 if α > 0
0 if α = 0

−∞ if α < 0
and b(1/2;α) = 0 all α.

In addition, we have

b′(u;α) ≡ d

du
b(u;α) = −α

(
u

1− u

)α−1
1

(1− u)2

⎧⎨
⎩

< 0 if α > 0
= 0 if α = 0
> 0 if α < 0

.

Therefore, on u ∈ (0, 1/2], u �→ b(u;α) is decreasing when α > 0; constant at 0
when α = 0; and increasing when α < 0. Consequently,

D(k;α) = Q(k;F )−Q(k + 1;F ) =

⎧⎨
⎩

< 0 if k < (n− 1)/2
= 0 if k = (n− 1)/2
> 0 if k > (n− 1)/2

.

This completes the proof of the theorem.
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5. Optimal CRs focused on exponential distributions

Next, we consider the situation where the focused class of distributions is the
negative exponential family, a right-skewed class of distributions, in contrast
to the symmetric distributions considered above. Let X1, . . . , Xn be IID from
an exponential distribution (Exp(λ)) F (x;λ) = [1− exp(−λx)]I{x ≥ 0} so the
common median is Δ = λ−1 log(2). From the normalized spacings theory (see,
for instance, [1]) we have that

X(k) =
k∑

j=1

Dj/(n− j + 1)
d
=

k∑
j=1

Xj/(n− j + 1), k = 1, 2, . . . , n,

whereDj = (n−j+1)[X(j)−X(j−1)], j = 1, 2, . . . , n, are the normalized spacings
statistics, which are also IID from Exp(λ). As such, with X(0) ≡ 0, we obtain

l(k;F ) = E[X(k+1)]− E[X(k)] =
1

λ(n− k)
, k = 0, 1, 2, . . . , n.

It follows that under this negative exponential distribution model,

r(k;F ) =

(
n
k

)
2−n

[λ(n− k)]−1
∝
(
n− 1

k

)
, k = 0, 1, 2, . . . , n.

The optimal Γ0 will therefore be of form

Γ∗
0 =

{
k ∈ {0, 1, . . . , n} :

(
n− 1

k

)
> c

}

with c chosen to be the smallest value such that P{B ∈ Γ∗
0} ≤ 1−α. Note that

this subset Γ∗
0 will never include n since l(n;F ) = ∞, but it could include 0.

We shall denote by Γ∗
11(X(), U) the resulting randomized CR for Δ under this

exponentially-distributed focused case. We note that c and γ for this Γ∗
11 CR

also do not depend on x, similarly to Γ∗
10.

We illustrate the resulting CR for concrete values of n. We start with n = 10,
an even sample size. Using R [18] we obtain for each k ∈ {0, 1, 2, . . . , n} the values
of r(k;F ) (up to proportionality) and P{B = k} given in Table 1. Observe that
the way we start including values of k into Γ∗

0 is according to the value of
r(k). Thus we start by first including k-values of 4 and 5; then 3 and 6; etc.
Observe the asymmetry in the process of including the k-values into Γ∗

0 with
a bias in favor of the lower k-values. The intuition behind this is that since
the exponential distribution is highly right-skewed, then the expected lengths
between successive order statistics increases as k increases, which is formally
indicated by the l(k;F ) = 1/[λ(n−k)] expression. Thus, to shorten the interval,
there is preference for the lower order statistics. For a 95% confidence region,
from the table we find that Γ∗

0 = {2, 3, 4, 5, 6, 7} which yields P{B ∈ Γ∗
0} =

.9346. The randomization probability then becomes

γ =
.95− .9346

.0537
= .2867.
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Table 1

Values of (k, r(k), P (B = k)) for k = 0, 1, 2, . . . , n for the case n = 10 when F is assumed to
be a negative exponential distribution.

k r(k) P (B = k)
0 1 0.0009765625
1 9 0.0097656250
2 36 0.0439453125
3 84 0.1171875000
4 126 0.2050781250
5 126 0.2460937500
6 84 0.2050781250
7 36 0.1171875000
8 9 0.0439453125
9 1 0.0097656250
10 0 0.0009765625

The 95% (randomized) confidence region for the median will then be

Γ∗
11(X,U) = [X(2), X(8))I{U > .2867}+ [X(1), X(9))I{U ≤ .2867}.

When n = 11, an odd sample size, by following the same calculations as for
n = 10 and with the first k-value to enter being k = 5, we find the 95%
(randomized) confidence region for the median to be

Γ∗
11(X,U) = [X(3), X(8))I{U > .6758}+ [X(2), X(9))I{U ≤ .6758}.

6. Data-adaptive methods

Next we demonstrate approach (ii). In this situation we do not know the l(k;F )s
so we instead estimate these quantities using the observed data. Recall that
l(k;F ) = EF [X(k+1) − X(k)], so without any knowledge of the underlying F
we will not have closed-form expressions for these l(k;F )s. However, given the
sample data, we could estimate l(k;F ), unbiasedly, by

l̂(k) = X(k+1) −X(k), k = 0, 1, 2, . . . , n, (6.1)

which is the method-of-moments estimator. However, we surmise, just based
on intuitive considerations, that this estimator may be generally unstable or
inefficient relative to an alternative estimator obtained by replacing F in l(k;F )
by its empirical distribution F̂ – see the estimators in (6.2). Our intuition is
borne out of the fact that F̂ is equivalent to the complete and sufficient statistic
under the model Fc,0, hence the plug-in approach where F is replaced by F̂ will
lead to good estimators. Using the MM-based estimators in (6.1), we may then
order the k ∈ {0, 1, . . . , n} in terms of priority of entry into Γ∗

0 according to the
quantities

r̂(k) ∝
(
n
k

)
X(k+1) −X(k)

, k = 0, 1, 2, . . . , n.
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As such the form of the ‘optimal’ Γ0 will be

Γ∗
0 =

{
k ∈ {0, 1, 2, . . . , n} :

(
n
k

)
X(k+1) −X(k)

> c

}
.

We shall denote by Γ∗
12(X(), U) the resulting randomized CR. The constant c

will be chosen to be the smallest value such that P{B ∈ Γ∗
0|X} ≤ 1 − α. This

value of c will depend on the sample data X since the ordering of entry of the
k-values into Γ∗

0 will depend on X, so that the randomization probability γ will
also depend on X. Because of this dependence of c and γ on the sample data X,
it is possible that the achieved confidence coefficient of the resulting confidence
region will not anymore be at least 100(1 − α)%. In the simulation studies in
section 8 we will indeed see that there is a non-negligible degradation in terms
of the achieved confidence level for this CR.

As indicated in the preceding paragraph, a potentially better adaptive ap-
proach may be obtained by utilizing the representation of l(k;F ) in Lemma
4 and replacing the unknown F (·) in the expression of l(k;F ) by its empir-
ical distribution function (EDF), F̂ , based on the Xi − Δ̂, i = 1, 2, . . . , n.
This may lead to a better procedure since the resulting estimators of l(k;F )s
may be more stable compared to the MM estimators in (6.1). The EDF is
F̂ (t) = 1

n

∑n
i=1 I{Xi − Δ̂ ≤ t}, t ∈ �, so the estimators of l(k;F )s are, for

k = 1, 2, . . . , n,

l̂(k) =

(
n

k

)∫ ∞

−∞
(1− F̂ (x))n−kF̂ (x)kdx

=

(
n

k

) n∑
i=2

[
1− i− 1

n

]n−k [
i− 1

n

]k
(X(i) −X(i−1)). (6.2)

Observe that we could also have used the EDF of theXis instead of the (Xi−Δ̂)s
since the Δ̂ cancels out. The ordering of k ∈ {0, 1, . . . , n} in terms of entry into
Γ∗
0 is then based on

r̂(k) ∝
(
n
k

)
l̂(k)

=

{
n∑

i=2

[
1− i− 1

n

]n−k [
i− 1

n

]k
[X(i) −X(i−1)]

}−1

.

The resulting randomized CR for Δ will be denoted by Γ∗
13(X(), U).

These adaptive procedures are totally nonparametric in the sense that no
knowledge of the underlying distribution F is required. If we do have knowl-
edge of the families of distributions in which F belongs, then we may be able
to provide better estimators of the l(k;F )s as in the subsections dealing with
symmetric F s and exponential F . It should be noted, however, that these adap-
tive procedures may not anymore satisfy the confidence level requirement due
to the data-dependent plug-in step. Section 8, which presents results of simula-
tion studies, provides some insights regarding the empirical properties of these
procedures. Looking ahead, based on these simulation studies, the impact of
this data double-dipping on Γ∗

13 in terms of its coverage probability could be
characterized as slight.
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Table 2

List of the confidence regions (CRs) considered in the illustrations and simulations.

Method Label Description or Type or Basis of CR
Γ1 T Statistic Based
Γ2 Wilcoxon Signed-Rank Statistic Based
Γ3 Sign Statistic Based
Γ4 Asymptotic Distribution of Median Based
Γ5 Basic Median Bootstrap
Γ6 Median with Bootstrapped SE
Γ7 Percentile Bootstrapped
Γ8 Bias-Corrected (BC) Bootstrapped
Γ9 Bias-Corrected Accelerated (BCa) Bootstrapped
Γ10 Optimally Focused for Symmetric
Γ11 Optimally Focused for Exponential
Γ12 Adaptive with l(k) Unbiasedly Estimated
Γ13 Adaptive with l(k) Estimated using EDF

7. Illustration using real data sets

Together with the ‘off-the-shelf’ CRs for Δ discussed in section 2, we now add
the CRs that were just developed (we drop the superscript ‘∗’ in the notation):
Γ10, the CR optimized for symmetric distributions [see equation (4.1)]; Γ11, the
CR optimized for exponential distributions (see section 5); Γ12, the adaptive
CR using the crude estimator for l(k;F ); and Γ13, the adaptive CR using the
empirical distribution in the estimator of l(k;F ) (see section 6). These different
CRs, which are implemented in the illustrations and the simulation studies, are
summarized in Table 2. We note that among these thirteen CRs, those that are
location-equivariant and equivariant to monotone transformations are Γ3, Γ10,
Γ11, Γ12, and Γ13.

For our first illustration we use a real data set gathered by the first author
about the mileage efficiency of his car during a period [from October 20, 1996
to January 27, 1999] when he was commuting between Ann Arbor, Michigan
and Bowling Green, Ohio. Efficiency is measured in terms of the miles traveled
per gallon of gasoline. In the data set there were n = 205 observations, with
each observation recorded at each gas fill-up. The histogram and time plot of
these observations are shown in Figure 1. The full data set, which contained
other relevant variables, was also used in demonstrating global validation pro-
cedures of linear model assumptions in [16]. For this sample data set the mean
is x̄ = 29.291, median is Δ̂ = 29.462, the first and third sample quartiles are
28.275 and 30.575, respectively, and the extreme values are 18.374 and 33.472.
From the histogram we notice that there is a noticeable left-skewness in the dis-
tribution. The sample standard deviation is 1.887 and the inter-quartile range is
2.299. Letting Xi, (i = 1, 2, . . . , n), be the random observable denoting the fuel
efficiency preceding the ith gas fill-up, we assume that these Xi’s are IID from
some unknown distribution H whose median is Δ. The distribution H could be
viewed as a mixture of subpopulation distributions corresponding to summer
highway driving, winter highway driving, summer city driving, winter city driv-
ing, and a combination of highway and city driving. The assumption that the
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Fig 1. Histogram and Time Plot of 205 observations for the variable Average Miles Per
Gallon ( AveMilesGal) for the data set gathered by the first author pertaining to his car.

Xi’s are identically distributed is an approximate one since the fuel efficiency
could have decreased as the car got older (though not evident from the data),
when lubricant oil quality degraded between in-between maintenances, or most
plausibly it was affected by the driving season (indeed, one could discern a sea-
sonal trend in the time plot in Figure 1). The independence assumption of the
Xis, however, may still be somewhat tenable since there is no reason for Xi−1

to have an effect on Xi. The Pearson correlation coefficient of the bivariate data
{(i, xi), i = 1, 2, . . . , n} was 0.0113, leading to a z-score of 0.1607, with associ-
ated p-value of 0.8723 for testing H0 : ρ = 0, where a Fisher’s z-transformation
was applied. The Spearman’s correlation coefficient was 0.0634 with p-value of
0.3663. We recognize that these tests are merely for association between ranked
time and fuel efficiency, not for the independence among the Xis. We also tested
for the presence of first-order autocorrelation using Bartel’s [2] nonparametric
rank version of von Neumann’s ratio test for randomness. For the test of the
null hypothesis that there was no serial correlation, the p-value was 0.14 using
a normal approximation mentioned in [2].

For our illustration, we seek a confidence region for the population median
Δ, where the population could be thought of as the hypothetical set of all
values of AveMilesGal if the car has been observed forever. Figure 2 depicts
the 95% confidence regions produced by the thirteen different methods for the
AveMilesGal data set. Except for CR Γ12, all of them produced intervals. It
is possible that method Γ13 may also produce a region that is not an interval,
while CRs Γ1 to Γ11 will all produce confidence intervals by construction. In
addition, observe that only the CRs produced by Γ4 and Γ6 turned out to be
symmetric about the sample median.

Our other illustration uses Proschan’s [17] famous Boeing air-conditioning
data set. Figure 3 provides a histogram of the 212 observations in this data set,
with each observation being a time between successive failures. To un-tie tied
observations, we perturbed the original values in tied sets of observations by
uniform variates over [−.001, .001]. Observe that this data set is highly right-
skewed. Proschan also demonstrated that this data set did not come from an
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Fig 2. The 95% confidence regions for the median of the AveMilesGal population produced
by the thirteen different methods in Table 2. The horizontal line depicts the sample median.

Fig 3. Histogram of Proschan’s Boeing air-conditioning data set. The 212 observations are
times between failures, and there were several airplanes that were monitored.

exponential distribution, but came from a mixture of exponential distributions,
inducing a decreasing failure rate property. Our goal in this illustration is to
provide a confidence region for the median inter-failure time given this data set.
Figure 4 presents the comparative plots of the CRs for the thirteen methods.
Notice that the T -based CR, as well as the Wilcoxon signed-rank based CR,
are very different from the other eleven CRs. In fact, both excluded the sample
median. At the same time, we are somewhat unfair in the manner in which we
applied these two procedures since it would have been more appropriate to first
perform a transformation to approximately symmetrize the distribution prior to
applying these procedures, and then re-transforming back. Also, notice that the
Γ12 CR is composed of one big interval together with several smaller intervals.
This could be attributed to our surmised instability of the method-of-moments
estimator of the l(k;F )’s. Interestingly, this CR has the smallest content, but
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Fig 4. The 95% confidence regions for the median based on the thirteen methods for the
Proschan’s Boeing air-conditioning data set. The horizontal line represents the sample me-
dian.

we will see in the simulation studies in section 8 that its achieved coverage
probability of the median tends to be non-negligibly lower than the nominal
confidence level.

8. Comparison of methods via simulations

In this section we present the results of simulation studies to compare the thir-
teen CR methods listed in Table 2 in terms of their mean standardized contents
and coverage probabilities under the NMEM. Different error distributions [nor-
mal, Cauchy, uniform, Laplace, logistic, normal mixture, sinh-arcsinh (SAS),
gamma, and Weibull] and varied sample sizes,

n ∈ {10, 15, 20, 25, 30, 40, 50, 75, 100},

were utilized in the simulations. The authors are indebted to one of the ref-
erees for his/her suggestion to include the SAS distribution – the sinh-arcsinh
distribution proposed by Jones and Pewsey [13] – to model a skewed distri-
bution whose support is the whole real line �. The SAS distribution has four
parameters: (μ, σ, δ, ε), and its distribution function is given by

F (x;μ, σ, δ, ε) = Φ [sinh(δ arcsinh((x− μ)/σ)− ε)] , (8.1)

which has median of Δ = μ + σ sinh(ε/δ). The computer programs for the
simulation studies were coded in R [18]. For each combination of error distri-
bution and sample size, 20000 simulation replications were run, and with 5000
bootstrap replications for the bootstrap-based methods.

The results of these simulation studies are presented in a series of tables
and figures: Tables 3–11 and Figures 5–7. We use the results in the tables to
determine the CRs that are not competitive under the NMEM, and then present
in graphical form the performances of the competitive CRs in the figures. Table
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Table 3. Simulation results under an F that is a standard normal distribution.

Coverage Percentage Standardized Mean Content
Method 10 15 20 25 30 40 50 75 100 10 15 20 25 30 40 50 75 100

1 95.1 95.0 94.9 94.8 95.0 95.2 94.8 95.2 95.2 4.4 4.2 4.1 4.1 4.1 4.0 4.0 4.0 4.0
2 95.2 95.4 95.3 94.9 95.1 95.2 95.0 95.1 95.3 4.5 4.3 4.2 4.2 4.1 4.1 4.1 4.1 4.1
3 97.9 96.5 96.0 95.5 95.8 96.1 96.7 96.6 96.7 6.3 5.5 5.3 5.2 5.2 5.3 5.4 5.3 5.3
4 92.6 93.4 94.8 94.6 95.2 95.3 95.3 95.4 95.6 5.0 5.1 5.1 5.1 5.2 5.2 5.2 5.1 5.1
5 82.1 79.8 83.0 84.8 84.3 85.5 86.3 86.1 88.3 4.7 4.9 4.7 5.2 4.7 4.8 4.9 4.8 4.9
6 95.4 95.2 94.7 94.9 94.5 94.2 94.1 94.3 94.2 5.5 5.6 5.3 5.4 5.2 5.1 5.1 5.1 5.0
7 94.0 92.8 93.9 95.4 94.2 94.6 94.8 94.2 95.1 4.7 4.9 4.7 5.2 4.7 4.8 4.9 4.8 4.9
8 91.9 92.2 94.2 93.3 94.6 94.4 94.3 93.8 94.9 4.6 4.8 4.8 5.0 4.8 4.8 4.8 4.8 4.9
9 92.0 92.2 94.2 93.2 94.6 94.4 94.4 93.8 94.9 4.6 4.8 4.8 5.0 4.8 4.8 4.8 4.8 4.9
10 95.1 95.0 95.2 94.9 95.0 94.9 95.0 95.1 95.2 5.6 5.2 5.1 5.1 5.0 5.0 5.0 5.0 5.0
11 95.1 94.9 95.2 94.8 95.1 94.9 94.8 95.2 95.1 7.1 5.3 5.1 5.4 5.0 5.0 5.0 5.0 5.0
12 91.7 91.3 91.4 90.5 90.7 90.2 89.7 89.4 89.6 5.2 4.9 4.8 4.7 4.6 4.6 4.6 4.5 4.5
13 93.7 94.1 94.6 94.3 94.5 94.2 94.1 94.5 94.6 5.4 5.2 5.1 5.0 5.0 5.0 5.0 4.9 4.9
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Table 4. Simulation results under an F that is a standard Cauchy distribution.

Coverage Percentage Standardized Mean Content
Mtd 10 15 20 25 30 40 50 75 100 10 15 20 25 30 40 50 75 100
1 98.1 98.0 98.1 97.9 98.1 98.2 97.9 98.0 98.0 130.1 449.8 149.6 162.1 172.9 201.2 1178.8 228.2 391.0

2 95.2 95.2 95.0 95.0 95.1 95.1 95.3 95.0 95.0 143.5 16.0 11.4 10.0 9.2 8.5 8.2 7.8 7.6
3 98.0 96.4 95.8 95.6 95.5 96.3 96.9 96.4 96.5 18.9 10.1 8.5 7.9 7.6 7.4 7.5 7.0 7.0
4 96.7 97.4 97.9 98.0 98.1 98.2 98.4 98.1 98.1 9.5 8.9 8.6 8.4 8.3 8.1 8.0 7.8 7.7
5 93.5 88.2 90.2 90.9 89.5 90.1 90.5 88.7 90.8 11.9 8.5 7.3 7.9 6.8 6.7 6.6 6.3 6.4
6 98.9 98.3 97.3 97.2 96.4 95.9 95.8 95.4 95.3 36.6 10.1 8.3 8.0 7.4 7.1 6.9 6.7 6.6
7 94.3 92.8 93.7 95.5 94.0 94.8 94.9 94.2 94.9 11.9 8.6 7.3 7.9 6.8 6.7 6.7 6.3 6.4
8 92.5 92.0 94.0 93.3 94.2 94.5 94.4 93.7 94.8 10.6 8.3 7.6 7.6 7.0 6.7 6.6 6.4 6.4
9 92.5 92.0 94.0 93.3 94.1 94.5 94.5 93.6 94.8 10.6 8.3 7.6 7.6 7.0 6.7 6.6 6.4 6.4
10 95.2 94.9 94.9 95.0 94.8 95.2 95.0 95.0 95.0 15.5 9.5 8.2 7.7 7.3 7.0 6.9 6.6 6.5
11 94.9 94.8 94.9 95.0 94.9 95.2 95.0 95.1 95.0 113.4 9.5 8.2 8.5 7.3 7.0 6.9 6.6 6.5
12 95.5 94.2 93.3 92.8 92.2 91.8 91.3 90.8 90.5 12.1 8.6 7.5 7.1 6.7 6.4 6.2 6.0 5.9
13 96.9 96.0 95.8 95.7 95.4 95.7 95.5 95.2 95.1 13.9 9.4 8.1 7.6 7.3 6.9 6.7 6.5 6.4



2
3
7
6

E
.
A
.
P
eñ
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Table 5. Simulation results under an F that is a standard uniform distribution.

Coverage Percentage Standardized Mean Content
Method 10 15 20 25 30 40 50 75 100 10 15 20 25 30 40 50 75 100

1 94.4 94.5 94.8 94.8 94.9 95.0 95.2 95.0 94.9 2.6 2.5 2.4 2.4 2.4 2.3 2.3 2.3 2.3
2 95.0 95.0 95.1 95.1 95.0 95.0 95.4 95.2 95.0 2.8 2.7 2.6 2.6 2.5 2.5 2.5 2.4 2.4
3 97.8 96.4 96.0 95.5 95.8 96.1 96.7 96.3 96.4 4.0 3.9 3.8 3.8 3.9 4.0 4.2 4.1 4.2
4 88.0 88.3 90.5 90.6 91.3 92.0 92.7 93.1 93.5 3.3 3.5 3.6 3.6 3.7 3.7 3.8 3.8 3.8
5 74.2 73.8 78.6 80.8 81.1 83.1 84.7 84.8 87.7 3.1 3.5 3.4 3.8 3.6 3.7 3.8 3.7 3.9
6 93.0 93.5 93.2 93.6 93.1 93.4 93.6 93.8 93.7 3.8 4.1 3.9 4.0 3.9 3.9 4.0 4.0 4.0
7 94.1 92.7 93.7 95.4 94.3 94.6 94.8 94.1 94.8 3.1 3.5 3.4 3.8 3.6 3.7 3.8 3.7 3.9
8 91.7 92.0 94.0 93.3 94.4 94.3 94.4 93.8 94.5 3.1 3.4 3.5 3.7 3.6 3.7 3.7 3.7 3.8
9 91.8 92.0 93.9 93.3 94.4 94.2 94.3 93.7 94.6 3.1 3.4 3.5 3.7 3.6 3.7 3.7 3.7 3.8
10 94.8 94.9 95.1 94.9 95.0 94.9 95.0 94.9 94.9 3.6 3.7 3.7 3.8 3.8 3.8 3.9 3.9 3.9
11 95.1 94.8 95.1 94.6 95.0 95.0 94.9 94.9 94.9 4.1 3.7 3.7 4.0 3.8 3.8 3.9 3.9 3.9
12 88.9 89.1 89.2 89.2 89.5 89.3 89.5 89.3 89.4 3.3 3.4 3.5 3.5 3.5 3.5 3.5 3.5 3.5
13 91.6 92.9 93.8 93.5 93.8 93.6 93.8 94.1 94.1 3.5 3.6 3.7 3.7 3.8 3.8 3.8 3.8 3.9
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Table 6. Simulation results under an F that is a standard Laplace or double exponential distribution.

Coverage Percentage Standardized Mean Content
Method 10 15 20 25 30 40 50 75 100 10 15 20 25 30 40 50 75 100

1 95.9 95.5 95.3 95.2 95.1 95.1 95.1 95.1 95.3 6.0 5.8 5.7 5.7 5.7 5.6 5.6 5.6 5.6
2 95.1 95.1 95.2 95.0 94.9 95.0 95.2 94.9 95.1 6.1 5.5 5.2 5.1 5.0 4.9 4.9 4.7 4.7
3 97.8 96.5 95.9 95.7 95.7 96.1 96.8 96.2 96.5 7.8 6.1 5.6 5.3 5.2 5.1 5.2 4.9 4.8
4 95.3 96.4 97.1 97.1 97.4 97.6 97.7 97.7 98.0 5.6 5.6 5.5 5.5 5.4 5.4 5.3 5.2 5.1
5 89.8 86.3 88.6 90.2 89.3 90.2 90.6 90.1 91.7 5.5 5.3 4.8 5.3 4.7 4.7 4.6 4.4 4.4
6 97.3 97.3 96.7 96.6 96.1 96.0 95.8 95.8 95.6 6.3 6.0 5.4 5.4 5.1 4.9 4.8 4.6 4.5
7 94.2 93.0 93.7 95.6 94.1 94.6 94.9 94.0 95.1 5.5 5.3 4.8 5.3 4.7 4.7 4.6 4.4 4.4
8 92.1 92.1 94.1 93.2 94.2 94.5 94.3 93.5 94.8 5.3 5.2 5.0 5.1 4.8 4.7 4.6 4.4 4.4
9 92.1 92.0 94.1 93.3 94.2 94.5 94.5 93.6 94.8 5.3 5.2 5.0 5.1 4.8 4.7 4.6 4.4 4.4
10 94.9 95.0 95.1 95.0 94.8 94.9 95.1 94.9 95.1 6.8 5.8 5.4 5.2 5.1 4.9 4.8 4.6 4.5
11 94.8 95.1 95.0 95.0 95.0 95.0 95.0 94.9 95.1 9.6 5.8 5.4 5.6 5.1 4.9 4.8 4.6 4.5
12 93.7 93.1 92.8 92.4 92.2 92.1 91.9 91.3 91.1 6.1 5.4 5.0 4.8 4.6 4.4 4.3 4.1 4.0
13 95.1 95.3 95.2 95.2 94.9 95.0 95.2 95.1 95.1 6.4 5.7 5.3 5.1 5.0 4.8 4.7 4.5 4.4
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Table 7. Simulation results under an F that is a standard logistic distribution.

Coverage Percentage Standardized Mean Content
Method 10 15 20 25 30 40 50 75 100 10 15 20 25 30 40 50 75 100

1 95.4 95.1 95.1 95.0 95.2 94.9 95.1 95.0 95.0 7.9 7.6 7.5 7.4 7.3 7.3 7.2 7.2 7.2
2 95.1 95.2 95.3 95.1 94.8 94.8 95.3 95.1 95.2 8.0 7.5 7.3 7.2 7.1 7.0 7.0 6.9 6.9
3 97.9 96.4 96.0 95.5 95.6 96.2 96.8 96.2 96.4 10.9 9.2 8.7 8.5 8.4 8.5 8.7 8.5 8.5
4 93.5 94.2 95.3 95.1 95.6 95.9 96.0 95.5 95.9 8.4 8.4 8.5 8.5 8.5 8.5 8.4 8.4 8.4
5 84.2 81.5 83.8 86.1 84.8 86.3 87.0 86.0 88.5 7.9 8.1 7.6 8.4 7.6 7.8 7.9 7.7 7.9
6 96.1 95.8 94.9 94.9 94.6 94.4 94.3 94.4 94.0 9.3 9.2 8.6 8.7 8.4 8.3 8.2 8.2 8.1
7 94.4 92.9 93.7 95.3 94.1 94.6 94.9 93.8 94.9 7.9 8.1 7.6 8.4 7.6 7.8 7.8 7.7 7.9
8 92.5 92.2 93.9 93.2 94.4 94.4 94.5 93.4 94.6 7.7 7.9 7.8 8.1 7.8 7.8 7.7 7.8 7.8
9 92.5 92.2 93.8 93.2 94.4 94.4 94.4 93.5 94.7 7.7 7.9 7.8 8.1 7.8 7.8 7.7 7.7 7.8
10 95.2 94.9 95.1 94.8 94.9 95.0 95.1 94.8 94.9 9.6 8.7 8.4 8.3 8.2 8.1 8.1 8.0 8.0
11 94.9 94.8 95.2 94.7 94.9 94.8 95.2 94.9 95.0 12.6 8.7 8.4 8.9 8.2 8.1 8.1 8.0 8.0
12 92.4 91.5 91.3 90.7 90.4 90.3 90.3 89.8 89.7 8.8 8.1 7.8 7.7 7.5 7.4 7.3 7.3 7.2
13 94.4 94.3 94.5 94.3 94.5 94.4 94.4 94.2 94.5 9.2 8.6 8.4 8.2 8.1 8.1 7.9 7.9 7.9
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Table 8. Simulation results under a mixture of normal distributions. The mixture is .6 ∗Normal(−5, 3) + .4 ∗Normal(5, 2).

Coverage Percentage Standardized Mean Content
Method 10 15 20 25 30 40 50 75 100 10 15 20 25 30 40 50 75 100

1 92.3 90.2 87.4 85.3 82.6 78.1 73.2 61.2 50.4 24.8 23.7 23.2 22.9 22.7 22.5 22.3 22.2 22.1
2 93.2 90.8 87.8 85.7 82.8 78.3 73.8 61.6 51.2 26.9 26.3 25.6 25.1 24.6 24.1 24.0 23.3 23.0
3 97.9 96.6 95.8 95.7 95.9 96.4 96.7 96.1 96.6 37.8 37.8 38.7 40.0 41.3 43.9 46.5 47.6 48.9
4 82.3 81.4 83.8 83.5 85.4 86.9 88.3 90.0 91.5 32.0 32.9 34.4 34.8 35.8 36.7 37.4 38.4 39.1
5 65.4 64.0 69.1 71.8 73.0 76.3 79.2 82.0 85.3 30.2 34.4 35.1 39.8 38.2 40.8 42.4 43.4 45.1
6 90.7 91.5 90.1 91.1 90.5 91.6 91.9 93.1 93.6 38.3 42.6 41.6 44.4 43.7 45.1 46.0 47.5 47.0
7 94.2 93.2 93.4 95.6 94.1 94.9 94.9 94.0 95.0 30.2 34.3 35.1 39.9 38.3 40.8 42.4 43.3 45.1
8 91.4 92.5 93.2 93.3 94.0 94.5 94.2 93.7 94.7 30.0 34.3 36.0 39.4 39.3 41.2 42.6 45.3 45.5
9 91.5 92.5 93.1 93.3 94.0 94.4 94.2 93.8 94.7 30.0 34.3 36.0 39.4 39.4 41.1 42.6 45.3 45.5
10 94.9 95.3 94.8 95.0 95.0 95.3 95.0 94.9 95.2 34.7 36.4 37.8 39.2 40.5 42.2 43.5 45.1 45.8
11 94.9 95.1 94.9 95.0 95.2 95.2 95.0 94.7 95.2 39.3 36.2 37.7 39.7 40.3 41.8 42.7 44.2 45.2
12 87.5 87.6 87.1 87.5 87.5 88.4 88.7 89.2 89.3 31.9 33.5 34.6 35.5 36.4 37.6 38.4 39.6 39.9
13 91.8 93.0 92.4 92.7 92.3 92.7 93.1 93.4 93.5 33.4 35.6 37.2 38.4 39.5 41.0 42.2 43.8 44.3
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Table 9. Simulation results under a SAS distribution with μ = 0, σ = 1, δ = 1, ε = 1. See (8.1) for the SAS distribution formula.

Coverage Percentage Standardized Mean Content
Method 10 15 20 25 30 40 50 75 100 10 15 20 25 30 40 50 75 100

1 93.7 90.2 85.8 81.5 77.1 68.3 58.4 40.2 24.6 7.0 6.7 6.6 6.6 6.5 6.5 6.4 6.4 6.4
2 94.0 92.6 90.8 89.8 88.2 85.8 83.2 76.6 69.5 7.2 7.0 6.8 6.8 6.7 6.7 6.7 6.6 6.6
3 97.9 96.6 95.9 95.7 95.5 96.1 96.8 96.4 96.5 9.8 8.6 8.1 8.0 8.0 8.2 8.4 8.1 8.2
4 91.3 92.4 93.1 93.2 93.7 94.0 94.2 94.0 94.2 7.4 7.4 7.5 7.5 7.5 7.5 7.5 7.5 7.5
5 79.3 76.5 80.0 82.3 81.9 83.8 85.2 84.6 87.7 7.2 7.5 7.2 8.0 7.3 7.5 7.5 7.4 7.6
6 95.0 95.1 94.2 94.4 93.9 94.1 94.0 94.0 93.9 8.7 8.8 8.2 8.4 8.0 8.0 7.9 8.0 7.8
7 94.1 93.0 93.6 95.6 93.8 94.7 95.0 94.2 95.0 7.2 7.5 7.2 8.0 7.3 7.5 7.5 7.4 7.6
8 92.0 92.2 93.7 93.0 94.0 94.5 94.4 93.8 94.7 7.5 7.8 7.6 8.2 7.6 7.6 7.5 7.6 7.6
9 91.9 92.2 93.7 93.1 94.1 94.5 94.5 93.8 94.7 7.5 7.8 7.6 8.2 7.6 7.6 7.5 7.6 7.6
10 95.1 95.2 95.1 95.1 94.7 95.0 95.0 95.1 95.0 8.7 8.1 7.9 7.9 7.8 7.8 7.8 7.7 7.7
11 95.1 95.1 95.0 95.0 94.9 94.9 95.1 95.1 95.0 8.7 8.0 7.9 7.9 7.8 7.7 7.6 7.6 7.6
12 91.3 90.7 90.3 90.1 90.1 90.2 89.5 89.5 89.4 7.7 7.4 7.2 7.2 7.1 7.0 7.0 6.9 6.9
13 93.6 93.9 93.7 93.9 93.9 93.9 94.4 94.4 94.5 8.1 7.8 7.7 7.7 7.6 7.6 7.6 7.6 7.6
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Table 10. Simulation results under a gamma distribution with shape parameter 2 and scale parameter 1.

Coverage Percentage Standardized Mean Content
Method 10 15 20 25 30 40 50 75 100 10 15 20 25 30 40 50 75 100

1 94.3 92.0 89.8 86.0 82.5 75.8 68.5 51.3 37.3 6.1 5.9 5.8 5.7 5.7 5.6 5.6 5.6 5.6
2 94.3 93.5 93.1 91.9 91.0 89.1 88.0 83.1 78.8 6.3 5.9 5.8 5.7 5.6 5.5 5.5 5.5 5.5
3 97.7 96.7 95.8 95.7 95.8 96.1 96.8 96.5 96.4 8.3 7.2 6.8 6.7 6.7 6.7 6.9 6.7 6.8
4 91.6 92.7 93.8 93.7 94.2 94.3 94.9 94.7 95.0 6.2 6.3 6.3 6.4 6.4 6.4 6.4 6.4 6.4
5 80.0 78.7 81.4 83.6 83.5 84.8 86.2 85.8 87.9 6.1 6.3 6.0 6.7 6.1 6.2 6.2 6.1 6.3
6 95.2 95.3 94.5 94.8 94.0 93.9 94.3 94.3 94.3 7.3 7.3 6.8 6.9 6.6 6.6 6.5 6.5 6.4
7 94.1 92.9 93.7 95.6 94.2 94.4 95.0 94.3 95.0 6.1 6.3 6.0 6.7 6.1 6.2 6.2 6.1 6.3
8 91.8 92.3 94.0 93.1 94.3 94.2 94.6 93.8 94.8 6.3 6.5 6.3 6.7 6.3 6.2 6.2 6.2 6.2
9 91.8 92.2 94.0 93.2 94.4 94.3 94.5 93.7 94.8 6.3 6.5 6.3 6.7 6.3 6.2 6.2 6.2 6.2
10 94.8 95.3 94.8 95.0 95.1 94.9 95.2 95.2 94.9 7.4 6.8 6.6 6.5 6.5 6.4 6.4 6.4 6.3
11 95.0 95.2 95.0 95.1 95.1 95.0 95.2 95.2 94.8 7.4 6.7 6.6 6.6 6.4 6.4 6.3 6.3 6.3
12 91.5 91.3 90.8 90.6 90.3 89.7 90.1 89.6 89.6 6.6 6.3 6.1 6.0 5.9 5.8 5.8 5.7 5.7
13 93.8 94.1 94.1 94.1 94.2 93.9 94.5 94.6 94.4 6.8 6.6 6.5 6.4 6.4 6.3 6.3 6.3 6.3
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Table 11. Simulation results under a Weibull distribution with shape parameter .5 and scale parameter 1.

Coverage Percentage Standardized Mean Content
Method 10 15 20 25 30 40 50 75 100 10 15 20 25 30 40 50 75 100

1 93.2 82.2 67.1 52.1 38.4 19.8 8.9 1.4 0.3 15.0 15.1 15.5 15.5 15.7 16.0 16.1 16.4 16.6
2 90.8 85.2 80.1 75.8 69.9 61.6 52.7 35.9 23.3 16.0 11.3 10.2 9.6 9.3 8.9 8.7 8.5 8.3
3 98.0 96.3 96.0 96.0 95.7 96.1 96.8 96.3 96.6 13.3 8.9 7.7 7.1 6.9 6.7 6.8 6.3 6.3
4 90.2 91.0 92.0 91.9 92.4 91.7 92.2 90.9 90.9 6.8 6.3 6.0 5.7 5.6 5.3 5.2 4.9 4.8
5 73.8 71.4 76.7 77.8 78.8 80.6 82.5 83.4 86.0 9.0 7.6 6.6 7.1 6.2 6.1 6.0 5.7 5.7
6 97.0 96.1 95.5 95.5 95.1 94.3 94.5 94.4 94.3 11.3 9.2 7.9 7.6 7.1 6.6 6.4 6.2 6.0
7 93.8 92.6 93.8 95.8 94.2 94.5 94.9 94.1 94.9 9.0 7.6 6.6 7.1 6.2 6.1 6.0 5.7 5.7
8 92.0 91.9 93.7 93.6 94.3 94.2 94.1 93.6 94.7 10.0 8.7 7.4 8.0 6.7 6.3 6.2 6.1 5.8
9 92.0 91.9 93.7 93.6 94.3 94.3 94.2 93.7 94.7 10.0 8.7 7.4 8.1 6.8 6.3 6.2 6.1 5.8
10 95.1 94.7 95.1 95.3 94.9 94.9 95.0 94.9 95.0 11.2 8.4 7.5 6.9 6.7 6.4 6.2 5.9 5.8
11 95.3 94.8 95.0 95.2 95.0 94.9 95.0 95.0 95.1 8.2 7.9 7.3 6.3 6.6 6.1 5.9 5.7 5.7
12 93.0 91.3 91.3 91.2 90.7 90.2 90.1 89.7 89.5 7.9 6.6 6.1 5.8 5.7 5.4 5.4 5.2 5.1
13 94.9 94.2 94.3 94.5 94.1 94.2 94.3 94.2 94.4 8.2 7.0 6.5 6.2 6.1 5.8 5.8 5.7 5.6
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3 summarizes the standardized mean lengths and coverage probabilities of the
different CRs for each of the sample sizes under a normal error distribution.
Observe that the T -statistic based CR, Γ1, performs best in terms of mean
length with a coverage probability close to the desired nominal confidence level
of 95%. This domination is expected from theory. Methods Γ5 and Γ12 have
coverage probabilities that are way below the nominal confidence level. Table
4 presents the results under the Cauchy error distribution. Again, Γ5 and Γ12

did not perform well in terms of their coverage probabilities, while Γ1 has an
unacceptable mean length. Γ2 and Γ11 also have inflated mean lengths when
the sample size is small. Table 5 is for a uniform error distribution and this
reveals that Γ4, Γ6 and Γ13 have slightly lower coverage probabilities relative
to the nominal confidence level. Table 6, which is for the Laplace distribution,
and Table 7, which is for the logistic distribution, both indicate that Γ5 and Γ12

are not competitive. Table 8 for the normal mixture distribution leads to the
elimination of CRs Γ1, Γ2, and Γ4 due to their poor coverage probabilities. Γ6

and Γ13 also have slightly degraded coverage probabilities. Table 9, which is for
the SAS distribution, a skewed distribution on the whole real line, eliminates
Γ1 and Γ2, and Γ6’s coverage probability is again slightly degraded. Table 10,
which is for the gamma distribution, again demonstrates that Γ1 and Γ2 should
not be used at all when the distribution is skewed, and Table 11, which is for the
Weibull distribution, also leads to the elimination of Γ4 due to its poor coverage
probability. Therefore, examining these tables, the CRs that are competitive
under the NMEM are Γ3, Γ7, Γ8, Γ9, Γ10, and Γ13.

To get a better picture of the performances of these six competitive CRs,
we plotted their standardized mean contents and coverage probabilities with
respect to the sample size, and these plots are presented in Figure 5, Figure 6,
and Figure 7. Examining these plots we see that the sign-based test, Γ3, and the
procedure focused on symmetric distributions, Γ10, are consistently satisfying
the confidence level requirement among all the distributions considered, includ-
ing the skewed SAS, gamma, and Weibull distributions, with Γ3 tending to be
more conservative. Γ10, which as pointed out earlier is a randomized version of
Γ3, has coverage probability that is very close to the nominal confidence level,
hence it also has smaller content compared to Γ3. The PCT-Bootstrap Γ7, the
BC-Bootstrap Γ8, and the BCa-Bootstrap Γ9, tended to be liberal, and so is the
adaptive Γ13, though the latter could sometimes be conservative such as when
the distribution is Cauchy, or it could also be more liberal than Γ7, Γ8 and Γ9

as in the case for the mixture of normal distribution. Content-wise, Γ7, Γ8, Γ9,
and Γ13 almost have the same performances, with Γ9 appearing to be having
a tad smaller content. Due to the lower achieved coverage probabilities, these
four CRs tended to have smaller contents compared to Γ3 and Γ10, with Γ3 pos-
sessing the largest content since it is the most conservative. We note the impact
of the plug-in procedure for Γ13. Since we did not know l(k;F ) we plugged-in
an estimator for this function which utilized the empirical distribution function
and which also used the same sample data, hence the data double-dipping. The
impact of this plug-in and double-dipping is to make the procedure more liberal,
except under the Cauchy distribution. Note that in contrast, the randomized
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Fig 5. Plots of the results of simulation studies with 20000 replications over a set of sample
sizes (n ∈ {10, 15, 20, 25, 30, 40, 50, 75, 100}) for normal, Cauchy, uniform, Laplace, logistic,
normal mixture, SAS, gamma(2,1), and Weibull(.5,1) distributions. The plots pertaining
to the lengths (contents) utilized the standardized mean length, which is the mean length
multiplied by

√
n. These are for the six chosen CRs (Γ3, Γ7, Γ8, Γ9, Γ10, and Γ13) out of

the thirteen CRs. Refer to Table 2 for their specific description.
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Fig 6. Simulation results ... continued1
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Fig 7. Simulation results ... continued2



Median confidence regions 2387

CR Γ10 did not need this plug-in procedure and we observe that its achieved
coverage probability is very close to the nominal confidence level for all the
distributions considered.

9. Some concluding remarks

This paper revisits the classical problem of constructing CRs for the median
under the NMEM. This problem is also relevant in the study of complex en-
gineering systems where it is difficult to determine the exact functional form
of the system’s lifetime distribution, hence one is forced to utilize a nonpara-
metric model for this distribution. In addition, this problem could also arise in
economic settings where interest could be on the median of an economic indi-
cator, such as household income which has a highly right-skewed distribution.
Several existing nonparametric CRs for the median were reviewed. Included in
these ‘off-the-shelf’ methods are the T -statistic based CR and the Wilcoxon
signed-rank statistic based CR. These two methods are arguably the default
methods by those trying to infer about the ‘center’ of a population distribution.
Also included are the computationally-intensive bootstrap-based CRs such as
the percentile, BC, and BCa methods (see [6]).

The adequacy of a CR is usually based on its expected content, which in
one-dimensional settings is its Lebesgue measure, aside from the requirement
that it satisfies a specified nominal confidence level. In our development of the
CR for the median, we therefore aspired to have small mean content aside from
fulfilling the confidence level requirement. Under the NMEM, invariance under
location-shift and monotone transformation were invoked to reduce the problem
to simply finding good equivariant CRs. Within the class of equivariant CRs,
we obtained the best CRs by minimizing the expected content for subclasses of
the class of all continuous distribution functions. Thus, there is a best CR when
focused on the subclass of symmetric distributions (Γ10) and a best CR for the
subclass of exponential distributions (Γ11). We also developed fully nonparamet-
ric data-adaptive CRs under the NMEM. Our development of these new CRs
relied on a ‘bottom-to-top’ approach since we just start by imposing reasonable
equivariance properties on these CRs and then optimizing their mean contents.
This approach is in contrast with the conventional one of first constructing piv-
otal quantities from test statistics and/or estimators of the median and then
‘pivoting’ to construct the CRs.

Based on the simulation studies, we found that both the T -statistic based
CR, Γ1, and the Wilcoxon signed-rank statistic based CR, Γ2, should not be
employed under the NMEM. The sign-statistic based CR, Γ3, and the optimal
procedure focused towards symmetric distributions, Γ10, both fulfill the confi-
dence level requirement, with Γ3 being somewhat conservative, hence tending to
have higher content. Among the other CR methods, the bootstrap procedures
Γ7 (PCT), Γ8 (BC), and Γ9 (BCa), and the adaptive procedure Γ13, were the
most competitive among all scenarios, but these four also tended to be a tad
more liberal than either Γ3 and Γ10, hence possessed smaller contents. If one
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is to insist that the desired nominal confidence level should be achieved, then
Γ10 appears to be the best, or if one is opposed to using randomized CRs, then
Γ3 should be preferred. However, it is our opinion that abhorrence to the use
of randomized procedures is not mathematically justifiable nor defensible. The
use of randomized procedures allows for better methods and such randomized
strategies are in fact the bulwark of statistical decision theory and also game
theory. See also the discussion in section 3 of [8] on the use and implementation
of randomized p-values and test functions. On the other hand, if one could tol-
erate a small degradation in the achieved coverage probability, then Γ7–Γ9 and
Γ13 appear to be reasonable choices among these different CR procedures.

Finally, we close by noting the power of invariance in the development of
statistical procedures, specifically the construction of CRs for the median in
a nonparametric setting which was done in this paper. Invariance arguments
are also applicable in developing CRs for the median when the family of dis-
tributions is restricted to those that are symmetric. It also holds promise when
dealing with more complex data structures, such as the presence of censored
data which usually arise in biomedical situations. But, of particular interest to
us and a major motivation for this paper, is the use of invariance to enable the
construction of optimal simultaneous confidence regions when there are multiple
parameters of interest. This is an ongoing research project that we are currently
exploring.
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during the first author’s seminar presentation of this work at the Úniversite
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