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subject to missingness. The proposed empirical likelihood ratio test and the
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1. Introduction

Pretest-posttest studies are commonly used to evaluate the effect of a treat-
ment or an intervention. In randomized pretest-posttest studies, subjects are
randomly assigned to one of the treatment group or the control group. The out-
come of interest is first measured at the baseline prior to the treatment (pretest)
along with certain auxiliary variables and then again at the end of the study
after the treatment (posttest). The main parameter of interest is the treatment
effect defined as the difference in change of mean responses between the treat-
ment and the control groups. Inferences on the treatment effect for randomized
pretest-posttest studies can be done by classic statistical methods such as the
two-sample t-test, the paired t-test, analysis of covariance, or the generalized es-
timating equations. See, for instance, Brogan and Kutner [2], Laird [16], Stanek
[25], Follmann [9], Singer and Andrade [24], Yang and Tsiatis [28], Bonate [1],
among others. By adopting the framework of potential outcomes and treating
the unobservable counterfactual outcomes as missing data, Leon et al. [17] con-
structed semiparametric estimators of the treatment effect based on the missing
data theory of Robins et al. [21]. Chen et al. [5, 6] considered an imputation-
based approach under the same framework.

The posttest outcomes are often subject to missingness. Under the assump-
tion of missing at random as defined by Rubin [23], Davidian et al. [8] studied
semiparametric estimation of the treatment effect and constructed a class of
augmented inverse probability weighted estimators (Robins et al. 21) by deriv-
ing the influence functions for all regular and asymptotically linear estimators
under the setting they considered. The augmented inverse probability weighted
estimators require working models for both the missingness probability and the
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outcome regression. Huang et al. [15] proposed an empirical likelihood method
for randomized pretest-posttest studies with missing data.

The randomization step in pretest-posttest research designs is often not fea-
sible in practice. In many social studies on the effectiveness of an intervention,
it is mandatory that participants are allowed to choose to take the intervention
or not. This is also the case for many medical studies involving two alterna-
tive treatments. For such self-selection-based treatment assignments, inference
procedures developed for randomized designs are no longer suitable.

This paper presents an empirical likelihood approach to non-randomized
pretest-posttest studies when the posttest outcomes are also subject to miss-
ingness. We develop a unified framework for both testing and estimation of
the treatment effect and the inferential procedures are multiply robust in the
sense that multiple working models are allowed for the propensity score of treat-
ment assignment, the missingness probability and the outcome regression, and
the validity of testing and estimation requires only a certain combination of
those multiple working models to be correctly specified. Multiply robust infer-
ences were first introduced by Han and Wang [14] for missing data problems.
The methods have attracted considerable research interests due to added lay-
ers of protection against possible misspecifications of working models. See, for
instance, Chan and Yam [3], Han [11, 10, 12, 13], Chen and Haziza [7], among
others. Multiply robust methods usually lead to smaller biases under complete
misspecification of all working models (Han 11, 12). Our general framework fol-
lows the two-sample empirical likelihood formulation with estimating equations
(Qin and Lawless 19, Owen 18, Qin and Zhang 20, Huang et al. 15, Wu and Yan
27). However, the use of multiple working models for the propensity score of
treatment assignment, the missingness probability and the outcome regression
makes our proposed approach much more challenging in terms of theoretical
development.

In addition to multiple robustness, the proposed empirical likelihood ratio
test leads to data-adaptive confidence intervals for the treatment effect that
give better finite-sample coverage probabilities compared to those based on the
Wald statistic, and the proposed estimator of treatment effect always falls into
the corresponding parameter space by construction.

2. Notation and setup

The setup for this paper is a generalization of that used by Davidian et al. [8]
and Huang et al. [15] from randomized trials to non-randomized trials. Let T
denote the treatment indicator with T = 1 if the subject chooses treatment
and T = 0 if the subject selects control. Let Y1 and Y0 denote, respectively,
the posttest potential outcomes that would have been observed had a subject
chosen treatment (T = 1) and control (T = 0). Let Y = TY1 + (1 − T )Y0

be the actual observed posttest outcome. Let Z denote a vector of variables,
including the pretest outcome as well as auxiliary variables, collected at the
baseline before the treatment or intervention. After the treatment assignment
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but prior to the end of the study, some additional variables Xt for T = t,
t = 0, 1, are also measured during the follow-up, including possible intermediate
outcome measures. To accommodate possible missingness on Y , let Rt denote
the indicator variable of observing Y for subjects in group T = t, t = 0, 1, with
Rt = 1 if Y is observed and Rt = 0 otherwise. For a random sample of size n
at the baseline, let n1 =

∑n
i=1 Ti and n0 = n − n1 be the numbers of subjects

in the treatment group and in the control group, respectively. In addition, let
n11 =

∑
i:Ti=1 R1i and n01 =

∑
i:Ti=0 R0i be the numbers of subjects in the

treatment group and in the control group with Y observed, respectively. The
data structure and the notation for all associated variables are shown in Table
1, which is similar to Table 1 of Huang et al. [15], after suitable re-ordering of
subjects within each group. The parameter of interest is the treatment effect
defined as δ = E(Y1)−E(Y0). We make the following standard assumptions on
the treatment assignment and the missing data mechanism.

Table 1

Data Structure for Pretest-Postest Studies With Missing Responses

Intermediate Missingness Posttest
Subject Baseline Group Variables Indicators Outcomes
i Z T X1 X0 R1 R0 Y1 Y0

1 z1 1 x11 ?? 1 ?? y11 ??
..
.

..

.
..
.

..

.
..
.

..

.
..
.

..

.
..
.

n11 zn11 1 x1n11 ?? 1 ?? y1n11 ??
n11 + 1 zn11+1 1 x1(n11+1) ?? 0 ?? ? ??

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
n1 zn1 1 x1n1 ?? 0 ?? ? ??
n1 + 1 zn1+1 0 ?? x0(n1+1) ?? 1 ?? y0(n1+1)

.

..
.
..

.

..
.
..

.

..
.
..

.

..
.
..

.

..
n1 + n01 zn1+n01 0 ?? x0(n1+n01) ?? 1 ?? y0(n1+n01)

n1 + n01 + 1 zn1+n01+1 0 ?? x0(n1+n01+1) ?? 0 ?? ?

...
...

...
...

...
...

...
...

...
n zn 0 ?? x0n ?? 0 ?? ?

??: counterfactual values not observed in the actual world. ?: missing values.

Assumption 1 (No unmeasured confounders). The treatment assignment is
independent of the potential outcomes and the intermediate measurements given
all baseline variables, i.e., T ⊥ (Y1, Y0,X1,X0, R1, R0) | Z.

Assumption 2 (Missing at random). Missingness of the posttest outcome is
independent of the outcome itself given all the baseline and intermediate mea-
surements and the treatment assignment, i.e., Rt ⊥ Yt | (Z, T = t,Xt), t = 0, 1.

Assumption 3 (Positivity). The propensity score for treatment assignment
and the missingness probability satisfy (i) 0 < P(T = 1 | Z) < 1 and (ii)
0 < P(Rt = 1 | Z, T = t,Xt) < 1, t = 0, 1.
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Let π(Z) = P(T = 1 | Z) be the propensity score of treatment assignment
and �t(Z,Xt) = P(Rt = 1 | Z, T = t,Xt) be the non-missingness probability
for a subject in the group with T = t, t = 0, 1. The combination of Assumption 1
and Assumption 3(i) is referred to as strongly ignorable treatment assignment
by Rosenbaum and Rubin [22]. Assumption 3(ii) implies that there is a positive
probability of observing the complete data for each of the treatment and control
groups.

3. Empirical likelihood ratio test for the treatment effect

3.1. Known propensity scores

We propose empirical likelihood ratio tests for H0 : δ = δ∗ against H1 : δ �= δ∗,
where δ∗ is a pre-specified value. Testing the existence of a treatment effect
then corresponds to the special case with δ∗ = 0. For ease of presentation and
to facilitate asymptotic development, we first consider the less practical scenario
in Section 3.1 where the propensity score π(Z) is assumed to be known. The
scenario with unknown propensity score is considered in Section 3.2.

(i) Single working model for the missingness probability. Suppose that the
missingness probability �t(Z,Xt) is correctly modeled by �t(Z,Xt;αt) such
that �t(Z,Xt;αt∗) = �t(Z,Xt) for some αt∗, t = 0, 1. Let α̂t be the estimator
of αt∗ derived by maximizing the likelihood function∏

i:Ti=t

{�ti(αt)}Rti{1−�ti(αt)}1−Rti , (3.1)

where for notational simplicity we used �ti(αt) to denote �t(Zi,Xti;αt). It is
easy to verify that the inverse probability weighted estimator

1

n

∑
i:Ti=1,R1i=1

Y1i

π(Zi)�1i(α̂1)
− 1

n

∑
i:Ti=0,R0i=1

Y0i

{1− π(Zi)}�0i(α̂0)

is consistent for δ. This motivates the use of constraint (3.4) in the discussions
below for our proposed empirical likelihood method.

Let {wi : Ti = 1, R1i = 1} be a discrete probability measure over the set
of subjects {i : Ti = 1, R1i = 1} with observed posttest outcomes; let {vi :
Ti = 0, R0i = 1} be a discrete probability measure over the set of subjects
{i : Ti = 0, R0i = 1}. The empirical likelihood function for the combined sample
is defined as

L(w,v) =
∏

i:Ti=1,R1i=1

wi

∏
i:Ti=0,R0i=1

vi . (3.2)

Maximizing L(w,v) with respect to wi and vi under the normalization con-
straints

wi > 0,
∑

i:Ti=1,R1i=1

wi = 1, vi > 0,
∑

i:Ti=0,R0i=1

vi = 1 (3.3)
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leads to ŵi = 1/n11 and v̂i = 1/n01. The constraint induced by the parameter
of interest, the treatment effect δ, is constructed as

n11

n

∑
i:Ti=1,R1i=1

wi
Y1i

π(Zi)�1i(α̂1)
− n01

n

∑
i:Ti=0,R0i=1

vi
Y0i

{1− π(Zi)}�0i(α̂0)
= δ∗

(3.4)
for the given δ∗.

The formulation described above follows the general framework of empirical
likelihood with estimating equations (Qin and Lawless 19). It provides a power-
ful platform for incorporating additional constraints induced by working models
for the treatment assignment, the missingness probability and the outcome re-
gression to construct multiply robust test and estimation procedures.

Let w̃i and ṽi be the maximizer of L(w,v) under both the normalization
constraint (3.3) and the parameter constraint (3.4). The empirical likelihood
ratio statistic for testing H0 : δ = δ∗ is computed as

W (δ∗) ≡ −2

⎛
⎝ ∑

i:Ti=1,R1i=1

log
w̃i

ŵi
+

∑
i:Ti=0,R0i=1

log
ṽi
v̂i

⎞
⎠ , (3.5)

where the dependence of W (δ∗) on δ∗ is through the dependence of w̃i and
ṽi on δ∗. Let χ

2
1 denote the chi-square distribution with one degree of freedom.

The following result gives the asymptotic distribution of W (δ∗) under H0. Proof
of the theorem and the exact expression for the positive scaling factor σ1 are
provided in the Appendix.

Theorem 3.1. Under Assumptions 1–3 with known π(Z) and correctly specified
�t(αt) for �t(Z,Xt), t = 0, 1, the empirical likelihood ratio statistic W (δ∗) has
an asymptotic distribution σ1χ

2
1 under H0 : δ = δ∗.

A (1 − α)-level empirical likelihood ratio confidence interval for δ can be
constructed as {δ : W (δ) � σ̂1χ

2
1,(1−α)}, where σ̂1 is the estimated value of σ1

and χ2
1,(1−α) is the 100(1−α)% percentile of the chi-square distribution with one

degree of freedom. One advantage of the empirical likelihood ratio confidence
interval compared to the Wald confidence interval is that it is data-driven and
range respecting and has better coverage probability for δ with moderate sample
sizes, which are shown in our simulation studies.

The major computational task for calculating W (δ∗) is to maximize (3.2)
subject to (3.3) and (3.4) with the given δ∗. To derive the w̃i and ṽi, we follow
Wu and Yan [27] and reformulate the constrained maximization problem as to
maximize

1

2

∑
i:Ti=1,R1i=1

logwi +
1

2

∑
i:Ti=0,R0i=1

log vi

subject to wi > 0, vi > 0 and

1

2

∑
i:Ti=1,R1i=1

wi +
1

2

∑
i:Ti=0,R0i=1

vi = 1,
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1

2

∑
i:Ti=1,R1i=1

wig̃1i +
1

2

∑
i:Ti=0,R0i=1

vig̃0i = 0,

where

g̃1i =

(
1

n11

n
Y1i

π(Zi)�1i(α̂1)
− δ∗

2

)
, g̃0i = −

(
1

n01

n
Y0i

{1−π(Zi)}�0i(α̂0)
+ δ∗

2

)
.

It can be shown through the standard Lagrange multiplier method that the
maximizers are given by

w̃i =
2

n11 + n01

1

1 + ρ̃Tg̃1i
, {i : Ti = 1, R1i = 1},

ṽi =
2

n11 + n01

1

1 + ρ̃Tg̃0i
, {i : Ti = 0, R0i = 1},

where the Lagrange multiplier ρ̃ satisfies∑
i:Ti=1,R1i=1

(1 + ρ̃Tg̃1i)
−1g̃1i +

∑
i:Ti=0,R0i=1

(1 + ρ̃Tg̃0i)
−1g̃0i = 0.

The solution ρ̃ can be solved by using the modified Newton-Raphson algorithm
in Chen et al. [4] or Han [11].

(ii) Multiple working models for the missingness probability. We now consider
the case where there are multiple working models for the missingness probability
and propose an empirical likelihood ratio test for H0 that is valid if one of the
working models in each of the treatment and control groups is correctly specified.

Let Pt = {�(j)
t (α

(j)
t ), j = 1, . . . , Jt} be a set of working models for �t(Z,Xt)

and α̂
(j)
t be the estimator for α

(j)
t by maximizing (3.1) with �t(αt) replaced by

�
(j)
t (α

(j)
t ), j = 1, . . . , Jt, t = 0, 1. The two sets of working models are postulated

independently with possibly different numbers of models J1 and J0.
It can be verified by following similar arguments in Han and Wang [14] that

for any h1(Z,X1) and h0(Z,X0), assuming all relevant expectations exist, the
following equalities hold:

E
(
w(Z,X1)[h1(Z,X1)− E{h1(Z,X1)}] | T = 1, R1 = 1

)
= 0,

E (v(Z,X0)[h0(Z,X0)− E{h0(Z,X0)}] | T = 0, R0 = 1) = 0,
(3.6)

where
w(Z,X1) = 1/{π(Z)�1(Z,X1)} and

v(Z,X0) = 1/[{1− π(Z)}�0(Z,X0)].

It follows that multiple working models in P1 and P0 can be simultaneously

accommodated by taking h1(Z,X1) to be π(Z)�
(j)
1 (α

(j)
1 ) and h0(Z,X0) to be

{1 − π(Z)}�(j)
0 (α

(j)
0 ) to construct the following empirical version of (3.6) as

constraints for the empirical likelihood inference,∑
i:Ti=1,R1i=1

wi

{
π(Zi)�

(j)
1i (α̂

(j)
1 )− θ̂

(j)
1 (α̂

(j)
1 )

}
= 0, j = 1, . . . , J1, (3.7)
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∑
i:Ti=0,R0i=1

vi

[
{1− π(Zi)}�(j)

0i (α̂
(j)
0 )− θ̂

(j)
0 (α̂

(j)
0 )

]
= 0, j = 1, . . . , J0, (3.8)

where

θ̂
(j)
1 (α

(j)
1 ) = n−1

∑
i:Ti=1

�
(j)
1i (α

(j)
1 ) and θ̂

(j)
0 (α

(j)
0 ) = n−1

∑
i:Ti=0

�
(j)
0i (α

(j)
0 )

are, respectively, consistent estimators for E{π(Z)�
(j)
1 (α

(j)
1 )} and E[{1−π(Z)}

�
(j)
0 (α

(j)
0 )].

Under the current setting, the empirical likelihood ratio statistic for the treat-
ment effect δ is computed as W (δ) specified in (3.5) with ŵi and v̂i maximizing
L(w,v) subject to the normalization constraint (3.3) and the model constraints
(3.7) and (3.8), and w̃i and ṽi maximizing L(w,v) subject to (3.3), (3.7), (3.8)
plus an additional parameter constraint given by∑

i:Ti=1,R1i=1

wiY1i −
∑

i:Ti=0,R0i=1

viY0i = δ. (3.9)

Note that the parameter constraint (3.9) has a different form compared to (3.4),
due to the inclusion of model constraints (3.7) and (3.8). The asymptotic dis-
tribution of the empirical likelihood ratio statistic W (δ∗) under H0 : δ = δ∗ is
presented in the following theorem. The proof and the exact expression for the
positive scaling factor σ2 are provided in the Appendix.

Theorem 3.2. Under Assumptions 1–3 with known π(Z) and also assuming
that both P1 and P0 contain a correctly specified model, the empirical likelihood
ratio statistic W (δ∗) has an asymptotic distribution σ2χ

2
1 under H0 : δ = δ∗.

The empirical likelihood ratio confidence interval for the treatment effect can
be constructed similarly to before. Theorem 3.2 states that the proposed test
is multiply robust in the sense that it is valid if one of the working models is
correctly specified in each of P1 and P0. It can be shown that ŵi = 1/{n11(1+
ρ̂T
1 ĝ1i)} for {i : Ti = 1, R1i = 1} and v̂i = 1/{n01(1 + ρ̂T

0 ĝ0i)} for {i : Ti =
0, R0i = 1}, where ρ̂1 and ρ̂0 satisfy, respectively, the equations

∑
i:Ti=1,R1i=1

ĝ1i
1 + ρ̂T

1 ĝ1i
= 0,

∑
i:Ti=0,R0i=1

ĝ0i
1 + ρ̂T

0 ĝ0i
= 0 ,

with

ĝ1i =
{
π(Zi)�

(1)
1i (α̂

(1)
1 )− θ̂

(1)
1 (α̂

(1)
1 ), . . . ,

π(Zi)�
(J1)
1i (α̂

(J1)
1 )− θ̂

(J1)
1 (α̂

(J1)
1 )

}T

,

ĝ0i =
[
{1− π(Zi)}�(1)

0i (α̂
(1)
0 )− θ̂

(1)
0 (α̂

(1)
0 ), . . . ,

{1− π(Zi)}�(J0)
0i (α̂

(J0)
0 )− θ̂

(J0)
0 (α̂

(J0)
0 )

]T
.
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It follows from Han and Wang [14] that, when both P1 and P0 contain a cor-
rectly specified model, we have ŵi = {nπ(Zi)�1(Zi,X1i)}−1{1+Op(n

−1/2)} for
{i : Ti = 1, R1i = 1} and v̂i = [n{1− π(Zi)}�0(Zi,X0i)]

−1{1 +Op(n
−1/2)} for

{i : Ti =0, R0i =1}. Therefore, the estimator computed as
∑

i:Ti=1,R1i=1 ŵi ×
Y1i −

∑
i:Ti=0,R0i=1 v̂iY0i is consistent for δ, which justifies the use of the con-

straint (3.9) for defining W (δ). Following the same arguments as in Wu and Yan
[27], we have

w̃i =
2

n11 + n01

1

1 + ρ̃Tg̃1i
, {i : Ti = 1, R1i = 1},

ṽi =
2

n11 + n01

1

1 + ρ̃Tg̃0i
, {i : Ti = 0, R0i = 1},

where ρ̃ satisfies

∑
i:Ti=1,R1i=1

g̃1i
1 + ρ̃Tg̃1i

+
∑

i:Ti=0,R0i=1

g̃0i
1 + ρ̃Tg̃0i

= 0 ,

and

g̃1i =

⎛
⎜⎜⎝

1/2
Y1i − δ∗/2

ĝ1i
0J0×1

⎞
⎟⎟⎠ , g̃0i =

⎛
⎜⎜⎝

−1/2
−Y0i − δ∗/2

0J1×1

ĝ0i

⎞
⎟⎟⎠ .

The three Lagrange multipliers ρ̂1, ρ̂0 and ρ̃ can all be calculated using a
Newton-Raphson-type algorithm similar to the one described in Chen et al.
[4] and Han [11].

For the special case J1 = J0 = 1, the scaling constant σ2 in Theorem 3.2 does
not reduce to σ1 in Theorem 3.1 due to different formulations of constraints.
In this special case, the formulation in Section 3.1 involves computing w̃i and
ṽi, whereas the formulation in Section 3.2 involves computing ŵi, v̂i, w̃i and
ṽi. The former formulation can only deal with one model for the missingness
probability and the latter can deal with multiple models.

3.2. Unknown propensity scores

(i) Single working model for the propensity score. We now consider the more
practical scenario where the propensity score of treatment assignment π(Z) is
unknown. Let π(Z;γ) denote a parametric model for π(Z) with parameter γ
and πi(γ) = π(Zi;γ). Let γ̂ be the estimator of γ derived by maximizing the
likelihood function

n∏
i=1

{πi(γ)}Ti{1− πi(γ)}1−Ti . (3.10)

With the single correctly specified model π(Z;γ), the empirical likelihood ratio
statistic W (δ) can be calculated in the same way as in Section 3.1 but with
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π(Zi) substituted by πi(γ̂). Depending on whether there is a single model or
there are multiple working models for the missingness probability, we have the
following two theorems parallel to Theorems 3.1 and 3.2. The exact expressions
for σ3 and σ4 are given in the Appendix but detailed proofs are omitted due to
similarities to the proofs of Theorems 3.1 and 3.2.

Theorem 3.3. Under Assumptions 1–3 and also assuming that π(γ) and �t(αt)
are correctly specified models for π(Z) and �t(Z,Xt), respectively, t = 0, 1, the
empirical likelihood ratio statistic W (δ∗) has an asymptotic distribution σ3χ

2
1

under H0 : δ = δ∗.

Theorem 3.4. Under Assumptions 1–3 and also assuming that π(γ) is a cor-
rectly specified model for π(Z) and both P1 and P0 contain a correctly specified
model, the empirical likelihood ratio statistic W (δ∗) has an asymptotic distribu-
tion σ4χ

2
1 under H0 : δ = δ∗.

(ii) Multiple working models for the propensity score. When multiple working
models are considered for the unknown propensity score π(Z), construction of
an empirical likelihood ratio test becomes significantly more challenging since
using the estimated propensity scores from one particular working model will not
lead to valid results. The general concept of multiple robustness assumes that
one of the multiple working models is correctly specified but does not require
the identification of the correct model.

We propose a two-step strategy to construct the empirical likelihood ratio
test on the treatment effect. The first step accommodates the multiple working
models for π(Z) and produces weights that are a consistent estimate for π(Z)
when one of the working models is correctly specified. The second step incor-
porates multiple working models for the missingness probability similar to the
procedures presented in Section 3.1 by using the weights obtained from the first
step. Such a two-step procedure ensures multiple robustness of the proposed
test.

Let Q = {π(l)(γ(l)), l = 1, . . . , L} denote a set of working models for π(Z).
An estimator γ̂(l) for γ(l) can be derived by maximizing (3.10) but with π(γ)
replaced by π(l)(γ(l)). For the first step, we consider empirical likelihood weights
pi for subjects in the treatment group {i : Ti = 1} and qi for the subjects in
the control group {i : Ti = 0}. The estimated weights p̂i and q̂i are obtained
by maximizing the empirical likelihood function L(p, q) =

∏
i:Ti=1 pi

∏
i:Ti=0 qi

subject to the constraints

pi > 0,
∑

i:Ti=1

pi = 1, qi > 0,
∑

i:Ti=0

qi = 1,

∑
i:Ti=1

piπ
(l)
i (γ̂(l)) = n−1

n∑
i=1

π
(l)
i (γ̂(l)), l = 1, . . . , L, (3.11)

∑
i:Ti=0

qiπ
(l)
i (γ̂(l)) = n−1

n∑
i=1

π
(l)
i (γ̂(l)), l = 1, . . . , L.
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The last two sets of constraints in (3.11) are, respectively, the empirical versions
of moment equalities

E (p(Z)[h(Z)− E{h(Z)}] | T = 1) = 0,

E (q(Z)[h(Z)− E{h(Z)}] | T = 0) = 0,

with p(Z) = 1/π(Z), q(Z) = 1/{1 − π(Z)} and h(Z) taken to be π(l)(γ(l)),
l = 1, . . . , L.

The most important consequence from the proposed first step is that if Q con-
tains a correctly specified model for π(Z), then (np̂i)

−1 = π(Zi){1+Op(n
−1/2)}

for {i : Ti = 1} and (nq̂i)
−1 = {1 − π(Zi)}{1 + Op(n

−1/2)} for {i : Ti = 0},
as shown in Han and Wang [14]. This leads to the second step to obtain the
final weights ŵi and v̂i similar to the procedures described in Section 3.1 but
replacing π(Zi) for {i : Ti = 1} and 1 − π(Zi) for {i : Ti = 0} by (np̂i)

−1 and
(nq̂i)

−1, respectively. More specifically, we replace constraints (3.7) and (3.8)
based on missingness probability working models by

∑
i:Ti=1,R1i=1

wi

{
(np̂i)

−1�
(j)
1i (α̂

(j)
1 )− θ̂

(j)
1 (α̂

(j)
1 )

}
= 0, j = 1, . . . , J1, (3.12)

∑
i:Ti=0,R0i=1

vi

{
(nq̂i)

−1�
(j)
0i (α̂

(j)
0 )− θ̂

(j)
0 (α̂

(j)
0 )

}
= 0, j = 1, . . . , J0 . (3.13)

The w̃i and ṽi required for computing the empirical likelihood ratio statistic
W (δ) can be obtained by maximizing L(w,v) given by (3.2) under (3.3), (3.12),
(3.13) and (3.9).

The calculation of ŵi, v̂i, w̃i and ṽi needed for W (δ) is the same as in Section
3.1, and this calculation requires p̂i for {i : Ti = 1} and q̂i for {i : Ti = 0}. It
is easy to show that p̂i = 1/{n1(1 + ψ̂T

1 ûi)} and q̂i = 1/{n0(1 + ψ̂T
0 ûi)}, where

ψ̂1 and ψ̂0 satisfy, respectively,

∑
i:Ti=1

ûi

1 + ψ̂T
1 ûi

= 0 and
∑

i:Ti=0

ûi

1 + ψ̂T
0 ûi

= 0,

with ûT
i = {π(1)

i (γ̂(1))− ζ̂(1)(γ̂(1)), . . . , π
(L)
i (γ̂(L))− ζ̂(L)(γ̂(L))} and ζ̂(l)(γ̂(l)) =

n−1
∑n

i=1 π
(l)
i (γ̂(l)), l = 1, . . . , L.

It is possible to derive the asymptotic distribution of W (δ∗) under H0 : δ = δ∗
when each of Q, P1 and P0 contains a correctly specified model for π(Z),
�1(Z,X1) and�0(Z,X0), respectively. However, such a derivation is extremely
tedious and the resulting scaling factor similar to those appeared in Theorems
3.1–3.4 has a very complex form. We propose to use a bootstrap method, pre-
sented in Section 3.3 below, to bypass the derivation and estimation of the scal-
ing factor. Simulation results show that the bootstrap method performs well for
finite samples.
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3.3. A bootstrap calibration

We present a bootstrap calibration for the proposed empirical likelihood ratio
test to bypass the derivation and estimation of scaling factors. Let δ̂ denote our
proposed estimator of the treatment effect δ given in (4.1) that will be studied
in Section 4. The bootstrap procedure is as follows.

Step 1. Take a random sample of size n with replacement from the original
data set.
Step 2. Compute the empirical likelihood ratio statistic W (δ) at δ = δ̂ based

on the data set from Step 1 to obtain W (δ̂).

Step 3. Repeat Steps 1 and 2 B times to obtain {W (1)(δ̂), . . . ,W (B)(δ̂)}.
Step 4. Let b(1−α) be the 100(1−α)% sample quantile of {W (1)(δ̂), · · ·,W (B)(δ̂)}.
Step 5. The empirical likelihood ratio test rejects H0 : δ = δ∗ if W (δ∗) ≥ b(1−α)

and the (1 − α)-level confidence interval can be constructed as {δ : W (δ) <
b(1−α)}.

As one referee pointed out, an alternative is to replace Steps 4 and 5 above
by the following two steps.

Step 4′. Compute σ̂ = B−1
∑B

b=1 W
(b)(δ̂).

Step 5′. The empirical likelihood ratio test rejects H0 : δ = δ∗ if W (δ∗) ≥
σ̂χ2

1,(1−α) and the (1 − α)-level confidence interval can be constructed as {δ :

W (δ) < σ̂χ2
1,(1−α)}.

The σ̂ computed in Step 4′ is an estimate of the scale parameter that appears
in all theorems. Our simulation studies in Section 5 indicate that these two
bootstrap procedures have very similar performance.

4. Estimation of the treatment effect

Our proposed maximum empirical likelihood estimator for the treatment effect
δ is

δ̂ =
∑

i:Ti=1,R1i=1

ŵiY1i −
∑

i:Ti=0,R0i=1

v̂iY0i, (4.1)

where ŵi and v̂i are derived by maximizing L(w,v) given in (3.2) subject
to the constraints (3.3), (3.7) and (3.8) if there is only one working model
for the propensity score π(Z) or the constraints (3.3), (3.12) and (3.13) if

there are multiple working models for π(Z). The estimator δ̂ is multiply ro-
bust since ŵi = {nπ(Zi)�1(Zi,X1i)}−1{1 + Op(n

−1/2)} and v̂i = [n{1 −
π(Zi)}�0(Zi,X0i)]

−1{1+Op(n
−1/2)} when one of the multiple working models

for each of π(Z), �1(Z,X1) and �0(Z,X0) is correctly specified.

In the following we will discuss how to further improve the robustness of δ̂ by
accommodating working models for outcome regression. The outcome regression
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models can also lead to efficiency gain in estimation. We first consider the case
where π(Z) is either known or modeled by a single working model π(γ). Let

At = {a(k)t (β
(k)
t ) : k = 1, . . . ,Kt} be a set of working models for the outcome

regression E(Yt | Z,Xt), t = 0, 1. We allow working models to be postulated
separately for each of the treatment and control groups, and the numbers of
models K1 and K0 can be different. By Assumptions 1 and 2, we have E(Yt |
Z,Xt) = E(Yt | Z,Xt, T = t, Rt = 1), which implies that β

(k)
t can be estimated

by fitting the model a
(k)
t (β

(k)
t ) based on the complete cases within the group

T = t, t = 0, 1. Let β̂
(k)
t denote the estimator for β

(k)
t . Our proposed estimator

for δ is still δ̂ given in (4.1), but the ŵi and v̂i are now derived by maximizing
(3.2) subject to (3.3), (3.7), (3.8) and the following additional constraints formed
based on the outcome regression working models:∑

i:Ti=1,R1i=1 wi

{
a
(k)
1i (β̂

(k)
1 )− η̂

(k)
1 (β̂

(k)
1 )

}
= 0, k = 1, . . . ,K1,∑

i:Ti=0,R0i=1 vi

{
a
(k)
0i (β̂

(k)
0 )− η̂

(k)
0 (β̂

(k)
0 )

}
= 0, k = 1, . . . ,K0,

(4.2)

where

η̂
(k)
1 (β

(k)
1 ) =

1

n

∑
i:Ti=1

a
(k)
1i (β

(k)
1 )

π(Zi)
and η̂

(k)
0 (β

(k)
0 ) =

1

n

∑
i:Ti=0

a
(k)
0i (β

(k)
0 )

1− π(Zi)

are consistent estimators of E{a(k)1 (β
(k)
1 )} and E{a(k)0 (β

(k)
0 )}, respectively. The

constraints in (4.2) are empirical versions of (3.6) by taking h1(Z,X1) to be

a
(k)
1 (β

(k)
1 ) and h0(Z,X0) to be a

(k)
0 (β

(k)
0 ). When π(Z) is unknown but is mod-

eled by π(γ), the π(Z) in all the constraints is replaced by π(γ̂). Multiple

robustness of δ̂ is summarized by the theorem below, the proof of which is given
in the Appendix.

Theorem 4.1. Suppose that π(Z) is either known or correctly modeled by π(γ).
If (i) P1 contains a correctly specified model for �1(Z,X1) or A1 contains a
correctly specified model for E(Y1 | Z,X1); and (ii) P0 contains a correctly
specified model for �0(Z,X0) or A0 contains a correctly specified model for

E(Y0 | Z,X0), then δ̂ is a consistent estimator of δ.

When π(Z) is unknown and there are multiple working models Q= {π(l)(γ(l)),
l = 1, . . . , L}, the two-step strategy described in Section 3.2 can be used to
construct the estimator for δ. Let p̂i and q̂i be derived through (3.11) based on
models in Q. Let ŵi and v̂i be derived by maximizing L(w,v) given in (3.2)
subject to (3.3), (3.12), (3.13) and the additional constraints (4.2) but with

the model-averages in (4.2) redefined as η̂
(k)
1 (β̂

(k)
1 ) =

∑
i:Ti=1 p̂ia

(k)
1i (β̂

(k)
1 ) and

η̂
(k)
0 (β̂

(k)
0 ) =

∑
i:Ti=0 q̂ia

(k)
0i (β̂

(k)
0 ). Theorem 4.2 summarizes the property of δ̂

and the proof is given in the Appendix.

Theorem 4.2. If (i) Q contains a correctly specified model for π(Z); (ii)
P1 contains a correctly specified model for �1(Z,X1) or A1 contains a cor-
rectly specified model for E(Y1 | Z,X1); and (iii) P0 contains a correctly
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specified model for �0(Z,X0) or A0 contains a correctly specified model for

E(Y0 | Z,X0), then δ̂ is a consistent estimator of δ.

One might think that modeling E(Yt | Z), in addition to π(Z), �t(Z,Xt)
and E(Yt | Z,Xt), could further improve the robustness of estimation. This is
not the case in general. As pointed out in Davidian et al. [8], because E(Yt |
Z) �= E(Yt | Z, T = t, Rt = 1), fitting a model for E(Yt | Z) cannot be based on
a complete-case analysis but rather requires modeling other quantities, which
complicates achieving multiple robustness since the parameters in a model for
E(Yt | Z) may not be consistently estimated even if this model is correctly
specified. For this reason, we do not consider modeling E(Yt | Z).

Standard error of δ̂ is oftentimes needed to make inference on δ. A practically
useful approach to computing the standard error is the bootstrap method. It
can be implemented easily by taking repeated bootstrap samples similar to
Step 1 of the method described in Section 3.3 to obtain bootstrap copies of δ̂,
which then lead to the bootstrap standard error. The reliability of the bootstrap
method for standard error calculation for multiply robust estimators in missing
data literature has been well documented (Han 11, 12). We will examine its
numerical performance under the current setting in Section 5.

In addition to the multiple robustness property, the proposed maximum em-
pirical likelihood estimator δ̂ has other advantages compared to existing ones.
The weights ŵi and v̂i are positive and sum to one, and thus both

∑
i:Ti=1,R1i=1

ŵiY1i and
∑

i:Ti=0,R0i=1 v̂iY0i are convex combinations of the observed responses.

The estimator δ̂ therefore always falls into the parameter space for the treatment
effect. Issues with the conventional inverse probability weighted and augmented
inverse probability weighted estimators when some estimated values of π(Z)
and/or �t(Z,Xt) are close to zero are also significantly mitigated under our
proposed empirical likelihood approach. Han [11] contains more detailed discus-
sions and simulation results on this particular aspect in missing data analysis.

Note that the empirical likelihood ratio test described in Section 3 can also
accommodate outcome regression models in the same way as for estimation, and
the test based on the bootstrap calibration as in Section 3.3 remains multiply
robust.

5. Simulation study

We conducted simulation studies to evaluate the finite-sample performance of
the proposed empirical likelihood ratio test and the maximum empirical like-
lihood estimator for the treatment effect. The simulation sample data were
generated as follows. At the baseline, a pretest measurement was generated as
Z ∼ Uniform(−2.5, 2.5), and then the propensity score of treatment assignment
was set to be π(Z) = {1 + exp(1 − 0.8Z2)}−1, which leads to approximately
60% and 40% of subjects in the treatment (T = 1) and the control (T = 0)
groups, respectively. For the scenario of no treatment effect (δ = 0), the in-
termediate covariate was generated as Xt ∼ N(1 + Z, 1), and the posttest
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potential outcome was generated as Yt | Xt ∼ N{at(Xt), 2X
2
t + 2}, where

at(Xt) = 1 + 4X2
t , t = 0, 1. For the scenario of non-zero δ, the intermediate

covariate was generated as Xt ∼ N(1 + t + Z, 1), t = 0, 1, and the posttest
potential outcome was generated as Yt | Xt ∼ N{at(Xt), 2X

2
t + 2}, where

a1(X1) = 1 + 4X2
1 , a0(X0) = β00∗ + 2X2

0 and β00∗ = 1, 5, 9 and 13, which
leads to δ = 20.2, 16.2, 12.2 and 8.2, respectively. For all scenarios, the missing-
ness probabilities are set to be �1(Z,X1) = {1 + exp(0.6 − 0.1Z − 0.7X1)}−1

and �0(Z,X0) = {1 + exp(−0.4 + 0.1Z − 0.6X0)}−1, resulting in a missingness
rate of 29% for the control group in all scenarios, and 49% for treatment group
when δ = 0 and 37% for the treatment group when δ �= 0.

We considered two parametric working models listed below for each of π(Z),
�t(Z,Xt) and E(Yt | Z,Xt). The first working model in each pair, π(1)(γ(1)),

�
(1)
t (α

(1)
t ) and a

(1)
t (β

(1)
t ), is correctly specified:

π(1)(γ(1)) = {1 + exp(γ
(1)
0 + γ

(1)
1 Z2)}−1,

π(2)(γ(2)) = 1− exp[− exp{γ(2)
0 + γ

(2)
1 Z + γ

(2)
2 exp(Z)}],

�
(1)
t (α

(1)
t ) = {1 + exp(α

(1)
t0 + α

(1)
t1 Z + α

(1)
t2 Xt)}−1,

�
(2)
t (α

(2)
t ) = 1− exp{− exp(α

(2)
t0 + α

(2)
t1 X2

t )},
a
(1)
t (β

(1)
t ) = β

(1)
t0 + β

(1)
t1 X2

t ,

a
(2)
t (β

(2)
t ) = β

(2)
t0 + β

(2)
t1 Xt + β

(2)
t2 exp(Xt).

Here we demonstrate the steps for computing the multiply robust estimator
and the EL ratio test that use all of the above working models. Estimators and
tests that use other combinations of these working models can be computed
similarly.

Step 1. Calculate γ̂(l), l = 1, 2, by maximizing

n∏
i=1

{π(l)
i (γ(l))}Ti{1− π

(l)
i (γ(l))}1−Ti .

Step 2. Calculate α̂
(j)
t , j = 1, 2, by maximizing∏

i:Ti=t

{�(j)
ti (α

(j)
t )}Rti{1−�

(j)
ti (α

(j)
t )}1−Rti .

Step 3. Calculate β̂
(k)
t , k = 1, 2, by fitting the outcome regression model

a
(k)
t (β

(k)
t ) based on the complete cases {i : Ti = t, Rti = 1} in each inter-

vention group.
Step 4. Calculate the weights

p̂i = {n1(1 + ψ̂T
1 ûi)}−1, {i : Ti = 1},

q̂i = {n0(1 + ψ̂T
0 ûi)}−1, {i : Ti = 0},
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where ψ̂1 and ψ̂0 minimize, respectively,

F1(ψ1) = −n−1
n∑

i=1

Ti log(1 +ψT
1 ûi),

F0(ψ0) = −n−1
n∑

i=1

(1− Ti) log(1 +ψT
0 ûi).

Here ûi = {π(1)
i (γ̂(1))− ζ̂(1)(γ̂(1)), π

(2)
i (γ̂(2))− ζ̂(2)(γ̂(2))}T and ζ̂(l)(γ̂(l)) =

n−1
∑n

i=1 π
(l)
i (γ̂(l)), l = 1, 2.

Step 5. Calculate the weights

ŵi = {n11(1 + ρ̂T
1 ĝ1i)}−1, {i : Ti = 1, R1i = 1},

v̂i = {n01(1 + ρ̂T
0 ĝ0i)}−1, {i : Ti = 0, R0i = 1},

where ρ̂1 and ρ̂0 minimize, respectively,

F1(ρ1) = −n−1
n∑

i=1

TiR1i log(1 + ρT
1 ĝ1i),

F0(ρ0) = −n−1
n∑

i=1

(1− Ti)R0i log(1 + ρT
0 ĝ0i).

Here

θ̂
(j)
1 (α

(j)
1 ) = n−1

∑
i:Ti=1

�
(j)
1i (α

(j)
1 ),

θ̂
(j)
0 (α

(j)
0 ) = n−1

∑
i:Ti=0

�
(j)
0i (α

(j)
0 ),

η̂
(k)
1 (β

(k)
1 ) =

∑
i:Ti=1

p̂ia
(k)
1i (β

(k)
1 ),

η̂
(k)
0 (β

(k)
0 ) =

∑
i:Ti=0

q̂ia
(k)
0i (β

(k)
0 ),

ĝ1i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(np̂i)
−1�

(1)
1i (α̂

(1)
1 )− θ̂

(1)
1 (α̂

(1)
1 )

(np̂i)
−1�

(2)
1i (α̂

(2)
1 )− θ̂

(2)
1 (α̂

(2)
1 )

a
(1)
1i (β̂

(1)
1 )− η̂

(1)
1 (β̂

(1)
1 )

a
(2)
1i (β̂

(2)
1 )− η̂

(2)
1 (β̂

(2)
1 )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

ĝ0i =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(nq̂i)
−1�

(1)
0i (α̂

(1)
0 )− θ̂

(1)
0 (α̂

(1)
0 )

(nq̂i)
−1�

(2)
0i (α̂

(2)
0 )− θ̂

(2)
0 (α̂

(2)
0 )

a
(1)
0i (β̂

(1)
0 )− η̂

(1)
0 (β̂

(1)
0 )

a
(2)
0i (β̂

(2)
0 )− η̂

(2)
0 (β̂

(2)
0 )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.
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Step 6. The multiply robust estimator is calculated as in (4.1).
Step 7. Calculate the weights

w̃i = 2/{(n11 + n01)(1 + ρ̃Tg̃1i)}, {i : Ti = 1, R1i = 1},
ṽi = 2/{(n11 + n01)(1 + ρ̃Tg̃0i)}, {i : Ti = 0, R0i = 1},

where ρ̃ minimizes

F (ρ) =
∑

i:Ti=1,R1i=1

log(1 + ρTg̃1i) +
∑

i:Ti=0,R0i=1

log(1 + ρTg̃0i),

where

g̃1i =
(
1/2, Y1i − δ∗/2, ĝ

T
1i,0

T
J0×1

)T
,

g̃0i =
(
−1/2,−Y0i − δ∗/2,0

T
J1×1, ĝ

T
0i

)T
.

Step 8. The empirical likelihood ratio statistic is calculated as in (3.5).

In the case of only one working model π(Z;γ) for the propensity score, one
should skip Step 4 and replace (np̂i)

−1 and (nq̂i)
−1 in Step 5 with π(Zi; γ̂) and

1− π(Zi; γ̂) respectively.
Results reported in Tables 2 and 3 are based on 1000 repeated simulation

samples, and for each sample 1000 bootstrap samples were used to calculate the
critical value of the empirical likelihood ratio test or the standard error of the
point estimator.

Table 2 contains results on the performance of the empirical likelihood ratio
test and the Wald test based on four different combinations of models for π(Z)
and �t(Z,Xt). The outcome regression models for E(Yt | Z,Xt) were not used
for these tests. It can be seen that the empirical likelihood ratio test has type
I error close to 5% and the empirical likelihood ratio confidence interval has
coverage probability close to 95%, and both have better performance than the
methods based on the Wald statistic. The Wald test has higher power com-
pared to the empirical likelihood ratio test. Another observation is that the two
bootstrap procedures described in Section 3.3 have similar performance.

Table 3 summarizes the simulation results on point estimation for the treat-
ment effect. We focused on the scenario with δ = 20.2 and sample size n = 400.
We considered four different scenarios for the propensity score: (I) π(Z) is
known; (II) π(Z) is correctly modeled by π(1)(γ(1)); (III) π(Z) is incorrectly
modeled by π(2)(γ(2)); and (IV) both models π(1)(γ(1)) and π(2)(γ(2)) are used.
Our proposed multiply robust estimator along with the inverse probability
weighted estimator and the augmented inverse probability weighted estimator
were included in the simulation. The working models used for the missingness
probability and the outcome regression are indicated as part of the notation in
the first column. For instance, the multiply robust estimator MR-�(1,2)a(1,2)

was computed with both models for the missingness probability and both mod-
els for the outcome regression. Performance of estimators is evaluated through
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Table 2. Simulation results (in %) of tests on H0 : δ = 0 and confidence intervals. The Type I error and power are summarized based on significance
level 5% and the nominal level for the confidence intervals is 95%. Models in brackets are the ones used.

{π(1), �(1)} {π(1), �(1), �(2)}
ELR1 Wald ELR2 ELR1 Wald ELR2

δ n Error-I Cover Error-I Cover Error-I Cover Error-I Cover Error-I Cover Error-I Cover
0 400 7.6 92.4 12 88 7.7 92.3 6.4 93.6 10.7 89.3 6.2 93.8

800 5.8 94.2 8.7 91.3 6.3 93.7 6.3 93.7 9.8 90.2 6.3 93.7
Power Cover Power Cover Power Cover Power Cover Power Cover Power Cover

8.2 400 46.5 93.8 62.1 91.5 46.7 93.9 73.8 94.4 79.8 93.3 74.2 94.6
800 57.8 95 79 93.9 58.4 95.2 88.9 95.3 94.7 93.8 89.5 95.3

12.2 400 66.7 94 82.8 91.8 67.8 94 91 94.4 94.6 93.3 91.6 94.6
800 80.3 95.1 94.7 94 81.3 95 97.9 95.3 99.2 93.8 98.1 95.3

16.2 400 79.1 93.8 92.6 92.5 80.2 93.5 96.6 94.4 98.5 93.3 96.7 94.6
800 90.9 95.6 98.4 94.9 92.4 95.4 99.3 95.3 100 93.8 99.4 95.3

20.2 400 85.1 94.3 96.7 93.7 87 94.2 98.1 94.4 99.5 93.3 98.3 94.6
800 95.9 95.4 99.5 95.2 96.3 95 99.8 95.3 100 93.8 99.8 95.3

{π(1), π(2), �(1)} {π(1), π(2), �(1), �(2)}
ELR1 Wald ELR2 ELR1 Wald ELR2

δ n Error-I Cover Error-I Cover Error-I Cover Error-I Cover Error-I Cover Error-I Cover
0 400 6.4 93.6 8.8 91.2 5.9 94.1 6.4 93.6 9.3 90.7 6 94

800 5.3 94.7 7.4 92.6 5.2 94.8 5.4 94.6 8.3 91.7 5.6 94.4
Power Cover Power Cover Power Cover Power Cover Power Cover Power Cover

8.2 400 77.5 95.4 83 93.8 78 95.4 75.9 95.2 82.1 93.9 76.4 95.3
800 91.9 94.8 95.5 93.8 92.7 94.9 91.6 94.9 95.7 93.8 91.8 95

12.2 400 91.6 95.4 95.2 93.8 92.3 95.4 91.7 95.2 95.6 93.9 92.1 95.3
800 97.8 94.8 99.5 93.8 98.2 94.9 97.9 94.9 99.5 93.8 98.1 95

16.2 400 96.5 95.4 98.8 93.8 97.1 95.4 97 95.2 98.8 93.9 97.1 95.3
800 99.3 94.8 100 93.8 99.3 94.9 99.4 94.9 100 93.8 99.4 95

20.2 400 98.5 95.4 99.6 93.8 98.9 95.4 98.5 95.2 99.6 93.9 98.7 95.3
800 99.8 94.8 100 93.8 99.8 94.9 99.8 94.9 100 93.8 99.8 95

ELR1: empirical likelihood ratio test with the bootstrap procedure Steps 1-5 as in Section 3.3. Wald: Wald test. ELR2: empirical likelihood ratio
test with the bootstrap procedure Steps 1-3 and Steps 4′-5′ as in Section 3.3.
Error-I: type I error. Power: power of the test. Cover: coverage probability of the 95% confidence intervals.
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relative bias and root mean squared error. To evaluate the performance of the
bootstrap method, we also included under scenario (IV) the values of empirical
standard error and the bootstrap-based standard error.

From Table 3, the proposed multiply robust estimator has negligible relative
bias under the combination of multiple working models as outlined in Theorems
4.1 and 4.2. The inverse probability weighted estimator and the augmented
inverse probability weighted estimator cannot accommodate multiple working
models. Another interesting observation is that, compared to the inverse proba-
bility weighted estimator and the augmented inverse probability weighted esti-
mator, the multiply robust estimator has smaller bias when the combination of
working models does not satisfy the specification outlined in Theorems 4.1 and
4.2. The small bias of multiply robust estimators when they are not theoretically
consistent has been previously documented in the missing data literature (Han
11, 12, Chen and Haziza 7), and is due to the calibration constraints used to de-
rive the weights ŵi and v̂i. Han [12] contains more discussion on this intriguing
observation. We also observe from Table 3 that the bootstrap standard error is
very close to the empirical standard error, showing that the bootstrap method
is reliable.

Table 3

Simulation results (×102) for point estimation (δ = 20.2 and n = 400)

I. {π(Z)} II. {π(1)} III. {π(2)} IV. {π(1), π(2)}
rBias RMSE rBias RMSE rBias RMSE rBias RMSE ESE BSE

MR-�(1) 0 328 0 298 4 309 0 286 298 270

MR-�(2) 8 369 8 347 12 398 7 333 317 280

MR-a(1) 0 357 0 310 -17 965 1 248 260 237

MR-a(2) 11 400 11 386 -11 903 11 354 290 260

MR-�(1,2) -1 331 0 298 4 304 -1 288 298 272

MR-�(1)a(1) 0 358 0 312 -14 861 1 252 263 241

MR-�(1)a(2) 0 336 1 315 -12 764 1 278 283 258

MR-�(2)a(1) 0 357 0 311 -14 866 1 252 264 241

MR-�(2)a(2) -4 351 -4 316 -18 823 -4 272 274 248

MR-a(1,2) 0 357 0 311 -9 689 1 250 259 239

MR-�(1,2)a(1) 0 357 0 311 -12 799 1 252 263 241

MR-�(1,2)a(2) 1 340 1 306 -11 741 2 264 273 249

MR-�(1)a(1,2) 0 357 0 311 -8 632 1 253 264 242

MR-�(2)a(1,2) 0 359 0 311 -7 626 1 254 266 242

MR-�(1,2)a(1,2) 0 357 0 314 -6 590 1 261 265 243

IPW-�(1) 0 401 0 378 -212 34122

IPW-�(2) 10 427 11 394 -198 33041

AIPW-�(1)a(1) 0 361 0 314 -202 31829

AIPW-�(1)a(2) 0 415 0 387 -202 31473

AIPW-�(2)a(1) 0 358 0 309 -203 32084

AIPW-�(2)a(2) -8 396 -8 361 -213 31968

MR: the multiply robust estimator. IPW: the inverse probability weighted estimator.
AIPW: the augmented inverse probability weighted estimator. rBias: relative bias. RMSE:
root mean square error.
ESE: empirical standard error. BSE: bootstrap standard error.
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6. Additional remarks

Pretest-posttest studies are commonly used by social science, medical and health
researchers, where non-randomized treatment assignment and missing data are
two important issues. Valid statistical analyses depend on proper handling of
models for the propensity score of treatment assignment, the missingness prob-
ability and the outcome regression. Our proposed empirical likelihood approach
to testing and estimation of the treatment effect provides a unified inference
tool to incorporate models from different sources. Theoretical and simulation
results presented in this paper show that the proposed approach is promising.
It is worthwhile to point out that the proposed method can still be applied
when there is only a single model for each quantity, and thus it indeed provides
a powerful alternative to existing methods.

Based on our experience from simulation studies, the proposed method is
very robust to high collinearity among the possibly multiple working models for
the same quantity. In practice, when predictions from different working models
are very close so that collinearity may be of an issue, an ad hoc solution would
be to remove some of those models because they provide mostly redundant
information. It will be of future research interest to develop a formal way to
address potential collinearity problem.

This paper focuses on the robustness of estimation. In the missing data liter-
ature, estimation efficiency is another important issue (Robins et al. 21, Tsiatis
26). However, a theoretical investigation on efficiency in our setting with mul-
tiple working models is both challenging and lack of practical implication. The
typical framework for semiparametric efficiency theory in the missing data lit-
erature (e.g., Tsiatis 26) assumes that both π(Z) and �t(Z,Xt) are correctly
modeled and the correct models are identified. For non-randomized pretest-
posttest studies such an assumption is often unrealistic. This was the major
motivation that we considered multiple working models. The simulation results
presented in this paper as well as findings from the existing missing data litera-
ture, such as Han [11], Han [12], Chen and Haziza [7], among others, show that
multiply robust estimators typically have similar or higher efficiency compared
to other estimators when the same working models are used.

7. Appendix

7.1. Expressions for the Scaling Constants in the Theorems

7.1.1. Expressions for Theorem 3.1

The scaling constant for the asymptotic distribution in Theorem 3.1 is given by

σ1 = (D1 +D0)
−1var

{
ϕ−A1E(S1S

T
1 )

−1S1 +A0E(S0S
T
0 )

−1S0

}
,

where

ϕ =
TR1Y1

π(Z)�1(Z,X1)
− (1− T )R0Y0

{1− π(Z)}�0(Z,X0)
− δ∗,
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g1∗ =
Y1

π(Z)�1(Z,X1)
− μ0 + δ∗

P(T = 1, R1 = 1)
,

g0∗ =
Y0

{1− π(Z)}�0(Z,X0)
− μ0

P(T = 0, R0 = 1)
,

D1 = E{TR1g
2
1∗}, D0 = E{(1− T )R0g

2
0∗},

A1 = E

{
E(Y1 | Z,X1)

�1(Z,X1)

∂�1(α1∗)

∂αT
1

}
,

A0 = E

{
E(Y0 | Z,X0)

�0(Z,X0)

∂�0(α0∗)

∂αT
0

}
,

and St, t = 0, 1 is the score function of the binomial likelihood (3.1).

7.1.2. Expressions for Theorem 3.2

Without loss of generality, suppose �
(1)
1 (α

(1)
1 ) and �

(1)
0 (α

(1)
0 ) are correctly spec-

ified models for �1(Z,X1) and �0(Z,X0) respectively. Then the scaling con-
stant for the asymptotic distribution in Theorem 3.2 is given by

σ2 = (DMR
1 +DMR

0 )−1DMR
1 DMR

0

×var
{
ϕMR −AMR

1 E(S
(1)
1 S

(1),T
1 )−1S

(1)
1 +AMR

0 E(S
(1)
0 S

(1),T
0 )−1S

(1)
0

}
,

where

θ
(j)
1∗ = E{π(Z)�

(j)
1 (α

(j)
1 )}, θ

(j)
0∗ = E[{1− π(Z)}�(j)

0 (α
(j)
0 )],

g1(α1∗) =
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π(Z)�

(1)
1 (α

(1)
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1 (α
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(J1)
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,
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(1)
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(1)
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]T
,

ht(αt∗) = {θ(1)t∗ (α
(1)
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(Jt)
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(Jt)
t∗ )}T, t = 0, 1,
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π(Z)�1(Z,X1)

]
,
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{E(Y0 | Z,X0)− μ0}g0(α0∗)

{1− π(Z)}�0(Z,X0)

]
,
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g1(α1∗)g1(α1∗)
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}
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]
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DMR
1 =

[
E

{
TR1(Y1 − μ0 − δ∗)

2

π(Z)2�1(Z,X1)2

}
−BT

1 G
−1
1 B1

]−1

,

DMR
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E

[
(1− T )R0(Y0 − μ0)

2

{1− π(Z)}2�0(Z,X0)2

]
−BT

0 G
−1
0 B0

)−1

,

ϕMR =
TR1Y1

π(Z)�1(Z,X1)
− (1− T )R0Y0

{1− π(Z)}�0(Z,X0)
− δ∗

−BT
1 G

−1
1
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T{R1 −�1(Z,X1)}
π(Z)�1(Z,X1)
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0 g0(α0∗)
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0 G
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0 h0(α0∗),

and S
(1)
t , t = 0, 1, is the score function of (3.1) with �t(αt) replaced by

�
(1)
t (α

(1)
t ).

7.1.3. Expressions for Theorem 3.3

The scaling constant for the asymptotic distribution in Theorem 3.3 is given by

σ3 = var
{
ϕ−A1E(S1S

T
1 )

−1S1 +A0E(S0S
T
0 )

−1S0

−(C1 +C0)E(SγS
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,

where
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∂γT

}
,

and Sγ is the score function of
∏n

i=1{πi(γ)}Ti{1− πi(γ)}1−Ti .

7.1.4. Expressions for Theorem 3.4

Without loss of generality, suppose �
(1)
1 (α

(1)
1 ) and �

(1)
0 (α

(1)
0 ) are correctly spec-

ified models for �1(Z,X1) and �0(Z,X0) respectively. Then the scaling con-
stant for the asymptotic distribution in Theorem 3.4 is given by
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CMR
0 = E

{
E(Y0 | Z,X0)− μ0 −BT

0 G
−1
0 g0(α0∗)

1− π(Z)

∂π(γ∗)

∂γT

}
.

7.2. Proofs of the Theorems

7.2.1. Proof of Theorem 3.1

Following a similar argument to that of [27], let μnui
0 be a nuisance parameter

such that μnui
0 = μ0 + Op(n

−1/2). The introduction of this nuisance parameter
μnui
0 facilitates the derivation of the asymptotic distribution of the empirical

likelihood ratio statistic W (δ∗) and will later be profiled. Then the constraint
(3.4) can be replaced by

∑
i:Ti=1,R1i=1

wi

{
Y1i

πi�1i(α̂1)
− n

n11
(μnui

0 + δ∗)

}
= 0,

∑
i:Ti=0,R0i=1

vi

{
Y0i

(1− πi)�0i(α̂0)
− n

n01
μnui
0

}
= 0.

Maximizing L(w,v) subject to the normalization constraints (3.3) in addition
to these two constraints gives

w̃i =
1

n11

1

1 + λ̃1g1i(α̂1)
, ṽi =

1

n01

1

1 + λ̃0g0i(α̂0)

where λ̃1 and λ̃0 are respectively solutions to

∑
i:Ti=1,R1i=1

g1i(α̂1)

1 + λ̃1g1i(α̂1)
= 0,

∑
i:Ti=0,R0i=1

g0i(α̂0)

1 + λ̃0g0i(α̂0)
= 0, (7.1)

and

g1i(α̂1) =
Y1i

πi�1i(α̂1)
− n

n11
(μnui

0 + δ∗),

g0i(α̂0) =
Y0i

(1− πi)�0i(α̂0)
− n

n10
μnui
0 .

Taylor expansions of (7.1) at (λ1∗ = 0,αT
1∗) and (λ0∗ = 0,αT

0∗) yield

n1/2λ̃1 = D−1
1

{
n−1/2

n∑
i=1

TiR1ig1i(α1∗)−A1n
1/2(α̂1 −α1∗)

}
+ op(1),

n1/2λ̃0 = D−1
0

{
n−1/2

n∑
i=1

(1− Ti)R0ig0i(α0∗)−A0n
1/2(α̂0 −α0∗)

}
+ op(1).
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The empirical likelihood ratio statistic W (δ∗) is then expressed as

W (μnui
0 , δ∗) = 2

⎡
⎣ ∑
i:Ti=1,R1i=1

log{1 + λ̃1g1i(α̂1)}

+
∑

i:Ti=0,R0i=1

log{1 + λ̃0g0i(α̂0)}

⎤
⎦ . (7.2)

We maximize (7.2) with respect to μnui
0 by setting ∂W (μnui

0 , δ∗)/∂μ
nui
0 = 0,

which implies λ̃1 + λ̃0 = 0. Therefore the maximizer is given by

μ̂nui
0 =

1

n

n∑
i=1
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D0

D0 +D1
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TiR1iY1i

πi�1i
− δ∗
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−1/2).

A Taylor expansion of (7.2) at (λ1∗ = 0, λ0∗ = 0,αT
1∗,α

T
0∗) with μnui

0 replaced
by μ̂nui

0 gives

W (μ̂nui
0 , δ∗) = (D0 +D1)

−1

×
[
n−1/2

n∑
i=1

{ϕi −A1n
1/2(α̂1 −α1∗)+A0n

1/2(α̂0 −α0∗)}
]2

+op(1).

Then the desired result follows.

7.2.2. Proof of Theorem 3.2

Similar to the proof of Theorem 3.1, we introduce the nuisance parameter μnui
0

such that μnui
0 = μ0 + Op(n

−1/2). Then the constraint (3.9) can be replaced
by

∑
i:Ti=1,R1i=1 wiY1i = μnui

0 + δ∗ and
∑

i:Ti=0,R0i=1 viY0i = μnui
0 . Maximizing

L(w,v) subject to the constraints (3.3), (3.7), (3.8) and these two constraints
yields

w̃i =
1

n11

1

1 + ρ̌T
1 ǧ1i(α̂1)

, {i : Ti = 1, R1i = 1},

ṽi =
1

n01

1

1 + ρ̌T
0 ǧ0i(α̂0)

, {i : Ti = 0, R0i = 1},

where ρ̌1 and ρ̌0 are respectively solutions to

∑
i:Ti=1,R1i=1

ǧ1i(α̂1)

1 + ρ̌T
1 ǧ1i(α̂1)
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∑

i:Ti=0,R0i=1

ǧ0i(α̂0)

1 + ρ̌T
0 ǧ0i(α̂0)

= 0



2036 S. Zhang et al.

and ǧ1i(α̂1) = {ĝ1i(α̂1)
T, Y1i − μnui

0 − δ∗}T, ǧ0i(α̂0) = {ĝ0i(α̂0)
T, Y0i − μnui

0 }T.
A reparameterization similar to that of [14] gives
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1 ǧ1i(α̂1)
, {i : Ti = 1, R1i = 1},
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0 ǧ0i(α̂0)
, {i : Ti = 0, R0i = 1},

where λ̌1 and λ̌0 are respectively solutions to

∑
i:Ti=1,R1i=1
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(7.3)

Taylor expansions of (7.3) at (λ1∗ = 0,λ0∗ = 0,αT
1∗,α

T
0∗) yield
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(1)
1∗ )

− Ã1n
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where

G̃1 =
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BT
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.

We maximize W (μnui
0 , δ∗) with respect to μnui

0 by setting ∂W (μnui
0 , δ∗)/∂μ

nui
0 =

0, which gives

n11

θ̂11(α̂
1
1)
λ̌1,J1+K1+1 +

n01

θ̂10(α̂
1
0)
λ̌0,J0+K0+1 = 0
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where λ̌1,J1+K1+1 and λ̌0,J0+K0+1 are the last component of λ̌1 and λ̌0 respec-
tively. Some calculations show that the maximizer is

μ̂nui
0 =

1

n

n∑
i=1

[
DMR

1

DMR
0 +DMR

1

TiR1i

πi�1i
{Y1i − δ∗ −BT

1 G
−1
1 ĝ1i(α1∗)}

+
DMR

0

DMR
0 +DMR

1

(1− Ti)R0i

(1− πi)�0i
{Y0i −BT

0 G
−1
0 ĝ0i(α0∗)}

]

+
DMR

1

DMR
0 +DMR

1

AMR
1 (α̂

(1)
1 −α

(1)
1∗ )

+
DMR

0

DMR
0 +DMR

1

AMR
0 (α̂

(1)
0 −α

(1)
0∗ ) + op(n

−1/2).

A Taylor expansions of W (μ̂nui
0 , δ∗) at (λ1∗ = 0,λ0∗ = 0,αT

1∗,α
T
0∗) yields

W (μ̂nui
0 , δ∗) =

DMR
1 DMR

0

DMR
0 +DMR

1

[
n−1/2

n∑
i=1

{
ϕi −

TiR1i

πi�1i
BT

1 G
−1
1 ĝ1i(α1∗)

+
(1− Ti)R0i

(1− πi)�0i
BT

0 G
−1
0 ĝ0i(α0∗)

−AMR
1 n1/2(α̂

(1)
1 −α

(1)
1∗ ) +AMR

0 n1/2(α̂
(1)
0 −α

(1)
0∗ )

}]2

+ op(1).

Then the desired result follows by noticing that

n−1/2
n∑

i=1

TiR1i

πi�1i
ĝ1i(α1∗) = n−1/2

n∑
i=1

{
Ti(R1i −�1i)

πi�1i
g1i(α1∗)

−Ti − πi

πi
h1(α1∗)

}
,

n−1/2
n∑

i=1

(1− Ti)R0i

(1− πi)�0i
ĝ0i(α0∗) = n−1/2

n∑
i=1

{
(1− Ti)(R0i −�0i)

(1− πi)�0i
g0i(α0∗)

+
Ti − πi

1− πi
h0(α0∗)

}
.

7.2.3. Proof of Theorem 4.1

Here and after we will only show the consistency of μ̂1MR =
∑

i:Ti=1,R1i=1 ŵiY1i

for the treatment group mean. A similar argument will then give the consistency
for the control group mean. We assume π(Z) is known and omit the proof for
the case when π(Z) is unknown but is correctly modeled by π(Z;γ) due to simi-

larity. Without loss of generality, let �
(1)
1 (Z,X1;α

(1)
1 ) be the correctly specified
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model for �1(Z,X1). Let α
(j)
1∗ and β

(k)
1∗ be the probability limits of α̂

(j)
1 and

β̂
(k)
1 respectively. Denote (α1∗,β1∗) = (α

(1),T
1∗ , . . . ,α

(J1),T
1∗ ,β

(1),T
1∗ , . . . ,β

(K1),T
1∗ )T

and dj and uk the dimensions of α
(j)
1 and β

(k)
1 respectively. Similar to [14], we

can reparameterize ρ̂1 = (ρ̂11, . . . , ρ̂1,J1+K1) as λ̂1 = (λ̂11, . . . , λ̂1,J1+K1) such

that ρ̂11 = (λ̂11 + 1)/θ̂
(1)
1 (α̂

(1)
1 ) and ρ̂1j = λ̂1j/θ̂

(1)
1 (α̂

(1)
1 ), j = 2, . . . , J1 + K1,

where λ̂1 satisfies

∑
i:Ti=1,R1i=1

ĝ1i(α̂1, β̂1)

πi�
(1)
1i (α̂

(1)
1 ) + λ̂T

1 ĝ1i(α̂1, β̂1)
= 0, (7.4)

and

ĝ1i(α̂1, β̂1) =
{
πi�

(1)
1i (α̂

(1)
1 )− θ̂

(1)
1 (α̂

(1)
1 ), . . . , πi�

(J1)
1i (α̂

(J1)
1 )− θ̂

(J1)
1 (α̂

(J1)
1 )

a
(1)
1i (β̂

(1)
1 )− η̂

(1)
1 (β̂

(1)
1 ), . . . , a

(K1)
1i (β̂

(K1)
1 )− η̂

(K1)
1 (β̂

(K1)
1 )

}T

.

Thus we have

ŵi =
θ̂
(1)
1 (α̂

(1)
1 )

n11

1

πi�
(1)
1i (α̂

(1)
1 ) + λ̂T

1 ĝ1i(α̂1, β̂1)
.

A Taylor expansion of (7.4) at (λT
1∗ = 0,αT

1∗,β
T
1∗) yields

0 = n−1/2
n∑

i=1

TiR1iĝ1i(α̂1, β̂1)

πi�
(1)
1i (α̂

(1)
1 ) + λ̂T

1 ĝ1i(α̂1, β̂1)

= n−1/2
n∑

i=1

TiR1iĝ1i(α1∗,β1∗)

πi�
(1)
1i (α̂

(1)
1 )

−
[
1

n

n∑
i=1

TiR1iĝ1i(α1∗,β1∗)ĝ1i(α1∗,β1∗)
T

{πi�
(1)
1i (α̂

(1)
1 )}2

]
n1/2λ̂1

+

(
1

n

n∑
i=1

TiR1i

{πi�
(1)
1i (α

(1)
1∗ )}2

[{
πi

∂�
(1)
1i (α

(1)
1∗ )

∂α
(1),T
1

− 1
n

∑n
h=1 Th

∂�
(1)
1h (α

(1)
1∗ )

∂α
(1),T
1

0d1(J1+K1−1)

}

×πi�
(1)
1i (α

(1)
1∗ )− ĝ1i(α1∗,β1∗)πi

∂�
(1)
1i (α

(1)
1∗ )

∂α
(1),T
1

])
n1/2(α̂

(1)
1 −α

(1)
1∗ )

+

J1∑
j=2

⎡
⎢⎢⎣ 1

n

n∑
i=1

TiR1i

πi�
(1)
1i (α

(1)
1∗ )

⎧⎪⎪⎨
⎪⎪⎩

0dj(j−1)

πi
∂�

(j)
1i (α

(j)
1∗ )

∂α
(j),T
1

− 1
n

∑n
h=1 Th

∂�
(j)
1h (α

(j)
1∗ )

∂α
(j),T
1

0dj(J1+K1−j)

⎫⎪⎪⎬
⎪⎪⎭

⎤
⎥⎥⎦

×n1/2(α̂
(j)
1 −α

(j)
1∗ )
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+

K1∑
k=1

⎡
⎢⎣ 1

n

n∑
i=1

TiR1i

πi�
(1)
1i (α

(1)
1∗ )

⎧⎪⎨
⎪⎩

0uk(J1+k−1)

∂a
(k)
1i (β

(k)
1∗ )

∂β
(k),T
1

− 1
n

∑n
h=1 Th

∂a
(k)
1h (β

(k)
1∗ )

∂β
(k),T
1

0uk(K1−k)

⎫⎪⎬
⎪⎭
⎤
⎥⎦

×n1/2(β̂
(k)
1 − β

(k)
1∗ )

+op(1).

Solving for n1/2λ̂1 implies

n1/2λ̂1 = G−1
1

{
n−1/2

n∑
i=1

TiR1iĝ1i(α̂1, β̂1)

πi�1i
−A2n

1/2(α̂
(1)
1 −α

(1)
1∗ )

}
+ op(1)

= G−1
1

{
n−1/2

n∑
i=1

Ti(R1i −�1i)

πi�1i
g1i(α1∗,β1∗)

−Ti − πi

πi
h1(α1∗,β1∗)−A2n

1/2(α̂
(1)
1 −α

(1)
1∗ )

}
+ op(1).

where

A2 = E

{
g1(α1∗,β1∗)

�1(Z,X1)

∂�
(1)
1 (α

(1)
1∗ )

∂α
(1),T
1

}

and

η
(k)
t∗ (β

(k)
t∗ ) = E{a(k)t (β

(k)
t )}, t = 0, 1,

g1(α1∗,β1∗) =
{
π�

(1)
1 (α

(1)
1∗ )− θ

(1)
1∗ , . . . , π�

(J1)
1 (α

(J1)
1∗ )− θ

(J1)
1∗

a
(1)
1 (β

(1)
1∗ )− η

(1)
1∗ , . . . , a

(K1)
1 (β

(K1)
1∗ )− η

(K1)
1∗

}T

,

ht(αt∗,βt∗) =
{
θ
(1)
t∗ (α

(1)
t∗ ), . . . , θ

(Jt)
t∗ (α

(Jt)
t∗ ), η

(1)
t∗ (β

(1)
t∗ ), . . . , η

(Kt)
t∗ (β

(Kt)
t∗ )

}T

.

Thus λ̂ = Op(n
−1/2)→0 in probability. Note that n11/n→ θ

(1)
1∗ = P(T =

1, R1 = 1) and thus we have

μ̂1MR =
∑

i:Ti=1,R1i=1

ŵiY1i

=
θ̂
(1)
1

n11

n∑
i=1

TiR1iY1i

πi�
(1)
1i (α̂

(1)
1 ) + λ̂T

1 ĝ1i(α̂1, β̂1)

→ E

{
TR1Y1

π(Z)�1(Z,X1)

}
= μ1

in probability. Therefore μ̂1MR is a consistent estimator of μ1 when one of the
multiple working models in P1 is correctly specified. Now suppose one of the
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models in A1 is correctly specified for E(Y1 | Z,X1), say a
(1)
1 (β

(1)
1 ). Let ρ1∗ be

the probability limit of ρ̂1, then we have

μ̂1MR =
∑

i:Ti=1,R1i=1

ŵiY1i

=
∑

i:Ti=1,R1i=1

ŵi{Y1i − a
(1)
1i (β̂

(1)
1 )}+ 1

n

∑
i:Ti=1

a
(1)
1i (β̂

(1)
1 )

πi

=
1

n11

n∑
i=1

TiR1i{Y1i − a
(1)
1i (β̂

(1)
1 )}

1 + ρ̂T
1 ĝ1i(α̂1, β̂1)

+
1

n

∑
i:Ti=1

a
(1)
1i (β̂

(1)
1 )

πi

→ 1

θ
(1)
1∗

E

[
TR1{Y1 − a

(1)
1 (Z,X1;β

(1)
1∗ )}

1 + ρT
1∗g1(α1∗,β1∗)

]
+ E{a(1)1 (β

(1)
1∗ )}

= 0 + μ1 = μ1

in probability. Therefore μ̂1MR is a consistent estimator of μ1 when one of the
models in A1 is correctly specified.

7.2.4. Proof of Theorem 4.2

We assume, without loss of generality, π(1)(γ(1)) is correctly specified for π(Z).

[14] showed that (np̂i)
−1 →π

(1)
i (γ

(1)
∗ ) = π(Zi) in probability. Suppose P1

contains a correctly specified model for �1(Z,X1), say �
(1)
1 (Z,X1;α

(1)
1 ). A

reparametrization yields

ŵi =
θ̂
(1)
1

n11

1

(np̂i)−1�
(1)
1i (α̂

(1)
1 ) + λ̂T

1 ĝ1i(α̂1, β̂1)

where λ̂1 satisfies

∑
i:Ti=1,R1i=1

ĝ1i(α̂1, β̂1)

(np̂i)−1�
(1)
1i (α̂

(1)
1 ) + λ̂T

1 ĝ1i(α̂1, β̂1)
= 0.

Empirical likelihood theory (Qin and Lawless 19) gives λ̂1 = Op(n
−1/2)→0 in

probability. Thus

μ̂1MR =
∑

i:Ti=1,R1i=1

ŵiY1i

=
θ̂
(1)
1

n11

n∑
i=1

TiR1iY1i

(np̂i)−1�
(1)
1i (α̂

(1)
1 ) + λ̂T

1 ĝ1i(α̂1, β̂1)

→ E

{
TR1Y1

π(Z)�1(Z,X1)

}
= μ1

in probability.
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Now suppose A1 contains a correctly specified model a
(1)
1 (β

(1)
1 ) for E(Y1 |

Z,X1). A similar argument to that in the proof of Theorem 4.1 gives the con-

sistency of μ̂1MR by noticing that
∑

i:Ti=1 p̂ia
(1)
1i (β̂

(1)
1 )→E{a(1)1 (β

(1)
1∗ )} = μ1 in

probability.
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