
Electronic Journal of Statistics
Vol. 13 (2019) 1872–1925
ISSN: 1935-7524
https://doi.org/10.1214/19-EJS1561

Data-adaptive trimming of the Hill

estimator and detection of outliers in

the extremes of heavy-tailed data

Shrijita Bhattacharya∗ and Michael Kallitsis†

Department of Statistics and Probability, C419 Wells Hall, 619 Red Cedar Rd, East
Lansing, MI 48824

Merit Network, 1000 Oakbrook Drive, Suite 200, Ann Arbor, Michigan 48104
e-mail: bhatta61@msu.edu; mgkallit@merit.edu

Stilian Stoev

Department of Statistics, 445C W Hall, 1085 S. University Ann Arbor, MI 48109
e-mail: sstoev@umich.edu

url: https://sites.lsa.umich.edu/sstoev/

Abstract: We introduce a trimmed version of the Hill estimator for the
index of a heavy-tailed distribution, which is robust to perturbations in the
extreme order statistics. In the ideal Pareto setting, the estimator is es-
sentially finite-sample efficient among all unbiased estimators with a given
strict upper break-down point. For general heavy-tailed models, we estab-
lish the asymptotic normality of the estimator under second order regu-
lar variation conditions and also show that it is minimax rate-optimal in
the Hall class of distributions. We also develop an automatic, data-driven
method for the choice of the trimming parameter which yields a new type
of robust estimator that can adapt to the unknown level of contamination
in the extremes. This adaptive robustness property makes our estimator
particularly appealing and superior to other robust estimators in the set-
ting where the extremes of the data are contaminated. As an important
application of the data-driven selection of the trimming parameters, we ob-
tain a methodology for the principled identification of extreme outliers in
heavy tailed data. Indeed, the method has been shown to correctly identify
the number of outliers in the previously explored Condroz data set.
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1. Introduction

The estimation of the tail index for heavy-tailed distributions is perhaps one
of the most studied problems in extreme value theory. Since the seminal works
of [23, 26, 33] among many others, numerous aspects of this problem and its
applications have been explored (see e.g., the monographs [7] and [19]).

Let X1, · · · , Xn be an i.i.d. sample from a distribution F . We shall say that
F has a heavy (right) tail if:

P(X1 > x) ≡ 1− F (x) = �(x)x−1/ξ, (1.1)

for some ξ > 0 and a slowly varying function � : (0,∞) → (0,∞), i.e., �(λx)/�(x)
→ 1, x → ∞, for all λ > 0. The parameter ξ is referred to as the tail index of
F . Its estimation is of fundamental importance to the applications of extreme
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Fig 1. Exploratory plots of the Condroz data set. Left: Pareto quantile plot, Middle: Di-
agnostic Plot and Right: Hill plots viz classic Hill plot, trimmed Hill plot and biased Hill
plot.

value theory (see for example the monographs [7], [15], [34], and the references
therein).

The fact that the tail index ξ governs the asymptotic right tail-behavior
of F means that, in practice, one should estimate it by focusing on the most
extreme values of the sample. In many applications, one may quickly run out of
data since only the largest few order statistics are utilized. Since every extreme
data-point matters, the problem becomes even more challenging when a certain
number of these large order statistics are corrupted. Contamination of the top
order statistics, if not properly accounted for, can lead to severe bias in the
estimation of the tail index. For example, the right panel of Figure 1 shows
the classic Hill plot, its biased version and our new trimmed Hill plot for the
Condroz data set which has been previously identified to have 6 outliers (see
[35, 37] and Section 5.1, below, for more details). We shall elaborate more on
the construction of these three plots in the rest of the introduction but observe
the drastic difference in the tail-index estimates produced by these methods (see
also the R shiny app at [29]).

Recall the classic Hill estimator of ξ:

ξ̂k(n) :=
1

k

k∑
i=1

log

(
X(n−i+1,n)

X(n−k,n)

)
, 1 ≤ k ≤ n− 1. (1.2)

It is based on the top-k of the order statistics:

X(n,n) ≥ X(n−1,n) ≥ · · · ≥ X(1,n)

of the sample Xi, i = 1, · · · , n.
Naturally, one can trim a certain number of the largest order statistics in

order to obtain a robust estimator of ξ. This idea has already been considered
in Brazauskas and Serfling [12], who (among other robust estimators) defined a
trimmed version of the Hill estimator:

ξ̂trimk0,k (n) :=

k∑
i=k0+1

ck0,k(i) log

(
X(n−i+1,n)

X(n−k,n)

)
, 0 ≤ k0 < k < n. (1.3)
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where the weights ck0,k(i) were chosen so that the estimator is asymptotically
unbiased for ξ (see Section 3.1 in [12]). The weights used by Brazauskas and Ser-
fling, however, are not optimal. In Section 2.1, we show that the asymptotically
optimal trimmed Hill estimator has the form

ξ̂k0,k(n) :=
k0

k − k0
log

(
X(n−k0,n)

X(n−k,n)

)
+

1

k − k0

k∑
i=k0+1

log

(
X(n−i+1,n)

X(n−k,n)

)
︸ ︷︷ ︸

ξ̂0k0,k(n)

(1.4)

for 0 ≤ k0 < k < n. Note that if k0 = 0 the trimmed Hill estimator ξ̂k0,k(n)
coincides with the classic Hill estimator.

A number of authors have also considered trimming but of the models rather
than the data. Specifically, the seminal works of [2] and [6] studied the case
where the distribution is truncated to a potentially unknown large value. In
contrast, here we assume to have non-truncated heavy-tailed model and trim
the data as a way of achieving robustness to outliers in the extremes.

Suppose now that somehow one has identified that the top-k0 order statistics
have been corrupted. Following [30], if one were to simply ignore them and
apply the classic Hill estimator to the observations X(n−k0) ≥ · · · ≥ X(n−k,n),

the estimator would be biased. Indeed, the second summand, ξ̂0k0,k
(n) in (1.4)

gives the expression for this biased Hill estimator. The recent work of Zou et
al [39] uses this biased Hill estimator in a different inferential censoring–type
context, where an unknown number k0 of the top order statistics is missing.

Let us return to Figure 1 (right panel) based on the Condroz data set. It

shows the classic Hill plot, i.e., the plot of ξ̂k(n) as a function of k as well as

the plots of ξ̂k0,k(n) and ξ̂0k0,k
(n) as a function of k. We refer to the last two

plots as to the trimmed Hill and biased Hill plots, respectively. Since the data
exhibits six outliers (Figure 1 left panel), the trimmed Hill and biased Hill plots
are based on k0 = 6. The significant difference in the three plots demonstrates
the effect that outliers can have on the estimation of the tail index.

In this paper, we introduce and study the trimmed Hill estimator ξ̂k0,k(n)
defined in (1.4). We begin by establishing its finite sample optimality and ro-
bustness properties. Specifically, for ideal Pareto data, we establish in Theo-
rem 2.5 that the trimmed Hill estimator has nearly minimum-variance among
all unbiased estimators with a given strict upper break-down point (see Defi-
nition 2.4). For heavy tailed models in (1.1), since the Pareto regime emerges
asymptotically, it is not surprising that the trimmed Hill estimator is also min-
imax rate-optimal. This was shown in Theorem 3.2 for the Hall class of heavy-
tailed distributions. Furthermore, under technical second-order regular variation
conditions, we establish the asymptotic normality of the trimmed Hill estimator
in Section 3.2.

The optimality and asymptotic properties of the trimmed Hill estimator al-
though interesting are not practically useful unless one has a data-adaptive
method for the choice of the trimming parameter k0. This problem is addressed
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in Section 2.2. We start by introducing a diagnostic plot to visually determine
the number of outliers k0. It is a plot of the trimmed Hill estimator as function
of k0 for a fixed k. Figure 1 (middle panel) displays this plot for the Condroz
data set with previously identified six outliers. A sudden change point at k0 = 6
further corroborates the hypothesis of six plausible outliers in the data set. This
value of k0 was automatically identified by the method we introduce in Section
2.2. The methodology for the automatic selection of k0 is based on a weighted
sequential testing method, which exploits the elegant structure of the joint distri-
bution of ξ̂k0,k(n), k0 = 0, 1, . . . , k−1 in the ideal Pareto setting. In Section 3.2,
we show that this test is asymptotically consistent in the general heavy-tailed
regime (1.1) under second order conditions on the regularly varying function � of

[4]. In fact, the resulting estimator ξ̂k̂0,k
(n), where k̂0 is automatically selected,

has an excellent finite sample performance and is adaptively robust to shifting
degrees of contamination in the data. This novel adaptive robustness property
is not present in other robust estimators of [12, 13, 18, 21, 28, 32], which in-
volve hard to select tuning parameters. Also none of these estimators is able to
identify outliers in the extremes, a property inherent to the adaptive trimmed
Hill estimator. An R shiny app implementing the trimmed Hill estimator and
the methodology for selection of k0 is available at [29].

The paper is structured as follows. In Section 2, we study the benchmark
Pareto setting. We establish finite-sample optimality and robustness properties
of the trimmed Hill estimator. We also introduce a sequential testing method for
the automatic selection of k0. Section 3 deals with the asymptotic properties of
the trimmed Hill estimator in the general heavy-tailed regime. The consistency
of the sequential testing method is also studied. In Section 4, the finite-sample
performance of the trimmed Hill estimator is studied in the context of various
heavy tailed models, tail indices, and contamination scenarios. In Sections 4.3,
4.4 and 4.5, we demonstrate the need for adaptive robustness and the advantages
of our estimator in comparison with established robust estimators in the litera-
ture. In Section 5, we demonstrate the application of the adaptive trimmed Hill
methodology to the Condroz data set and French insurance claim settlements
data set.

2. Optimal and adaptive trimming: The Pareto regime

In this section, we shall focus on the fundamental Pareto(σ, ξ) model and assume
that

P(X > x) = (x/σ)−1/ξ, x ≥ σ, (2.1)

for some σ > 0 and a tail index ξ > 0.
Motivated by the goal to provide a robust estimate of the tail index ξ, we

consider trimmed versions of the classical Hill estimator in Relation (1.2) and

thereby study the class of statistics, ξ̂trimk0,k
(n) of Relation (1.3). Proposition 2.1

below finds the optimal weights, ck0,k(i) for which the estimator, ξ̂trimk0,k
(n) is not

only unbiased for ξ, but also has the minimum variance. This yields the trimmed
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Hill estimator of Relation (1.4). Its performance for general heavy-tailed models
(see Relation (1.1)) is discussed in Section 3.

2.1. The trimmed Hill estimator

We develop our trimmed Hill estimator as the minimum variance unbiased es-
timator (MVUE) of ξ among the class of estimators given by Relation (1.3).
The class of estimators in Relation (1.3) is linear in terms of the log ratio of
order statistics to the kth order statistic. Thus, the following result shows that
the trimmed Hill estimator may be viewed as a best linear unbiased estimator
(BLUE).

Proposition 2.1. Suppose X1, · · · , Xn are i.i.d. Pareto(σ, ξ) random variables,
as in Relation (2.1). Then, among the class of linear estimators in Relation
(1.3), for 0 ≤ k0 < k < n, the BLUE of ξ is given by

ξ̂k0,k(n) =
k0

k − k0
log

(
X(n−k0,n)

X(n−k,n)

)
+

1

k − k0

k∑
i=k0+1

log

(
X(n−i+1,n)

X(n−k,n)

)
︸ ︷︷ ︸

ξ̂0k0,k(n)

(2.2)

The proof is given in Section C.2.

Remark 2.2. The second summand, ξ̂0k0,k
(n) in Relation (2.2) is nothing but

the classic Hill estimator applied to the observations X(n−k0,n) ≥ · · · ≥ X(n−k,n)

which denote the top-k order statistics excluding the top-k0 ones. Note that,
ξ̂0k0,k

(n) which belongs to the class of estimators in Relation (1.3), is not only
suboptimal but also biased for the tail index ξ. We shall thus refer to it as the
biased Hill estimator. The biased Hill estimator has been previously used for
robust analysis (see [37]) and inference in truncated Pareto models (see [30],
[39]).

Remark 2.3 (Classic, Biased and Trimmed Hill Plots). The classic Hill

plot is a plot of the classic Hill estimator, ξ̂k(n) as function of k. Likewise,

for a fixed k0, a plot of the trimmed Hill estimator, ξ̂k0,k(n) and the biased

Hill estimator, ξ̂0k0,k
(n) as function of k will be referred to as the trimmed Hill

plot and the biased Hill plot, respectively. Since ξ̂0k0,k
(n) ≤ ξ̂k0,k(n), the biased

Hill plot always lies below the trimmed Hill plot. Depending upon the nature of
outliers in the extremes, the classic Hill plot can either lie above or below the
trimmed Hill plot (see Figures 1 and 11).

In the rest of the section, we discuss the robustness and finite-sample opti-
mality properties of the trimmed Hill estimator. In this direction, inspired by
[12], we define the notion of strict upper breakdown point.

Definition 2.4. A statistic T is said to have a strict upper breakdown point β,
0 ≤ β < 1, if T = T (X(n−[nβ],n), · · · , X(1,n)) where X(n,n) ≥ · · · ≥ X(1,n) are
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the order statistics of the sample, i.e., T is unaffected by the values of the top
[nβ] order statistics.

In Proposition 2.1, we showed that the trimmed Hill estimator is the BLUE
for a large class of estimators with strict upper break down point of k0/n (see Re-
lation (1.3)). We next prove a stronger result on the finite sample near-optimality
of the trimmed Hill estimator. As stated in the next proposition, the trimmed
Hill estimator is essentially the minimum variance unbiased estimator (MVUE)
among the class of all tail index estimators with a given strict upper break down
point.

Theorem 2.5. Consider the class of statistics given by

Uk0 :={
T = T (X(n−k0,n), · · · , X(1,n)) : E(T ) = ξ, if X1, · · · , Xn

i.i.d.∼ Pareto(σ, ξ)
}

which are all unbiased estimators of ξ with strict upper breakdown point β =
k0/n. Then for ξ̂k0,n−1(n) as in Relation (2.2), we have

ξ2

n− k0
≤ inf

T ∈Uk0

Var(T ) ≤ Var(ξ̂k0,n−1(n)) =
ξ2

n− k0 − 1
. (2.3)

In particular, ξ̂k0,n−1(n) is asymptotically MVUE of ξ among the class of esti-
mators described by Uk0 .

The proof is given in Section C.3.

Though the trimmed Hill estimator has nice finite sample properties, it is of
limited use in practice unless the value of trimming parameter k0 is known. In
the following section, we will develop a data-driven method for the estimation
of k0.

2.2. Automated selection of the Trimming parameter

In this section, we introduce a methodology for the automated data-driven se-
lection of the trimming parameter k0. The trimmed Hill estimator with this
estimated value of k0 will be referred to as the adaptive trimmed Hill estimator.
Its performance as a robust estimator of the tail index ξ is discussed elaborately
under Section 4. In addition, the k0-estimation methodology also provides a tool
for the detection of outliers in the extremes of heavy tailed data.

We begin with a result on the joint distribution of the trimmed Hill statistics,
which is a starting point towards the estimation of k0.

Proposition 2.6. The joint distribution of ξ̂k0,k(n) can be expressed as follows:{
ξ̂k0,k(n), k0 = 0, . . . , k − 1

}
d
=
{
ξ
Γk−k0

k − k0
, k0 = 0, . . . , k − 1

}
, (2.4)
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where Γi = E1 + · · · + Ei with E1, E2, · · · i.i.d. standard exponential random
variables. Consequently, as k − k0 → ∞,√

k − k0(ξ̂k0,k(n)− ξ)
d

=⇒ N(0, ξ2) (2.5)

The proof is given in Section C.2. This result motivates a simple visual device
for the selection of k0.

Diagnostic plot For a fixed value of k, the plot of ξ̂k0,k(n) as a function
of k0 will be referred to as a trimmed Hill diagnostic plot. The plot also in-
cludes additional vertical lines representing ξ̂k0,k(n)+σ̂k0,k(n) with σ̂k0,k(n) =

ξ̂k0,k(n)/
√
k − k0.

Note that for observations from ideal Pareto, σ̂k0,k(n) is indeed the plug

in estimate for standard error of ξ̂k0,k(n) (see Proposition 2.6). Figure 2, shows
diagnostic plots for data simulated from Pareto(1,1) under the case of no outliers
(left panel) and k0 = 5 outliers (right panel).

Fig 2. Diagnostic Plot for Pareto(1,1) with n = 100, k = n − 1. Left: No outliers. Right: 5
outliers.

In the absence of outliers, modulo variability, the diagnostic plot should be
constant in k0 (see left panel in Figure 2). The right panel in Figure 2 corre-
sponds to a case where extreme outliers have been introduced by raising the
top-k0 = 5 order statistics to a power greater than 1. This resulted in a visible
kink in the diagnostic plot near k0 = 5. Note that, in principle, the presence
of outliers could lead to a kink/or change point with an upward or downward
trend in the left part of the plot. The diagnostic plot, while useful, requires visual
inspection of the data. In practice, an automated procedure is often desirable.

The crux of our methodology for automated selection of k0 lies in the next
result. The idea is to automatically detect a change point in the diagnostic plot
by examining it sequentially from right to left. Formally, this will be achieved
by a sequential testing algorithm involving the ratio statistics introduced next.

Proposition 2.7. Suppose all the Xi’s are generated from Pareto(σ, ξ). Then,
the statistics

Tk0,k(n) :=
(k − k0 − 1)ξ̂k0+1,k(n)

(k − k0)ξ̂k0,k(n)
, k0 = 0, 1, · · · , k − 2 (2.6)
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are independent and follow Beta(k−k0−1, 1) distribution for k0 = 0, 1, · · · , k−2.

Remark 2.8. Note that, Tk0,k(n) depends only on X(n−k0,n), · · · , X(n−k,n).
Therefore, the joint distribution of Tk0,k(n)’s remains the same as long as

(X(n−k0,n), · · · , X(n−k,n))
d
= (Y(n−k0,n), · · · , Y(n−k,n))

where Y(n,n) > · · · > Y(1,n) are the order statistics of n i.i.d. observations from
Pareto(σ, ξ). In other words, Proposition 2.7 holds even in the presence of out-
liers provided that the outliers are confined only to the top-k0 order statistics.
This motivates the sequential testing methodology discussed next.

Weighted sequential testing By Proposition 2.7, in the Pareto regime, the
statistics

Uk0,k(n) := 2|(Tk0,k(n))
k−k0−1 − 0.5|, k0 = 0, 1, · · · , k − 2. (2.7)

are i.i.d. U(0, 1). This follows from the simple observation that T k−k0−1
k0,k

(n) ∼
U(0, 1). For simplicity, both in terms of notation and computation, we use the
transformation in Relation (2.7) to switch from beta to uniformly distributed
random variables.

Assuming that outliers affect only the top-k0 order statistics, one can identify
k0 as the largest value j for which Uj,k(n) fails a test for uniformity. Specifically,
we consider a sequential testing procedure, where starting with j = k − 2, we
test the null hypothesis H0(j) : Uj,k(n) ∼ U(0, 1) at level αj . If we fail to reject
H0(j), we set j = j − 1 and repeat the process until we either encounter a

rejection or j = 0. The resulting value of j is our estimate k̂0. The methodology
is formally described in the following algorithm.

Algorithm 1 Weighted Sequential Testing

1: Consider a set of αj ∈ (0, 1), j = 0, 1, · · · , k − 2.
2: Set j = k − 2.
3: Compute Uj,k(n) as in Relation (2.7).
4: If Uj,k(n) < 1− αj , set j = j − 1 else go to step 6.
5: If j = 0, go to step 6 else go to step 3.
6: Return k̂0 = j.

Since αj varies as a function of j, we refer to Algorithm 1 as the weighted
sequential testing algorithm. As shown in the following Proposition, the family
wise error rate of the algorithm is well calibrated at level q ∈ (0, 1), provided

k−2∏
j=0

(1− αj) = 1− q. (2.8)

Proposition 2.9. For i.i.d. observations from Pareto(σ, ξ), let k̂0 be the value
from Algorithm 1 with αj ’s as in Relation (2.8). Then, under the null hypothesis

H0 : k0 = 0, we have PH0(k̂0 > 0) = q.
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Proof. We shall instead show, PH0(k̂0 = 0) = 1 − q. Since the Uj,k(n)’s are
independent U(0, 1),

PH0(k̂0 = 0) = PH0

( k−2⋂
j=0

(Uj,k(n) < 1− αj)
)
=

k−2∏
j=0

(1− αj) = 1− q, (2.9)

which completes the proof.

Remark 2.10 (Choice of αj). For the purposes of this paper, the levels αj in
the above algorithm are chosen as follows:

αj = 1− (1− q)ca
k−j−1

, j = 0, · · · , k − 2 (2.10)

with a > 1 and c = 1/
∑k−2

j=0 a
k−j−1. This choice of αj satisfies Relation (2.8),

which in view of Proposition 2.9, ensures that the algorithm is well calibrated.
In addition, this choice puts less weight on large values of j and thereby allows
for a larger Type I error or fewer rejections for the hypothesis H0(j) : Uj,k(n) ∼
U(0, 1). This implies that large values of j are less likely to be chosen over

smaller ones. This guards against encountering spurious values of k̂0 close to k,
which can lead to highly variable estimates of ξ̂k0,k(n). Our extensive analysis
with a variety of sequential tests indicate that the choice of levels as in Relation
(2.10) with a = 1.2 works well in practice.

Remark 2.11. Proposition 2.9 shows that in the Pareto case the weighted se-
quential testing algorithm is well calibrated and attains the exact level Type I
error. In the general heavy tailed regime, Theorem 3.11 (below) establishes the
asymptotic consistency of the algorithm. In Section 4, we show that the algorithm
can identify the true k0 in the ideal Pareto regime as well as the challenging cases
of Burr and T distributions (see Section 4.5).

3. The general heavy tailed regime

In this section, we study the asymptotic properties of ξ̂k0,k, the trimmed Hill
statistic of Relation (2.2), for a general class of heavy-tailed distributions F as in
Relation (1.1). Consider the tail quantile function corresponding to F , defined
as follows:

Q(t) = inf{x : F (x) ≥ 1− 1/t} = F−1(1− 1/t), t > 1. (3.1)

Following [4], for F as in Relation (1.1), one can equivalently assume that

Q(t) = tξL(t) (3.2)

Remark 3.1. The relation between the slowly varying functions � and L in
Relations (1.1) and (3.2) is well known (see e.g., [4], [11] and [34]). Specifically,
one can show that

L(t1/ξ) ∼ �ξ(tL(t1/ξ)), as t → ∞. (3.3)
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Thus, �̃(x) = �ξ(x) and L̃(x) = L(x1/ξ) satisfy L̃(x) ∼ �̃(xL̃(x)). This in view
of Theorem 1.5.13 of [10] implies that 1/�̃ is the de Bruijn conjugate of L̃ and
hence unique up to asymptotic equivalence.

We start with a conceptually important derivation used in the rest of the sec-
tion. Using the tail-quantile function, one can express the trimmed Hill statistic
under the general heavy-tailed model (1.1) as the sum of a trimmed Hill statistic
based on ideal Pareto data plus a remainder term. In view of Relations (3.1)
and (3.2), let

Xi = Q(Yi) = Y ξ
i L(Yi), i = 1, . . . , n, (3.4)

where Yi’s i.i.d Pareto(1, 1). Then Xi, i = 1, . . . , n, represent an i.i.d. sample
from F .

Therefore, using X(n−i,n) = Q(Y(n−i,n)) in Relation (2.2), we obtain

ξ̂k0,k(n) =
k0

k − k0
log

Y ξ
(n−k0,n)

Y ξ
(n−k,n)

+
1

k − k0

k−1∑
i=k0

log
Y ξ
(n−i,n)

Y ξ
(n−k,n)︸ ︷︷ ︸

ξ̂∗k0,k(n)

+
k0

k − k0
log

L(Y(n−k0,n))

L(Y(n−k,n))
+

1

k − k0

k−1∑
i=k0

log
L(Y(n−i,n))

L(Y(n−k,n))︸ ︷︷ ︸
Rk0,k(n)

(3.5)

where Y(i,n)’s are the order statistics for the Yi’s. Since Y
ξ
i ’s follow Pareto(1, ξ),

the statistic ξ̂∗k0,k
(n) in Relation (3.5) is simply the trimmed Hill estimator for

ideal Pareto data and Rk0,k(n) is a remainder term that encodes the effect of
the slowly varying function L.

The nature of the function L determines the rate at which the remainder
term Rk0,k(n) converges to 0 in probability. We establish the minimax rate
optimality of the trimmed Hill estimator under the Hall class of assumptions on
the function L (see Section 3.1). To establish the asymptotic normality of the
trimmed Hill estimator, we use second order regular variation conditions on the
function L (see Section 3.2). Under the same set of conditions, the asymptotic
consistency of the weighted sequential testing algorithm of Section 2.2 is also
established in Section 3.3.

3.1. Minimax rate optimality of the trimmed Hill estimator

Here, we study the rate-optimality of the trimmed Hill estimator for the class of
distributions in D := Dξ(B, ρ), where Relation (3.2) holds with tail index ξ > 0
and L of the form:

L(x) = 1 + r(x), with |r(x)| ≤ Bx−ρ, (x > 0) (3.6)

for constants B > 0 and ρ > 0 (see also Relation (2.7) in [11]). This is known
as the Hall class of distributions.
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In [24], Hall and Welsh showed that no estimator can be uniformly consistent
over the class of distributions in D at a rate faster than or equal to nρ/(2ρ+1).
Theorem 1 of [24] adapted to our setting and notation is as follows:

Theorem 3.2 (optimal rate). Let ξ̂n be any estimator of ξ based on an inde-
pendent sample from a distribution F ∈ Dξ(B, ρ). If we have

lim inf
n→∞

inf
F∈Dξ(B,ρ)

PF (|ξ̂n − ξ| ≤ a(n)) = 1 (3.7)

then lim infn→∞ nρ/(2ρ+1)a(n) = ∞. Here by PF , we understand that ξ̂n was
based on independent realizations from F .

In Theorem 3 of [24], it is shown that for the case of no outliers, the classic Hill

estimator, ξ̂k(n) with k = k(n) ∼ n2ρ/(1+2ρ) is a uniformly consistent estimator
of ξ at a rate greater than or equal to any other uniformly consistent estimator.
In other words, the classic Hill estimator is minimax rate optimal in view of
Theorem 3.2 wherein ξ̂n = ξ̂k(n) satisfies Relation (3.7) for every a(n) with

a(n)nρ/(2ρ+1) → ∞.

Note that, Theorem 3.2 also applies to the trimmed Hill estimator. We next
show that in the presence of outliers, the trimmed Hill estimator with k0 =
k0(n) = o(k) and k = k(n) ∼ n2ρ/(1+2ρ) is minimax rate optimal with the same
rate as that of the classic Hill. In addition, the minimax rate optimality holds
uniformly over all k0 ∈ [0, h(k)] for h(k) = o(n2ρ/(1+2ρ)).

Theorem 3.3 (uniform consistency). Suppose that k = k(n) ∝ n2ρ/(2ρ+1) and
h(k) = o(k), as n → ∞.

Then, for every sequence a(n) ↓ 0, such that a(n)
√

k(n) → ∞, we have

lim inf
n→∞

inf
F∈Dξ(B,ρ)

PF

(
max

0≤k0<h(k)
|ξ̂k0,k(n)− ξ| ≤ a(n)

)
= 1. (3.8)

The proof of this result is given in Section C.3.1. Observe that
√
k(n) ∝

nρ/(1+2ρ) is the optimal rate in Theorem 3.2. Therefore, Theorem 3.3 implies
that ξ̂k0,k(n) is minimax rate-optimal in the sense of Hall and Welsh [24]. Also,

note that the trimmed Hill estimator ξ̂k0,k(n) is uniformly consistent with re-
spect to both the family of possible distributions D as well as the trimming
parameter k0, provided k0 ∈ [0, h(k)] for h(k) = o(k).

Remark 3.4. The above appealing result shows that trimming does not sacri-
fice the rate of estimation of ξ so long as k0 = o(n2ρ/(2ρ+1)), n → ∞. In the
regime where the rate of contamination k0 exceeds n2ρ/(2ρ+1), to achieve robust-
ness and asymptotic consistency, one would have to choose k(n) 
 n2ρ/(2ρ+1),
which naturally leads to rate-suboptimal estimators. In this case, similar uni-
form consistency for the trimmed Hill estimators can be established along the
lines of Theorem 3.3.



1884 S. Bhattacharya et al.

3.2. Asymptotic normality of the trimmed Hill estimator

Here, we shall establish the asymptotic normality of ξ̂k0,k(n) under the gen-
eral semi-parametric regime (Relation (1.1) or equivalently Relation (3.2)).
In Proposition 2.6, we already established the asymptotic normality of the
trimmed Hill estimator in the Pareto regime. Recalling Relation (3.5), we ob-

serve that ξ̂k0,k(n) differs from a tail index estimator based on Pareto data
only by a remainder term Rk0,k(n). Thus, proving the asymptotic normality

of ξ̂k0,k(n) amounts to controlling the asymptotic behavior of the remainder
term.

Indeed, we begin with a much stronger result which establishes the conver-
gence rate of Rk0,k(n) uniformly for all k0 ∈ [0, h(k)] where h(k) ∈ o(k). To
this end, following [4], we adopt the following second order condition on the
function L:

sup
t≥tε

∣∣∣ log L(tx)
L(t) − cg(t)

∫ x

1

ν−ρ−1dν
∣∣∣ ≤ { εg(t) if ρ > 0

εg(t)xε if ρ = 0.
(3.9)

for all ε > 0 and some tε dependent on ε and g : (0,∞) → (0,∞) is a −ρ varying
function with ρ ≥ 0 (see Lemma A.2 in [4] for more details).

Theorem 3.5. Suppose the Xi’s are independent realizations with tail quantile
function Q as in Relation (3.2) with L as in Relation (3.9). If, for some δ > 0
and constant A > 0,

kδg(n/k) → A for k/n → 0 as k, n → ∞, (3.10)

then for Rk0,k(n) = ξ̂k0,k(n)− ξ̂∗k0,k
(n) as in Relation (3.5) and h(k) = o(k), we

have

kδ max
0≤k0<h(k)

∣∣∣∣∣Rk0,k(n)−
cAk−δ

1 + ρ

∣∣∣∣∣ P−→ 0 (3.11)

The proof is given in Section C.3.2.

Remark 3.6. Simulation results of Section A show that the rate δ in Relation
(3.11) is indeed optimal for the Hall class of distributions (Relation (3.6)) and
cannot be improved further (see Table 8). The exact proof is however beyond the
scope of this paper.

The asymptotic normality of ξ̂k0,k(n) is a direct consequence of Theorem 3.5
with δ = 1/2 and Relation (2.5). This is formalized in the following corollary.

Corollary 3.7. If k0 = o(k) and
√
kg(n/k) → A ∈ [0,∞),

√
k(ξ̂k0,k(n)− ξ)

d
=⇒ N

(
cA

1 + ρ
, ξ2
)
, as n → ∞. (3.12)
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Proof. By adding and subtracting the estimator ξ̂∗k0,k
(n) defined in Relation

(3.5), we have
√
k(ξ̂k0,k(n)− ξ) =

√
k(ξ̂k0,k(n)− ξ̂∗k0,k(n)) +

√
k(ξ̂∗k0,k(n)− ξ)

=
√
kRk0,k(n) +

√
k(ξ̂∗k0,k(n)− ξ). (3.13)

For the first term in Relation (3.13), we have
√
kRk0,k

P−→ cA/(1 + ρ). This
follows from Relation (3.11) with δ = 1/2. By Relation (2.5), the second term

in Relation (3.13) satisfies
√
k(ξ̂∗k0,k

− ξ)
d

=⇒ N(0, ξ2), as k → ∞, and hence
(3.12) follows.

Remark 3.8. Consider the asymptotic normality result of Corollary 3.7 for the
Hall class of distributions in Relation (3.6). In this case, we have g(x) ∝ x−ρ

and the convergence
√
kg(n/k) → A > 0 implies that k = k(n) ∝ n2ρ/(2ρ+1),

as n → ∞. This is the optimal rate, which as we know from Theorem 3.3,
cannot be achieved by an asymptotically unbiased estimator of ξ. Indeed, the limit
distribution in Relation (3.12) involves the bias term cA/(ρ+ 1). To eliminate
the bias term, one can pick k = o(n2ρ/(2ρ+1)), which in this case implies that√
kg(n/k) → A ≡ 0. That is, asymptotically unbiased estimators can be obtained

but one needs to sacrifice the optimal rate.

3.3. Asymptotic behavior of the weighted sequential testing

In this section, we establish the asymptotic consistency of the weighted sequen-
tial testing algorithm (Algorithm 1) under the same set of second order regular
variation conditions on the function L as in Section 3.2. We begin with a con-
vergence result on the ratio statistics of Relation (2.6).

Theorem 3.9. Assume that the conditions of Theorem 3.5 hold and Relation
(3.10) holds for some δ > 0, then

kδ max
0≤k0<h(k)

∣∣∣∣∣Tk0,k(n)− T ∗
k0,k(n)

∣∣∣∣∣ P−→ 0, (3.14)

where Tk0,k(n) and T ∗
k0,k

(n) are based on ξ̂k0,k(n) and ξ̂∗k0,k
(n), respectively as

in Relation (2.6).

The proof is described in Section C.3.3.

Remark 3.10. The question of whether the rate δ in Relation (3.14) can be
improved or not is unresolved. Simulation results in Section A (see Table 8)
show that the achievable optimal rate is indeed greater than δ. The exact proof
of this is however more involved requiring additional assumptions on the slowly
varying function L of Relation (3.2).

We next establish that the weighted sequential testing algorithm is well cal-
ibrated and attains the significance level q even for the general class of heavy
tailed models in Relation (1.1).
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Theorem 3.11. Suppose Relation (3.14) in Theorem 3.9 holds with δ = δ∗,
then

1. Based on Tk0,k(n) and T ∗
k0,k

(n), suppose Uk0,k(n) and U∗
k0,k

(n) are defined
as in Relation (2.7), then

k(δ
∗−1) max

0≤k0<h(k)

∣∣∣∣∣Uk0,k(n)− U∗
k0,k(n)

∣∣∣∣∣ P−→ 0, (3.15)

2. Suppose in Step 2 of Algorithm 1, j starts from h(k) instead of k−2, then
under H0 : k0 = 0

PH0 [k̂0 > 0] −→ q. (3.16)

as long as δ∗ ≥ 2.

The proof is given in the Section C.3.3.

Remark 3.12. If Relation (3.14) holds at a rate δ = δ∗, there is very little scope
of improvement in rates for Relations (3.15) and (3.16). Extensive simulation
results of Section A demonstrate that the rates of Theorem 3.11 as derived from
the rate in Theorem 3.9 are indeed optimal (see Table 8 and Figure 12) at least
for the Hall class of Relation (3.6).

Remark 3.13. For the Hall class of distributions, g(x) ∼ x−ρ, thus Relation
(3.10) holds whenever

k = k(n) ∝ nρ/(ρ+δ). (3.17)

For this choice of k, by Theorem 3.9, the Tk0,k(n)’s converge at least at the rate
δ. This implies that Uk0,k(n)’s and the Type I error of Algorithm 1 converge
at least for δ ≥ 1 and δ ≥ 2, respectively1. By Remark 3.8, the minimax rate
optimality and the asymptotic normality of the trimmed Hill estimator ξ̂k0,k

with δ = 1/2 in Relation (3.17). Choices of δ ≥ 1 and δ ≥ 2 produce suboptimal
choices of k in terms of rate. If ρ is large, the difference between these suboptimal
values and the optimal value nρ/(ρ+1/2) is negligible. For small values of ρ, the
difference is greater and the consistency of Algorithm 1 may be compromised.
However, in Section 4.5, we show that even at smaller values of ρ, we do a
reasonably good job in terms of determining the true k0.

4. Performance of the adaptive trimmed Hill estimator

4.1. Simulation set up

In this section, we study the finite sample performance of the adaptive trimmed
Hill estimator, ξ̂k̂0,k

(n), which is the trimmed Hill statistic in Relation (2.2)

with k0 = k̂0 (see also the R shiny app at [29]). Here, the value of the trimming

parameter k̂0 is obtained from the weighted sequential testing algorithm, Algo-

1 We believe that the conditions δ ≥ 1 and δ ≥ 2 can be made less stringent since there is
scope of improvement in the rate δ for Tk0,k in Relation (3.14).
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rithm 1. We also evaluate the accuracy of the algorithm as an estimator of the
number of outliers k0. The parameters for the algorithm, a and q are set at 1.2
and 0.05 respectively.

Measures of performance The performance of an estimator ξ̂ of ξ is eval-
uated in terms of its root mean squared error (

√
MSE), where

MSE(ξ̂) = E(ξ̂ − ξ)2. (4.1)

Using criterion (4.1), we evaluate the performance of the adaptive trimmed Hill
estimator and several other competing estimators of the tail index ξ. The com-
putation of the

√
MSE is based on 2500 independent Monte Carlo simulations.

Data generating models We generate n i.i.d. observations from one of the
following heavy-tailed distributions:

Pareto(σ, ξ) : 1− F (x) = σ1/ξx−1/ξ; x > σ, σ > 0, ξ > 0, ρ = ∞;

Burr(η, λ, ξ) : 1− F (x) = 1−
(

η

η + x−1/ξ

)−λ

; x > 0, η > 0, λ > 0, ξ > 0, ρ = 1

|T|(ξ) : 1− F (x) =

∫ ∞

x

2Γ( 1/ξ+1
2 )

√
nπΓ( 1

2ξ )

(
1 + w2ξ

)− 1+ξ
2ξ dw

; x > 0, ξ > 0, ρ = 2ξ (4.2)

Sections 4.3 and 4.4 deal with the performance of the weighted sequential testing
algorithm and the adaptive trimmed Hill estimator for Pareto observations.
Section 4.5 delve deeper into the performance under challenging cases of non
Pareto scenarios like the |T| and the Burr distributions.

Choice of k In [25], Hall and Welsh proved that the asymptotic mean squared

error of the classic Hill estimator ξ̂k(n) is minimal for

koptn ∼
(C2ρ(ρ+ 1)2

2D2ρ3

)1/(2ρ+1)

n2ρ/(2ρ+1) (4.3)

for the Hall class of Relation (3.6). Thus, koptn provides an optimal choice of k
for computing the classic Hill estimator for data arising from the Hall class of
distributions. For the Hall class, in Theorem 3.3, we showed that the trimmed
Hill estimator is also optimal at the same rate as the classic Hill estimator as
long as the number of outliers, k0 = o(k). Since for Pareto ρ = ∞, the optimal
k in view of Relation (4.3) is n − 1. Sections 4.3 and 4.4 which deal only with
Pareto examples use this value of k. For Sections 4.2 and 4.5 which deal with
non-Pareto examples as well, k is chosen approximately around the optimal
value as in Relation (4.3).

In Section 4.2, we demonstrate the performance of the adaptive trimmed Hill
estimators in the regime of no outliers. In this scenario, the classic Hill estimator
(recall Relation (1.2)) is an asymptotically optimal estimator of ξ (see [26]) and
is therefore used as the comparative baseline.
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Outlier scenarios In Sections 4.3, 4.4 and 4.5, we demonstrate the perfor-
mance of the adaptive trimmed Hill estimator in the presence of outliers. We
next discuss the mechanism of outlier injection to introduce outliers in the ex-
treme observations of the data.

1. Exponentiated Outliers: The top-k0 order statistics are perturbed as fol-
lows:

X(n−i+1,n) := X(n−k0,n)+(X(n−i+1,n)−X(n−k0,n)))
L, i = 1, · · · , k0,

(4.4)
2. Scaled Outliers: The top-k0 order statistics are perturbed as follows:

X(n−i+1,n) := X(n−k0,n)+C(X(n−i+1,n)−X(n−k0,n))), i = 1, · · · , k0,
(4.5)

3. Mixed Outliers: For S = {s : Xs > τ}, set

{Xs}s∈S = Mτ, M > 1 (4.6)

i.e., observations above a given threshold τ are perturbed.

Firstly note that the L,C and M are constants whose values can be changed
to control the intensity of the injected outliers. Secondly, all the above three
nature of outliers preserve the order of the bottom-(n − k0) order statistics.
Unlike the case of mixed outliers, the exponentiated and scaled outliers preserve
the order of the top-k0 order statistics as well. The case of mixed outliers is a
challenging one because the trimming parameter k0, though controlled by τ ,
is random and not well defined. In contrast, k0 is fixed and well defined for
exponentiated and scaled outliers. Thus, for exponentiated and scaled outliers,
we demonstrate the efficiency of Algorithm 1 in determining k0.

Competing robust estimators In the presence of outliers, the adaptive
trimmed Hill estimator is indeed a robust estimator of the tail index ξ. Thus,
for a comparative baseline we use two other robust estimators of the tail index
in Sections 4.3, 4.4 and 4.5. These are the optimal B-robust estimator (OBRE)
of [38] and the generalized median estimator (GME) of [12]. For a parametric
model, the asymptotic relative efficiency (ARE) of an estimator is defined as
the ratio of its asymptotic variance to that of the maximum likelihood estimator
(MLE) expressed as a percentage. The tuning parameters of OBRE and GME
are chosen such that the ARE can be controlled at a given level. Two values
of ARE levels viz 78% and 94% are to allow for varying degrees of robustness.
Section B explains the form of these two estimators in addition to the connection
between the ARE levels and choice of tuning parameters.

The constant c̃ which serves as a bound on the influence function (IF) controls
the degree of robustness for optimal B-robust estimator (see Relations (B.2) and
(B.3) in Section B.1). Indeed, the values c̃ = 1.63 and c̃ = 2.73 result in 78%
and 94% asymptotic relative efficiency (ARE), respectively, for the optimal B-
robust estimator. Similarly, the parameter κ which controls for the subset size in
defining the generalized median statistic also controls for its degree of robustness
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(see Relations (B.6) and (B.7) in Section B.2). Indeed, the values κ = 2 and
κ = 5 produce ARE values 78% and 94%, respectively, for the generalized
median estimator. Other robust estimators of the tail index like the probability
integral transform statistic estimator of [20] and the partial density component
estimator of [36] were also considered but their results are similar and have been
omitted for brevity.

4.2. Case of no outliers

For the three distribution models in Relation (4.2), we report the performance of
the adaptive trimmed Hill estimator (ADAP) under the regime of no outliers.
The classic Hill estimator (HILL) is used as the comparative baseline. For a
sample of n = 1000 data points, Figure 3 gives the

√
MSE values for the ADAP

and the HILL as a function of k for the distributions Pareto(1,ξ), Burr(1,0.5,ξ),
|T|(ξ) with tail index ξ = 2. The value of k in Relation (4.3) leads to the smallest√
MSE for the HILL. This explains the occurrence of a minima in the plot of√
MSE values.

Fig 3.
√
MSE of the ADAP for ξ = 2 and k0 = 0.

Table 1

Type I error of the weighted sequential testing algorithm for k0 = 0

Pareto(1,2) k=50 k=100 k=200 k=500 k=800
0.0500 0.0472 0.0496 0.0448 0.0556

Burr(1,0.5,2) k=50 k=80 k=100 k=150 k=200
0.0476 0.0496 0.0416 0.0408 0.0392

|T|(2) k=50 k=100 k=200 k=400 k=600
0.0484 0.0556 0.0472 0.0520 0.0464

We observe that for a wide range of k, the ADAP is virtually indistinguish-
able from the HILL irrespective of the distribution under study. This indicates
that the weighted sequential testing algorithm can precisely determine k0 = 0
for the same wide range of k-values as in Figure 3. This encouraging finite sam-
ple performance complements the theoretically established consistency of the
algorithm in Theorem 3.11. Indeed, Table 1 shows that the algorithm attains
the nominal significance level of q = P(k̂0 > 0) = 0.05.
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4.3. Adaptive robustness

In this section, we study how the presence of outliers in the data influences the
performance of the adaptive trimmed Hill estimator (ADAP) and the weighted
sequential testing algorithm. For clarity and simplicity, the data in this section
are generated from Pareto as in Relation (4.2) with σ = 1, ξ = 2 for varying
sample sizes n = 100, 300, 500.

The value of k is fixed at n− 1 which is indeed the optimal k for the Pareto
regime (see Relation (4.3)). Section 4.5 illustrates the adaptive robustness phe-
nomenon as explained in this section in the context of general heavy tailed
models as in Relation (1.1). Outliers are injected by Relations (4.4), (4.5) and
(4.6), with L = 3, C = 200 and M = 100, respectively. Varying values of the
parameter k0 and τ are chosen to control for the number of outliers in the data.

Figures 4, 5 and 6 produce a plot of the
√
MSE for the ADAP for outlier

generating mechanisms in Relations (4.4), (4.5) and (4.6), respectively.

Fig 4.
√
MSE of ADAP for Pareto(1,2) with exponentiated outliers: L = 3, varying k0.

Fig 5.
√
MSE of ADAP for Pareto(1,2) with scaled outliers: C = 200, varying k0.

For comparison, the performance of the optimal B-robust estimator (OBRE)
and the generalized median estimator (GME) at 78% and 94% ARE levels have
also been included. The figures clearly show that the ADAP is uniformly the
best estimator in terms

√
MSE. The figures also show an intriguing adaptive ro-

bustness property of our estimator. Namely, its
√
MSE is nearly flat and grows
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Fig 6.
√
MSE of ADAP for Pareto(1,2) with mixed outliers: M = 100, varying τ .

slowly with increase in the degree of contamination (parametrized by either the
number of outliers k0 in Figures 4 and 5 or the threshold τ in Figure 6). On
the other hand, the competing estimators break down completely with increase
in the degree of contamination. This can be explained as: the competing esti-
mators must be calibrated to a predefined level of robustness by setting their
ARE level in advance. To the best of our knowledge, none of the existing works
in the literature provide a data-driven method for selecting this optimal ARE
value. In contrast, the trimming parameter k0 involved in the ADAP is esti-
mated from the data itself which allows it to adapt itself to unknown degrees of
contamination in the data.

Figures 4 and 5 show that whenever the target ARE value is greater than
(1−k0/n)×100%, the performance of the ADAP is much superior to that of the
competing estimators. For example, the OBRE-94 and the GME-94 breakdown
completely when 1 − k0/n ≤ 0.9 (n = 100, k0 ≥ 15 and n = 300, k0 ≥ 30).
Similarly, the performance of the OBRE-78 and the GME-78 is drastically poor
where 1− k0/n ≤ 0.7 (n = 100, k0 ≥ 30). If the target ARE of two estimators is
less than (1 − k0/n) × 100%, then the estimator with greater ARE has higher
efficiency. This explains why the performance of the OBRE-78 and the GME-78
is quite poor in comparison to that of the OBRE-94 and the GME-94 when
1− k0/n ≥ 0.95 (n = 100, k0 ≤ 5 and n = 300, k0 ≤ 15).

By automatically estimating the number of outliers, ADAP not only produces
an estimator of ξ robust to varying levels of data contamination but also provides
a methodology for outlier detection in the extremes of heavy tailed models.
Indeed, Tables 2 and 3 which produce the mean and standard errors of k̂0 for
outliers injected by mechanisms (4.4) and (4.5), show that for all values of n,
the weighted sequential testing algorithm picks up the true number of outliers
k0 for almost all values k0 (exception is k0 = 2 for scaled outliers).

Table 2

E(k̂0)± Standard Error(k̂0) for Pareto(1,2) with exponentiated outliers, L = 3

n k0 = 2 k0 = 5 k0 = 15 k0 = 30 k0 = 50
100 2.19± 1.42 5.10± 1.04 14.99± 0.51 29.84± 0.41 49.47± 0.78
300 2.23± 1.61 5.08± 0.95 14.98± 0.44 29.85± 0.44 49.55± 0.70
500 2.17± 1.19 5.20± 3.95 14.98± 0.49 29.85± 0.39 49.55± 0.70
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Table 3

E(k̂0)± Standard Error(k̂0) for Pareto(1,2) with scaled outliers, C = 200

n k0 = 2 k0 = 5 k0 = 15 k0 = 30 k0 = 50
100 1.10± 2.09 4.66± 1.87 14.91± 0.90 29.89± 0.70 49.68± 3.01
300 1.06± 1.85 4.68± 1.75 14.94± 1.02 29.91± 0.84 49.88± 0.39
500 1.09± 1.96 4.69± 1.83 14.91± 0.82 29.97± 2.81 49.89± 0.37

4.4. Impact of outlier severity and tail index

In this section, we study the influence of the magnitude of outliers and tail index
on the performance of the adaptive trimmed Hill estimator (ADAP) for Pareto
observations with sample size n = 500. The conclusions were similar for other
heavy tailed models explored.

Fig 7.
√
MSE of ADAP for Pareto(1,2). Left: Exponentiated outliers with varying L. Middle:

Scaled outliers with varying C. Right: Mixed outliers with varying M .

We begin with the impact of outlier severity on the performance of the ADAP.
For outlier generating mechanisms in Section 4.1, the outlier severity is con-
trolled by the parameters L, C and M . The data generating model is Pareto
as in Relation (4.2) with σ = 1 and ξ = 2. Figure 7 produces a plot of the√
MSE for ADAP for outlier generating mechanisms in Relations (4.4), (4.5)

and (4.6) with k0 = 10, τ = 5000 and varying L,C and M . For comparison,√
MSE values for the optimal B-robust estimator (OBRE) and the generalized

median (GME) at 78% and 94% ARE levels have also been included. The ADAP
performs better than both the OBRE and the GME for almost all values of L,
C and M no matter what their ARE levels is. The only exception is C = 10 for
the case scaled outliers (see Relation (4.5)). Though more robust, the estimators
the OBRE-78 and the GME-78 perform poorly at lower levels of contamination
in the data. This explains their overall inferior behavior in Figure 7 right panel
where the degree of contamination is only 2% (n = 500, k0 = 10).

The superiority of the ADAP grows with increase in the severity of the out-
liers. For exponentiated and scaled outliers, the increase in severity is manifested
through an increase in L,C for L,C > 1 and decrease in L,C for L,C < 1. For
mixed outliers, the increase in severity occurs with increase in the value of M .
With an increase in severity of outliers, the weighted sequential testing algo-
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Table 4

E(k̂0)± Standard Error(k̂0) for Pareto (1,2) with k0 = 10 outliers

Exp outliers
L 0.01 0.05 2 5 10

E(k̂0)± SE(k̂0) 9.74± 1.06 9.59± 1.11 9.91± 0.51 10.05± 0.87 10.05± 0.71
Scl outliers

C 0.0001 0.001 10 100 1000

E(k̂0)± SE(k̂0) 10.05± 0.70 8.83± 2.17 3.86± 4.73 9.57± 1.83 10.03± 0.61

Table 5

E(k̂0)± Standard Error(k̂0) for Pareto (1,ξ) with k0 = 10 outliers for L = 3 and C = 200

ξ = 0.25 ξ = 0.5 ξ = 1 ξ = 1.5 ξ = 2.5
Exp outliers 5.68± 4.23 7.33± 2.32 9.57± 1.03 9.95± 0.73 10.03± 0.51
Scl outliers 10.00± 0.59 10.01± 1.18 9.98± 0.72 9.99± 1.05 9.79± 1.47

rithm can correctly detect the true number of outliers k0 (see Table 4) and
hence the greater efficiency of ADAP.

We next study the impact of the tail index ξ on the performance of ADAP.
The data generating model is Pareto as in Relation (4.2) with σ = 1 and
varying values of ξ. Outliers are injected according to Relations (4.4), (4.5)
and (4.6) with k0 = 10, τ = 5000, L = 3, C = 200 and M . Figure 8 pro-
duces a plot of the

√
MSE values for the ADAP along with those of the

OBRE and the GME at 78% and 94% ARE levels. The performance of the
ADAP is superior to that of the remaining estimators. For exponentiated and
mixed outliers, the improvement is even more prominent at larger values of
ξ. This is because for the same values of L and M , the severity of outliers
is greater for heavier tails (ξ = 2.5) than lighter ones (ξ = 0.5). In contrast,
for scaled outliers, the improvement is more prominent at smaller ξ values.
This is because for the same value of C, the severity of outliers is greater
for lighter tails than heavier ones. This is in consensus with the findings of
Table 5 where the accuracy of the weighted sequential testing algorithm, Al-
gorithm 1 in correctly estimating the true number of outliers improves with
increase in ξ for exponentiated and mixed outliers and decrease in ξ for scaled
outliers.

Fig 8.
√
MSE of ADAP for Pareto(1,ξ) for varying ξ. Left: Exponentiated outliers. Middle:

Scaled outliers. Right: Mixed outliers.



1894 S. Bhattacharya et al.

4.5. Outliers in non Pareto distributions

In this section, n = 1000 sample points are generated from non-Pareto dis-
tributions as in Relation (4.2). These include the |T|(ξ) and the Burr(η,λ,ξ)
distribution with ξ = 2, η = 1 and λ = 0.5. Outliers are injected by mech-
anisms (4.4), (4.5) and (4.6) with L = 3, C = 200, M = 100, k0 = 10 and
τ = 5000. The adaptive trimmed Hill estimator (ADAP) is constructed with k
in the neighborhood of its optimal value as in Relation (4.3)2.

Fig 9.
√
MSE of ADAP for |T|(2) as a function of k. Left: Exponentiated Outliers. Middle:

Scaled Outliers. Right: Mixed Outliers.

Fig 10.
√
MSE of adaptive trimmed Hill for Burr(1,0.5,2) as a function of k. Left: Expo-

nentiated Outliers. Middle: Scaled Outliers. Right: Mixed Outliers.

In Tables 4, 5, 6 and 7, the exponentiated and scaled outliers have been
referred to as exp and scl outliers respectively.

Figures 9 and 10 display the performance of the adaptive trimmed Hill esti-
mator (ADAP) for |T|(2) and Burr(1,0.5,2), distributions, respectively together
with that of the optimal B-robust estimator (OBRE) and the generalized me-
dian estimator (GME). Overall, the ADAP is uniformly better than the OBRE
and the GME. Exceptions include small values of k for the scaled outliers. For
k < 100, the OBRE-94 and the GME-94 break down completely irrespective

2The optimal k for the trimmed Hill estimator is of the same order as that of the classic
Hill estimator (see Theorem 3.8). For a sample of size n = 1000, the optimal k is 464 and 97
for |T | and Burr distributions, respectively.
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of the nature of the outliers and distribution under study. The OBRE-78 and
the GME-78, though more robust than the OBRE-94 and the GME-94, cannot
surpass the efficiency of the ADAP. Also for mixed outliers, even the OBRE-78
and the GME-78 break down for k = 50. This is because the OBRE and the
GME are immune to outliers only if their target ARE value is less than the
ratio 1−k0/k. This is another manifestation of the fact that the OBRE and the
GME, unlike ADAP are not adaptive to the unknown levels of contamination
in the extremes (see also Figures 4, 5 and 6 in Section 4.3).

Table 6

E(k̂0)± Standard Error(k̂0) for |T|(2) for L = 3, C = 200 and k0 = 10

k k = 50 k = 100 k = 200 k = 400 k = 600
Exp outliers 10.04± 0.91 10.01± 0.66 10.02± 0.72 10.02± 0.82 10.02± 0.78
Scl outliers 9.74± 1.71 9.86± 1.44 9.91± 1.00 9.91± 0.95 9.87± 0.98

Table 7

E(k̂0)± Standard Error(k̂0) for Burr(1,0.5,2) distribution for for L = 3, C = 200 and
k0 = 10

k k = 50 k = 80 k = 80 k = 100 k = 120
Exp outliers 10.01± 0.71 10.00± 0.67 10.01± 0.88 9.98± 0.43 9.99± 0.49
Scl outliers 9.69± 1.72 9.76± 1.58 9.76± 1.36 9.78± 1.46 9.77± 1.29

Due to their slow rate convergence to Pareto tails, both Burr and |T| are
difficult cases to analyze. For the Burr distribution with ρ = 1, the rate of
convergence is further slower than that of the |T| with ρ = 2ξ = 4. However, the
ADAP performs well even in this challenging regime. This can be attributed to
the accuracy of the weighted sequential testing algorithm, Algorithm 1 which
correctly identifies true number of outliers k0 irrespective of the distribution
under study for a wide range of k-values (see Tables 6 and 7).

5. Application

In this section, we apply our weighted sequential testing algorithm, Algorithm
1 and adaptive trimmed Hill estimator to real data. Two data sets have been
explored in this context (see also the R shiny app at [29]). The first one provides
the calcium content in the Condroz region of Belgium [35]. The data is indeed
heavy tailed and has already been explored in the works of [5] and [37]. The
second data set involves insurance claim settlements [9]. Both these data sets
on analysis revealed the presence of outliers in the extremes and are therefore
suitable for the application of our methodology.

5.1. Condroz data set

Figure 1 produces exploratory plots for the Condroz data set of [35] which
measures the calcium content of soil samples together with their pH levels in
the Condroz region of Belgium. As in [37], the conditional distribution of the
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calcium content for pH levels lying between 7-7.5 has been considered. The left
and middle panels use the value of k = 85 based on the kopt value from [37]. The
left panel displays a pareto quantile plot [5] of the data where an apparent linear
trend indicates Pareto distributed observations. Nearly six data points show up
as outliers in the pareto quantile plot. This has already been observed in [35]
but no principled methodology for the identification of such outliers has been
proposed. Our trimmed Hill estimator (recall Relation (2.2)) diagnostic plot in
the middle panel also shows a change point in the values of the trimmed Hill
statistics at k0 = 6. On applying the Algorithm 1 with Type I error q = 0.05
and a = 1.2, we formally identify exactly k0 = 6 outliers for this data set3. This
is in consensus with the findings of [35] and [37].

The right panel in Figure 1 displays the values trimmed Hill estimator as a
function of k for k0 = k̂0 = 6. Also displayed as a function of k are the values
of the estimators, classic Hill and biased Hill with k0 = 6 (recall Relations (1.2)
and (1.4)). The robust estimator of ξ as reported in the analysis of [37] is same as
that of the biased Hill. When compared with the trimmed Hill, the classic Hill
plot produces much larger estimates and the biased Hill plot produces much
smaller estimates of the tail index ξ. This can be explained by the apparent
upward trend in the outliers as shown in left and middle panels of Figure 1.
Thus, ignoring the presence of outliers by either using the classic Hill estimator
or by naively truncating them and using the biased Hill statistic can lead to large
discrepancies in the tail index values. The trimmed Hill estimator with k̂0 = 6,
also the adaptive trimmed Hill estimator, produces more credible estimates of
the tail index ξ.

5.2. French claims data set

Next, we consider a data set of claim settlements issued by a private insurer in
France for the time period 1996-2006 from [9]. We investigate the payments of
claim settlements for the year 2006. Figure 11 produces exploratory plots of this
data where the left and middle panels use the value of k = 130. The left panel
displays a pareto quantile plot [5] of the data where an apparent linear trend
indicates Pareto distributed observations as well as a large number of outliers.
Nearly thirty three data points show up as outliers in the pareto quantile plot.
This is further confirmed by the diagnostic plot in the middle panel where a
change point in the values of trimmed Hill statistics is evident at k0 ≈ 33. On
applying the Algorithm 1 with q = 0.05 and a = 1.2, we identify k0 ≈ 33 outliers
for this data set.

In contrast to the case of Condroz data set (Figure 1 right panel), now the
both classic and biased Hill plots lie under the trimmed Hill plot (see the right
panel of Figure 11 constructed with k0 = 33 and varying k). This can be ex-
plained by the apparent downward trend in the outliers as shown in left and
middle panels of Figure 11.

3The ties in the data are broken using a suitable dithering technique like adding a small
perturbation ε ∼ U(0, 0.1) to the data or considering unique values in the data
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Observe that the trimmed Hill plot in Figure 11 (right panel) has a rather
high peak for k close to k0, but then it quickly stabilizes around the value of
2, when k grows. It is well-known that except in the ideal Pareto setting, the
classic Hill plot can be quite volatile for small values of k (see Figure 4.2 in [34]).
The same holds for the trimmed Hill plots, but ultimately, in Figure 11 for a
wide range of k’s the trimmed Hill plot is relatively stable and it provides more
reliable estimates of ξ than the classic and biased Hill plots therein. This simple
analysis shows that ignoring or not adequately treating extreme outliers can
lead to significant underestimation of the tail index ξ. This in turn can result
in severe underestimation of the tail of loss distribution with detrimental effects
to the insurance industry.

Fig 11. Exploratory plots of the French claim settlements. Left: Pareto quantile plot, Middle:
Diagnostic Plot and Right: Hill plots viz classic Hill plot, trimmed Hill plot and biased Hill
plot.

Appendix A

A.1. Empirical estimation of the rates of convergence

If a statistic Tn satisfies

nrTn = OP(1), as n → ∞,

then the optimal (largest) r can be estimated empirically by numerical simula-
tions. Adopting the simplifying assumptions that nrTn → Z, in probability, for
some finite and possibly random Z and that {|nrTn|, n ∈ N} are uniformly inte-
grable, for example. Then, we will have nrmn → E|Z| < ∞, where mn := E|Tn|.
One can compute empirical Monte Carlo estimates m̂n of mn using a large num-
ber of independent realizations of Tn, for each n from a range of large sample
sizes. Then, the negative of slope estimate in a log-linear regression of m̂n versus
n can be taken as an estimate of the rate r. We employed this simple method
below to gain some intuition behind the optimal rates for the statistics involved
in our adaptive trimmed Hill estimator.
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A.2. Rates of convergence of ξ̂k0,k, Tk0,k and Uk0,k

In Theorem 3.5, it has been shown that whenever Relations (3.9) and (3.10)
hold,

kδ max
0≤k0<h(k)

∣∣∣ξ̂k0,k − ξ̂∗k0,k − cAk−δ

1 + ρ

∣∣∣ P−→ 0. (A.1)

where ξ̂k0,k and ξ̂∗k0,k are defined in Relation (3.5). Whether the rate δ is optimal
or not is what we explore next.

Simulation setting For the Hall class of distributions as in Relation (3.6),
g(x) ≈ x−ρ which implies Relation (3.10) holds if k = k(n) ∼ nρ/(ρ+δ). We
thereby work with this choice of k, for varying sample sizes n. We simulate a
sample of size n from Pareto(1,1) and then construct a sample from a general

distribution function F by using Relation (3.4). Then, ξ̂k0,k is the trimmed
Hill estimator based on the sample from F (see Relation (2.2)). Let ξ be the

tail index associated with F , then ξ̂∗k0,k = ξξ̂, where ξ̂ is the trimmed Hill
estimator based on Pareto(1,1) sample. Three different distribution functions F
are considered viz |T|(0.25), Burr(1, 0.5, 1) and |T|(2). The sample sizes used are
n = 105×{1, 2, 5, 10, 20}, n = 103×{1, 2, 5, 10, 20} and n = 102×{1, 2, 5, 10, 20},
for |T|(0.25), Burr(1, 0.5, 1) and |T|(2), respectively.

Using Section A.1, we numerically evaluate the rate of convergence for |ξ̂k0,k−
ξ̂∗k0,k

| for varying δ, n and F . The rate δ̂e so obtained is a power of n which is

then converted to a power of k by noting that n = k(ρ+δ)/ρ. Table 8 gives
the rates δ̂e as a power of k. The values thus obtained closely follow the true
value of δ used in Relation (3.10), irrespective of the value of ρ and the dis-
tribution function F . Thus, the rate δ in Relation (A.1) cannot be improved
further.

In Theorem 3.9, we prove that whenever Relations (3.9) and (3.10) hold,

kδ|Tk0,k − T ∗
k0,k|

P−→ 0 (A.2)

where Tk0,k and T ∗
k0,k

are defined using ξ̂k0,k and ξ̂∗k0,k, respectively, based on
Relation (2.6). Whether the rate δ is the best achievable rate or not is what we
explore next.

Table 8

Rate of convergences. δ̂e: convergence rate for |ξ̂k0,k − ξ̂∗k0,k
|, δ̂t: convergence rate for

|Tk0,k − T ∗
k0,k

| and δ̂u: convergence rate for |Uk0,k − U∗
k0,k

|

|T|(0.25), ρ = 0.5 Burr(1, 0.5, 1), ρ = 1 |T|(2), ρ = 4

δ δ̂e δ̂t δ̂t − δ̂u δ̂e δ̂t δ̂t − δ̂u δ̂e δ̂t δ̂t − δ̂u
0.5 0.57 1.34 0.88 0.51 1.36 0.86 0.51 1.17 0.64
0.75 0.78 1.54 0.86 0.75 1.58 0.84 0.75 1.42 0.62
1 1.07 1.73 0.83 0.99 1.78 0.8 0.99 1.64 0.59

1.25 1.34 1.87 0.79 1.23 2 0.78 1.26 1.9 0.56
1.5 1.66 2.08 0.75 1.47 2.21 0.75 1.53 2.16 0.53
2 2.35 2.62 0.66 2.01 2.68 0.69 2.08 2.68 0.49
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We compute Tk0,k and T ∗
k0,k

based on ξ̂k0,k and ξ̂∗k0,k. Using Section A.1,

the rate, δ̂t of convergence of |Tk0,k −T ∗
k0,k

| is obtained as a power of n which is

then converted to a power of k using n = k(ρ+δ)/ρ. Table 8 gives the rates δ̂t as
a power of k. The results show that the numerically obtained rate, δ̂t is indeed
larger than δ and lies approximately in the interval [δ + 0.5, δ + 0.8] depending
on the value of ρ and the distribution function F . This suggests that there is
a scope of improvement of the rate in Relation (A.2). The proof, however, may
require additional assumptions on the slowly varying function L in Relation
(3.2) and goes beyond the scope of the present paper.

In Theorem 3.11 part 1., it has been shown that if

kδ
∗ |Tk0,k − T ∗

k0,k|
P−→ 0 (A.3)

holds for some δ∗ > 0, then

k(δ
∗−1)|Uk0,k − U∗

k0,k|
P−→ 0 (A.4)

where Uk0,k and U∗
k0,k

are defined using Tk0,k and T ∗
k0,k

, respectively, based on
Relation (2.7). Thus, we expect the rate of convergence of |Uk0,k − U∗

k0,k
| to

differ from that of |Tk0,k − T ∗
k0,k

| by a margin of 1. Whether this difference can
be further improved or not is what we explore next.

The rate of convergence, δ̂t for |Tk0,k − T ∗
k0,k

| has already been obtained.

Using Section A.1, the rate, δ̂u of convergence of |Uk0,k − U∗
k0,k

| is obtained as

a power of n which is then converted to a power of k by using n = k(ρ+δ)/ρ.
Table 8 gives the values of the difference, δ̂t − δ̂u. The results demonstrate that
δ̂t − δ̂u lies approximately in the interval [0.5, 0.9] depending on the value of
ρ and the distribution function F . This indicates that the convergence rate of
|Uk0,k − U∗

k0,k
| is nearly 1 unit smaller than the rate for |Tk0,k − T ∗

k0,k
|. Thus,

for a given rate δ∗ in Relation (A.3), the rate δ∗ − 1 in Relation (A.4) cannot
be improved further.

A.3. Rate of convergence of Type I error

In Theorem 3.11 part 2., it has been proved that if Relation (A.2) holds for
some δ∗ > 0, then under H0 : k0 = 0,

PH0 [k̂0 > 0] −→ q

as long as δ∗ ≥ 2. Here k̂0 is the output of weighted sequential testing, Algorithm
1 when applied to the statistics Uk0,k constructed from Tk0,k using Relation (2.7).
The question of whether the condition δ∗ ≥ 2 is necessary or not is explored
next using the same simulation setting as in Section A.2.

For the computation k̂0, the significance level q in Algorithm 1 is fixed at
0.05. The Type I error, PH0 [k̂0 > 0] is computed empirically by considering the

proportion of Monte Carlo iterations where k̂0 > 0. The rate of convergence, δ̂t
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for |Tk0,k − T ∗
k0,k

| as obtained in Section A.2 is considered. For varying values

of the rate (δ̂t is denoted as δ in Figure 12), Figure 12 gives a plot of the Type

I error as a function of the sample size n. The plot clearly shows that as δ̂t
approaches 2, the Type I error converges to the true significance level 0.05. For
values of δ̂t smaller than 2, the Type I error is much larger than the significance
level 0.05. This suggests that the condition δ∗ ≥ 2 is necessary and cannot be
further relaxed.

Fig 12. Type I error at varying values of the rate of convergence for |Tk0,k − T ∗
k0,k

| (denoted
by δ). Left: |T| with ρ = 0.5, Middle: Burr with ρ = 1, Right: |T| with ρ = 4.

Appendix B

B.1. The optimal B-robust estimator

The optimal B-robust estimator (OBRE) was first defined in [22] in terms of the
influence function (IF), to allow for the assessment of robustness of an estimator
in a parametric model. In [38], the OBRE estimator was adapted to the Pareto
model to provide a robust estimator of the tail index ξ.

For a parametric model Fθ with density fθ, θ ∈ Θ ⊆ R
p, suppose Tn =

Tn(x1, x2, · · · , xn) is an estimator of θ for a sample of n observations, x1, ..., xn,
from Fθ. Let Fn denote the empirical distribution function based on xi’s. The
influence function (IF) viewed as a functional of Fn, T (Fn) = Tn(x1, x2, · · · , xn)
is defined as

IF (x; T ;Fθ) = lim
ε→0

T ((1− ε)Fθ + εδx)− T (Fθ)

ε
(B.1)

Thus, the IF describes the effect of a small contamination εδx at the point x on
the estimate standardized by the mass of the contamination.

An M -estimator Tn of θ satisfies
n∑

i=1

Ψ(xi, Tn) = 0

for some function Ψ : X × R
p → R

p. Using (B.1), it can be shown that the IF
of an M -estimator defined by Ψ at Fθ is given by

IF (x; Ψ, Fθ) =
[
−
∫

δ

δθ
Ψ(x, θ)dFθ(x)

]−1

Ψ(x, θ)
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The OBRE is an M-estimator which minimizes the trace of the asymptotic
covariance matrix under the constraint that it has a bounded IF. For given
bound c̃ on the influence function (IF≤ c̃), the OBRE is defined as the solution
to the equation

n∑
i=1

Ψ(xi; θ) =

n∑
i=1

(s(xi; θ)− a(θ))Wc̃(xi; θ) = 0 (B.2)

where

s(x, θ) =
δ

δθ
log fθ(x) Wc̃(x; θ) = min

(
1,

c̃

||A(θ)(s(x; θ)− a(θ))||
)
. (B.3)

The matrix A(θ) and the vector a(θ) in Relations (B.2) and (B.3) are defined
implicitly by

E[Ψ(x; θ)Ψ(x; θ)�] = (A(θ)�A(θ))−1 E[Ψ(x; θ)] = 0

The constant c̃ may be interpreted as the regulator between robustness and
efficiency, wherein for a lower c̃ one gains robustness but loses efficiency, and
vice versa for a higher c̃.

For c̃ = ∞, one obtains the MLE. For a given c̃, the asymptotic relative
efficiency of the OBRE (expressed as a proportion) is defined as the ratio of
the traces of the asymptotic covariance of the MLE to that of the OBRE. Its
explicit form is given by

tr{(
∫
s(x; θ)s(x; θ)�dFθ(x))

−1}
tr{
∫
IF (x,Ψ, Fθ)IF (x,Ψ, Fθ)�dFθ(x)dx}

.

where Ψ has the form as in (B.2).
For the Pareto(σ,θ) model, the distribution function Fθ is given by Relation

(4.2). It so turns out that the OBRE based on Relation (B.2) for Pareto(σ,θ)
has ARE values equal to 78% and 94% for c̃ = 1.63 and 2.73, respectively.

B.2. The generalized median estimator

The generalized median estimator (GME) is another robust estimator of the
tail index developed by [12] for Pareto models. Let X ∼ Pareto(σ, θ) (see Re-
lation (4.2)), then Z = logX is exponentially distributed with location and
scale parameters log σ and θ, respectively. The cumulative distribution function
(cdf) for exponential distribution with location and scale μ and ζ, respectively
(denoted by Exp(μ, ζ)) has the form

G(x) = 1− e−(x−μ)/ζ . (B.4)

For a sample x1, x2, · · · , xn from Pareto(σ, θ), the generalized median estimator
seeks to obtain an estimator of θ by using the sample zi = log xi, i = 1, 2, · · · , n
from Exp(log σ, θ).
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For a kernel h(z1, z2, · · · , zκ) invariant under permutation of its κ arguments,
let HF denote the induced cdf of h(Z1, Z2, · · · , Zκ) where F is the cdf of Zi ∼
Exp(log σ, θ). The kernel h is chosen such that θ is the median of HF as follows

θ = H−1
F (0.5) (B.5)

Motivated by Relation (B.5), the generalized median estimator (GME) of θ as
defined in [12] is:

θ̂GM = Ĥ−1
n (0.5) (B.6)

where Ĥn, an estimator of HF and has the form

Ĥn(y) =
1(
n
κ

) ∑1[h(zi1, zi2, · · · , ziκ) ≤ y], y ∈ R. (B.7)

Here, the sum is over all possible κ-sets of distinct indices {i1, i2, · · · , iκ} from
{1, 2, · · · , n}.

The asymptotic relative efficiency (ARE) of GME (expressed as a proportion)
is the ratio of the variances of GME and MLE of θ and is given by

nh2
F (θ)

vκ2

where hF is the density of HF and v = Var(wh(Z)) for wh(z) = P (h(z, Z1, · · · ,
Zκ−1) ≤ θ).

Two forms of the kernel h have been proposed in [12] of which we use the
one with higher ARE. The form of this kernel h is given by

h(z1, z2, · · · , zκ) =
2κ

M2κ,0.5

( 1
κ

κ∑
j=1

zj − z(1,n)

)
(B.8)

where z1,n = min(z1, z2, · · · , zn) and M2κ,0.5 is the median (0.5th quantile) for

χ2
2κ distribution. For smaller sample sizes, M2κ,0.5 is replaced by M̃2κ,0.5 where

M̃2κ,0.5 is the median (0.5th quantile) of the mixture distribution(
1− κ

n

)
χ2
2κ +

(κ
n

)
χ2
2(κ−1).

The constant κ serves as a regulator between the robustness and ARE. Indeed
with h as in Relation (B.8), values of κ = 2 and κ = 5 produce ARE levels equal
to 78% and 94%, respectively.

Appendix C

C.1. Auxiliary lemmas

Lemma C.1. Let Ej, j = 1, 2, · · · , n+1 be i.i.d. standard exponential random
variables. Then, the Gamma(i, 1) random variables defined as

Γi =

i∑
j=1

Ej i = 1, · · · , n+ 1, (C.1)
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satisfy ( Γ1

Γn+1
, · · · , Γn

Γn+1

)
and Γn+1 are independent. (C.2)

and ( Γ1

Γn+1
, · · · , Γn

Γn+1

)
d
= (U(1,n), · · · , U(n,n)) (C.3)

where U(1,n) < · · · < U(n,n) are the order statistics of n i.i.d. U(0,1) random
variables.

For details on the proof see Example 4.6 on page 44 in [3].
The next result is used throughout the course of the paper to switch between

order statistics of exponentials and i.i.d. exponential random variables.

Lemma C.2 (Rényi, 1953 [15]). Let E1, E2, · · · , En be a sample of n i.i.d.
exponential random variables with mean ξ (denoted by Exp(ξ)) and E(1,n) ≤
E(2,n) ≤ E(n,n) be the order statistics. By Rényi’s (1953) representation on
page 37 of [15], we have for fixed k ≤ n,

(E(1,n), · · · , E(i,n), · · · , E(k,n))
d
=
(E∗

1

n
, · · · ,

i∑
j=1

E∗
j

n− j + 1
, · · · ,

k∑
j=1

E∗
j

n− j + 1

)
(C.4)

where E∗
1 , · · · , E∗

k are also i.i.d. Exp(ξ).

Lemma C.3. For Γm = E1 +E2 + · · ·+Em where the E′
is i.i.d. Exp(ξ), then

for any ρ ∈ (−∞,∞)

sup
m≥M

∣∣∣(Γm

m

)ρ
− 1
∣∣∣ a.s.−→ 0, M → ∞. (C.5)

sup
m,n≥M

∣∣∣(Γm/m

Γn/n

)ρ
− 1
∣∣∣ a.s.−→ 0, M → ∞. (C.6)

Lemma C.4. For the setup of Lemma C.3, for all ρ ∈ [0,∞), we have

sup
m≥M

∣∣∣ 1
m

m∑
i=1

( Γi+1

Γm+1

)ρ
− 1

1 + ρ

∣∣∣ a.s.−→ 0, M → ∞

Proof. It is equivalent to show that, as m → ∞,

∣∣∣ 1
m

m∑
i=1

( Γi+1

Γm+1

)ρ
− 1

1 + ρ

∣∣∣ a.s.−→ 0. (C.7)

For a fixed ω ∈ Ω, let us define the following sequence of functions

fm(x) =
m∑
i=1

(Γi+1/Γm+1)
ρ
(ω)1( i−1

m , i
m ](x), x > 0
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Suppose x ∈ ((i− 1)/m, i/m], then

fm(x) = (Γ[mx]+1/Γm+1)
ρ
(ω) =

( [mx] + 1

m

)ρ(Γ[mx]+1/([mx] + 1)

Γm/m

)ρ
(ω) → xρ

(C.8)
where the convergence follows from Relation (C.6). Moreover since Γ[mx]+1 <
Γm and ρ ≥ 0, therefore |fm(x)| ≤ 1, for all x > 0. Thus by dominated conver-
gence theorem,∫ 1

0

fm(x)dx =
1

m

m∑
i=1

(Γi+1/Γm+1)
ρ
(ω) →

∫ 1

0

xρdx =
1

1 + ρ
(C.9)

Since Relation (C.8) holds for all ω ∈ Ω with P(Ω] = 1, so does Relation (C.9).
This completes the proof.

C.2. Proofs for Section 2

Proof of Proposition 2.1. Note that, if Xi ∼ Pareto(σ, ξ), then it can be
alternatively written as

Xi = σU−ξ
i , i = 1, · · · , n,

where Ui’s are i.i.d. U(0, 1). Therefore by Relation (C.3), we have

(X(n,n), · · · , X(1,n)) = σ(U−ξ
(1,n), · · · , U

−ξ
(n,n))

d
= σ

(( Γ1

Γn+1

)−ξ

, · · · ,
( Γn

Γn+1

)−ξ
)

(C.10)
where X(n,n) > · · · > X(1,n) are the order statistics for the Xi’s. Hence, for all
1 ≤ k ≤ n− 1, we have(

log
( X(n,n)

X(n−k,n)

)
, · · · , log

(X(n−k+1,n)

X(n−k,n)

))
(C.11)

d
= −ξ

(
log
( Γ1

Γk+1

)
, · · · , log

( Γk

Γk+1

))
d
= −ξ(logU(1,k), · · · , logU(k,k)),

where the U(i,k)’s are the order statistics for a sample of k i.i.d. U(0, 1) and
the last equality in Relation (C.11) follows from Relation (C.3). Since negative
log transforms of U(0, 1) are standard exponentials, one can define E(i,k), i =
1, · · · , k as(

log
( X(n,n)

X(n−k,n)

)
, · · · , log

(X(n−k+1,n)

X(n−k,n)

))
=: (E(k,k), · · · , E(1,k)) (C.12)
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such that the E(i,k)’s are the order statistics of k i.i.d. exponentials with mean
ξ.

Using Relation (C.12), ξ̂trimk0,k
in Relation (1.3) is simplified as:

ξ̂trimk0,k =

k∑
i=k0+1

ck0,k(i)E(k−i+1,k) =

k−k0∑
i=1

δiE(i,k) (C.13)

where δi = ck0,k(k − i + 1). The optimal choice of weights δi’s which produces
the best linear unbiased estimator (BLUE) is obtained using Lemma C.5 below
as follows:

δopti =

{
1

k−k0
i = 1, · · · , k − k0 − 1

k0+1
k−k0

i = k − k0
(C.14)

Rewriting E(i,k)’s in terms of X(n−i+1,n)’s as in Relation (C.12) completes the
proof.

Lemma C.5. If Ei, i = 1, · · · , n are i.i.d. observations from Exp(ξ), the best
linear unbiased estimator (BLUE) of ξ based on the order statistics, E(1,n) <
· · · < E(r,n) is given by

ξ̂ =
1

r

r−1∑
i=1

E(i,n) +
n− r + 1

r
E(r,n)

Proof. Let ξ̂ =
∑r

i=1 γiE(i,n) denote the BLUE of ξ. By Relation (C.4), the
BLUE can then be expressed as

ξ̂ =

r∑
i=1

γi

i∑
j=1

E∗
j

(n− j + 1)
=

r∑
j=1

E∗
j

r∑
i=j

γi
(n− j + 1)

=:

r∑
j=1

E∗
j δj (C.15)

where the E∗
j are i.i.d. from Exp(ξ) and δj = (n− j + 1)−1

∑r
i=j γi

For i.i.d. observations from Exp(ξ), the sample mean is the uniformly mini-
mum variance unbiased estimator (UMVUE) for ξ (see Lehmann Scheffe Theo-
rem, Theorem 1.11, page 88 in [31]).

Thus, δj = 1/r yields the required best linear unbiased estimator and there-
fore, the weights γi’s have the form:

γi =

{
n−r+1

r i = r
1
r i < r

This completes the proof.

Proof of Theorem 2.5. Assume that σ is known and consider the class of
statistics:

Uσ
k0

=
{
T = T (X(n−k0,n), · · · , X(1,n)) : E(T )= ξ, X1, · · · , Xn

i.i.d.∼ Pareto(σ, ξ)
}
.
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Since σ is no longer a parameter, every statistic in Uσ
k0

can be equivalently
written as a function of log(X(n−i+1,n)/σ), i = k0 + 1, · · · , n as follows:

Uσ
k0

=

{
S = S

(
log
(X(n−k0,n)

σ

)
, · · · , log

(X(1,n)

σ

))

: E(S) = ξ, X1, · · · , Xn
i.i.d.∼ Pareto(σ, ξ)

}

Since Xi’s follow Pareto(σ, ξ), log(Xi/σ) ∼ Exp(ξ) and therefore(
log
(X(n−k0,n)

σ

)
, · · · , log

(X(1,n)

σ

))
d
=
(
E(n−k0,n), · · · , E(1,n)

)
,

where E(1,n) ≤ · · · ≤ E(n,n) are the order statistics of n i.i.d. observations from
Exp(ξ). Therefore

Uσ
k0

d
=
{
S = S(E(n−k0,n), · · · , E(1,n)) : E(S) = ξ, E1, · · · , En

i.i.d.∼ Exp(ξ)
}
,

(C.16)
where the Ei’s do not depend on σ. Next, using Relation (C.4), we have

S(E(n−k0,n), · · · , E(1,n)) = S
( n−k0∑

j=1

E∗
j

n− j + 1
, · · · ,

n−k∑
j=1

E∗
j

n− j + 1

)
= R(E∗

1 , · · · , E∗
n−k0

)

Using the above result with Relation (C.16), we get

Uσ
k0

d
= Vk0 :=

{
R = R(E∗

1 , · · · , E∗
n−k0

) : E(R) = ξ, E∗
1 , · · · , E∗

n−k0

i.i.d.∼ Exp(ξ)
}

(C.17)
where the first equality is in the sense of finite dimensional distributions.

By Relation (C.17), we have infT ∈Uσ
k0

Var(T ) = infR∈Vk0
Var(R) := L∗. Since

the sample mean, E
∗
n−k0

=
∑n−k0

i=1 E∗
i /(n− k0) is uniformly the minimum vari-

ance estimator (UMVUE) of ξ among the class described by Vk0 , L
∗ can be

easily obtained as

L∗ = Var(E
∗
n−k0

) =
ξ2

n− k0
(C.18)

The fact that E
∗
n−k0

is the UMVUE follows because it is an unbiased and
complete sufficient statistic for ξ (see Lehmann Scheffe Theorem, Theorem 1.11,
page 88 in [31]).

To complete the proof, observe that every statistic T in Uk0 is an unbiased
estimator of ξ for any arbitrary choice of σ. This implies that for any σ, T ∈ Uσ

k0

and therefore L∗ ≤ Var(T ). Since this holds for all values of T ∈ Uk0 , the proof
of the lower bound in Relation (2.3) follows.
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For the upper bound in Relation (2.3), we observe that ξ̂k0,n−1 ∈ Uk0 , which
in view of Proposition 2.6 implies

inf
T ∈Uk0

Var(T ) ≤ Var(ξ̂k0,n−1) =
ξ2

n− k0 − 1
.

This completes the proof.

Proof of Proposition 2.6. From Relations (C.13) and (C.14), we have{
ξ̂k0,k, k0 = 0, . . . , k − 1

}
(C.19)

=
{ 1

k − k0

k−k0−1∑
i=1

E(i,k) +
k0 + 1

k − k0
E(k−k0,k), k0 = 0, . . . , k − 1

}
Using Relation (C.4), for all k0 = 0, 1, · · · , k − 1, we have

ξ̂k0,k =
1

k − k0

k−k0−1∑
i=1

i∑
j=1

E∗
j

(k − j + 1)
+

k0 + 1

k − k0

k−k0∑
j=1

E∗
j

(k − j + 1)
(C.20)

Interchanging the order of summation in the first term in the right hand side of
Relation (C.20), we obtain

ξ̂k0,k =

k−k0−1∑
j=1

E∗
j

k − j + 1

k−k0−1∑
i=j

1

k − k0
+

k0 + 1

k − k0

k−k0∑
j=1

E∗
j

(k − j + 1)

=

k−k0−1∑
j=1

E∗
j

k − j + 1

⎛⎝k−k0−1∑
i=j

1

k − k0
+

k0 + 1

k − k0

⎞⎠+
E∗

k−k0

k − k0

=

k−k0−1∑
j=1

E∗
j

k − j + 1

(k − j + 1)

k − k0
+

E∗
k−k0

k − k0

=
1

k − k0

k−k0∑
j=1

E∗
j ,

Since E∗
j , j = 1, · · · , k− k0 follow Exp(ξ), E∗

j are indeed ξ times i.i.d. standard
exponentials. This completes the proof of Relation (2.4).

The proof of Relation (2.5) is a direct application of central limit theorem to
Relation (2.4).

Proof of Proposition 2.7. In view of Relations (2.4) and (2.6), we have(
T0,k(n), · · · , Tk−2,k(n)

)
d
=
(Γk−1

Γk
, · · · , Γ1

Γ2

)
, (C.21)

which implies

Tk0,k(n)
d
=

Γk−k0−1

Γk−k0

∼ Beta(k − k0 − 1, 1), k0 = 0, · · · , k − 2.
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To show the independence of the Tk0,k(n)’s, note that, by Relation (C.2) in
Section C.1, Γm and {Γi/Γm, i = 1, · · · ,m} are independent for all 1 ≤ m ≤
k − 2. This in turn implies that(Γ1

Γ2
,
Γ2

Γ3
, · · · , Γm−1

Γm

)
and Γm are independent.

Since Γi, i = 1, · · · ,m and (Em+1, · · · , Ek) are independent, for all m =
1, · · · , k − 2, we have(Γ1

Γ2
, · · · , Γm−1

Γm

)
and (Γm, Em+1, · · · , Ek) are independent . (C.22)

Since
(
Γm/Γm+1, · · · ,Γk−1/Γk

)
is a function of (Γm, Em+1, · · · , Ek) for all 1 ≤

m ≤ k − 2, we have(Γ1

Γ2
, · · · , Γm−1

Γm

)
and

( Γm

Γm+1
, · · · , Γk−1

Γk

)
is independent for all m ≥ 1.

(C.23)
In view of Relations (C.21) and (C.23), the proof of independence of the
Tk0,k(n)’s follows.

C.3. Proofs for Section 3

C.3.1. Minimax rate optimality

Our goal is to establish the uniform consistency in Relation (3.8). To this end,
recall the representation in Relation (3.5). For the Hall class of distributions in
Relation (3.6), it can be shown that

√
kRk0,k is OP(1) (see Lemma C.6 below).

With
√
k|Rk0,k| bounded away from infinity, it is easier to bound the quantity√

k|ξ̂k0,k − ξ| since by Relation (3.5)

√
k|ξ̂k0,k − ξ| ≤

√
k|Rk0,k|+

√
k|ξ̂∗k0,k − ξ|. (C.24)

This shall form the basis of the proof for Theorem 3.3 as shown next.

Proof of Theorem 3.3. Let Pn = infF∈Dξ(B,ρ) PF

(
max0≤k0<h(k) |ξ̂k0,k−ξ| ≤

a(n)
)
. By Relation (C.24), we have

Pn = inf
Dξ(B,ρ)

PF

(
max

0≤k0<h(k)

√
k|Rk0,k| ≤ (

√
ka(n))/2︸ ︷︷ ︸

A1n

∩ max
0≤k0<h(k)

√
k|ξ̂∗k0,k − ξ| ≤ (

√
ka(n))/2︸ ︷︷ ︸

A2n

)
.
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Since
√
ka(n) → ∞, therefore in view of Lemma C.6, infF∈Dξ(B,ρ) PF (A1n) → 1.

We also have that,

inf
F∈Dξ(B,ρ)

PF (A2n) = P

(
max

0≤k0<h(k)

√
k|ξ̂∗k0,k − ξ| ≤ (

√
ka(n))/2

)
since ξ̂∗k0,k

does not depend on F ∈ Dξ(B, ρ).

By using Donsker’s principle, we will show that

max
0≤k0<h(k)

|ξ̂∗k0,k − ξ| = oP(a(n)),

which will imply PF (A2n) → 1. Indeed, without loss of generality, suppose ξ = 1
and let Ei, i = 1, 2, . . . be independent standard exponential random variables.
For every ε ∈ (0, 1), we have that

Wk = {Wk(t), t ∈ [ε, 1]} :=

{√
k

[kt]

[kt]∑
i=1

(Ei−1), t ∈ [0, 1]

}
d→ {B(t)/t, t ∈ [ε, 1]},

(C.25)
as k → ∞, where B = {B(t), t ∈ [0, 1]} is the standard Brownian motion, and
where the last convergence is in the space of cadlag functions D[ε, 1] equipped
with the Skorokhod J1-topology. (In fact, since the limit has continuous paths,
the convergence is also valid in the uniform norm.)

Recall that by Relation (2.4), we have

{ξ̂∗k0,k(n), 0 ≤ k0 < k} d
=

{
k−k0∑
i=1

Ei/(k − k0), 0 ≤ k0 < k

}
.

Thus,

√
k max

0≤k0<h(k)
|ξ̂∗k0,k(n)− ξ| d

= sup
t∈[1−h(k)/k,1]

|Wk(t)| ≤ sup
t∈[ε,1]

|Wk(t)|, (C.26)

where the last inequality holds for all sufficiently large k, since 1− h(k)/k → 1,
as k → ∞. Since the supremum is a continuous functional in J1, the convergence
in Relation (C.25) implies that the right–hand side of Relation (C.26) converges
in distribution to supt∈[ε,1] |B(t)/t| = OP(1), which is finite with probability

one. This, since a(n)
√

k(n) → ∞, completes the proof.

Lemma C.6. Assumption (3.6) implies there exist M > 0 such that

inf
F∈Dξ(B,ρ)

PF

(
max

0≤k0<h(k)

√
k|Rk0,k| ≤ M

)
→ 1 as k → ∞ (C.27)

where Rk0,k is defined as in Relation (3.5), h(k) = o(k) and k = O(n2ρ/(1+2ρ)).
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Proof. By Relation (3.6), we have 1−Bx−ρ ≤ L(x) ≤ 1 +Bx−ρ. Therefore,

(k − k0)Rk0,k (C.28)

≤ (k0 + 1) log
1 +BY −ρ

(n−k0,n)

1−BY −ρ
(n−k,n)

+

k∑
i=k0+2

log
1 +BY −ρ

(n−i+1,n)

1−BY −ρ
(n−k,n)

≤ k log
1 +BY −ρ

(n−k,n)

1−BY −ρ
(n−k,n)

,

since Y −ρ
(n−k,n) ≥ Y −ρ

(n−i+1,n) for i = k0 + 1, · · · , k. Similarly, we also have

(k − k0)Rk0,k ≥ k log
1−BY −ρ

(n−k,n)

1 +BY −ρ
(n−k,n)

= −k log
1 +BY −ρ

(n−k,n)

1−BY −ρ
(n−k,n)

. (C.29)

Thus, Relations (C.28) and (C.29) together imply

max
0≤k0<h(k)

√
k|Rk0,k| ≤

√
kY −ρ

(n−k,n)

1− h(k)/k
max

0≤k0<h(k)

1

Y −ρ
(n−k,n)

log
1 +BY −ρ

(n−k,n)

1−BY −ρ
(n−k,n)

(C.30)
Since h(k) = o(k), 1− h(k)/k → 1. Additionally, expressing Y(n−i+1,n) in terms
of Gamma random variables as in Relation (C.10), we get

√
kY −ρ

(n−k,n)

1

Y −ρ
(n−k,n)

log
1 +BY −ρ

(n−k,n)

1−BY −ρ
(n−k,n)

d
=

√
k(Γk+1/Γn+1)

ρ︸ ︷︷ ︸
Δ1k

× 1

(Γk+1/Γn+1)ρ
log

1 +B(Γk+1/Γn+1)
ρ

1−B(Γk+1/Γn+1)ρ︸ ︷︷ ︸
Δ2k

Now, by Relation (C.5), we have Γk+1/Γn+1
a.s.∼ (k/n)ρ. Therefore, for k =

O(n2ρ/(1+2ρ)), Δ1k is OP(1). Since k/n → 0, therefore (Γk+1/Γn+1)
ρ a.s.−→ 0

which further implies Δ2k
a.s.−→ 2B and is thereby OP(1).

Thus, there exist M such that

inf
F∈Dξ(B,ρ)

PF

(
max

0≤k0<k

k − k0

kY −ρ
(n−k,n)

|Rk0,k| ≤ M
)
≥ P(Δ1kΔ2k ≤ M) → 1

This completes the proof.

C.3.2. Asymptotic normality

Proof of Theorem 3.5. To prove Relation (3.11), we observe that

kδ
∣∣∣Rk0,k − k−δcA

(1 + ρ)

∣∣∣ ≤ kδ|Rk0,k − Sk0,k|+ kδ
∣∣∣Sk0,k − k−δcA

(1 + ρ)

∣∣∣ (C.31)
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for Sk0,k defined as

Sk0,k :=
cg(Y(n−k,n))

k − k0

(
(k0 + 1)

∫ Y(n−k0,n)/Y(n−k,n)

1

ν−ρ−1dν

+

k∑
i=k0+2

∫ Y(n−i+1,n)/Y(n−k,n)

1

ν−ρ−1dν
)
, (C.32)

where Yi’s are i.i.d observations from Pareto(1,1) as in (3.5).
We will show that the right hand side of (C.31) vanishes as k → ∞. To this

end, we first show that kδ max0≤k0<h(k) |Rk0,k − Sk0,k|
P−→ 0 as follows:

kδ max
0≤k0<h(k)

|Rk0,k − Sk0,k|

= kδ max
0≤k0<h(k)

kg(Yn−k,n)

k − k0

( k − k0
kg(Y(n−k,n))

|Rk0,k − Sk0,k|
)

≤
kδg(Y(n−k,n))

1− h(k)/k
max

0≤k0<h(k)

( k − k0
kg(Y(n−k,n))

|Rk0,k − Sk0,k|
)

︸ ︷︷ ︸
Δ2k

(C.33)

where 1− h(k)/k → 1 since h(k) = o(k). Also, by Relation (C.40) and assump-
tion (3.10),

kδg(Y(n−k,n))
P−→ A (C.34)

Thus, the convergence to 0 in probability of the last bound in Relation (C.33)

follows from Lemma C.7, by which Δ2k
P−→ 0.

Next we show that the second term in the right hand side of (C.31) also
vanishes. Indeed,

kδ max
0≤k0<h(k)

∣∣∣Sk0,k − k−δcA

(1 + ρ)

∣∣∣
= kδ max

0≤k0<h(k)

kg(Yn−k,n)

k − k0

∣∣∣ k − k0
kg(Y(n−k,n))

Sk0,k − cA(k − k0)

(1 + ρ)kδg(Y(n−k,n))

∣∣∣
≤

kδg(Y(n−k,n))

1− h(k)/k
max

0≤k0<h(k)

∣∣∣ k − k0
kg(Y(n−k,n))

Sk0,k − cA(k − k0)

k(1 + ρ)kδg(Y(n−k,n))

∣∣∣︸ ︷︷ ︸
Δ3k

where kδg(Y(n−k,n))
P−→ A as in Relation (C.34) and 1 − h(k)/k → 1. Thus,

the convergence to 0 in probability of the last upper bound follows because

Δ3k
P−→ 0 as shown next.

Δ3k ≤ max
0≤k0<h(k)

∣∣∣ k − k0
kg(Y(n−k,n))

Sk0,k + c
(k0
k

)1+ρ

− c

1 + ρ

∣∣∣︸ ︷︷ ︸
Δ4k
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+ max
0≤k0<h(k)

∣∣∣ c

1 + ρ
− c
(k0
k

)1+ρ

− cA(k − k0)

k(1 + ρ)kδg(Y(n−k,n))

∣∣∣︸ ︷︷ ︸
Δ5k

where Δ4k
P−→ 0 by Lemma C.9. Next, we show that

max
0≤k0<h(k)

∣∣∣ c

1 + ρ
− cA(k − k0)

k(1 + ρ)kδg(Y(n−k,n))

∣∣∣ P−→ 0

and since max0≤k0<k(k0/k)
1+ρ ≤ (h(k)/k)1+ρ → 0, the convergence to 0 in

probability of Δ5k shall follow. We have

max
0≤k0≤h(k)

∣∣∣ c

1 + ρ
− cA(k − k0)

k(1 + ρ)kδg(Y(n−k,n))

∣∣∣
≤ |c|

1 + ρ
max

0≤k0<h(k)

(∣∣∣1− A

kδg(Y(n−k,n))

∣∣∣+ Ak0
kδ+1g(Y(n−k,n))

)

≤ |c|
1 + ρ

(∣∣∣1− A

kδg(Y(n−k,n))

∣∣∣+ Ah(k)

kδ+1g(Y(n−k,n))

)
where the last upper bound converges in probability to 0 because h(k)/k → 0

and A/kδg(Y(n−k,n))
P−→ 1 by Relation (C.34). This completes the proof.

Lemma C.7. Assumption (3.9) implies

max
0≤k0≤k

( k − k0
kg(Y(n−k,n))

|Rk0,k − Sk0,k|
)

P−→ 0 (C.35)

where Rk0,k and Sk0,k are defined in Relations (3.5) and (C.32), respectively.

Proof. The proof of Relation (C.35) involves two cases: ρ > 0 and ρ = 0.

Case ρ > 0: Since Y(n−i+1,n)/Y(n−k,n) > 1, i = 1, · · · , k, therefore, over the
event {Y(n−k,n) > tε}, by Relation (3.9), we have

(k − k0)|Rk0,k − Sk0,k|

≤ (k0 + 1)

∣∣∣∣∣log L(Y(n−k0,n))

L(Y(n−k,n))
− cg(Y(n−k,n))

∫ Y(n−k0,n)/Y(n−k,n)

1

ν−ρ−1dν

∣∣∣∣∣
+

k∑
i=k0+2

∣∣∣∣∣ log L(Y(n−i+1,n))

L(Y(n−k,n))
− cg(Y(n−k,n)

∫ Y(n−i+1,n)/Y(n−k,n)

1

ν−ρ−1dν

∣∣∣∣∣
≤ (k0 + 1)g(Y(n−k,n))ε+

k∑
i=k0+2

g(Y(n−k,n))ε = g(Y(n−k,n))kε.

Therefore, over the event {Y(n−k,n) > tε}

max
0≤k0≤k

( k − k0
kg(Y(n−k,n))

|Rk0,k − Sk0,k|
)
≤ ε. (C.36)



Data-adaptive trimming of the Hill estimator 1913

From Relation (C.10), we have Y(n−k,n)
d
= (Γk+1/Γn+1)

−1 where

(Γk+1/Γn+1)
−1 a.s.∼ n/k by Lemma C.3. Since n/k → ∞, therefore

P(Y(n−k,n) > tε) → 1

which completes the proof.

Case ρ = 0: As in the previous case, over the event {Y(n−k,n) > tε}, by Relation
(3.9) we have

(k − k0)|Rk0,k − Sk0,k|

= (k0 + 1)

∣∣∣∣∣log L(Y(n−k0,n))

L(Y(n−k,n))
− cg(Y(n−k,n)

∫ Y(n−k0,n)/Y(n−k,n)

1

dν

ν

∣∣∣∣∣
+

k∑
i=k0+2

∣∣∣∣∣log L(Y(n−i+1,n))

L(Y(n−k,n))
− cg(Y(n−k,n)

∫ Y(n−i+1,n)/Y(n−k,n)

1

dν

ν

∣∣∣∣∣
≤ ε

(
(k0 + 1)g(Y(n−k,n))

(Y(n−k0,n)

Y(n−k,n)

)ε
+

k∑
i=k0+2

g(Y(n−k,n))
(Y(n−i+1,n)

Y(n−k,n)

)ε)
(C.37)

Since Y(n−i+1,n) ≥ Y(n−k0,n) for i = 1, · · · , k0 + 1, we further obtain

max
0≤k0≤k

( (k − k0)

kg(Y(n−k,n))
|Rk0,k − Sk0,k|

)
≤ ε

k

k∑
i=1

(Y(n−i+1,n)

Y(n−k,n)

)ε
(C.38)

over the event {Y(n−k,n) > tε}. The upper bound in (C.38) can be bounded by

2ε over the event {(1/k)
∑k

i=1(Y(n−i+1,n)/Y(n−k,n))
ε < 2}.

We have already proved that P(Y(n−k,n) > tε) → 1. Thus, to complete the
proof of Relation (C.35), it only remains to show that

P

({1
k

k∑
i=1

(
Y(n−i+1,n)

Y(n−k,n)
)ε < 2

})
→ 1. (C.39)

In this direction, from Relation (C.10), we observe that

1

k

k∑
i=1

(Y(n−i+1,n)

Y(n−k,n)

)ε d
=

1

k

k∑
i=1

( Γi+1

Γk+1

)−ε

=
1

k

k∑
i=1

U−ε
i,k

P−→ 1

1− ε

where the last convergence follows from weak law of large numbers. Thus, Re-
lation (C.39) holds as long as ε < 0.5.

This completes the proof for ρ = 0.
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Lemma C.8. Suppose g is ρ-varying for any ρ ∈ (−∞,∞) and Y(n−k,n) is the

(k + 1)th order statistic for n observations from Pareto(1, 1), then

g(Y(n−k,n))

g(n/k)

P−→ 1 (C.40)

provided k → ∞, n → ∞ and k/n → ∞.

Proof. Since g is ρ varying, g may be expressed as g(t) = tρ�(t), for some slowly
varying function �(·). Thus, we have

g(Y(n−k,n))

g(n/k)
=
(Y(n−k,n)

n/k

)ρ �(Y(n−k,n))

�(n/k)

From Relation (C.10), Y(n−k,n)
d
= Γn+1/Γk+1 and therefore, by WLLN, we have

Y(n−k,n)/(n/k)
P−→ 1. Since xρ is a continuous mapping, therefore,

(Y(n−k,n)/(n/k))
ρ P−→ 1.

Thus to prove Relation (C.40), it suffices to show �(Y(n−k,n))/�(n/k)
P−→ 1.

In this direction, observe that for any δ > 0, we have

P

(∣∣∣�(Y(n−k,n))

�(n/k)
− 1
∣∣∣ > ε

)
≤ P

(∣∣∣�(Y(n−k,n))

�(n/k)
− 1
∣∣∣ > ε,

∣∣∣Y(n−k,n)

n/k
− 1
∣∣∣ ≤ δ

)
+ P

(∣∣∣Y(n−k,n)

n/k
− 1
∣∣∣ > δ

)
≤ P

(
sup

λ∈[1−δ,1+δ)

∣∣∣�(λn/k)
�(n/k)

− 1
∣∣∣ > ε

)
+ P

(∣∣∣Y(n−k,n)

n/k
− 1
∣∣∣ > δ

)
For δ small enough, the first term on the right hand side goes to 0 by Theorem
1.5.2 on page 22 in [10]. Also, for δ small enough, the second term goes to 0

since Y(n−k,n)/(n/k)
P−→ 1.

This completes the proof.

Lemma C.9.

max
0≤k0<k

∣∣∣ k − k0
kg(Y(n−k,n))

Sk0,k +
c

1 + ρ

(
k0
k

)1+ρ

− c

1 + ρ

∣∣∣ P−→ 0. (C.41)

where Sk0,k is defined in Relation (C.32).

Proof. The proof of Relation (C.41) involves two cases: ρ > 0 and ρ = 0.

Case ρ > 0: Using the expression of Sk0,k in Relation (C.32), we get

k − k0
kg(Y(n−k,n))

Sk0,k

= − c

kρ

(
(k0 + 1)

(Y(n−k0,n)

Y(n−k,n)

)−ρ

+

k∑
i=k0+2

(Y(n−i+1,n)

Y(n−k,n)

)−ρ

− k

)
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=
c

kρ

k0∑
i=1

{(Y(n−i+1,n)

Y(n−k,n)

)−ρ

−
(Y(n−k0,n)

Y(n−k,n)

)−ρ
}

− c

kρ

k∑
i=1

{(Y(n−i+1,n)

Y(n−k,n)

)−ρ

− 1

}
(C.42)

Expressing the order statistics of Pareto in terms of Gamma random variables
as in Relation (C.10), we get

k − k0
kg(Y(n−k,n))

Sk0,k +
c

1 + ρ

(
k0
k

)1+ρ

− c

1 + ρ

d
=

c

1 + ρ

(
k0
k

)1+ρ

+
c

kρ

k0∑
i=1

{( Γi+1

Γk+1

)ρ
−
(Γk0+1

Γk+1

)ρ}
︸ ︷︷ ︸

Bk0,k

−
(

c

kρ

k∑
i=1

{( Γi+1

Γk+1

)ρ
− 1
}
+

c

1 + ρ

)
︸ ︷︷ ︸

Ak

In view of the above result, to prove (C.41), we first show that

max0≤k0<k |Ak| a.s.−→ 0.

Note that, by Relation (C.7), we have |(1/k)
∑k

i=1(Γi+1/Γk+1)
ρ − 1/(1 +

ρ)| a.s.−→ 0. This implies that there exists Ω with P(Ω) = 1 such that for any
ω ∈ Ω, ∣∣∣Ak(ω)

∣∣∣ = ∣∣∣ c
ρk

k∑
i=1

( Γi+1

Γk+1

)ρ
(ω)− c

ρ
+

c

1 + ρ

∣∣∣
=
∣∣∣ c
kρ

k∑
i=1

( Γi+1

Γk+1

)ρ
(ω)− c

ρ(1 + ρ)

∣∣∣→ 0

We next show that max0≤k0<k Bk0,k
a.s.−→ 0. For this observe that for any ω ∈ Ω,

max
0≤k0<M

Bk0,k(ω)

≤ max
0≤k0<M

{
c

1 + ρ

(
k0
k

)1+ρ

+
c

kρ

k0∑
i=1

∣∣∣( Γi+1

Γk+1

)ρ
(ω)−

(Γk0+1

Γk+1

)ρ
(ω)
∣∣∣}

≤ max
0≤k0<M

{
c

1 + ρ

(
k0
k

)1+ρ

+
2ck0
kρ

}
(since (Γi/Γk+1)

ρ ≤ 1, 1 ≤ i ≤ k, ρ > 0)

≤ cM1+ρ/(1 + ρ) + 2cM/ρ

k
=

B0M

k
. (C.43)
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Additionally, we have

max
M≤k0<k

Bk0,k(ω)

≤ max
M≤k0<k

∣∣∣∣∣ c

1 + ρ

(
k0
k

)1+ρ

+
c

kρ

k0∑
i=1

{( Γi+1

Γk+1

)ρ
−
(Γk0+1

Γk+1

)ρ}
(ω)

∣∣∣∣∣
≤ max

M≤k0<k
c

(
k0
k

)1+ρ
∣∣∣∣∣ ρ

1 + ρ
+

(
k0
k

)ρ
1

k0

k0∑
i=1

{( Γi+1

Γk+1

)ρ
−
(Γk0+1

Γk+1

)ρ}
(ω)

∣∣∣∣∣
≤ c max

M≤k0<k

∣∣∣∣∣ ρ

1 + ρ
+
(Γk0+1/k0

Γk+1/k

)ρ
(ω)
{ 1

k0

k0∑
i=1

( Γi+1

Γk0+1

)ρ
(ω)︸ ︷︷ ︸

Ck0
(ω)

−1
}∣∣∣∣∣

= c max
M≤k0<k

∣∣∣∣{(Γk0+1/k0
Γk+1/k

)ρ
− 1
}
(Ck0(ω)− 1) + (Ck0(ω)− 1) +

ρ

1 + ρ

∣∣∣∣ .
(C.44)

Since Γi+1 < Γk0+1 and ρ > 0, thereby |Ck0 | < 1. This allows us to simplify
the upper bound in Relation (C.44) as

max
M≤k0<k

Bk0,k(ω)

≤ c sup
M≤k0

∣∣∣∣Ck0(ω)−
1

1 + ρ

∣∣∣∣︸ ︷︷ ︸
B1M (ω)

+2c sup
M≤k0,k

∣∣∣∣(Γk0+1/k0
Γk+1/k

)ρ
(ω)− 1

∣∣∣∣︸ ︷︷ ︸
B2M (ω)

Thus, we obtain

max
0≤k0<k

Bk0,k(ω) ≤
B0M

k
+ cB1M (ω) + cB2M (ω).

Taking lim sup w.r.t to k on both sides, we get

lim sup
k→∞

max
0≤k0<k

Bk0,k(ω) ≤ c(B1M (ω) +B2M )(ω). (C.45)

By using Lemmas C.1 and C.3, we can show that there exist Ω̃ with P(Ω̃) = 1
such that for all ω ∈ Ω̃, B1M (ω) → 0 and B2M (ω) → 0.

Thus, taking lim sup w.r.t M on both sides of Relation (C.45), we get

max0≤k0<k Bk0,k
a.s.−→ 0. This completes the proof for ρ > 0.

Case ρ = 0: Using the expression of Sk0,k in Relation (C.32), we get

k − k0
kg(Y(n−k,n))

Sk0,k +
ck0
k

− c

=
c

k

(
(k0 + 1) log

(Y(n−k0,n)

Y(n−k,n)

)
+

k∑
i=k0+2

log
(Y(n−i+1,n)

Y(n−k,n)

))
− c(k − k0)

k
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d
=

c(k − k0)

k
ξ̂∗∗k0,k − c(k − k0)

k

d
= c
(Γk−k0

k
− k − k0

k

)
, (C.46)

where ξ̂∗∗k0,k
is the trimmed Hill estimator in Relation (2.2) with Xi’s replaced by

the i.i.d. Pareto(1, 1). The last distribution equality in Relation (C.46) follows
from Relation (2.4).

Thus, to prove Relation (C.41), we shall next show max0≤k0<k |Γk−k0 −
(k − k0)|/k a.s.−→ 0. In this direction, for any ω ∈ Ω, we have

max
0≤k0<k

|Γk−k0(ω)− (k − k0)|
k

= max
0≤k0<k

(k − k0)

k

∣∣∣ Γk−k0

k − k0
(ω)− 1

∣∣∣
≤ M

k
max

0≤k−k0<M

∣∣∣ Γk−k0

k − k0
(ω)− 1

∣∣∣+ sup
k−k0≥M

∣∣∣ Γk−k0

k − k0
(ω)− 1

∣∣∣
≤ M

k
sup
n

∣∣∣Γn

n
(ω)− 1

∣∣∣︸ ︷︷ ︸
B0(ω)

+ sup
n≥M

∣∣∣Γn

n
(ω)− 1

∣∣∣︸ ︷︷ ︸
B1M (ω)

(C.47)

By SLLN, there exists Ω with P(Ω) = 1 such that for every ω ∈ Ω, |Γn(ω)/n−
1| → 0 as n → ∞. This implies that B0(ω) is bounded and also that B1M (ω) → 0
as M → ∞.

Thus, first taking lim sup with respect to k followed by lim sup with respect
to M on both sides of Relation (C.47), the proof follows.

C.3.3. Consistency of the weighted sequential testing

Proof of Theorem 3.9. From Relation (2.6), we have

kδ max
0≤k0<h(k)

|Tk0,k − T ∗
k0,k| = kδ max

0≤k0<h(k)

k − k0 − 1

k − k0

∣∣∣ ξ̂k0+1,k

ξ̂k0,k

−
ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣
≤ kδ max

0≤k0<h(k)

∣∣∣ ξ̂k0+1,k

ξ̂k0,k

−
ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣︸ ︷︷ ︸
Wk0,k

where the last inequality holds since k − k0 − 1 ≤ k − k0 for 0 ≤ k0 < h(k). We

complete the proof by showing that kδ max0≤k0<h(k) Wk0,k
P−→ 0. To this end,

we observe that

Wk0,k

≤
∣∣∣ ξ̂k0+1,k

ξ̂k0,k

−
ξ̂∗k0+1,k

ξ̂k0,k

− cAk−δ

(1 + ρ)ξ̂k0,k

∣∣∣+ ∣∣∣ cAk−δ

(1 + ρ)ξ̂k0,k

− cAk−δ

(1 + ρ)ξ̂k0,k

ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣



1918 S. Bhattacharya et al.

+
∣∣∣ ξ̂∗k0+1,k

ξ̂k0,k

−
ξ̂∗k0+1,k

ξ̂∗k0,k

+
cAk−δ

(1 + ρ)ξ̂k0,k

ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣

=

(∣∣∣Rk0+1,k − cAk−δ

1+ρ

∣∣∣+ |c|Ak−δ

(1+ρ)

∣∣∣1− ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣+ ξ̂∗k0+1,k

ξ̂∗k0,k

∣∣∣ cAk−δ

(1+ρ) −Rk0,k

∣∣∣)
ξ̂k0,k

where Rk0,k is defined in Relation (3.5). Thus, with

M1k := kδ max
0≤k0<h(k)

∣∣∣Rk0,k − cAk−δ

1 + ρ

∣∣∣ and Bk0,k :=
ξ̂∗k0+1,k

ξ̂∗k0,k

,

the quantity kδ max0≤k0<h(k) Wk0,k is bounded above as follows

max
0≤k0<h(k)

kδWk0,k

≤
(
M1k max

0≤k0≤h(k)
(1 +Bk0,k) +

|c|A
(1 + ρ)

max
0≤k0≤h(k)

|1−Bk0,k|
)

︸ ︷︷ ︸
Δk

max
0≤k0<h(k)

1

ξ̂k0,k

(C.48)

Theorem 3.5 implies M1k
P−→ 0 as k → ∞. On the other hand, by Relation

(C.19),

max
0≤k0≤h(k)

|1−Bk0,k|
d
= max

0≤k0≤h(k)

∣∣∣1− Γk−k0−1/(k − k0 − 1)

Γk−k0/(k − k0)

∣∣∣
≤ 1

1− h(k)/k
max

k−h(k)≤i≤k

∣∣∣ Γi/i

Γi+1/(i+ 1)
− 1
∣∣∣ a.s.−→ 0,

where the last convergence is a consequence of Relation (C.6). The fact that

max0≤k0≤h(k)(1 + Bk0,k)
a.s.−→ 0 also implies max0≤k0≤h(k)(1 + Bk0,k) = OP(1).

Thus Δk in Relation (C.48) converges to 0.

We shall end the proof by showing that min0≤k0<h(k) |ξ̂k0,k| is bounded away
from 0 in probability which in view of Relation (C.48), implies the convergence
of max0≤k0<h(k) k

δWk0,k to 0 in probability. To this end, we have,

min
0≤k0<h(k)

ξ̂k0,k ≥ min
0≤k0<h(k)

ξ̂∗k0,k − max
0≤k0<h(k)

|ξ̂k0,k − ξ̂∗k0,k| (C.49)

For δ > 0, Theorem 3.5 implies max0≤k0<h(k) |ξ̂k0,k − ξ̂∗k0,k
| P−→ 0. There-

fore min0≤k0<h(k) ξ̂k0,k is bounded away from 0 as long as min0≤k0<h(k) ξ̂
∗
k0,k

is bounded away from 0. This is easy to show because

min
0≤k0<h(k)

ξ̂∗k0,k
d
= min

0≤k0<h(k)

Γk−k0

k − k0
≥ 1− max

k−h(k)≤i<k

∣∣∣Γi

i
− 1
∣∣∣ a.s.−→ 1
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where the last equality in distribution is due to Relation (2.4) and the last
convergence is a direct consequence of Relation (C.5). This completes the proof.

Proof of Theorem 3.11. Proof of Relation (3.15): By Relation (2.7), we have

k(δ
∗−1) max

0≤k0<h(k)
|Uk0,k − U∗

k0,k|

= 2k(δ
∗−1) max

0≤k0<h(k)

∣∣∣|(Tk0,k)
k−k0−1 − 0.5| − |(T ∗

k0,k)
k−k0−1 − 0.5|

∣∣∣
≤ 2k(δ

∗−1) max
0≤k0<h(k)

∣∣∣(Tk0,k)
k−k0−1 − (T ∗

k0,k)
k−k0−1

∣∣∣
≤ 2k(δ

∗−1) max
0≤k0<h(k)

∣∣∣(Tk0,k

T ∗
k0,k

)k−k0−1

− 1
∣∣∣ (C.50)

where the last bound follows T ∗
k0,k

≤ 1 (see Proposition 2.7). In view of Relation
(C.50), to prove Relation (3.15), it suffices to show

k(δ
∗−1) max

0≤k0<h(k)

∣∣∣(Tk0,k

T ∗
k0,k

)k−k0−1

− 1
∣∣∣ P−→ 0. (C.51)

To this end, we begin by showing

kδ
∗

max
0≤k0<h(k)

∣∣∣Tk0,k

T ∗
k0,k

− 1
∣∣∣ P−→ 0. (C.52)

In this direction, observe that

kδ
∗

max
0≤k0<h(k)

∣∣∣Tk0,k

T ∗
k0,k

− 1
∣∣∣ ≤ 1

min0≤k0<h(k) T
∗
k0,k

max
0≤k0<h(k)

kδ
∗ |Tk0,k − T ∗

k0,k|︸ ︷︷ ︸
Δk

,

where Δk
P−→ 0 by Relation (3.14). Thus, Relation (C.52) holds as long as

min0≤k0<h(k) T
∗
k0,k

is bounded away from 0 in probability as shown next.

min
0≤k0<h(k)

T ∗
k0,k

d
= min

0≤k0<h(k)

Γk−k0−1/(k − k0 − 1)

Γk−k0/(k − k0)

≥ 1− max
k−h(k)≤i<k

∣∣∣ Γi/i

Γi+1/(i+ 1)
− 1
∣∣∣ a.s.−→ 1,

where the last convergence is a direct consequence of Relation (C.6).
Finally to prove Relation (C.51), we shall equivalently show that for every

subsequence {kl}, there exists a further subsequence k̃ such that

k̃(δ
∗−1) max

0≤k0<h(k̃)

∣∣∣(Tk0,k̃

T ∗
k0,k̃

)k̃−k0−1

− 1
∣∣∣ a.s.−→ 0. (C.53)
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This is shown next as follows. In view of Relation (C.52), for every subsequence

{kl}, there exists a further subsequence k̃ such that

k̃δ
∗

max
0≤k0<h(k̃)

∣∣∣Tk0,k̃

T ∗
k0,k̃

− 1
∣∣∣ a.s.−→ 0.

Hence, there is event an Ω with P(Ω) = 1 such that for every ε > 0, there exist
a M = M(ω, ε)

1− ε

k̃δ∗
≤
(Tk0,k̃

T ∗
k0,k̃

)
(ω) ≤ 1 +

ε

k̃δ∗
, for all k̃ ≥ M, 0 ≤ k0 < h(k̃) and ω ∈ Ω

(C.54)
Therefore,

k̃(δ
∗−1)

((
1− ε

k̃δ∗

)k̃−h(k̃)−1

− 1
)

︸ ︷︷ ︸
−a

k̃

≤ k̃(δ
∗−1)

((Tk0,k̃

T ∗
k0,k̃

)k̃−k0−1

(ω)− 1
)

≤ k̃(δ
∗−1)

((
1 +

ε

k̃δ∗

)k̃−1

− 1
)

︸ ︷︷ ︸
b
k̃

which equivalently implies

k̃(δ
∗−1) max

0≤k0<h(k̃)

∣∣∣(Tk0,k̃

T ∗
k0,k̃

)k̃−k0−1

(w)− 1
∣∣∣ ≤ ak̃ ∨ bk̃ (C.55)

Note that both the sequences ak̃ and bk̃ converge to ε as k̃ → ∞. Thereby,

taking limsup w.r.t k̃ on both sides of Relation (C.55), we get

lim sup
k̃→∞

k̃(δ
∗−1) max

0≤k0<h(k̃)

∣∣∣(Tk0,k̃

T ∗
k0,k̃

)k̃−k0−1

(w)− 1
∣∣∣ ≤ ε (C.56)

Since Relation (C.56) holds for all ε > 0 and ω ∈ Ω with P(Ω) = 1, we have

k̃(δ
∗−1) max

0≤k0<h(k̃)

∣∣∣(Tk0,k̃

T ∗
k0,k̃

)k̃−k0−1

− 1
∣∣∣ a.s.−→ 0

This entails the proof of the convergence in probability of Relation (C.51).

Proof of Relation (3.16). To this end, we show that PH0(k̂0 = 0) → 1− q.
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We first show that lim supPH0(k̂0 = 0) ≤ 1− q as follows.

PH0(k̂0 = 0) = PH0

( h(k)⋂
i=0

{Ui,k < (1− q)ca
k−i−1}︸ ︷︷ ︸

Ak

)

≤ PH0

(
Ak ∩ {k(δ∗−1) max

0≤i≤h(k)
(Ui,k − U∗

i,k) < ε}︸ ︷︷ ︸
B1k

)

+ PH0({k(δ
∗−1) max

0≤i≤h(k)
(Ui,k − U∗

i,k) > ε})

≤ PH0

( h(k)⋂
i=0

{U∗
i,k < (1− q)ca

k−i−1

+ εk(1−δ∗)}︸ ︷︷ ︸
A∗

1k

)
+ PH0(B

c
1k)

(since Ak ∩B1k =⇒ A∗
1k)

By Relation (3.15), PH0(B
c
1k) → 0. Additionally, we have shown below that

lim supk→∞ PH0(A
∗
1k) ≤ 1− q which implies

lim supPH0(k̂0 = 0) = lim sup
k→∞

P(Ak) ≤ 1− q

.
Since U∗

i,k are i.i.d. U(0, 1), therefore

PH0(A
∗
1k) = (1− q)

∑h(k)
i=0 cak−i−1

h(k)∏
i=0

(
1 +

εk(1−δ∗)

(1− q)cak−i−1

)
≤ (1− q)

∑h(k)
i=0 cak−i−1︸ ︷︷ ︸
c0k

(
1 +

ε

(1− q)k(δ∗−1)

)h(k)
︸ ︷︷ ︸

c1k

(since (1− q)ca
k−i−1 ≥ (1− q) ).

Since h(k) = o(k), it is easy to show that lim supk→∞ c0k = lim supk→∞
(1 − q)

∑h(k)
i=0 cak−i−1

= 1 − q. For δ∗ ≥ 2, h(k) = o(k(δ
∗−1)) which implies

lim supk→∞ c1k ≤ 1. Thus,

lim sup
k→∞

PH0(A
∗
1k) ≤ (1− q)

.
Finally, we show that lim inf PH0(k̂0 = 0) = lim infk→∞ PH0(Ak) ≥ 1 − q as

follows:

PH0(Ak) ≥ PH0

(
Ak ∩ {k(δ∗−1) max

0≤i<k
(Ui,k − U∗

i,k) > −ε}︸ ︷︷ ︸
B2k

)
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≥ PH0

( h(k)⋂
i=0

{U∗
i,k < (1− q)ca

k−i−1 − εk(1−δ∗)}︸ ︷︷ ︸
A∗

2k

∩B2k

)

= PH0(A
∗
2k)− PH0(B

c
2k),

since A∗
2k ∩ B2k =⇒ Ak ∩ B2k. By Relation (3.15), P(Bc

2k) → 0. Addition-
ally, it has been shown below that lim infk→∞ PH0(A

∗
2k) ≥ 1 − q which implies

lim infk→∞ P(Ak) ≥ 1− q.

PH0(A
∗
2k) = (1− q)

∑h(k)
i=0 cak−i−1

h(k)∏
i=0

(
1− εk(1−δ∗)

(1− q)cak−i−1

)
≥ (1− q)

∑h(k)
i=0 cak−i−1︸ ︷︷ ︸
c0k

(
1− ε

(1− q)k(δ∗−1)

)h(k)
︸ ︷︷ ︸

c2k

(since (1− q)ca
k−i−1 ≥ (1− q))

Since h(k) = o(k), it is easy to show that lim infk→∞ c0k =

lim infk→∞ (1 − q)
∑h(k)

i=0 cak−i−1

= 1 − q. For δ∗ ≥ 2, h(k) = o(k(δ
∗−1)) which

implies lim infk→∞ c2k ≥ 1. Thus,

lim inf
k→∞

PH0(A
∗
2k) ≥ (1− q)

This completes the proof.
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