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Abstract: We propose a computationally efficient estimator, formulated
as a convex program, for a broad class of nonlinear regression problems that
involve difference of convex (DC) nonlinearities. The proposed method can
be viewed as a significant extension of the “anchored regression” method
formulated and analyzed in [10] for regression with convex nonlinearities.
Our main assumption, in addition to other mild statistical and computa-
tional assumptions, is availability of a certain approximation oracle for the
average of the gradients of the observation functions at a ground truth. Un-
der this assumption and using a PAC-Bayesian analysis we show that the
proposed estimator produces an accurate estimate with high probability.
As a concrete example, we study the proposed framework in the bilinear
regression problem with Gaussian factors and quantify a sufficient sample
complexity for exact recovery. Furthermore, we describe a computationally
tractable scheme that provably produces the required approximation oracle
in the considered bilinear regression problem.
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1. Introduction

Let f+
1 , f+

2 , . . . , f+
n be i.i.d. copies of a random convex function f+:Rd→R. Sim-

ilarly, let f−
1 , f−

2 , . . . , f−
n be i.i.d. copies of a random convex function f−:Rd→R.

For simplicity, we also assume that the functions f+ and f− are differentiable.1

We observe a parameter x� ∈ Rd indirectly through the measurements

yi = f+
i (x�)− f−

i (x�) + ξi , i = 1, . . . , n , (1)

where ξis denote additive noise. Given the data(
f+
i (·) , f−

i (·) , yi
)

i = 1, . . . , n ,

∗This work was supported in part by the Semiconductor Research Corporation (SRC) and
DARPA.

1Religiously, we may add “almost everywhere almost surely.”
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the goal is to accurately estimate x�, up to the possible inherent ambiguities,
by a computationally tractable procedure.

One can immediately notice the difference of convex (DC) structure 2 in the
observation model (1). Many parametric regression problems can be abstracted
as (1) due to richness of the set of DC functions [24]; for instance, any smooth
function can be expressed in the DC form using positive and negative semidef-
inite parts of its Hessian. While it is evident from the considered form of the
observed data, we emphasize that the DC decomposition of the observation
function is assumed to be known and our proposed estimator relies on such a
DC decomposition.

In the context of the model (1), the standard estimators based on empirical
risk minimization such as (nonlinear) least squares would lead to nonconvex
optimization problems that are generally computationally hard. Thus, without
making any assumption, our search for a computationally efficient estimator for
(1) may be futile. Of course, statistical assumptions are also necessary to make
the estimation meaningful; the observations must convey (enough) information
about the ground truth parameter. All of the assumptions we make are discussed
in more detail in Section 1.1.

Throughout we use the notation ED or EDn to denote the expectation with
respect to a single or multiple observations. Outer product of vectors is denoted
by the binary operation ⊗. Furthermore, ‖·‖, ‖·‖F, and ‖·‖op respectively denote
the usual Euclidean norm, Frobenius norm, and operator norm.

1.1. Statistical and computational assumptions

In this section we describe the main statistical and computational assumptions
we rely on in our analysis some of which were alluded to above. Stating some
of these assumptions requires us to define certain parameters of the model for
which we provide the motivations subsequently.

To avoid long expressions, for i = 1, . . . , n, we define

qi(h)
def
=

1

2

∣∣〈∇f+
i (x�)−∇f−

i (x�),h〉
∣∣ , (2)

which are clearly nonnegative and positive homogeneous. Therefore, by the tri-
angle inequality, they also satisfy

|qi(h)− qi(h
′)| ≤ qi(h− h′) , (3)

for every pair of h,h′ ∈ Rd.
As it becomes clear in the sequel, the central piece in our analysis is to

establish a lower bound for the empirical process 1
n

∑n
i=1 qi(h) uniformly for a

set of vectors h. A crucial point in our proof is that ED (qi(z)) is linear in ‖z‖. If
ED(qi(z)) had a different modulus of continuity and did not admit a lower bound

2Sometimes this structure is referred to as convex-concave, indicating the decomposition
into the sum of a convex function and a concave function.
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with linear growth in ‖z‖, then a nontrivial lower bound for the mentioned
empirical process that holds uniformly in an arbitrarily small neighborhood of
the origin might not exist. The consequence would be an error bound that does
not vanish by removing the additive noise. These circumstances are observed and
well-understood, for instance, in the contexts of ratio limit theorems [18, 19], the
issue of a nontrivial version space in learning problems [39, 40], and implicitly
in specific applications such one-bit compressed sensing and its generalizations
[44, 45].

We use the random function q(h) = 1
2 |〈∇f+(x�)−∇f−(x�),h〉|, which has

the same law as the functions qi, to define a few important quantities below.

Conditioning: Let Sd−1 denote the usual unit sphere in Rd. Given S ⊆ Sd−1,
we define λD and ΛD as

λD
def
= inf

z∈S
ED (q(z)) , (4)

and

ΛD
def
= sup

z∈S
ED (q(z)) . (5)

The dependence of λD and ΛD on S will always be clear from the context,
thus we do not make this dependence explicit merely to simplify the notation.
Our results will depend on the condition number ΛD/λD. In particular, it is
important to have λD > 0.

While generically S can be set to Sd−1 in the definitions (4) and (5), in some
applications we may choose S to be a proper subset of Sd−1. This restriction
helps us avoiding a degeneracy that leads to λD = 0 and vacuous error bounds.
An interesting example occurs in the bilinear regression problem discussed in
Section 4.

Our proposed estimator, described in Section 2, can be viewed as an approx-
imation to

argmax
x

E
( 1

2
〈∇f+(x�) +∇f−(x�),x− x�〉−

max{f+(x)− f+(x�), f
−(x)− f−(x�)}

)
,

disregarding the additive constants in the objective function. The importance
of λD can be explained by inspecting the uniqueness of the above “idealized”
estimator. By convexity of f±(·) we have

f±(x)− f±(x�) ≥ 〈∇f±(x�),x− x�〉 ,

and thereby

max{f+(x)− f+(x�), f
−(x)− f−(x�)}

≥ max{〈∇f+(x�),x− x�〉, 〈∇f−(x�),x− x�〉} .
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Therefore, the objective function of the idealized estimator is dominated by

−1

2
E
(
|〈∇f+(x�)−∇f−(x�),x− x�〉|

)
.

The points x for which f+(x) − f−(x) = f+(x�) − f−(x�) almost surely are
effectively equivalent to x�. Thus, in view of (4), with S ⊆ Sd−1 being the com-
plement of the directions from x� to its equivalents, having λD > 0 guarantees
that the idealized estimator can only be x = x�.

Regularity: For technical reasons we also need some regularity for the data
distribution. To exclude pathologically heavy-tailed data distributions we make
the mild {assumption} that the (directional) second moment of ∇f+(x�) −
∇f−(x�) is bounded from above by its corresponding (directional) first moment.
This assumption can be made precise in terms of q(z) as follows. For some
constant ηD > 1 we assume that√

ED (q2(z)) ≤ ηDED (q(z)) , (6)

holds for all z ∈ Rd. Furthermore, with g denoting a standard normal random
variable, we define

ΓD
def
=
√
EgED (q2(g)) =

1

2

√
ED

(
‖∇f+(x�)−∇f−(x�)‖2

)
, (7)

which is a measure of smoothness of the functions qi near the origin. The main
factor in the sample complexity we establish is Γ 2

D/Λ
2
D that can be interpreted

as the effective dimension of the problem since it is bounded by the ratio of the
trace and the operator norm of the correlation matrix of ∇f+(x�)−∇f−(x�).

Approximation oracle: We assume an approximation oracle is available that
provides a vector a0 ∈ Rd which, for some ε ∈ (0, 1], obeys∥∥∥∥∥a0 −

1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�)

∥∥∥∥∥ ≤ 1− ε

2
λD . (8)

Having access to the approximation oracle above is the strongest assumption
we make. This assumption could be excessive for prediction tasks where the
goal is merely accurate approximation of f+(x�)− f−(x�) for the unseen data.
However, in this paper we are analyzing an estimation task in which accurate
estimation of x� is the goal rather than predicting f+(x�) − f−(x�). A stan-
dard approach to such estimation problems is to optimize an empirical risk
that quantifies the consistency of any candidate estimate with the observa-
tions. Because these risk functions are generally nonconvex, accuracy guaran-
tees for iterative estimation procedures is often established assuming that they
are initialized at a point, say x0, in a relatively small neighborhood of the
ground truth x� (i.e., x0 ≈ x�). The imposed bound (8) can be derived from
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such initialization conditions; e.g., if ∇f+(·) +∇f−(·) is a sufficiently smooth
mapping, then x0 ≈ x� would imply a0 = 1

2n

∑n
i=1 ∇f+

i (x0) + ∇f−
i (x0) ≈

1
2n

∑n
i=1 ∇f+

i (x�) +∇f−
i (x�). Finally, if the vectors ∇f+(x�) +∇f−(x�) are

sufficiently light-tailed in the sense of being bounded in a certain Orlicz norm3,
then we can simply require∥∥∥∥a0 −

1

2
ED

(
∇f+(x�) +∇f−(x�)

)∥∥∥∥ ≤ 1− ε′

2
λD ,

and then resort to a matrix concentration inequality such as the matrix Bern-
stein inequality [27, Theorem 2.7] or the matrix Rosenthal inequality [15, 25, 36]
to recover the condition (8). We do not attempt to provide a general framework
to address these details in this paper. However, in the context of the bilinear
regression problem, following the idea of “spectral initialization” used in non-
convex methods (see, e.g., [12, 32, 33, 35, 42]) we provide an explicit example
for an implementable approximation oracle in Section 4.

The three assumptions stated above are primarily related to the statistical
model. We also make the following assumptions on the computational model in
order to provide a tractable method.

Computational assumptions: As mentioned above, we emphasize that our
approach requires the access to the DC decomposition of the observation func-
tion. Computing such a decomposition can be intractable in general (see, e.g., [2]
and references therein). However, assuming access to an efficiently computable
DC form is a reasonable compromise for creating a concrete computational
framework. In many applications the DC decomposition is provided explicitly
or is easy to compute. For instance, many statistical problems are concerned
with observations of the form yi = φ(〈ai,x�〉) for a certain nonlinear function
φ : R → R and data point ai. In some interesting instances, the desired DC de-
composition is relatively easy to compute because it reduces to computing a DC
decomposition of φ(·) over R. Of course, as a natural requirement for implement-
ing optimization algorithms such as the first-order methods, we also need the
components of the DC decomposition (and their gradients) to be computable.

2. The estimator and the main results

Given a0, the output of the approximation oracle which obeys (8), we formulate
the estimator of x� as

x̂ ∈ argmax
x

〈a0,x〉 −
1

n

n∑
i=1

max
{
f+
i (x)− yi, f

−
i (x)

}
, (9)

which is a convex program that can be solved efficiently.

3For a precise definition, interested readers are referred to [27, Appendix A.1] and the
references therein.
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Let us first demystify the formulation of the estimator by some intuitive
explanations. Using the identity

max{u, v} =
u+ v + |u− v|

2
,

the objective function in (9) can be expressed as

〈a0,x〉 −
1

n

n∑
i=1

max
{
f+
i (x)− yi, f

−
i (x)

}
= − 1

2n

n∑
i=1

(
f+
i (x) + f−

i (x)− 〈2a0,x〉 − yi
)
− 1

2n

n∑
i=1

|f+
i (x)− f−

i (x)− yi| .

Suppose that, instead of (8), we have a0 = 1
2n

∑n
i=1 ∇f+

i (x�) +∇f−
i (x�). In-

specting the first sum, it is evident that it is, up to additive constants, a Bregman
divergence that admits x� as a minimizer. Furthermore, the second sum is ex-
pected to be minimized at a point close to x� because the observations obey
yi ≈ f+

i (x�) − f−
i (x�). Therefore, we can expect that the estimator x̂ is not

far from x�. The Karush-Kuhn-Tucker (KKT) stationarity condition, explains
that the approximation error of a0 in (8) is tolerable because the second sum
contains nondifferentiable terms with (potentially) large subdifferentials. Our
analysis makes these intuitive explanations rigorous in an implicit manner.

With the definitions and assumptions stated in Section 1.1, our main result
is the following theorem that provides the sample complexity for accuracy (9)
in a generic setting. This theorem is a simple consequence of Proposition 1 and
Lemma 1 stated subsequently.

Theorem 1. Given a set S ⊆ Sd−1 and parameter ε ∈ (0, 1), suppose (4), (5),
(6), (7), and (8) hold. Furthermore, for a solution x̂ of (9), suppose that we
have

x̂− x� ∈ ‖x̂− x�‖ S . (10)

If the number of measurements obeys

n ≥ Cmax

{
η2D log

2

δ
,

Γ 2
D

λDΛD

}
Λ2
D

λ2
D
η2Dε

−4 ,

for a sufficiently large absolute constant C > 0, then with probability ≥ 1− δ we
have

‖x̂− x�‖ ≤
1
n

∑n
i=1 |ξi|

1
2λD

.

Proof. Given the lower bound on n, Proposition 1 below together with (4) guar-
antee that, with probability ≥ 1− δ, we have

1

n

n∑
i=1

qi(h) ≥ (1− 1

2
ε)λD ,
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for all h ∈ S. The desired error bound follows immediately from Lemma 1 with
x0 = x� and ε0 = 0.

The condition (10) in the theorem may appear unnatural at first. Clearly, the
condition holds if we choose S = Sd−1. However, the condition (10) is imposed
to address the situations where a set of equivalent ground truth vectors x� exists
and we only need to prove accuracy with respect to the closest point in this set.
This relaxed accuracy requirement induces additional structure on x̂− x� that
should be considered to avoid the degeneracy at λD = 0. The sole purpose of
(10) is to capture the mentioned additional structures. The bilinear regression
problem discussed below in Section 4 is an example where it is important to
have a nontrivial set S.

Furthermore, with κ
def
= ΛD/λD and deff

def
= Γ 2

D/Λ
2
D, the achievable sample

complexity stated by the Theorem 1 can be rewritten as

n ≥ Cmax{η2D log
2

δ
, κ deff}κ2η2Dε

−4 ,

signifying the role of the effective dimension deff ≤ d, and the conditioning κ of
the problem.

Under the assumptions stated in Section 1.1, accuracy of the estimator (9)
can be reduced to the existence of an appropriate uniform lower bound for the
empirical process 1

n

∑n
i=1 qi(h) as a function of h. The following Lemma 1,

proved in Section 3.2, provides the precise form of this reduction.

Lemma 1. Let x0 be one of the possibly many vectors equivalent to x� meaning
that

f+(x0)− f−(x0) = f+(x�)− f−(x�) ,

almost surely. Given a set S ⊆ Sd−1, recall the definition (4) and assume that
an analog of the condition (8) with respect to x0 holds, namely,∥∥∥∥∥a0 −

1

2n

n∑
i=1

∇f+
i (x0) +∇f−

i (x0)

∥∥∥∥∥ ≤ 1− ε

2
λD , (11)

for some constant parameter ε ∈ (0, 1). Furthermore, suppose that (10) holds
and that for a certain absolute constant ε0 ∈ [0, 1),

1

2n

n∑
i=1

∣∣〈∇f+
i (x0)−∇f−

i (x0),h〉
∣∣ ≥ (1− ε+ ε0

2
)λD , (12)

holds for every h ∈ S. Then the estimate x̂ obeys

‖x̂− x�‖ ≤
1
n

∑n
i=1 |ξi|

1−ε0
2 λD

.
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Again, in the generic case we choose S = Sd−1, x0 = x�, and ε0 = 0 in Lemma
1. For the structured problems mentioned above, however, with a nontrivial
choice of S in (10), we may need to choose x0 �= x� and an appropriate ε0 > 0.

Lemma 1 provides an error bound that is proportional to 1
n

∑n
i=1 |ξi|. This

dependence is satisfactory for a deterministic noise model where we ought to
consider the worst-case scenarios. However, we may obtain improved noise de-
pendence for random noise models. In fact, simple modifications in the proof of
Lemma 1 allow us to replace 1

n

∑n
i=1 |ξi| in the error bound by the maximum

of the two expressions∣∣∣∣∣supx 1

n

n∑
i=1

ξi1
(
f+
i (x)− f−

i (x) > f+
i (x�)− f−

i (x�)
)∣∣∣∣∣

and ∣∣∣∣∣supx 1

n

n∑
i=1

−ξi1
(
f+
i (x)− f−

i (x) > f+
i (x�)− f−

i (x�) + ξi
)∣∣∣∣∣ .

These expressions may provide much tighter bounds when the noise is random
with a well-behaved distribution. For instance, if ξ1, . . . , ξn are i.i.d. zero-mean
Gaussian random variables, the first expression reduces to the Gaussian com-
plexity of the functions 1

(
f+
i (x)− f−

i (x)>f+
i (x�)− f−

i (x�)
)
which may be of

order n−1/2. To keep the exposition simple, we focus on the deterministic noise
model in this paper.

Clearly, to prove accuracy of (9) through Lemma 1, establishing an inequality
of the form (12) is crucial. Proposition 1 below can provide a guarantee for such
an inequality in the case x0 = x� and under the assumptions made in Section
1.

Proposition 1. Let ε ∈ (0, 1) be a constant parameter. With the definitions
(2), (4), (5), (6), and (7), for any δ ∈ (0, 1], if for a sufficiently large absolute
constant C > 0 we have

n ≥ Cmax

{
η2D log

2

δ
,

Γ 2
D

λDΛD

}
Λ2
D

λ2
D
η2Dε

−4 ,

then with probability ≥ 1− δ the bound

1

n

n∑
i=1

qi(h) ≥ (1− ε)ED(q(h)) ,

holds for every h ∈ S.
The proof of this proposition is provided in Section 3.

2.1. Related work

In a prior work [10], we considered the “convex regression” model, a special case
of (1) with purely convex nonlinearities (i.e., f−

i ≡ 0 and f+
i ≡ fi for convex
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functions fi). With a slightly weaker approximation oracle that produces an
anchor a0 for which 〈a0,x�〉/ ‖a0‖ ‖x�‖ is nonvanishing, statistical accuracy of
estimation via the convex program

argmax
x

〈a0,x〉

subject to
1

n

n∑
i=1

max {fi(x)− yi, 0} ≤ average noise ,

is studied in [10]. The effect of convex regularization (e.g., �1-regularization) in
structured estimation (e.g., sparse estimation) is also considered and analyzed
in [10]. Evidently, the solution of the convex program above is insensitive to
(positive) scaling of the anchor a0. The estimator (9) is, however, sensitive to
the scaling of a0 which is a main reason for the need for a slightly stronger
approximation oracle in this paper. An interesting example where the described
convex regression applies is the phase retrieval problem that was previously
studied in [8, 9, 20, 21].

As will be seen in Section 4, bilinear regression can be modeled by (1) as
well. Succinctly, the goal in a bilinear regression problem is to recover signal
components x(1) and x(2), up to the inevitable scaling ambiguity, from bilinear

observations of the form 〈a(1)
i ,x(1)〉〈a(2)

i ,x(2)〉 for i = 1, . . . , n. In the context
of the closely related blind deconvolution problem, solving such a system of
bilinear equations in the lifted domain through nuclear-norm minimization has
been analyzed in [3] and [7]. Despite their accuracy guarantees, the nuclear-
norm minimization methods are practically not scalable to large problem sizes
which motivated the analysis of nonconvex techniques (see, e.g., [32, 33, 35]).
Inspired by the results on the phase retrieval problem mentioned above, [1]
proposed and analyzed a convex program for bilinear regression that operates in
the natural space of the signals, thereby avoiding the prohibitive computational
cost of the lifted convex formulations. Unlike the mentioned methods for phase
retrieval that only require a (directional) approximation of the ground truth,
the proposed estimator in [1] requires the exact knowledge of the signs of all

of the multiplied linear forms 〈a(1)
i ,x

(1)
� 〉 (or 〈a(2)

i ,x
(2)
� 〉). This requirement is

rather strong and may severely limit the applicability of the considered method.
In Section 4, we look into the problem of bilinear regression as a special case
of the general regression problem (1); under the common Gaussian model for
the measurement vectors we derive the sample complexity of (9) and explain
an efficient method to construct an admissible vector a0 only using the given
observations.

3. Main proofs

There are various techniques under the umbrella of empirical process theory that
can be employed to establish Proposition 1 and thereby Theorem 1. For instance,
techniques relying on the concepts of VC dimension [47, 48] or Rademacher
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complexity [11, 26, 29] including the small-ball method [28, 39, 40] that are
primarily developed in the field of statistical learning theory. However, some
techniques, such as the small-ball method, are designed particularly to handle
the type of heavy-tailed data we consider in our model. In this paper, we use
another common technique, the PAC-Bayesian (or pseudo-Bayesian) method,
that is suitable for heavy-tailed data. This method, proposed in [38], has been
used previously for establishing various generalization bounds for classification
[see e.g., 17, 30, 38] and accuracy in regression problems [4–6, 14, 43]. The
bounds obtained using this technique appear in different forms; we refer the
interested reader to the survey paper [37] and the monograph [13] for a broader
view of the related results and techniques. Compared to the small-ball method,
the PAC-Bayesian argument does not rely on the symmetrization [46, Lemma
2.3.1] and Rademacher contraction [31, Theorem 4.12] ideas and has a more
elementary nature.

Our analysis below in Section 3.1 parallels that used in [43] which in turn was
inspired by [6]. The technical tools we use can be found in the PAC-Bayesian
literature; we provide the proofs to make the manuscript self-contained. We
emphasize that the novelty of this work is the general regression model (1) and
the computationally efficient estimator (9) rather than the methods of analysis.

The core idea in the PAC-Bayes theory is the variational inequality4

Ez∼μR(z) ≤ logEz∼ν exp(R(z)) +DKL(μ, ν) , (13)

where DKL(μ, ν) = Ez∼μ

(
log dμ(z)

dν(z)

)
denotes the Kullback-Leibler divergence

(or relative entropy) between probability measures μ and ν with μ � ν. In PAC-
Bayesian analyses, the fact that this bound is deterministic and holds for any
probability measure μ � ν is leveraged to control the supremum of stochastic
processes. In particular, for a stochastic process R(·) with the domain X , we
may approximate supx∈X R(x) by the supremum of supμx:x∈X Ez∼μxR(z) with
respect to a certain set of probability measures μx indexed by the elements of X
(e.g., Ez∼μx(z) = x). Then, under some regularity conditions on the stochastic
process, the approximate bound can be converted to an exact bound.

3.1. A PAC-Bayesian proof of Proposition 1

We use the PAC-Bayesian analysis to establish Proposition 1, the main ingre-
dient in proving the accuracy of (9).

Proof of Proposition 1. For i = 1, . . . , n, let

wi(z)
def
= log

(
1− [αqi(z)]≤1 +

1

2
[αqi(z)]

2
≤1

)
, (14)

4While this inequality is sometimes interpreted using the Fenchel–Legendre transform, it
is simply a Jensen’s inequality in disguise.
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where [u]≤1
def
= min (u, 1) and α > 0 is a normalizing factor to be specified later.

As it becomes clear below, the function wi(z) should be viewed as an approx-
imation for αqi(z) that serves two purposes in the PAC-Bayesian argument.
First, the use of the logarithm leads to cumulant generating functions that can
be relatively easily approximated by −ED(αqi(z)). Second, the use of the trun-
cation legitimizes the evaluation of moment generating functions and also allows
us to have bounded the deviations caused by the parameter perturbation in the
PAC-Bayesian argument.

Let γh denote the normal distribution with mean h and covariance σ2I for
a parameter σ. By (13), for every h ∈ S ⊆ Sd−1, we have

Ez∼γh

(
n∑

i=1

wi(z)− n logED exp (w1(z))

)

≤ logEz∼γ0 exp

(
n∑

i=1

wi(z)− n logED exp (w1(z))

)
+

σ−2

2
.

(15)

Furthermore, by Markov’s inequality with probability ≥ 1− δ/2 we have

Ez∼γ0 exp

(
n∑

i=1

wi(z)− n logED exp (w1(z))

)

≤ 2

δ
EDnEz∼γ0 exp

(
n∑

i=1

wi(z)− n logED exp (w1(z))

)

=
2

δ
Ez∼γ0EDn exp

(
n∑

i=1

wi(z)− n logED exp (w1(z))

)

=
2

δ
,

where the exchange of expectations on the second line is valid as the argument
is a bounded function. Therefore, on the same event because of (15) for every
h ∈ S we have

Ez∼γh

(
n∑

i=1

wi(z)− n logED exp (w1(z))

)
≤ σ−2

2
+ log

2

δ
,

or equivalently

1

n

n∑
i=1

Ez∼γh
wi(z) ≤ Ez∼γh

(logED exp(w1(z))) +
σ−2 + 2 log 2

δ

2n
. (16)

The definition (14) and the facts that −u ≤ log(1− u+ 1
2u

2) ≤ −u+ 1
2u

2 and

1− [u]≤1 +
1
2 [u]

2
≤1 ≤ 1− u+ 1

2u
2, for all u ≥ 0, imply the bounds

Ez∼γh
wi(z) ≥ −Ez∼γh

(
[αqi(z)]≤1

)
,
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and

Ez∼γh
logED exp(w1(z))

= Ez∼γh
log

(
1− ED

(
[αq1(z)]≤1

)
+

1

2
ED

(
[αq1(z)]

2
≤1

))
≤ −Ez∼γh

ED (αq1(z)) +
1

2
Ez∼γh

ED
(
α2q21(z)

)
.

Using (3), (7), and the Cauchy-Schwarz inequality, we also have

Ez∼γh
ED (q1(z)) ≥ Ez∼γh

ED (q1(h)− q1(h− z))

= ED (q1(h))− Ez∼γ0ED (q1(z))

≥ ED (q1(h))− σΓD .

Thus, it follows from (16) that

1

n

n∑
i=1

1

α
Ez∼γh

(
[αqi(z)]≤1

)
≥ ED (q1(h))− σΓD

− α

2
Ez∼γh

ED
(
q21(z)

)
−

σ−2 + 2 log 2
δ

2αn
.

(17)

Applying Lemmas 2 and 3, stated and proved in the appendix, to (17) shows
that for all h ∈ S, with probability ≥ 1− δ, we have

1

n

n∑
i=1

qi(h) + σΓD +
1

α

√
log 2

δ

2n

≥ ED (q1(h))− σΓD

− α

2
Ez∼γh

ED
(
q21(z)

)
−

σ−2 + 2 log 2
δ

2αn

≥ ED (q1(h))− σΓD − α

2
(ηDED (q1(h)) + σΓD)

2

−
σ−2 + 2 log 2

δ

2αn

≥ ED (q1(h))− σΓD − α
(
η2D (ED (q1(h)))

2
+ σ2Γ 2

D

)
−

σ−2 + 2 log 2
δ

2αn
,

By rearranging the terms, we reach at

1

n

n∑
i=1

qi(h) ≥ ED (q1(h))

− 2σΓD − α
(
η2D (ED (q1(h)))

2
+ σ2Γ 2

D

)
− 1

α

⎛⎝√ log 2
δ

2n
+

σ−2 + 2 log 2
δ

2n

⎞⎠ .
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Recalling (4), (5), and (7), we can choose

σ =
ελD
4ΓD

,

and

α = λD

⎛⎝√ log 2
δ

2n
+

16Γ 2
Dλ

−2
D ε−2 + 2 log 2

δ

2n

⎞⎠1/2(
ΛD
λD

)−1/2

,

to obtain

1

n

n∑
i=1

qi(h) ≥ ED (q1(h))−
ελD
2

− 2λD

⎛⎝√ log 2
δ

2n
+

16Γ 2
Dλ

−2
D ε−2 + 2 log 2

δ

2n

⎞⎠1/2(
ΛD
λD

η2D +
ε2

6

)1/2

≥
(
1− ε

2

)
ED(q1(h))

− 2λD

⎛⎝√ log 2
δ

2n
+

16Γ 2
Dλ

−2
D ε−2 + 2 log 2

δ

2n

⎞⎠1/2(
ΛD
λD

η2D +
ε2

6

)1/2

.

It is then straightforward to deduce

1

n

n∑
i=1

qi(h) ≥ (1− ε)ED (q1(h)) ,

assuming

n � max

{
η2D log

2

δ
,

Γ 2
D

λDΛD

}
Λ2
D

λ2
D
η2Dε

−4 ,

with a sufficiently large hidden constant.

3.2. Proof of Lemma 1

Below we provide a proof of Lemma 1.

Proof of Lemma 1. By optimality of x̂ in (9) we have

1

n

n∑
i=1

max
{
f+
i (x̂)− yi, f

−
i (x̂)

}
≤ 1

n

n∑
i=1

max
{
f+
i (x0)− yi, f

−
i (x0)

}
+ 〈a0, x̂− x0〉
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=
1

n

n∑
i=1

f−
i (x0) + max {−ξi, 0}+ 〈a0, x̂− x0〉 .

For i = 1, . . . , n let y�i = yi − ξi = f+
i (x�) − f−

i (x�) = f+
i (x0) − f−

i (x0) and
observe that

max
{
f+
i (x̂)− y�i, f

−
i (x̂)

}
≤ max

{
f+
i (x̂)− yi, f

−
i (x̂)

}
+max {ξi, 0} .

Therefore, we deduce that

1

n

n∑
i=1

max
{
f+
i (x̂)− y�i, f

−
i (x̂)

}
≤ 1

n

n∑
i=1

f−
i (x0) + max {ξi, 0}+max {−ξi, 0}+ 〈a0, x̂− x0〉

=
1

n

n∑
i=1

f−
i (x0) + |ξi|+ 〈a0, x̂− x0〉 ,

or equivalently

1

n

n∑
i=1

max
{
f+
i (x̂)− f+

i (x0), f
−
i (x̂)− f−

i (x0)
}
≤ 1

n

n∑
i=1

|ξi|+ 〈a0, x̂− x0〉 .

Invoking the assumption (11) and using Cauchy-Schwarz inequality we can
write

1

n

n∑
i=1

max
{
f+
i (x̂)− f+

i (x0), f
−
i (x̂)− f−

i (x0)
}

≤ 1

n

n∑
i=1

|ξi|+ 〈a0 −
1

2n

n∑
i=1

∇f+
i (x0) +∇f−

i (x0), x̂− x0〉

+ 〈 1

2n

n∑
i=1

∇f+
i (x0) +∇f−

i (x0), x̂− x0〉

≤ 1

n

n∑
i=1

|ξi|+
1− ε

2
λD ‖x̂− x0‖+ 〈 1

2n

n∑
i=1

∇f+
i (x0) +∇f−

i (x0), x̂− x0〉 .

Rearranging the terms gives the equivalent inequality

1

n

n∑
i=1

max
{
f+
i (x̂)−f+

i (x0), f
−
i (x̂)−f−

i (x0)
}
− 1

2
〈∇f+

i (x0)+∇f−
i (x0), x̂−x0〉

≤ 1

n

n∑
i=1

|ξi|+
1− ε

2
λD ‖x̂− x0‖ .
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Observe that

max
{
f+
i (x̂)− f+

i (x0), f
−
i (x̂)− f−

i (x0)
}
− 1

2
〈∇f+

i (x0) +∇f−
i (x0), x̂− x0〉

≥ 1

2

∣∣〈∇f+
i (x0) +∇f−

i (x0), x̂− x0〉
∣∣ .

Using the assumption that (12) holds, we obtain

1

n

n∑
i=1

max
{
f+
i (x̂)−f+

i (x0), f
−
i (x̂)−f−

i (x0)
}
− 1

2
〈∇f+

i (x0)+∇f−
i (x0), x̂−x0〉

≥ 1

2n

n∑
i=1

∣∣〈∇f+
i (x0) +∇f−

i (x0), x̂− x0〉
∣∣

≥
(
1− ε+ ε0

2

)
λD ‖x̂− x0‖ .

Therefore, we conclude that(
1− ε+ ε0

2

)
λD ‖x̂− x0‖ ≤ 1

n

n∑
i=1

|ξi|+
1− ε

2
λD ‖x̂− x0‖ ,

which, since ε0 ∈ [0, 1), is equivalent to

‖x̂− x0‖ ≤
1
n

∑n
i=1 |ξi|

1−ε0
2 λD

.

4. Application to bilinear regression

In this section we apply the general result above to the problem of bilinear

regression. Suppose that the vectors x
(1)
� and x

(2)
� are observed through the

bilinear measurements

yi = 〈a(1)
i ,x

(1)
� 〉〈x(2)

� ,a
(2)
i 〉, i = 1, . . . , n , (18)

with known vector pairs (a
(1)
i ,a

(2)
i ). In bilinear regression, the goals is to recover

x
(1)
� and x

(2)
� (up to the inherent ambiguities) from the above measurements.

To apply our general framework, we introduce an equivalent formulation of
the bilinear observations that is compatible with the DC observation model of

(1). Let x� denote the concatenation of x
(1)
� ∈ Rd1\{0} and x

(2)
� ∈ Rd2\{0}.

Similarly, for i = 1, . . . , n let a±
i denote the concatenation of a

(1)
i and ±a

(2)
i . It

is easy to verify that the bilinear measurements above can also be expressed in
the form

yi =
1

4

∣∣〈a+
i ,x�〉

∣∣2 − 1

4

∣∣〈a−
i ,x�〉

∣∣2 ,
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which is a special case of the DC observation model (1) with

f+
i (x) =

1

4

∣∣〈a+
i ,x〉

∣∣2 and f−
i (x) =

1

4

∣∣〈a−
i ,x〉

∣∣2 . (19)

The problem setup and additional notations are as follows. Denote the � × �

identity matrix by I�. For k = 1, 2, let a
(k)
1 ,a

(k)
2 , . . . ,a

(k)
n be i.i.d. copies of

a(k) ∼ Normal(0, Idk
) with a

(1)
i and a

(2)
i also drawn independently for all 1 ≤

i ≤ n. Similar to the definition of a±
i s above, we also denote the concatenation

of a(1) and ±a(2) by a±. The functions f± are defined analogous to f±
i with

a± replacing a±
i . For brevity, we set d = d1 + d2. Furthermore, some of the

unspecified constants in the derivations below are overloaded and may take
different values from line to line. For any vector x ∈ Rd with partitions as
x(1) ∈ Rd1 and x(2) ∈ Rd2 , we use the notation x− to denote the concatenation
of x(1) and −x(2).

Evidently, any reciprocal scaling of x
(1)
� and x

(2)
� is also consistent with the

bilinear measurements (18) and will be considered a valid solution. Throughout

this section, we choose x� to be a “balanced” solution meaning that
∥∥∥x(1)

�

∥∥∥ =∥∥∥x(2)
�

∥∥∥. Also, without loss of generality, we may assume 〈a0,x�〉 ≥ 0. The accu-

racy, however, is measured with respect to a closest consistent solution

x̂� ∈ argmin
x

{
‖x̂− x‖ : x(1) = tx

(1)
� ,x(2) = t−1x

(2)
� , t ∈ R\{0}

}
. (20)

To state the accuracy guarantees for (9) in the described bilinear regression
problem, we first bound the important quantities given by (4), (5), (6), and (7)
for the restriction set

S =

{
z ∈ Sd−1 :

∣∣〈z,x�
−〉
∣∣ ≤ 1

2
‖x�‖

}
. (21)

This choice of S allows us to find a nontrivial bound for λD and it is important
in the proof of Theorem 2.

4.1. Quantifying λD, ΛD, ΓD, and ηD

Let h ∈ S be a vector partitioned into h(1) ∈ Rd1 and h(2) ∈ Rd2 . We can write

ED
∣∣〈∇f+(x�))−∇f−(x�)),h〉

∣∣ = ED

∣∣∣〈a(1) ⊗ a(2),h(1) ⊗ x
(2)
� + x

(1)
� ⊗ h(2)〉

∣∣∣
=

√
2

π
ED

∥∥∥(h(1) ⊗ x
(1)
� + x

(1)
� ⊗ h(2)

)
a(2)

∥∥∥ .

Using the Cauchy-Schwarz inequality and Lemma 7 in the appendix, respec-
tively, we obtain

ED

∣∣∣〈a(1) ⊗ a(2),h(1) ⊗ x
(2)
� + x

(1)
� ⊗ h(2)〉

∣∣∣≤√ 2

π

∥∥∥h(1) ⊗ x
(2)
� + x

(1)
� ⊗ h(2)

∥∥∥
F
,
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and

ED

∣∣∣〈a(1) ⊗ a(2),h(1) ⊗ x
(2)
� + x

(1)
� ⊗ h(2)〉

∣∣∣ ≥ 2

π

∥∥∥h(1) ⊗ x
(2)
� + x

(1)
� ⊗ h(2)

∥∥∥
F
.

Observe that∥∥∥h(1) ⊗ x
(2)
� + x

(1)
� ⊗ h(2)

∥∥∥2
F

=
∥∥∥h(1) ⊗ x

(2)
�

∥∥∥2
F
+
∥∥∥x(1)

� ⊗ h(2)
∥∥∥2
F
+ 2〈h(1) ⊗ x

(2)
� , x

(1)
� ⊗ h(2)〉

=
∥∥∥h(1)

∥∥∥2 ∥∥∥x(2)
�

∥∥∥2 + ∥∥∥h(2)
∥∥∥2 ∥∥∥x(1)

�

∥∥∥2 + 2〈h(1),x
(1)
� 〉〈h(2),x

(2)
� 〉

= 〈X�,h⊗ h〉 ,

where

X� =

⎡⎢⎣
∥∥∥x(2)

�

∥∥∥2 Id1 x
(1)
� ⊗ x

(2)
�

x
(2)
� ⊗ x

(1)
�

∥∥∥x(1)
�

∥∥∥2 Id2

⎤⎥⎦
=

1

2
‖x�‖2 I +

1

2
x� ⊗ x� −

1

2
x−
� ⊗ x−

� .

Thus, we have

1

π

√
〈X�,h⊗ h〉 ≤ 1

2
ED

∣∣〈∇f+(x�)−∇f−(x�),h〉
∣∣ ≤ 1√

2π

√
〈X�,h⊗ h〉 .

(22)
Since h ∈ S, by definition |〈h,x−

� 〉| ≤ 1
2 ‖x�‖, and it is easy to verify that

3

8
‖x�‖2 ≤ 〈X�,h⊗ h〉 ≤ ‖x�‖2 .

Therefore, (22) implies that

√
6

4π
‖x�‖ ≤ 1

2
ED

∣∣〈∇f+(x�)−∇f−(x�),h〉
∣∣ ≤ 1√

2π
‖x�‖ ,

which also means

√
6

4π
‖x�‖ ≤ λD ≤ ΛD ≤ 1√

2π
‖x�‖ . (23)

Note that without the restriction of h to the prescribed set S in (21), we could
have had λD = 0, which leads to vacuous bounds.
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We can also evaluate ΓD as

ΓD =
1

2

√
ED

(
‖∇f+(x�)−∇f−(x�)‖2

)
=

1

2

√
ED

(∥∥∥a(1)〈a(2),x
(2)
� 〉

∥∥∥2 + ∥∥∥a(2)〈a(1),x
(1)
� 〉

∥∥∥2)

=
1

2

√
ED

(
d1

∣∣∣〈a(2),x
(2)
� 〉

∣∣∣2 + d2

∣∣∣〈a(1),x
(1)
� 〉

∣∣∣2)

=
1

2

√
d1

∥∥∥x(2)
�

∥∥∥2 + d2

∥∥∥x(1)
�

∥∥∥2
=

1

4

√
d ‖x�‖ . (24)

Furthermore, using the lower bound in (22), we can write

ED
(∣∣〈∇f+(x�)−∇f−(x�),h〉

∣∣2)
= ED

(∣∣∣〈h(1),a(1)〉〈a(2),x
(2)
� 〉+ 〈x(1)

� ,a(1)〉〈a(2),h(2)〉
∣∣∣2)

=
∥∥∥h(1)

∥∥∥2 ∥∥∥x(2)
�

∥∥∥2 + 2〈h(1),x
(1)
� 〉〈h(2),x

(2)
� 〉+

∥∥∥h(2)
∥∥∥2 ∥∥∥x(1)

�

∥∥∥2
=
∥∥∥h(1) ⊗ x

(2)
� + x

(1)
� ⊗ h(2)

∥∥∥2
F

= 〈X�,h⊗ h〉

≤ π2

4

(
ED

(∣∣〈∇f+(x�)−∇f−(x�),h〉
∣∣))2 .

Thus, we are guaranteed to have

ηD ≤ π

2
. (25)

4.2. Accuracy guarantee

To prove accuracy of (9) in the considered bilinear regression problem, we need
to apply Lemma 1 with x̂� given by (20) as the reference ground truth. There-
fore, we also use Proposition 1 with a nontrivial restriction set S in our analysis
to establish an inequality of the form (12). Because x̂� depends on the observa-
tions, however, it cannot be used as the reference ground truth in Proposition 1.
Lemma 4 in the appendix shows that the bound obtained using Proposition 1,
with the balanced ground truth (i.e., x�) as the reference point and the restric-
tions set (21), can be extended to the cases where other equivalent solutions are
considered as the reference ground truth.
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For any t ∈ R\0, let Dt : Rd → Rd be the reciprocal scaling operator de-
scribed by

Dt(x) =

[
tx(1)

t−1x(2)

]
,

where x is the concatenation of x(1) ∈ Rd1 and x(2) ∈ Rd2 . Furthermore, for
θ ∈ [0, 1], we define the cone Kt,θ as

Kt,θ
def
=
{
h :

∣∣〈Dt(x
−
� ),h〉

∣∣ ≤ θ
∥∥Dt(x

−
� )
∥∥ ‖h‖} . (26)

This specific choice of the cone Kt,θ is important for the following reason: If,
for some topt ∈ R\{0}, x̂� = Dtopt(x�) is the solution described by (20), then
elementary calculus shows that

〈Dtopt(x
−
� ), x̂− x̂�〉 = 0 ,

which means that x̂− x̂� ∈ Ktopt,0. Leveraging this property we can show that
Dt−1

opt
(x̂− x̂�) ∈ K1, 12

which allows us to invoke Lemma 4.

The following theorem establishes the sample complexity of (9) for exact
recovery in the noiseless bilinear regression problem.

Theorem 2 (bilinear regression). We observe n noiseless bilinear measure-
ments (18) corresponding to the functions f±

i described by (19). Suppose that
(8) holds for some ε ∈ [7/8, 1). If the number of measurements obeys

n � ε−4 max

{
d, log

8

δ

}
, (27)

with a sufficiently large hidden constant, then with probability ≥ 1− δ, the solu-
tion to (9) coincides with x̂� given by (20).

Proof. Because of (27), we may assume

Cmax

⎧⎪⎨⎪⎩
√

d

n
+

√
log 8

δ

n
,

⎛⎝√ d

n
+

√
log 8

δ

n

⎞⎠2
⎫⎪⎬⎪⎭ ≤ 1

9
, (28)

where C > 0 is the constant in Lemma 6. With ε′ = 6ε− 5, it follows from (40)
in Lemma 6 that∥∥∥∥∥a0 −

1

2n

n∑
i=1

∇f+
i (x̂�) +∇f−

i (x̂�)

∥∥∥∥∥ ≤ 6

∥∥∥∥∥a0 −
1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�)

∥∥∥∥∥
≤ 3(1− ε)λD =

1− ε′

2
λD , (29)

holds with probability ≥ 1− δ/2.
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Furthermore, the approximations (23), (24), and (25) show that because of
(27), Proposition 1, with x� taken as the reference ground truth, ensures

1

n

n∑
i=1

∣∣〈∇f+
i (x�)−∇f−

i (x�),h〉
∣∣ ≥ (1− 1

2
ε)ED

(∣∣〈∇f+(x�)−∇f−(x�),h〉
∣∣) ,

to hold for all h ∈ S = Sd−1 ∩ K1, 12
with probability ≥ 1 − δ/2. On the same

event, if topt, defined as above through x̂� = Dtopt(x�), obeys
√

2/3 ≤ |topt| ≤√
3/2, then Lemma 4 implies that

1

n

n∑
i=1

∣∣〈∇f+
i (x̂�)−∇f−

i (x̂�),h〉
∣∣

≥ (1− 1

2
ε)ED

(∣∣〈∇f+(x̂�)−∇f−(x̂�),h〉
∣∣)

= (1− 1

2
ε)ED

(∣∣∣〈∇f+(x�)−∇f−(x�), Dt−1
opt

(h)〉
∣∣∣) ,

for all h ∈ Sd−1 ∩Ktopt,0. Note that the expectations on the right-hand side are
only with respect to f±; the vector x̂� and the scalar topt should be treated as
deterministic variables. Using (4) we obtain

1

2n

n∑
i=1

∣∣〈∇f+
i (x̂�)−∇f−

i (x̂�),h〉
∣∣ ≥ (1− 1

2
ε)λD

∥∥∥Dt−1
opt

(h)
∥∥∥ .

Therefore, the bound∥∥∥Dt−1
opt

(h)
∥∥∥2 = t−2

opt

∥∥∥h(1)
∥∥∥2 + t2opt

∥∥∥h(2)
∥∥∥2 ≥ min

{
t−2
opt, t

2
opt

}
‖h‖2

and the choice of ε′ = 6ε− 5 made above yield

1

2n

n∑
i=1

∣∣〈∇f+
i (x̂�)−∇f−

i (x̂�),h〉
∣∣ ≥ (1− 5 + ε′

12
)min

{∣∣t−1
opt

∣∣ , |topt|}λD ‖h‖ .

(30)

It only remains to bound |topt| appropriately, not only to approximate the

term min
{∣∣t−1

opt

∣∣ , |topt|}, but also to satisfy the condition
√
2/3 ≤ |topt| ≤

√
3/2

used previously. First, we show that ‖x̂� − x�‖ is small through Lemma 6. Note
that the previous application of Lemma 6, in which we had (28), also guarantees

‖x̂� − x�‖ ≤ 48

5

∥∥∥∥∥a0 −
1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�)

∥∥∥∥∥ ≤ 4

5
(1− ε′)λD .

Therefore, using the upper bound in (23), we get

‖x̂� − x�‖ ≤ 8

25
(1− ε′) ‖x�‖
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Because x̂� = Dtopt(x�), and x� is balanced, we also have

‖x̂� − x�‖2 = |topt − 1|2
∥∥∥x(1)

�

∥∥∥2 + ∣∣t−1
opt − 1

∣∣2 ∥∥∥x(2)
�

∥∥∥2
≥ 1

2
max

{∣∣t−1
opt − 1

∣∣2 , |topt − 1|2
}
‖x�‖2 ,

which together with the previous inequality imply

max
{∣∣t−1

opt − 1
∣∣ , |topt − 1|

}
≤ 1

2
(1− ε′) .

Therefore, we obtain

min
{∣∣t−1

opt

∣∣ , |topt|} =
(
max

{∣∣t−1
opt

∣∣ , |topt|})−1

≥
(
1 + max

{∣∣t−1
opt − 1

∣∣ , |topt − 1|
})−1

≥
(
1 +

1

2
(1− ε′)

)−1

≥
(
1− 5 + ε′

12

)−1

(1− ε′) ,

where the fourth line holds since 1/4≤ε′ = 6ε− 5≤1. Using the derived bound
in (30) yields

1

2n

n∑
i=1

∣∣〈∇f+
i (x̂�)−∇f−

i (x̂�),h〉
∣∣ ≥ (1− ε′)λD ‖h‖ .

Hence, in view of (11), we may invoke Lemma 1 with x0 = x̂�, ε
′ in place of

ε, and ε0 = ε′, and prove the exact recovery (i.e., x̂ = x̂�), which occurs with
probability ≥ 1− δ.

4.3. Approximation oracle

We provide a computationally tractable procedure that can serve as the ap-
proximation oracle discussed in Section 1.1 and requires no information other
than the given measurements (18). This approach basically follows the idea of
“spectral initialization” used for the nonconvex phase retrieval and blind de-
convolution methods [12, 32, 42]; refinements of this approach can be found in
[16, 34, 41] and references therein. We use the measurements to find an approx-
imation a0 of x�/2 and show, by Lemma 5, that x�/2 itself is an approximation
for 1

2n

∑n
i=1 ∇f+

i (x�) +∇f−
i (x�).

Let λmax and vmax be respectively the leading eigenvalue and eigenvector of

Sn
def
=

1

2n

n∑
i=1

yi
(
a+
i ⊗ a+

i − a−
i ⊗ a−

i

)
.
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The fact that Sn has an all-zero diagonal and is symmetric ensures that λmax≥0.
We show that

a0 =

(
λmax

2

)1/2

vmax (31)

meets the required condition (8) with high probability. To this end, first we show
that Sn is well-concentrated around its expectation. Observe that 〈a−

i ,x�〉 =
〈a+

i ,x
−
� 〉 and similarly 〈a−

i ,x
−
� 〉 = 〈a+

i ,x�〉. Thus, we obtain

EDSn = ED

(
1

8

(∣∣〈a+
i ,x�〉

∣∣2 − ∣∣〈a−
i ,x�〉

∣∣2) (a+
i ⊗ a+

i − a−
i ⊗ a−

i

))
=

1

8
ED

(∣∣〈a+
i ,x�〉

∣∣2 a+
i ⊗ a+

i

)
+

1

8
ED

(∣∣〈a−
i ,x�〉

∣∣2 a−
i ⊗ a−

i

)
− 1

8
ED

(∣∣〈a+
i ,x

−
� 〉
∣∣2 a+

i ⊗ a+
i

)
− 1

8
ED

(∣∣〈a−
i ,x

−
� 〉
∣∣2 a−

i ⊗ a−
i

)
=

1

4

(
2x� ⊗ x� + ‖x�‖2 I

)
− 1

4

(
2x−

� ⊗ x−
� +

∥∥x−
�

∥∥2 I)
=

1

2

(
x� ⊗ x� − x−

� ⊗ x−
�

)
.

By the triangle inequality we can write

‖Sn − EDSn‖op ≤ 1

8

∥∥∥∥∥ 1n
n∑

i=1

∣∣〈a+
i ,x�〉

∣∣2 a+
i ⊗ a+

i − 2x� ⊗ x� − ‖x�‖2 I
∥∥∥∥∥
op

+
1

8

∥∥∥∥∥ 1n
n∑

i=1

∣∣〈a−
i ,x�〉

∣∣2 a−
i ⊗ a−

i − 2x� ⊗ x� − ‖x�‖2 I
∥∥∥∥∥
op

+
1

8

∥∥∥∥∥ 1n
n∑

i=1

∣∣〈a+
i ,x

−
� 〉
∣∣2 a+

i ⊗ a+
i − 2x−

� ⊗ x−
� −

∥∥x−
�

∥∥2 I∥∥∥∥∥
op

+
1

8

∥∥∥∥∥ 1n
n∑

i=1

∣∣〈a−
i ,x

−
� 〉
∣∣2 a−

i ⊗ a−
i − 2x−

� ⊗ x−
� −

∥∥x−
�

∥∥2 I∥∥∥∥∥
op

.

Each of the summands on the right-hand side is small for a sufficiently large
n. For example, as shown in [12, Lemma 7.4], if n ≥ Cτd log d for a sufficiently
large constant Cτ that depends only on τ ∈ (0, 1), then∥∥∥∥∥ 1n

n∑
i=1

∣∣〈a+
i ,x�〉

∣∣2 a+
i ⊗ a+

i − 2x� ⊗ x� − ‖x�‖2 I
∥∥∥∥∥
op

≤ τ ‖x�‖2 ,

with probability ≥ 1 − 5 exp (−4τd) − 4d−2. Clearly, we can write similar in-
equalities for the other three summands and by a simple union bound conclude
that

‖Sn − EDSn‖op ≤ τ

4

(
‖x�‖2 +

∥∥x−
�

∥∥2) =
τ

2
‖x�‖2 , (32)
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holds with probability ≥ 1−cτd
−2 for some absolute constant cτ depending only

on τ . Recall that EDSn = (x� ⊗ x� − x−
� ⊗ x−

� ) /2. Because we chose
∥∥∥x(1)

�

∥∥∥ =∥∥∥x(2)
�

∥∥∥ and by the construction of x� and x−
� we have 〈x�,x

−
� 〉 = 0. Thus x� and

x−
� are eigenvectors of EDSn. We may assume that 〈vmax,x�〉 ≥ 0; otherwise

we can simply use −x� as the target. Then, on the event (32), a variant of the
Davis-Kahan theorem [50, Corollary 3] ensures∥∥∥∥vmax −

x�

‖x�‖

∥∥∥∥ ≤ 21/2τ ‖x�‖2

‖x�‖2 /2
= 23/2τ .

Since a0 is defined by (31), we equivalently obtain∥∥∥∥∥a0 −
(
λmax

2

)1/2
x�

‖x�‖

∥∥∥∥∥ ≤ 2τλ1/2
max .

Using (32), it is also easy to show that

1− τ

2
‖x�‖2 ≤ λmax ≤ 1 + τ

2
‖x�‖2 .

Therefore, we deduce that∥∥∥∥a0 −
1

2
x�

∥∥∥∥ ≤
∥∥∥∥∥a0 −

(
λmax

2

)1/2
x�

‖x�‖

∥∥∥∥∥+
∥∥∥∥∥
(
λmax

2

)1/2
x�

‖x�‖
− 1

2
x�

∥∥∥∥∥
≤ 21/2τ

(
1 +

τ

2

)
‖x�‖+

1

2
τ ‖x�‖ . (33)

It follows from Lemma 5 for x = x�, (33), and (23), that if n
τ

�
(
d+ log 4

δ

)
log d,

then ∥∥∥∥∥ 1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�)− a0

∥∥∥∥∥ ≤ CτλD ,

with probability ≥ 1−cτd
−2. Choosing an appropriate value for τ in terms of ε,

the constant Cτ can also be made smaller than (1− ε)/2, thereby guaranteeing
(8).

4.4. Numerical experiments

To evaluate the proposed method numerically, we ran 100 trials with the stan-
dard Gaussian measurements for each pair of d1 = d2 = d/2 ∈ {50, 100, 150}
and n/d ∈ {5, 6, 7, 8, 9}. The signal pairs x(1)

� and x
(2)
� are drawn independently

and uniformly from the d/2-dimensional unit sphere in each trial. We solved an
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Fig 1. Relative error of the estimate (9) versus the oversampling ratio n/d

equivalent form of (9) which is the quadratically-constrained linear maximiza-
tion

max
x∈Rd1+d2 ,w∈Rn

〈a0,x〉 −
1

n
〈1n,w〉

subject to
1

4

∣∣〈a+
i ,x〉

∣∣2 − yi ≤ wi, i = 1, . . . , n

1

4

∣∣〈a−
i ,x〉

∣∣2 ≤ wi, i = 1, . . . , n ,

(34)

where 1n denotes the n-dimensional all-one vector, using the Gurobi solver [23]
through the CVX package [22]. This solver relies on an interior point method for
solving the second order cone program (SOCP) corresponding to (34). For better
scalability, first order methods including stochastic and incremental methods can
be used to solve (9) directly. We did not intend in this paper to find the best
convex optimization method for solving (9).

Figure 1 shows the median of the relative error computed as

Relative Error =

√√√√√√
∥∥∥√‖x̂(2)‖

‖x̂(1)‖ x̂
(1) − x

(1)
�

∥∥∥2 + ∥∥∥√‖x̂(1)‖
‖x̂(2)‖ x̂

(2) − x
(2)
�

∥∥∥2∥∥∥x(1)
�

∥∥∥2 + ∥∥∥x(2)
�

∥∥∥2 .

The experiment suggests that the proposed method succeeds when the oversam-
pling ratio is around eight (i.e., n ≈ 8(d1 + d2) = 8d).

Appendix A: Technical lemmas

A.1. Lemmas used in Section 2

Lemma 2. For any α > 0, with probability ≥ 1− δ/2 we have

1

n

n∑
i=1

1

α
Ez∼γh

(
[αqi(z)]≤1

)
≤ 1

n

n∑
i=1

qi(h) + σΓD +
1

α

√
log 2

δ

2n
,



2002 S. Bahmani

for all h.

Proof. The triangle inequality and subadditivity of u �→ [u]≤1 over the nonneg-
ative real numbers yields

1

n

n∑
i=1

1

α
Ez∼γh

(
[αqi(z)]≤1

)
≤ 1

n

n∑
i=1

1

α
Ez∼γh

(
[αqi(h) + |αqi(z)− αqi(h)|]≤1

)
≤ 1

n

n∑
i=1

1

α
Ez∼γh

(
[αqi (h)]≤1

)
+

1

n

n∑
i=1

1

α
Ez∼γh

(
[|αqi(z)− αqi(h)|]≤1

)
.

Clearly, [αqi(h)]≤1 ≤ αqi(h). Thus, we only need to bound the second term
in the above inequality. Using (3) followed by the Hoeffding’s inequality shows
that

1

n

n∑
i=1

Ez∼γh

(
[α |qi(z)− qi(h)|]≤1

)
≤ 1

n

n∑
i=1

Ez∼γh

(
[α |qi(z − h)|]≤1

)
=

1

n

n∑
i=1

Ez∼γ0

(
[α |qi(z)|]≤1

)

≤ EDEz∼γ0

(
[α |qi(z)|]≤1

)
+

√
log 2

δ

2n
,

holds with probability ≥ 1− δ/2 for all h. Therefore, on this event we have

1

n

n∑
i=1

1

α
Ez∼γh

(
[αqi(z)]≤1

)

≤ 1

n

n∑
i=1

qi(h) +
1

α
[EDEz∼γ0 (αqi(z))]≤1 +

1

α

√
log 2

δ

2n

≤ 1

n

n∑
i=1

qi(h) + σΓD +
1

α

√
log 2

δ

2n

where concavity of u �→ [u]≤1 is used in the first inequality, and the second
inequality follows from the fact that [u]≤1 ≤ u, the Cauchy-Schwarz inequality,
and the definition (7).

Lemma 3. For all h, we have√
Ez∼γh

EDq21(z) ≤ ηDED (q1(h)) + σΓD .
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Proof. It immediately follows from the triangle inequality, (3), and the equiva-
lence of z ∼ γh and z − h ∼ γ0, that√

Ez∼γh
EDq21(z) ≤

√
ED (q21(h)) +

√
Ez∼γh

ED
(
(q1(z)− q1(h))

2
)

≤
√

ED (q21(h)) +
√
Ez∼γh

ED (q21(z − h))

≤
√

ED (q21(h)) +
√
Ez∼γ0ED (q21(z)) ,

which by the assumption (6) and definition (7) yields is the desired bound.

A.2. Lemmas used in Section 4

Note that in the following lemmas the functions f+
i and f−

i are defined as in (19).

Lemma 4. With Kt,θ defined by (26), suppose that

1

n

n∑
i=1

∣∣〈∇f+
i (x�)−∇f−

i (x�),h〉
∣∣ ≥ (1− ε)ED

(∣∣〈∇f+(x�)−∇f−(x�),h〉
∣∣) ,

for all vectors h ∈ K1, 12
. Then, for all t ∈ R\{0} with

√
2/3 ≤ |t| ≤

√
3/2, and

all vectors h ∈ Kt,0, we have

1

n

n∑
i=1

∣∣〈∇f+
i (Dt(x�))−∇f−

i (Dt(x�)),h〉
∣∣

≥ (1− ε)ED
(∣∣〈∇f+(x�)−∇f−(x�), Dt−1(h)〉

∣∣)
= (1− ε)ED

(∣∣〈∇f+(Dt(x�))−∇f−(Dt(x�)),h〉
∣∣) .

Proof. We have the identity

〈∇f+
i (Dt(x�))−∇f−

i (Dt(x�)),h〉= 〈a(1)
i ⊗ a

(2)
i , tx

(1)
� ⊗ h(2) + h(1)⊗ t−1x

(2)
� 〉

= 〈∇f+
i (x�)−∇f−

i (x�), Dt−1 (h)〉 , (35)

for every h and t ∈ R\{0}. Furthermore, because h ∈ Kt,0, by definition
〈Dt(x

−
� ),h〉 = 0, thereby we have the following∣∣〈Dt−1(x−

� ),h〉
∣∣ = ∣∣〈Dt−1(x−

� )−Dt(x
−
� ),h〉

∣∣
=
∣∣t− t−1

∣∣ |〈x�,h〉|

≤ max
{∣∣t2 − 1

∣∣ , ∣∣t−2 − 1
∣∣} ‖x�‖ ‖Dt−1(h)‖ .

Applying the bound
√

2/3 ≤ |t| ≤
√

3/2, we obtain∣∣〈x−
� , Dt−1(h)〉

∣∣ = ∣∣〈Dt−1(x−
� ),h〉

∣∣ ≤ 1

2
‖Dt−1(x�)‖ ‖h‖ ,
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which means that Dt−1(h) ∈ K1, 12
. Therefore, it follows from the assumption of

the lemma that

1

n

n∑
i=1

∣∣〈∇f+
i (x�)−∇f−

i (x�), Dt−1 (h)〉
∣∣

≥ (1− ε)ED
(∣∣〈∇f+(x�)−∇f−(x�), Dt−1 (h)〉

∣∣) ,
which, using (35), implies

1

n

n∑
i=1

∣∣〈∇f+
i (Dt(x�))−∇f−

i (Dt(x�)),h〉
∣∣

≥ (1− ε)ED
(∣∣〈∇f+(Dt(x�))−∇f−(Dt(x�)),h〉

∣∣) ,
as desired.

We use standard matrix concentration inequalities to establish Lemmas 5 and
6 below. We can upper bound

∥∥ 1
n

∑n
i=1 a

+
i ⊗ a+

i − I
∥∥
op

by a standard covering

argument as in [49, Theorem 5.39] which guarantees

∥∥∥∥∥ 1n
n∑

i=1

a+
i ⊗ a+

i − I

∥∥∥∥∥
op

≤ Cmax

⎧⎪⎨⎪⎩
√

d

n
+

√
log 4

δ

n
,

⎛⎝√ d

n
+

√
log 4

δ

n

⎞⎠2
⎫⎪⎬⎪⎭ ,

(36)

with probability ≥ 1 − δ/2 for a sufficiently large absolute constant C > 0.
Similarly, we have∥∥∥∥∥ 1n

n∑
i=1

a−
i ⊗ a−

i − I

∥∥∥∥∥
op

≤ Cmax

⎧⎪⎨⎪⎩
√

d

n
+

√
log 4

δ

n
,

⎛⎝√ d

n
+

√
log 4

δ

n

⎞⎠2
⎫⎪⎬⎪⎭ ,

(37)

with probability ≥ 1− δ/2.
The first lemma below is an immediate consequence of the matrix concentra-

tion inequalities above and is stated merely for reference.

Lemma 5. On the event that (36) and (37) hold, we have∥∥∥∥∥ 1

2n

n∑
i=1

∇f+
i (x) +∇f−

i (x)− 1

2
x

∥∥∥∥∥
≤ Cmax

⎧⎪⎨⎪⎩
√

d

n
+

√
log 4

δ

n
,

⎛⎝√ d

n
+

√
log 4

δ

n

⎞⎠2
⎫⎪⎬⎪⎭ ‖x‖ ,

(38)

for every x ∈ Rd.
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Proof. By definition

∇f+
i (x) +∇f−

i (x) =
1

2

(
a+
i ⊗ a+

i

)
x+

1

2

(
a−
i ⊗ a−

i

)
x .

for any x. A simple application of triangle inequality yields∥∥∥∥∥ 1

2n

n∑
i=1

∇f+
i (x) +∇f−

i (x)− 1

2
x

∥∥∥∥∥
≤ 1

4

∥∥∥∥∥ 1n
n∑

i=1

a+
i ⊗ a+

i − I

∥∥∥∥∥
op

‖x‖+ 1

4

∥∥∥∥∥ 1n
n∑

i=1

a−
i ⊗ a−

i − I

∥∥∥∥∥
op

‖x‖ .

The result follows immediately using the matrix concentration inequalities (36)
and (37).

Lemma 6. There exists an absolute constant C > 0 such that∥∥∥∥∥a0 −
1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�)

∥∥∥∥∥
≥ 1

8

⎛⎜⎝1− Cmax

⎧⎪⎨⎪⎩
√

d

n
+

√
log 4

δ

n
,

⎛⎝√ d

n
+

√
log 4

δ

n

⎞⎠2
⎫⎪⎬⎪⎭
⎞⎟⎠ ‖x̂� − x�‖ ,

(39)

holds with probability ≥ 1 − δ. Furthermore, for a sufficiently large n, on the
same event we have∥∥∥∥∥a0 −

1

2n

n∑
i=1

∇f+
i (x̂�) +∇f−

i (x̂�)

∥∥∥∥∥
≤

5 + 3Cmax

{√
d
n +

√
log 4

δ

n ,

(√
d
n +

√
log 4

δ

n

)2
}

1− Cmax

{√
d
n +

√
log 4

δ

n ,

(√
d
n +

√
log 4

δ

n

)2
} ×

∥∥∥∥∥a0 −
1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�

∥∥∥∥∥ .

(40)

Proof. First we prove (39). By optimality of x̂ in (9), we can write

〈a0, x̂− x�〉 ≥
1

n

n∑
i=1

max
(
f+
i (x̂)− f+

i (x�), f
−
i (x̂)− f−

i (x�)
)

≥ 1

2n

n∑
i=1

f+
i (x̂) + f−

i (x̂)− f+
i (x�)− f−

i (x�).
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Then, subtracting 〈 1
2n

∑n
i=1 ∇f+

i (x�) +∇f−
i (x�), x̂− x�〉 yields

〈a0 −
1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�), x̂− x�〉

≥ 1

2n

n∑
i=1

f+
i (x̂) + f−

i (x̂)−f+
i (x�)− f−

i (x�)− 〈∇f+
i (x�) +∇f−

i (x�), x̂− x�〉

=
1

2n

n∑
i=1

1

4

∣∣〈a+
i , x̂− x�〉

∣∣2 + 1

4

∣∣〈a−
i , x̂− x�〉

∣∣2 . (41)

Applying the Cauchy-Schwarz inequality to the first line, and the standard ma-
trix concentration inequalities (36) and (37) in the third line, we obtain with
probability ≥ 1− δ that∥∥∥∥∥a0 −

1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�)

∥∥∥∥∥ ‖x̂− x�‖

≥ 1

4

⎛⎜⎝1− Cmax

⎧⎪⎨⎪⎩
√

d

n
+

√
log 4

δ

n
,

⎛⎝√ d

n
+

√
log 4

δ

n

⎞⎠2
⎫⎪⎬⎪⎭
⎞⎟⎠ ‖x̂− x�‖2 ,

and thereby∥∥∥∥∥a0 −
1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�)

∥∥∥∥∥
≥ 1

4

⎛⎜⎝1− Cmax

⎧⎪⎨⎪⎩
√

d

n
+

√
log 4

δ

n
,

⎛⎝√ d

n
+

√
log 4

δ

n

⎞⎠2
⎫⎪⎬⎪⎭
⎞⎟⎠ ‖x̂− x�‖ .

Finally, it follows from the triangle inequality and the definition of x̂� in (20)
that

‖x̂� − x�‖ ≤ ‖x̂− x̂�‖+ ‖x̂− x�‖ ≤ 2 ‖x̂− x�‖ ,

which together with the previous bound guarantees (39).
Next, we prove (40). By the triangle inequality and the fact that ∇f±

i (x) is
linear in x, we have∥∥∥∥∥a0 −

1

2n

n∑
i=1

∇f+
i (x̂�) +∇f−

i (x̂�)

∥∥∥∥∥
≤
∥∥∥∥∥ 1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�)−∇f+
i (x̂�)−∇f−

i (x̂�)

∥∥∥∥∥
+

∥∥∥∥∥a0 −
1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�)

∥∥∥∥∥
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=

∥∥∥∥∥ 1

2n

n∑
i=1

∇f+
i (x� − x̂�) +∇f−

i (x� − x̂�)

∥∥∥∥∥
+

∥∥∥∥∥a0 −
1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�)

∥∥∥∥∥ .

Recall, from the first part of the proof, that (36) and (37) hold with probability
≥ 1− δ. Then, on the same event, Lemma 5 implies that∥∥∥∥∥a0 −

1

2n

n∑
i=1

∇f+
i (x̂�) +∇f−

i (x̂�)

∥∥∥∥∥
≤ 1

2

⎛⎜⎝1 + Cmax

⎧⎪⎨⎪⎩
√

d

n
+

√
log 4

δ

n
,

⎛⎝√ d

n
+

√
log 4

δ

n

⎞⎠2
⎫⎪⎬⎪⎭
⎞⎟⎠ ‖x̂� − x�‖

+

∥∥∥∥∥a0 −
1

2n

n∑
i=1

∇f+
i (x�) +∇f−

i (x�)

∥∥∥∥∥ .

Therefore, if n is sufficiently large to ensure the right-hand side of (39) is non-
negative, we deduce that (40) holds as well.

Lemma 7. For any matrix A and standard normal random vector z (of appro-
priate dimension) we have

E ‖Az‖ ≥
√

2

π
‖A‖F .

Proof. The Euclidean and Frobenius norms as well as the standard normal dis-
tribution are rotationally invariant. Thus, the claim can be reduced to the case
where A is diagonal with nonzero diagonal entries s1, s2, . . . , sr and ‖Az‖ =√∑r

i=1 s
2
i z

2
i . By concavity of u �→ √

u and Jensen’s inequality we have√√√√(
r∑

i=1

s2i

)−1 r∑
i=1

s2i z
2
i ≥

(
r∑

i=1

s2i

)−1 r∑
i=1

s2i |zi| .

Therefore, taking expectation with respect to z we can conclude

E

√√√√ r∑
i=1

s2i z
2
i ≥

√√√√(
r∑

i=1

s2i

)−1 r∑
i=1

s2iE |zi| =

√√√√ 2

π

r∑
i=1

s2i =

√
2

π
‖A‖F .
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