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1. Introduction

Covariance matrix estimation of multiple assets is one of the most active re-
search areas in high-frequency financial econometrics. Recently, many authors
have been attacking the high-dimensionality in covariance matrix estimation
from high-frequency data. A pioneering work on this topic is the paper by Wang
& Zou [68], where the regularization methods (banding and thresholding) pro-
posed in Bickel & Levina [7, 6] have been applied to estimating high-dimensional
quadratic covariation matrices from noisy and non-synchronous high-frequency
data. Subsequently, their approach has been enhanced by several papers such
as [65, 44, 42]. Meanwhile, such methods require a kind of sparsity of the target
quadratic covariation matrix itself, which seems unrealistic in financial data in
view of the celebrated factor structure such as the Fama-French three-factor
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model of [27]. To overcome this issue, Fan et al. [28] have proposed a covariance
estimation method based on a continuous-time (approximate) factor model with
observable factors, which can be seen as a continuous-time counterpart of the
method introduced in Fan et al. [31]. The method has been further extended in
various directions such as situations with unobservable factor, noisy and non-
synchronous observations, heavy-tail errors and so on; see [1, 23, 43, 29, 59]
for details. As an alternative approach to avoid assuming the sparsity of the
target matrix itself, Brownlees et al. [9] have proposed applying the graphical
Lasso, which imposes the sparsity on the inverse of the target matrix rather than
the target matrix itself. On the empirical side, high-dimensional covariance ma-
trix estimation from high-frequency financial data is particularly interesting in
portfolio allocation. We refer to [67, 30, 49] for illustrations of relevant empirical
work on this topic, in addition to the empirical results reported in the papers
cited above.

To the best of the author’s knowledge, however, there is no work to es-
tablish a statistical inference theory validating simultaneous hypothesis test-
ing and construction of uniformly valid confidence regions for high-dimensional
quadratic covariation estimation from high-frequency data. Such a theory is
important in statistical applications as illustrated by the following example:
Let Y = (Y3):e[0,1] be a d-dimensional continuous semimartingale. We denote
by Y the i-th component of Y for every i = 1,...,d. If one attempts to ap-
ply a regularization procedure to estimating the quadratic covariation matrix
[Y,Y]: = ([Y',Y7]1)1<ij<a of Y, it is important to understand whether the
target matrix is really sparse or not, and if so, how sparse it is. This amounts
to evaluating the following series of the statistical hypotheses simultaneously:

Hij:[Y, Y], =0, i,j=1,...,d such that i < j. (1.1)

A natural way to construct test statistics for this problem is to estimate [Y, Y]y
and test whether each of the entries is significantly away from 0 or not. Now
suppose that Y is observed at the equidistant times ¢, = h/n, h =0,1,...,n.
Then the most canonical estimator for [Y,Y]; would be the so-called realized
covariance matriz:

n
——n

Y, Y]l = Z(Yth =Y, (Y, — }/th—l)T' (1.2)
h=1

If one wants to test the null hypothesis such that all the hypotheses in (1.1) is
true, it is natural to consider the maximum type statistic
—N
max ‘[Y, Y],
(i,4)€A

)

where A := {(i,7) € {1,...,d}? : i < j}. More generally, if one wants to con-
trol the family-wise error rate in multiple testing for the hypotheses (1.1), it is

enough to approximate the distribution of max(; j)er |[/Y,-?]T| for any £ C A,
with the help of the stepdown procedure illustrated in Romano & Wolf [61].
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Hence the problem amounts to approximating the distributions of such maxi-
mum type statistics in an appropriate sense. Using the test statistics considered
in Bibinger & Mykland [5], this type of testing problem can be extended to the
sparsity test for the residual processes of a continuous-time factor model with
an observable factor and thus promising in applications to high-frequency finan-
cial data. In addition, such a problem will also be useful for covariance matrix
modeling in a low-frequency setting because it often suffers from the curse of
dimensionality due to the increase of the number of unknown parameters to be
estimated, and thus it is a common practice to impose a certain structure on
covariance matrices for reducing the number of unknown parameters in models.
For example, Tao et al. [64] have proposed fitting a matrix factor model to daily
covariance matrices which are estimated from high-frequency data using the
methodology of [68], while Kurose & Omori [46, 47] have introduced a dynamic
(multiple-block) equicorrelation structure to multivariate stochastic volatility
models. The afore-mentioned testing will be useful for examining the validity of
such specification. If the dimension d is fixed, the desired approximation can be
obtained as a nsimple consequence of a multivariate mixed-normal limit theorem
for ﬁ([?,?]l —[Y,Y]1), which is well-studied in the literature and holds true
under quite mild assumptions; see e.g. Theorem 5.4.2 of [35]. The problem here
is how to establish an analogous result when the dimension d possibly diverges
as n tends to infinity.

Indeed, even for the sum of independent random vectors, it is far from trivial
to establish such a result in a situation where the dimension is possibly (much)
larger than the sample size. This is not surprising because objective random
vectors are typically not tight in the usual sense in such a high-dimensional
setting, so any standard method to establish central limit theorems no longer
works. A significant breakthrough in this subject was achieved by the seminal
work of Chernozhukov, Chetverikov & Kato [14], where a Gaussian approxi-
mation of the maxima of the sum of independent random vectors in terms of
the Kolmogorov distance has been established under quite mild assumptions
which allow the dimension is (possibly exponentially) larger than the sample
size. With the help of the Gaussian comparison theorem by Chernozhukov et al.
[17], it enables us to construct feasible statistical inference procedures based
on the maximum type statistics. Their theory, which we call the Chernozhukov-
Chetverikov-Kato theory, or the CCK theory for short, has been developed in the
subsequent work by Chernozhukov et al. [15, 18] and Chernozhukov et al. [19]:
the first two papers have developed Gaussian approximation of the suprema of
empirical processes, while the latter has extended the results of [14] to a cen-
tral limit theorem for hyperrectangles, or sparsely convex sets in more general.
Extension of the CCK theory to statistics other than the sum of independent
random vectors has also been studied in many articles: Weakening the inde-
pendence assumption has been studied in e.g. [70, 71, 16, 10]; Chen [11] and
Chen & Kato [12, 13] have developed theories for U-statistics. Moreover, some
authors have applied the CCK theory to statistical problems regarding high-
frequency data; see Kato & Kurisu [40] and Koike [45]. Nevertheless, none of
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the above studies is applicable to our problem due to its non-ergodic nature.
That is, the asymptotic covariance matrix is random and depends on the o-filed
of the original probability space, so the asymptotic distribution is essentially
non-Gaussian.

Meanwhile, inspection of the proofs of the CCK theory reveals that most
the parts do not rely on any structure of the underlying statistics. To be pre-
cise, let S,, be the random vector corresponding to the objective statistic and
suppose that we aim at approximating the distribution of S,, by its Gaussian
analog S} which has the same mean and covariance matrix as those of S,,. In the
proofs of the CCK theory, the fact that S, is the sum of independent random
vectors is crucial only to obtain a good quantitative estimate for the quanti-
ties |E[f(S,)] — E[f(S])]| for sufficiently smooth functions f. In the original
CCK theory [14, 19], such an estimate has been established by the so-called
Stein’s method, especially Slepian’s interpolation (also known as the smart path
method) and Stein’s leave-one-out method. Although their approach is not di-
rectly applicable to our problem, it suggests that we might alternatively use
Malliavin’s integration by parts formula because it can be viewed as an infinite-
dimensional version of Stein’s identity (cf. Sakamoto & Yoshida [63]). In fact,
the recent active research in probabilistic literature shows a beautiful harmony
between Malliavin calculus and Stein’s method, which is nowadays called the
Malliavin-Stein method; we refer to the monograph [54] for an introduction of
this subject. Indeed, this idea has already been applied in [45] to a situation
where S, is a vector of smooth Wiener functionals (especially multiple Wiener-
It6 integrals) and S} is Gaussian, which has produced several impressive results.
Our plan here is to apply this idea to a situation where S, is a vector of multiple
Skorohod integrals and S is conditionally Gaussian. In this regard, a relevant
result has been given in Theorem 5.1 of Nourdin et al. [53]. However, this re-
sult is not directly applicable to the current situation because it assumes that
the components of S are conditionally independent, which is less interesting to
statistical applications (and especially not the case in the problem illustrated
above). To remove such a restriction from the result of [53], we employ the novel
interpolation method introduced in Nualart & Yoshida [57], instead of Slepian’s
interpolation used in [53] and the original CCK theory.

Another problem in the present context is validation of standardizing statis-
tics by random variables. In a low-dimensional setting, this is typically achieved
by proving the so-called stable convergence in law (see e.g. [60] for details). How-
ever, in a high-dimensional setting, the meaning of stable convergence is unclear
and its naive extension is not useful because of the lack of the continuous map-
ping theorem and the delta method (see Section 3 for a relevant discussion).
So we also aim at developing a formulation appropriate to validating such an
operation.

The remainder of the paper is organized as follows. Section 2 is devoted
to some preliminaries on notation and concepts used in the paper. Section 3
presents the main results obtained in this paper. In Section 4 we apply the
developed theory to establish the asymptotic mixed normality of realized co-
variance matrices in a high-dimensional setting and illustrate its application to
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testing the residual sparsity of a continuous-time factor model. Section 5 pro-
vides a small simulation study as well as an empirical illustration using real
data. All the proofs are collected in the Appendix.

2. Preliminaries

In this section we present some notation and concepts used throughout the
paper.

2.1. Basic notation

We begin by introducing some basic notation which is more or less common in
the literature. For a vector € R?, we write the i-th component of z as z* for
i=1,...,d. Also, we set minz := min;<;<4z". For two vectors z,y € R?, the
statement x < y means 2 < ¢ for all i = 1,...,d. For a vector z € R? and a
scalar a € R, we set

rta:=(z'%a,...,20+a)".

Here, T stands for the transpose of a matrix.

For a matrix A, we write its (i, j)-th entry as A%. Also, A and A7 denote
the i-th row vector and the j-th column vector, respectively. Here, we regard
both the vectors A” and A7 as column vectors. If A is an m x d matrix, we
denote by [||Al|,, the £s-operator norm of A:

d
4l = o 32147
j:

If B is another m x d matrix, we denote by A - B the Frobenius inner product

of A and B. That is,
m d
A-B:=) Y AYBY.
i=1 j=1
For a d x d matrix A, we denote by diag(A) the d-dimensional vector consisting
of the diagonal entries of A, i.e. diag(A4) = (A',..., 49T,

For a random variable ¢ and a number p > 0, we write ||£[|, = (E[|¢]|P])'/?.
We also use the notation ||£]|c to denote the essential supremum of £&. We will
denote by L>~ the space of all random variables £ such that ||£]|, < oo for
every p € [1,00). The notation —? stands for convergence in probability.

If V is a real Hilbert space, we denote by (-,-)y and || - ||y the inner product
and norm of V, respectively. Also, we denote by LP(€; V) the set of all V-valued
random variables £ such that E[||£]|?] < oo.

Given real Hilbert spaces Vi, ..., Vi, we write their Hilbert space tensor prod-
uct as V] ® - - - ® V. For a real Hilbert space V', we write the kth tensor power
of Vas V& ie.

VR =V R V.
k
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Note that the Hilbert space tensor product is uniquely determined up to isomor-
phism, and we often select a convenient realization case by case. For example,
we identify the tensor product V ® R? with the Hilbert space V¢ equipped with
the inner product ((fi,..., fa) (91,--.,9a))va = Sy (figi)v for fi,.... fa,
g1,---,94 € V. This is possible because the latter is the Hilbert space tensor
product of V and R? in the sense of Definition E.8 in [37]. Namely, there is a
bilinear map 7 : V x R — V¥ such that the range of T is total in V¢ and

<T(f7 a’)vT(gv b)>Vd = <fa g>V<a7 b>]R"

for all f,g € V and a,b € R%. In fact, we may define T by

T(f,a) = (arf,...,aqf) (feV, a=(ar,...,aq)" €RY).

Evidently, T is bilinear and its range is total in (H®*)?. Moreover, for any
f,geVanda=(a,...,aq)" €R% b= (by,...,bq)" € RY,

d d

(T(f,a),T(g,b))va = (aif,bighv =Y _ aibi(f,g)v = (f,9)v (@, b)pa.

i=1 =1

For an element f € V®* we write the (canonical) symmetrization of f as
Sym(f). Namely, the map V¥ 5 f s Sym(f) € V®* is characterized as the
unique continuous linear operator on V®* such that

1
Sym(fi ®---® fi) = o Z fr) ® - ® fr
" TESK

for all fi,..., fx € V, where S denotes the set of all permutations of {1,..., &k},
i.e. the symmetric group of degree k. An element f € V®* is said to be symmetric
if Sym(f) = f. We refer to Appendix E of [37] for details on Hilbert space tensor
products.

2.2. Multi-way arrays

In this subsection we introduce some notation related to multi-way arrays (or
tensors) which are necessary to state our main results.

Given a positive integer N, we set [N] := {1,..., N} for short. We denote
by K the real field R or the complex field C and consider a vector space V' over
K. Given g positive integers N1, ..., Ny, we denote by VN1XxNa the set of all
V-valued Ny X --- x Ny arrays, i.e. V-valued functions on [N1] X - - - x [Ng]. Note
that VN1XN2 corresponds to the set of all V-valued N; x No matrices. When
N; =---= N, = N, we call an element of VN1*"*Na 3 VV_valued N-dimensional
g-way array. For an array T € VN1X*Na and indices i, € [Ny] (k=1,...,q),
we write T'(i1, .. .,4q) as T and T itself as T = ("), G ee | (N,]-
When V = K, VN1XxNq¢ ig paturally identified with the Hilbert space tensor
product KM @ ... @ K¢ by the unique linear isomorphism ¢ : KM @ - ®
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Ko - KM XN such that oy © -+ ®2,) = (2§ 23y, apyery_ v oF
x, € KNe bk =1,...,q (cf. Example E.10 of [37]).

For two K-valued arrays S, T € KN1X*Na we define their Hadamard-type
product (i.e. entry-wise product) by

SoT = (ST M)y eqry, (v € KN

Also, we set

1/p
3 |Twsta |P if p € (0,00),
1Tle, == (i1,-vig) €T oy [Nk] )
max [Tt if p = co.

(i1, riq) €I} =1 [Ni]

Now suppose that V is a real Hilbert space. For T € VM X >*Na and 2 € V,
we define

<T,Z‘>v = (<Ti1,~~7iq,g;>v)(il _____ i) €T 4_, [Ng] S RN XNy (21)
Let m be a positive integer. For each j = 1,...,m, let V; be a real Hilbert space,
N(j)><~~-><NI(7J)

p; €N, N{-“,...,N,Ejf) € Nand T; €V ' 7. Then we define

e Ty,

R K t 1yeeesl
= (T 1 Q... @ TPt +pmo1+ltpitetpm)) . -
( 1 )(u,...,zpﬁ...ﬂm)enzlzl PN

€ (3 @+ - @ Vi) M2 N NN (2.2)

In particular, we write
" =T ---T.
—_———

2.3. Malliavin calculus

This subsection introduces some notation and concepts from Malliavin calculus
used throughout the paper. We refer to Nualart [55], Chapter 2 of Nourdin &
Peccati [54] and Chapter 15 of Janson [37] for further details on this subject.

Given a probability space (2, F, P), let W = (W(h))ren be an isonormal
Gaussian process over a real separable Hilbert space H.

Let V' be another real separable Hilbert space. For any real number p > 1 and
any integer k > 1, Dy (V') denotes the stochastic Sobolev space of V-valued
random variables which are k times differentiable in the Malliavin sense and
the derivatives up to order k have finite moments of order p. If F' € Dy ,(V),
we denote by D*F the kth Malliavin derivative of F, which is an element of
the space LP(Q; H®* @ V). We write DF instead of D'F for short. We set
Di,00(V) = Mpey Dip(V). If V = R, we simply write Dy ,(V) as Dy,
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For a d-dimensional random vector F€ Dy, ,(R?), we identify the kth Malliavin
derivative D¥F of F as the (H®*)?-valued random variable (D¥F!, ... DFF%)
by identifying H®* @ R? with (H®*)? as in Section 2.1. Similarly, for a d x
d’ matrix valued random variable F € Dy, (R, we identify D¥F as the
(H®k)dxd'_yalued random variable (D*Fi3); iyeax[d)-

For a positive integer g, we denote by 07 the ¢-th multiple Skorohod integral,
which is the adjoint operator of the densely defined operator L*(Q) D D, 2 2
F i DF € L?(Q; H®). That is, the domain Dom(§9) of §7 is defined as the
set of all H®4-valued random variables u such that there is a constant C' > 0
satisfying |E[(u, DYF) yeq]| < C||F||2 for all F' € Dy o, and the following duality
formula holds for any v € Dom(é9) and F € Dy o:

E[Fé1(u)] = E[{u, DIF) god].

2.4. Multi-indices

This subsection collects some notation related to multi-indices.
Let ¢ be a positive integer. We denote by Z, the set of all non-negative
integers. We define

Alq) ={a € Z% : a1 + 200 + - + qog = g}

For a multi-index o = (a1, ..., ) € Z%, we set |a| = ay + -+ + 4 as usual.
Given another positive integer r, we define

Np(a):=qv= (Vij)(i,j)e[q]x[r] 1V € Z,Zl/z‘j =y
j=1

and

Ni(a) ={v = (1) € Np(a) : v = 0}.

Moreover, we define

Alg):==JAlp) and N, (9):= |J N().

p=1 acA(q)

Finally, for an element v = (v;;) € Ni(o), we set |v], := |v.1| + 2|v.2| + |v.3] and
[Vlew 1= [0]o + 1.

3. Main results

Throughout the paper, we consider an asymptotic theory such that the pa-
rameter n € N tends to infinity. For each n € N, we consider a probability
space (™, F", P™), and we suppose that all the random variables at stage
n are defined on (Q", F™, P™). We also suppose that an isonormal Gaussian
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process W,, = (W, (h))nen, over a real separable Hilbert space H,, is de-
fined on (2™, F™, P™). To keep the notation simple, we subtract the indices
n from (Q", F", P"), W,, and H,, respectively. So we will write them simply as
(Q,F,P), W and H, respectively. In particular, note that the spaces and the
operators associated with W (which are introduced in Section 2.3) implicitly
depend on n, although we do not attach the index n to them.

For each n € N, let M,, be a d-dimensional random vector consisting of
multiple Skorohod integrals:

M7 = 6% (ud), j=1,...,d,

where ¢; is a positive integer and u/, € Dom(§%) for every j. Here, we assume
that the dimension d possibly depends on n as d = d,,, while g;’s do not depend
on n. We also assume d,, > 3 for every n and g := sup, ¢; < oo. Our aim is to
study mixed-normal limit theorems for the following functionals:

Zn=M,+W,, n=12,...,

where W,,’s are d-dimensional random vectors which represent the uncentered
part of the functionals.

Let us introduce mixed-normal random vectors approximating the functionals
Z, in law as follows:

3n:¢3l/2Cn+Wna n:1727""

Here, €, is a d x d symmetric positive semidefinite random matrix and (, is a
d-dimensional standard Gaussian vector independent of F, which is defined on
an extension of the probability space (2, F, P) if necessary.

The main aim of this paper is to investigate reasonable regularity conditions
under which the distribution of Z,, is well-approximated by that of 3,,. To be
precise, we are interested in the following type of result:

sup |P(Z, <z)—P(3,<2)|—=0 as n — oo.
z€R4

It is well-recognized in statistic literature, however, that this type of result is
usually insufficient for statistical applications because it does not ensure stan-
dardization by a random vector which is still random in the limit; such an oper-
ation is crucial for Studentization in the present context. In a low-dimensional
setting, this issue is usually resolved by proving the stability of the convergence
so that

(Zn, X) =% (30, X) as n — oo

for any m-dimensional (F-measurable) random variable X, where —* denotes
the convergence in law. This statement is no longer meaningful in a high-
dimensional setting such that d — oo as n — o0, so we need to reformulate
it appropriately. A naive idea is to consider the following statement:

sup |P(Z,<2z,X<z)-P(3,<z,X<z)—0 asn — oco. (3.1)
z€RE reR™
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However, if m depends also on n, this type of statement is not attractive nei-
ther theoretical nor practical points of view due to the following reasons: From
a theoretical point of view, we need to assume a so-called anti-concentration in-
equality for X to prove this type of result by the CCK approach, but it is usually
hard to check such an inequality for general random variables, especially when
m — oo as n — oo. Besides, from a practical point of view, it is still unclear
whether the convergence (3.1) ensures the validity of standardization of Z,, be-
cause no analog of the continuous mapping theorem has been established yet
for high-dimensional central limit theorems of the form (3.1). For these reasons
we choose the way to directly prove convergence results for normalized statistics
of Z,. More formally, let =,, be an m X d random matrix, where m = m,, > 3
possibly depends on n. Our aim is to establish

sup |P(E,Z, <y)—P(E,3,<y)|—0 (3.2)

yeR™
as n — oo under reasonable regularity conditions on Z,, and =,,. Mathematically
speaking, given a vector y € R™, the set {z € R? : =,z < y} is a finite
intersection of hyperplanes in R?, i.e. convex polytopes in R%, so the convergence
(3.2) can be considered as a high-dimensional central limit theorem for random
convex polytopes. If we take =,, as the d x d diagonal matrix whose diagonals are
the inverses of the “standard errors” of Z,,, the convergence (3.2) does ensures
the validity of (marginal) standardization of Z,.

Now, our main theorem is stated as follows:

Theorem 3.1. Suppose that M, W, € Dg.(R?) and €, € Dy o (R¥*?) and
that ul, is symmetric for alln and j. Suppose also that =, can be written as =,, =
T, 0 X, with T, being an m x d (deterministic) matriz such that ||, || > 1
and X, € ]D)@OO(R’”M). Assume that the following convergences hold true:

ICalllZE (11X 17, [ Anlle..] (logm)* — 0 (3-3)

and
V0|wx+1 v|«+1 V. V.
Il B [ (1 + 1Xall ) (14 120l + 13l

Blulest2
< g 18,0l | (Gogm) 314 0 3.4

as n — oo for every v € N, (q), where

Ap = (<Dq'7M1iv“%>H®qj - Q:jwj)gi,jgd (3.5)

and

An)j(l/) =

q;

<®(Dan)®uk1 ® (chn)®uk2 ® (DkWn)®l/k3 ® (Dan)®Vk4’ U%>

k=1 H®
(3.6)
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ifve UaeA(qj)NI () and A, j(v) = 0 otherwise. Assume also that the follow-
ing condition is satisfied:

lim lim sup P(min diag(Z,¢,Z,)) < b) = 0. (3.7)

10 n—oo
Then we have (3.2) as n — oo.
Remark 3.1. The variable A,, defined in (3.5) is called the quasi-tangent in
[57].
Remark 3.2. The variable A,, ;(v) defined in (3.6) takes values in

dX-XdXmX--Xm X dx--xd
N N N~

R vl Iv.al Iv.al

when v = (1) € UaeA(qj)Nj(a). To see this, let us recall that D*M,,, D*¢,,,
D*W,, and D¥X,, take values in (H®¥)d (H®F)dxd (F®F)d and (H®k)mxd
respectively (cf. Section 2.3). Therefore, according to the notation defined by
(2.2), the variable

qaj

®(Dan)®Vk1 ® (Dkq:n)@wcz ® (DkWn)®Vk3 ® (Dan)®’/k4

k=1
takes values in

dX--Xd X mX---Xm X dx---Xd
N——

——
(H®Qj) [ [v.al v 4l

where we use the relation szzl k(vg1 + vke + Vg3 + vka) = ¢;. Hence, according
to the notation defined by (2.1), we obtain

Anj(v)

q;
i <®<D’€Mn>®”kl & (D e,)™ & (D7) & <Dkxn>®”’““’“3%>
k=1 H®
dX--XdXmX--Xm X dx--xXd
N N — N~

cR [ [v.4l [v.ql

Remark 3.3. In Theorem 3.1, we require all the variables appearing there to
have finite moments of all orders just for simplicity. It would be enough for them
to have finite moments up to order p only, where p would be a function of g.

Remark 3.4 (Quantitative bound). As in the original CCK theory, it is possible
to give a quantitative version of the convergence (3.2), but we do not implement
it here to make the statement of the theorem simpler.

Let us write down conditions (3.3)—(3.4) in the special case that ¢; € {1,2}
for all j. In this case, setting J, = {j € {1,...,d} : ¢; = ¢} for ¢ = 1,2, we can
rewrite these conditions as follows:

) o '
ITalls max B |1 Xall7,, max max (DM, up)m — €7 | (logm)* =0,
—4 == q
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3 [ .. z
Il s 2 |14 1) s o[ (D9€) | Qogm —0.
=4 ) > q

2 2 % j 2
Il g (0 1) o, o | (D7) o | o =

2 [ qwij ,k
Il s (0 12+ U3ole) pme s o (D7, |

x (logm)? — 0,

3 3 i AT z
ICIEE |14 1) o e | (DL DG ubires| | Gogm)E =0,

i 13
IV lIEE |0+ 1), s o [(DE & Dt o Gogm) ¥ 0.

IRl B [+ 1ZallZ, + 113nllZ.)

S

X max max max

— 0,
1<4,k<m 1<j,I<d h€ T

n n

(DXY @ DX ul) oo } (log m)

4 4 ij ko1 5
ICIE |14 11D s o (D€ & DES g | Glogm)® =0,

3
ITnllsE [+ 1XnllZ,) (14 [ Znlle + 13nlle.)

X max max max
1<5<m 1<4,k<d I€T»

I llS B [+ 1 X allE) (14 1 Zallew + 130l )

(DF! @ DXI* ul) oo } (logm)? — 0,

X max max max |(D€Y @ DX yh) e,

1<k<m 1<4,5,l<d heJs

s o0

where F,,,G,, € {M,, W, }. In particular, when ¢; = 1 for all j, they consist of
the following convergences:

2 o i j ij
ITlIEE (12, max (DMl ~ ]| Gogm)? o

3 19 7
ITalIE |0+ 1XIE) | (D€ byl | Gogm) =

ITAlIEE | (11X ) s [(OW | (o) = 0

ICallZ B |(L+ [ Zallew + I13nlle.) max  max [(DX) uk>H|} (logm)* — 0.

1<i<m 1<j,k<d no o

When ¢; = 2 for all j, they consist of the following convergences:

ITalI2E 10l s |(D?Mhmes — €] hogml? 0, (3)

ij I
ITlIE |+ X | (D€ ke Qg 0. (39)
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2
IVIEE |14 102 o |0 o | Qogm)? 0, (3.0

2 2yt .k
ITalIEE [0+ 120+ [3alle) s e (D2 ) o
x (logm)? — 0,
(3.11)
B [ 1) s (D © DG ) s Qo) =0,

(3.12)

i 13
Il B [(1 FIXalE) _ max (D€} © De, n>H®z|} (logm) ¥ 0,
(3.13)

I alloE [(1+11ZalZ,. + 134l17..)

<l))(U X DXkl >H®2

X max max
1<4,k<m 1<5,l,h<d

} (logm)? — 0, (3.14)

4 7,
I 1% E {(1 1 Xuli) | _max_ [(De€] © DFY, n>H®2|} (log m)® — 0,

(3.15)
ICallZ B [(1+ 1Xnll7) (1 + [ Zallew + 13nlle)
7 7k %
<o s DR © DX e | Qo o
(3.16)

4
Il E [+ 1XnllZ,) 1+ 1 Znlles + 130lle..)

X max  max ’(DQ:”@DX,’?}, ul) o
1<k<m 1<i,j,,h<d

} (logm)® — 0, (3.17)

where F,,,G,, € {M,, W,}.

As a special case of Theorem 3.1, we can deduce a high-dimensional central
limit theorem for multiple Skorohod integrals in hyperrectangles as follows. Let
A*(d) be the set of all hyperrectangles in R?, i.e. A™(d) consists of all sets A
of the form

A:{zeRd:aj < 2 <bjforalj=1,...,d}

for some —o0 <a; <b; < o0, j=1,...,d Taking =, as

= — Eq
=n={ _g,

in Theorem 3.1, where E; denotes the identity matrix of size d, we obtain the
following result (note that (3.2) continues to hold true while R? is replaced by
(—00,00]%):

Corollary 3.1. Suppose that M,,, W, € Dj «(R?) and €, € Dg o (R™*?) and
that ul, is symmetric for all n and j. Assume that the following convergences
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hold true:
E [IXnl7, llAnle..] (log d)* = 0

and

v|s+1 v. v.
E (141Xl ) (1 1Zal 2+ 130012

. Slvlents
< g [0l | (o)1 0

as n — oo for every v € NZ(@). Assume also that the following condition is
satisfied:
lim lim sup P(min diag(¢€,,) < b) = 0.

bl0 n—oo

Then we have

sup |P(Z, € A)—P(3,€A4)|—0
A Are(d)

as n — 0.

Some related results for statistical applications

In many applications, the objective variables are only approximately multiple
Skorohod integrals. The following lemma is useful for such a situation.

Lemma 3.1. For eachn € N, let Y,,,Y,! be m-dimensional random vectors such
that
Viegm|Y, = Yulle, =70

sup |P(Y, <y)— P(E.3» <y)| =0
yeR™

and

as n — 0o. Then we have

sup |P(Y, <y)— P(E,3, <y)| =0
yER™

as n — 0o, provided that (3.7) holds true.

In terms of statistical applications, the mixed-normal approximation given by
Theorem 3.1 is often infeasible because the “asymptotic” covariance matrix €,
usually contains unobservable quantities. In the following we give two auxiliary
results bridging this gap. The first result ensures the validity of estimating the
F-conditional distribution of =,3, while we replace &,,W,, and Z,, by their
estimators.

Proposition 3.1. For each n, let /an,/V[?n and En be a d X d symmetric posi-
tive semidefinite random matriz, a d-dimensional random vector and an m X d
random matriz, respectively. Set 3, := C,ll/QCn + W,,. Suppose that

Viogm||Z, W, — W le =7 0, (logm)?[|Zn €] — 2, E) o =P 0
(3.18)
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as n — 0o. Then we have

sup |P(En3n < ylF) — P(En3n < y|F)| =P 0

yeR™
as n — 0o, provided that (3.7) holds true.

We remark that the above proposition only gives a way to estimate the F-
conditional distribution of Z,,3, when we have appropriate estimators for rele-
vant variables: It says nothing about how to estimate the unconditional distribu-
tion of Z,,3,. Because of the non-ergodic nature of the problem, in general there
seems no hope of consistently estimating the latter quantity even if we can con-
sistently estimate unknown variables contained in =,3,. In a low-dimensional
setting this issue is usually resolved by standardizing the objective statistic by
a consistent estimator for its asymptotic covariance matrix, which is validated
via the stability of convergence in law. In a high-dimensional setting, however,
standardizing the (joint) distribution of the objective statistic is often difficult:
Estimators for the conditional covariance matrix of the objective statistic are
usually singular because the sample size is smaller than the dimension, and even
if it is regular, computation of the inverse is typically time-consuming. Never-
theless, we can fortunately show that, in order to estimate quantiles of the un-
conditional distribution =,3,, it is sufficient to only estimate its F-conditional
distribution. We remark that this fact has already been known in high-frequency
financial econometrics and typically been used to construct jump-related testing
procedures; see [36, 48] for example. Formally, we can prove the following result:

Proposition 3.2. For each n € N, let T,,, T}, T be random variables defined
on an extension of the probability space (Q, F, P). Suppose that
sup |P(T, < z) — P(T} < z)| =0, sup|P(T; < a|F) - P(T} < x| F)| =P 0
z€R zeR
as n — oo. Suppose also that there is a sequence (E,) of elements in F such
that the F-conditional distribution of T\ has the density on E, for every n

and lim,,_, oo P(E,) = 1. For each n € N, let g} be the F-conditional quantile
function of T):

gy (a) =inf{z e R: P(T; < z|F) > a}, ac(0,1).

Then we have
P(T, < q(a)) = «

as n — oo for all o € (0,1).

4. Application to realized covariance

In this section we assume that the probability space (€2, F, P) admits the struc-
ture such that Q = Q' x W, F = F' ® B and P = P’ x P for some probability
space (', F', P’) and the r-dimensional Wiener space (W, B, P) over time in-
terval [0,1], and consider the partial Malliavin calculus with respect to the
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r-dimensional Brownian motion B = (B)co,1) defined by Bi(w’,w) = w(t) for
w e, weWandt e [0,1] (cf. Section 6.1 of [69]). In this setting the Hilbert
space H coincides with the space L%([0,1];R"). We here allow the dimension
r = ry, to possibly depend on n € N, so (2, F, P) and B may depend on n, but
we subtract the index n from the notation. Let (B;);c[o,1] denote the filtration
generated by the canonical process on W, and define the filtration (F)sejo,1)
of F by F; :=F @ B; for t € [0,1]. On the stochastic basis (Q, F, (F%), P), we
consider the d-dimensional continuous It6 semimartingale Y = (Y;);c(0,1) given
by the following;:

t t
Y, =Y, +/ Hsds +/ 0sdBs, t€[0,1].
0 0

Here, p1 = (ps)sefo,1] is a d-dimensional (F;)-progressively measurable process
and 0 = (04)sep,1] is an RIX"_valued (F;)-progressively measurable process
such that

1
/0 (||,UsH£1 + ||0-s||%2) ds < 0o a.s.

We remark that the processes p and o generally depend on n because d and r
may depend on n. However, following the custom of high-dimensional statistics,
we subtract the index n from the notation as above.

We observe the process Y at the discrete time points ¢, = t} = h/n, h =
0,1,...,n. In such a setting, the discretized quadratic covariation matrix

n

Y, Y]l = Z(Yth =Y, (Y, — }/th—l)T7
h=1

which is known as the realized covariance matriz in high-frequency financial
econometrics, is a natural estimator for the quadratic covariance matrix of Y:

1
[Y,Y]lz/ Ydt, B =00, .
0

The aim of this section is to establish the asymptotic mixed normality of the

—

estimator [Y, Y]T in a high-dimensional setting such that the dimension d is
possibly (much) larger than the sample size n.

Before stating the results, we introduce some notation. First, for a ran-
dom variable F taking values in RN *Na for some Ny,...,N, € N, we set
|Flp.es = lllIFle|lp for every p € (0,00]. Next, for a positive integer k, we
identify the space H®* with L2([0,1]%; (R")®*) in the canonical way (cf. Ex-
ample E.10 in [37]). Therefore, if a univariate random variable F is k times
differentiable in the Malliavin sense, the kth Malliavin derivative D¥F of F

takes values in L2([0, 1]*; (R™)®¥), so we can consider the value D*F(ty, ... ;)
in (R")®* evaluated at (t1,...,%) € [0,1]*. We denote this value by Dy, F.
Moreover, for an index (ay,...,ax) € {1,...,7}*, we write the (ai,...,ax)-th

.....

.....
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We remark that the variable Dy, F is defined only a.e. on [0,1]F x  with
respect to the measure Lebg X P, where Leby denotes the Lebesgue measure on
[0, 1]%. Therefore, if Dy, . 4, F satisfies some property a.e. on [0,1]* x Q with
respect to the measure Lebg X P, by convention we will always take a version of
Dy, .+ F satisfying that property everywhere on [0, 1] x Q if necessary. Also,
note that if a d-dimensional random vector F' is k times differentiable in the
Malliavin sense, the kth Malliavin derivative D*F is first identified with the
(H®*)9_valued random variable (D*F!,... DFF?) according to the identifica-
tion of H®* @ R? with (H®*)? (cf. Sections 2.1 and 2.3). Then, each D*F7 is
identified with the L2([0, 1]*; (R")®*)-valued random variable as above.
We define the d? x d? random matrix €, by

@li=1)d+j,(k=1)d+1 . _

n th ) th ) th ) th )
ny / nikds / Silds | + / Sids / Dikds | ¢,
h=1 th—1 th—1 th—1 th—1

ik d=1,....d,

which plays the role of the conditional covariance matrix of the approximating
mixed-normal distribution in our setting.

Remark 4.1. In the fixed dimensional setting, €, converges in probability as
n — oo to the random matrix € defined by

1
gUi-Ddti (k=1)d+ :=/ (zi@g%zi@gﬂ dt, gk l=1,...4d
0

under mild regularity assumptions, so € plays the role of the asymptotic co-
variance matrix in such a setting. However, in the high-dimensional setting the
convergence rate of ¢, to ¢ does matter and we usually need an additional
condition like (4.7) to derive it. To avoid such an extra assumption, we use the
“Intermediate version” €,, of € to state Theorem 4.1 below.

Theorem 4.1. Suppose that p; € Dy o (R?) and oy € Do oo (RXT) for all t €
[0,1]. For everyn € N, let W,, € ]D)27OO(Rd2), X, € ]D)27OO(Rde2) and Y, be an
m x d? (deterministic) matriz such that ||Y,||. > 1, where m = m,, possibly
depends on n € N. Define =, := 1, o X, and assume

lim lim sup P(min diag(Z,¢,E,) < b) = 0. (4.1)

bl0 n—sco
Then the following statements hold true:

(a) Suppose that there is a constant w € (0, 3) such that |||T”|Hio = 0(n?)
and

sup max <||Wf;||p+ sup DWW st sup Ds,th;lp,e2><oo,
neN 1<i<d? 0<t<1 0<s,t<1

(4.2)
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(b)
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sup max max (||Xz‘f‘||p+ sup | DX et sup ||Ds,txif||p,22)<oo,
0<t<1 0

neN 1<i<m 1< <d? <s,t<1

(4.3)
sup max ( sup ||pill,+ sup || Dsp p752> <00, (4.4)
neN1<i<d \ p<t<1 0<s,t<1

sup ma><<sup IS+ sup [Duoilprst  sup ||Ds,toz||p,z2)<oo
neN1=i<d \ o<i<1 0<s,t<1 0<s,t,u<l
(4.5)

for all p € [1,00). Suppose also that d = O(n®) and m = O(n®) asn — o
for some ¢ > 0. Then we have
sup | P (En (Sn + W) < 9) = PE(C/ 60+ Wa) Sy)| 50 (46)
yeRm™
as n — 0o, where
1

S, = vec {\/ﬁ ([Y, Y], - [Y, Y]l)]

and C, is a d*-dimensional Gaussian vector independent of F.
Suppose that || T2 (logdm)= = o(\/n) as n — oo and (4.2)-(4.5) are
satisfied for p = co. Then we have (4.6) as n — co.

Remark 4.2. We enumerate some remarks on the assumptions of Theorem 4.1
in the following:

(a)

In typical applications of Theorem 4.1, we take W,, = 0 and X,, a smooth
functional of the volatility process o. Hence only the assumptions on pu and
o do matter (see also Section 4.1). The Malliavin differentiability condi-
tions on p and o are satisfied, for example, when p and o are respectively
solutions of stochastic differential equations (SDEs) with sufficiently reg-
ular coefficients; see e.g. Section 2.2.2 of [55]. We remark that the (local)
Malliavin differentiability has been known for solutions of some SDEs with
irregular coefficients as well; see Section 4 of Alos & Ewald [2] and Lemma
5.9 of Naganuma [52] for example.

A major restriction imposed by the assumptions of Theorem 4.1 is that
they require the arrays (Dga)aib)(a,b)e[r]z and (Dil’l{b)gﬁc)(a,b,c)e[r]? are suf-

ficiently “sparse” for all s,t,u € [0,1] so that

sup [|Dsoy [lp,e, and sup || Ds ey [Ip,e
0<s,t<1 0<s,t,u<l

do not diverge as n — co. This is a restriction because r typically diverges
as n — oo in a high-dimensional setting. Such a condition is satisfied
e.g. when Y and (Ui')te[o’l] depend on only finitely many components of
B for each ¢ (they may vary with 4, though). Therefore, it is satisfied if the
price and volatility processes have a certain factor structure, which seems
realistic in financial applications.
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(¢) The Malliavin differentiability condition on g in Theorem 4.1 can be re-
placed by a continuity condition on g analogous to (4.7). In fact, it is
used only to prove Lemma B.6, where it is only crucial that p is well-
approximated by a “strongly predictable” process.

(d) Assumptions on the second Malliavin derivatives of the volatility process
o+ sometimes appear in high-frequency financial econometrics even for the
fixed-dimensional case; see [22, 21] for example.

(e) The assumptions of Theorem 4.1 do not rule out the possibility of the
presence of jumps in the volatility process o; see Fukasawa [32].

(f) It would be enough in Theorem 4.1(a) to assume conditions (4.2)—(4.5) for
some p € [1,00) only, where p depends on the value of ¢, i.e. the divergence
rates of d and m.

By an analogous discussion to the one before Corollary 3.1, we can deduce a
high-dimensional central limit theorem for realized covariance in hyperrectangles
from Theorem 4.1:

Corollary 4.1. Under the assumptions of Theorem 4.1 with replacing (4.1) by
lbifl lim sup P(min diag(¢,) < b) =0,

n—oo

we have
sup  |P (S, + W, e A)—P(Q}ﬂ(n—kWn e A)‘ =0
AcAre(d?)

as n — oQ.

In some situations, it is more convenient to consider a localized version of the
assumptions of Theorem 4.1 as follows:

Theorem 4.2. For everyn € N, let W,, be a d*-dimensional random vector, X,
be an m x d* random matriz and Y,, be an m x d* (deterministic) matriz such
that |||l = 1, where m = my, possibly depends onn € N. Moreover, for every
veN,letQ,(v) € F, u(v) = (1(v)i)tejo,1) be a d-dimensional (F;)-progressively
measurable process, o(v) = (0(V)¢)iejo,1) be an RIX" yalued (F;)-progressively
measurable process, W, (v) € ]D)gm(]Rdz) and X, (v) € DQ,OO(Rdez), and sup-
pose that the following conditions are satisfied:

(i) limy 00 limsup,, . P(Q,(v)°¢) = 0.
(ii) For allv € N and t € [0,1], pur = p(v)s and oy = o(v); on Q,(v) as well
as (V)¢ € D1 o (RY) and o(v); € Dy oo (RTXT).
(ili) For allv e N, W, = W,(v) and X, = X, (v) on Q,(v).
(iv) For all v € N, (4.1) holds true with replacing X,, and o by X, (v) and
o(v) respectively.

Then the following statements hold true:

(a) Suppose that there are constants w € (0, %) and ¢ > 0 such that |||TnH|io =
O(n=), d = 0O(nf) and m = O(n®) as n — oco. Suppose also that, for all
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v €N, (4.2)-(4.5) are satisfied for allp € [1, 00) with replacing Wy, X, i1, 0
by W, (v), X, (v), u(v), o(v) respectively. Then we have (4.6) as n — oco.
(b) Suppose that |||Tn|||io(logdm)§ = o(y/n) as n — oo and, for all v €
N, (4.2)-(4.5) are satisfied for p = oo with replacing Wy, X, p,0 by
Wn(v), Xn(v), p(v),o(v) respectively. Then we have (4.6) as n — oo.

To make Theorems 4.1-4.2 statistically feasible, we need to estimate the
“asymptotic” covariance matrix &,. We can construct a “consistent” estimator
for €, in the same way as in the low-dimensional setting of Barndorff-Nielsen
& Shephard [4]: Define the d?-dimensional random vectors X, by

Xh ‘= vec [(Y;fh _}/thfl)(}/th _}/th—l)—r] ) h = 1""’”'

Then we set

n n—1
¢, = ”Z XhXp, — g Z (xnXng1 + Xnr1xan ) -
h=1 h=1

Proposition 4.1. Foralln € Nandv € N, let Q,(v) € F, p(v)=(u(v)¢)tejo,n
be a d-dimensional (Fy)-progressively measurable process and o(v) = (o (V)¢)te[0,1]
be an R -yalued (Ft)-progressively measurable process, and suppose that the
following conditions are satisfied:

(1) lmy oo limsup,,_, o P(Qy(v)¢) = 0.
(ii) For allv € N and t € [0,1], pt = p(v): and or = o(v)r on Qn(v) as well
as (V) € Dy oo (RXT).
(iii) There is a constant v € (0, 3] such that

sup
o<t<1-—%

kKl ki
max Wi, - W)

= O0(n™) (4.7)

2
as n — oo, where X(v); := o(v)o(v)] .
Then the following statements hold true:
(a) Suppose that

sup max sup (||u<u>z'||p+||z<u>z‘i|p+ sup ||Dso<v>z"||p,ez) =%
neN 1<i<d g<t<1 0<s<1
(4.8)

for all p € [1,00) and v € N. Suppose also that d = O(n®) as n — oo for
some ¢ > 0. Then we have ||€n —Clle.. = Op(n™%) as n — oo for any
w € (0,7).

(b) Suppose that (4.8) is satisfied for p = co. Then we have ||En —Clle, =
Op(n=?log?d +n=") as n — oo.

Remark 4.3. It is presumably possible to remove the (local) Malliavin differ-
entiability assumption on o; from Proposition 4.1 if we impose an additional
condition on d and n~7 (such an additional assumption will be even unneces-
sary to prove the part (a) only, but we keep that condition to prove two claims
in a unified way).
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When the dimension d is very large, computation of /Q\Z}/ %is practically chal-
lenging, so it is better to employ a (wild) bootstrap to generate random vectors
having the same distributions as that of @,1/ 2§n as follows. Let (ey)?2, be a

centered Gaussian process independent of F, which is defined on an extension
of (9, F, P) if necessary. Then we define

n
S:; = \/ﬁ Z €nXh-
h=1

The Gaussian process (ep)$>, must have an appropriate covariance matrix so
that the F-conditional covariance matrix of S} mimics €,. As is well-known in
the literature (see e.g. [34]), the standard i.i.d. wild bootstrap fails to approxi-
mate the joint distributions of statistics in the present context.! Alternatively,
we assume that (ep)52 , is stationary with auto-covariance function

1 if¢=0,
E[eheh_,_g] = 7% if £ = 1,
0 otherwise.

Then we can easily check that the F-conditional covariance matrix of S} is equal
to én, so S has the same distribution as that of al/ 2§n. We remark that such a
sequence (ep)52; considered above can be generated by the following Gaussian
MA(1) process:

en =15 —Nh_1, h=1,...,n,

where (n})7_, is a sequence of i.i.d. centered Gaussian variables with variance
5. Therefore, we can rewrite S as

n—1
Sy =31 ni(xn = Xna1) + V(X0 — 15X1)-
h=1

The second term on the right side of the above equation is usually asymptotically
negligible, so the bootstrap procedure considered here is essentially the same as
the wild blocks of blocks bootstrap proposed in Hounyo [34].

4.1. Testing the residual sparsity of a continuous-time factor model

As an application of the theory developed above, we consider the problem of
testing the correlation structure of the residual process of a continuous-time
factor model. This problem was investigated in Section 4 of Bibinger & Mykland
[5] for the case of two assets, and we are aim at extending their analysis to
a multiple assets situation. Specifically, we suppose that the d-th asset Y¢ is
regarded as an observable factor and consider the following continuous-time

Tt is also known that empirical bootstrap fails in the present context as well; see e.g. [25]
for a discussion.
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factor model:
Y) = pY?d + RY, j=1,....,d:=d—1. (4.9)

Here, 37 is a constant and R’ is a semimartingale such that [R’7, Y] = 0. Let us
set A, :={(i,j) : 1 <i < j <d}. Foreach (i,5) € A, we consider the following
hypothesis testing problem:

72 RUR) =0 as.  vs  HY G [RURI) #£0 as. (4.10)

Our aim is to test the hypothesis (4.10) simultaneously for (i,7) € A,, but we
start with constructing a test statistic for a fixed (i,7) € A,. For notational
convenience, we construct the test statistic for every pair (i,5) in {1,...,d}>.

Remark 4.4 (Sparsity test of the quadratic covariation matrix itself). Consid-
ering the case Y¢ = 0, we have R* =Y for all i = 1,...,d. Hence the problem
turns to multiple testing for the hypotheses (1.1).

We follow [5] and consider the following statistic
TV =YY Y7, VY, — VLYY YY),

which is zero under H(()i’j ). Therefore, it is natural to consider the estimated
version of T as follows:

—_—nNn — N —_—n — N

T .= [yi, Y] [V4, V4], — [V, Y], [Yd, V4] .

In order to make the test statistic scale invariant, we consider the Studentized
version of T¥. According to [5], the “asymptotic variance” of T is given by the
following statistic:

U

[V, yd2gidid | [yi yd2eidid | [Yi7yj]%¢7df,d2 +[Ye, yd2eli-Dd+i—1)d+s
T 2[V YU [V, YO elmDdtid® | oryi yd) [yd |y ), gidid

_ 2[yi’ Ydh[ycl) Yd]lc:g—l)dﬂ,jd _ 2[yj’ Yd]l[yd7 Yd]leg—l)dﬂ',id

— o[V Y [V, Y eidd o[yt Y] [YY, Y ¢idd

Let us denote by 0 the estimated version of U, i.e. we define Y% by the

right side of the above equation with replacing [Y,Y]; and &, by [Y,Y], and
¢, respectively. Then we define the test statistic by

T - VIS
BV
The statistic Tﬁi’j ) is generally uncentered unless the null hypothesis Héi’j ) is

true, and it is convenient to consider the centered version of T,Si’j ) in the general
situation as follows:

Vi (T - )

Flid)
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Note that we can rewrite T4 — T as
T = (Y, = VY ) 9 Y Y Y (V9 Y, - [, YY)
= (7L = ) LY v (Y - [y ).
9 is defined as

Tr(Li D= Lﬁ&g*

=~ )
/7Y
n

Therefore, a bootstrapped version of TT(L

where

Ao ——— MN,* - n n,k
T, o= VLY, VI,V 4 [V, Y4, [V, Y
— MN,*

— VYA, YY), — [V Y, [V, Y,

and

Y7, Y9), fZeh L =Y Y=Y ), =1, d

Set T, = (Tr(f’j))lgi’jgd and T, « = (TS;Z))KZ- j<d- We derive mixed-normal
approximations for vec(T;,) and vec(T, .) by applying the theory developed
above. For this purpose we define the d* x d2 random matrix X, by

Y9, Y49, /ol ifk=i, | =d,
YY), Vo ifk=j, 1=d,

Xﬁ(ﬂ’i*l)d‘ﬁjy(k*l)d‘#l _ _ [Yd7 Yd]l/ /mg fh—1= d,
— [YLYI) VO ik =i l=j,
0 otherwise

for i,5 = 1,...,d and k,I = 1,...,d. Note that the statistics vec(T},) and
vec(T, ) can be approximated by X,S, and X,S}, respectively. We then
obtain the following result.

Proposition 4.2. Foralln € N andv € N, let Q,(v) € F, u(v)=(1(v)t)iefo,1)
be a d-dimensional (Fy)-progressively measurable process and o(v) = (0 (V)¢ )ie[0,1]
be an RY*"-valued (F;)-progressively measurable process, and suppose that the
following conditions are satisfied:

(i) lim, o0 limsup,, . P(Q,(v)¢) = 0.
(ii) For allv € N and t € [0,1], pt = p(¥): and or = o (V) on Qn(v) as well
as (V) € Dy oo (REXT).
(iii) For all p € [1,00), it holds that

Swmw<pr%+SWIWmem><m
neN1<i<d \ p<t<1 0<s,t<
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sup max <sup ISl + sup (Do @) e
neN1=i<d \ p<i<1 0<s,t<1

+ sup ||Ds,ta<u>z||p,ez)<oo,
0<s,t,u<l

where Y(v); := o(v)io(v)] .
(iv) There is a constant v € (0, 1] such that (4.7) holds true as n — co.
(v) For all p € [1,00), it holds that

17\ —P
sup max B [(0,(1)) ] < oo, (411

where B, (v) is defined analogously to U, with replacing ¥ by L(v).

Then we have

Aeilrlgf) P (vec ( ~n) € A) - P (Xan}/QCn € A)‘ —0
and
sup | P (vec(T,.) € A|F) — P (Xnei/%n € A|f)‘ =70
A€ Are(d?)

as n — 0o, provided that d = O(n°) as n — oo for some ¢ > 0.

Now we return to the problem of testing (4.10) simultaneously for (i,7) € A,,.
Here, we consider a more general setting described in the following for the pur-
poses of application (cf. Section 5.2). We suppose that the set A,, is decomposed
into non-empty disjoint sets AL, ..., AL as A, = Ulizl AY. We consider the prob-

lem of testing
N\ Hy o vs \/ = (4.12)
AEAY AEAY

simultaneously for £ = 1,...,L. Here, for a subset £ of A,, Ay, HY (resp.
Ve H?') denotes the hypothesis that Hg is true for all A\ € £ (resp. H{
is true for some A € £). For simplicity of notation, we set Hf := Axear HY
and H{ := VAeAfL H?. If we let L be the number of elements in A,, and write
Ap = {A1,..., AL} and set AY = {)\/} for £ = 1,...,L, we recover the original
problem of testing (4.10) simultaneously for (i, j) € A,.

Our aim is the strong control of the family-wise error rate (FWER) in this
problem. More formally, let ©,, be a set of pairs (u, o) of coefficient processes,
which is considered as the set of all data generating processes we are interested
in (note that the data generating process may vary with n mainly because the
dimensions d and r may depend on n). For each 6 € ©,,, we denote by L,,(6)
the set of all indices £ € {1,...,L} for which the hypothesis H§ holds true when
0 is the true data generating process. Then, the FWER for § € ©,,, which is
denoted by FWER(#), is defined as the probability that H§ for some ¢ € £,,(6)



High-dimensional mized-normal limit theorems 1467

is rejected when 6 is the true data generating process. Given the significance
level a € (0, 1), we aim at constructing multiple testing procedures such that
limsup FWER(0,,) < « (4.13)
n—oo
for any sequence 6,, € ©,, (n = 1,2,...) of data generating processes. To ac-
complish this, we employ the stepdown procedure of Romano & Wolf [61] which
we describe in the following. First, given a fixed index ¢, we shall use the test
statistic T, := maxyepe [T for the problem (4.12). Next, we sort the observed
test statistics in descending order and denote them by

14 4
TO > > Th

Also, for every subset £ C {1,...,L}, suppose that we have a critical value
c5(1 — @) to test the null A\,., Hg against the alternative \/,., H{". Those
critical values can be random variables and will be specified later. Then the
stepdown procedure reads as follows:

1. Let £y := {1,...,L}. If T < c£1(1 — a), then accept all the hypotheses
and stop; otherwise, reject Hél and continue.

2. Let Lo := £\ {f1}. If T?2 < c£2(1 — @), then accept all the hypotheses
Hf; for ¢ € L5 and stop; otherwise, reject HéQ and continue.

k. Let Ly := Lp_1\{lx_1}. If T% < c£+(1—a), then accept all the hypotheses
HE for ¢ € L}, and stop; otherwise, reject Hg’“ and continue.

L. If T < cffL}(l — «), then accept HgL; otherwise, reject Hf)L.
According to Theorem 3 of [61], the above stepdown procedure satisfies (4.13)
if the critical values c5(1 — a), £ C {1,...,L}, satisfy the following conditions:
(i) ¢£(1 —a) < £’ (1 —a) whenever £ £/ c {1,...,L}.
(ii) For any sequence 8, € ©,, (n =1,2,...), it holds that

lim sup P ( max T > cEn0n)(1 - a)) <a
n— oo LELy(0n)

whenever 0,, is the true data generating process for every n.

The first method to construct the desired critical values is the well-
known Bonferroni-Holm method. Namely, we set c5(1 — a) = qno,1(1 — a/
2#Urer AL))) for every £ C A, where qn(o,1) denotes the quantile function
of the standard normal distribution and #[|J, A%] is the number of elements
in Uy, AL. The second method is to use the (1 — a)-quantile of maxsep TY.
Of course, we cannot analytically compute the quantiles of maxye, T¢ in gen-
eral, so we approximate them by resampling as in [61, 14]. Formally, setting
Th.« :=maxyepe [T, ], we use the F-conditional (1—a)-quantile of maxee, TF, .
as c£(1 — a), which can be evaluated by simulation. We refer to this method as
the Romano-Wolf method in the following.
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Corollary 4.2. Suppose that the assumptions of Proposition 4.2 are satisfied
for any sequence (p,0) = (u™,0™) € ©, (n = 1,2,...) of data generating
processes whenever (u(”), U(”)) 18 the true data gemerating process for every n.
Then, both the Bonferroni-Holm and Romano-Wolf methods satisfy conditions
(i)—(ii), so (4.13) holds true.

Remark 4.5. The Romano-Wolf method takes account of the dependence
structure of the test statistics while the Bonferroni-Holm method ignores it,
so the former is generally more powerful than the latter, especially when the
test statistics are strongly dependent on each other. Meanwhile, we need no
resampling to implement the Bonferroni-Holm method, so it is computationally
more attractive than the Romano-Wolf method.

Remark 4.6 (Application to threshold selection in covariance estimation). An-
other possible application of Theorem 4.1 would be selection of the thresholds
in high-dimensional quadratic covariation estimation from high-frequency data
(see e.g. Wang & Zou [68] for such an estimation method): We refer to Section
4.1 of Chen [11] for details on such an application in the case of i.i.d. observa-
tions.

5. Simulation study and an empirical illustration

In this section we present a small Monte Carlo study to assess the finite sample
performance of the multiple testing procedures proposed in Section 4.1. We
also demonstrate how the proposed methodology works in a real world using
high-frequency data from the components of the S&P 100 index.

5.1. Simulations

We focus on the problem of testing the hypotheses (4.10) simultaneously for
(i,7) € Ay,. The simulation design is basically adopted from [28], but we include
only the first factor representing the market factor in our model. Specifically,
we simulate model (4.9) with the following specification?:

dY{ = pdt + \/odBy,  dR} =~]dB, (j=1,....d)

and

dvy = k(0 — v,)dt + ny/Ty (de;f +V/1- p2dBf+1) . (5.1)

Here, u,k,0,n and p are constants, B, = (Btl,...7Bti)7 and 71,...,7q are d-
dimensional random vectors independent of B. The values of #',..., 3¢ are
independently drawn from the uniform distribution on [0.25,2.25]. We set p =

2 One can show that the volatility process o generated by (5.1) locally satisfy the condition
(4.5) for any p € [1,00) as long as the Feller condition 2k > n? is satisfied. In fact, one can
show this by setting Qn(v) := {inf,co,1)00 > v~ 1} and taking smoothed versions of o¢
analogous to the one considered in [2] as o(v)’s for v =1,2,....
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0.05, Kk =3, 0 =0.09, n=0.3 and p = —0.6. The initial value vy is drawn from
the stationary distribution of the process (v¢)e(o,1], i-e. the gamma distribution
with shape 2k60/n? and rate 2x/n?. We assume that T' := (7, y;)1<;j<q is a
block diagonal matrix with 10 blocks of size (d/10) x (d/10) whose diagonals are
uniformly generated from [0.2,0.5] and the corresponding correlation matrices
have the constant correlation of p,. We set d = 100 and vary p, as p, €
{0.25,0.5,0.75}.

For each scenario, we compute the FWERs and the average powers (i.e. the
average probabilities of rejecting the false null hypotheses) of the Bonferroni-
Holm and Romano-Wolf methods at the 5% level based on 10,000 Monte Carlo
iterations respectively. Here, we generate 999 bootstrap resamples for the
Romano-Wolf method.

Tables 1 and 2 report the results. We see from Table 1 that both the methods
succeed in controlling the FWERs under the nominal level 5%, although both are

TABLE 1
Family-wise error rates at the 5% level
m n=26 n=39 n=78 n=130 n=195 n =390
py = 0.25
Holm 0.010 0.004 0.002 0.003 0.008 0.018
RW 0.022 0.007 0.003 0.004 0.009 0.018
py = 0.50
Holm 0.009 0.004 0.002 0.003 0.007 0.017
RW 0.023 0.008 0.004 0.005 0.009 0.019
py =0.75
Holm 0.008 0.003 0.002 0.003 0.006 0.010
RW 0.026 0.011 0.006 0.008 0.014 0.023

Note. This table reports the family-wise error rates at the 5% level of multiple test-
ing for the hypotheses (4.10) by the Bonferroni-Holm (BH) and Romano-Wolf (RW)
methods, respectively. The reported values are based on 10,000 Monte Carlo itera-
tions. 999 bootstrap resamples are generated to implement the RW method.

TABLE 2
Average powers at the 5% level
rn n=26 n=39 n=78 n=130 n=195 n =390
py = 0.25
Holm 0.000 0.000 0.000 0.005 0.046 0.563
RW 0.000 0.000 0.000 0.006 0.048 0.567
p~y = 0.50
Holm 0.000 0.001 0.028 0.421 0.950 1.000
RW 0.000 0.001 0.037 0.458 0.956 1.000
py =0.75
Holm 0.001 0.007 0.262 0.953 1.000 1.000
RW 0.004 0.017 0.393 0.977 1.000 1.000

Note. This table reports the average powers at the 5% level of multiple testing for the
hypotheses (4.10) by the Bonferroni-Holm (BH) and Romano-Wolf (RW) methods,
respectively. The reported values are based on 10,000 Monte Carlo iterations. 999
bootstrap resamples are generated to implement the RW method.
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rather conservative. Table 2 shows that the average powers in both the methods
tend to 1 as n and p, increase. The table also reveals that the Romano-Wolf
method is more powerful than the Bonferroni-Holm method. As expected, the
difference of the average powers between two methods becomes pronounced as
the correlation p, of the residual processes increases.

5.2. Empirical illustration

We apply our methodology to high-frequency returns of the components of the
S&P 100 index while taking the SPDR S&P 500 ETF (SPY) as the observable
factor process. The sample period is the one month, March 2018, and we regard
this period as the interval [0, 1] (over-night returns are ignored). The data are
provided by Bloomberg. Following Fan et al. [28], we use 15 minute returns to
avoid notable market microstructure effects. To illuminate the block diagonal
structure reported in [28], we sort the assets by their Global Industry Classifi-
cation Standard (GICS) sectors while we construct the log-price processes Y7,
ji=1,....d.

We begin by examining the sparsity of the quadratic covariation matrix of
the assets without taking account of the factor process. The top panel of Figure
1 shows the corresponding realized correlation matrix. Here, we perform mul-
tiple testing for the hypotheses (1.1) using the Romano-Wolf method with 999
bootstrap resamples and change the entries for which the null hypotheses are
not rejected at the 5% level to blanks. The violet squares indicate GICS sector
classifications. Namely, all assets in the same square belong to the same sec-
tor. We clearly find that the raw realized correlation matrix is far from sparse,
i.e. most the entries are not blank. In fact, our test suggests that about 90.9%
pairs would have significant correlations at the 5% level. Meanwhile, the bottom
panel of Figure 1 shows the realized correlation matrix of the residual processes
of the assets regressed on SPY. Again, we perform multiple testing for the hy-
potheses (4.10) as above to change the entries with insignificant correlations
to blanks. The violet squares have the same meaning as above. In contrast to
the first case, the realized correlation matrix exhibits the remarkable diagonal
structure inherited from the assets’ sectors. In this case only about 4.3% pairs
are significantly correlated at the 5% level.

To investigate this block diagonal structure more deeply, we conduct another
multiple testing for the absence of covariations within and between sectors after
regressing assets on SPY. Formally, let G1,...,Gx be all the sectors, then we
set I ;= {i € {1,...,d} : the i-th asset Y belongs to the sector G} for every

k=1,....Nand ASY .= Ay N (I x I) for all k1 =1,..., N. We test the null
hypothe31s A eAlRD H} against the alternative \/ AeAGD H {* simultaneously for
all 1 <k<I< N using the Romano-Wolf method with 999 bootstrap resam-
ples. In our analysis there are totally NV = 11 sectors: Consumer Discretionary,
Consumer Staples, Financials, Health Care, Industrials, Information Technol-
ogy, Materials, Real Estate, Telecommunication Services, and Utilities. Since
Materials and Real Estate contain only one asset respectively, we exclude the
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F1G 1. Realized correlation matrices of the S&P 100 assets (top) and their residual processes
regressed on SPY (bottom). They are computed from 15 minute returns in March 2018, where
we ignore over-night returns. We perform multiple testing for whether each the entry is zero
or not using the Romano-Wolf method with 999 bootstrap resamples, then the entries which
are not significantly away from zero at the 5% level are made blank. The violet squares indi-
cate sector blocks. The figure was depicted using the R function corrplot from the corrplot
package.

case k = [ from the above hypotheses when G} is Materials or Real Estate.
The results are reported in Table 3. As expected, the p-values for the absence of
within-sector covariations are very small across all the sectors, which suggests
within-sector covariations should exist for all the sectors. In contrast, we find
that between-sector covariations can be insignificant for several pairs. For ex-
ample, assets belonging to Materials (M) are not significantly correlated with
assets belonging to the other sectors at the 5% level. The table also reveals a
similar between-sector covariation pattern to the one observed in [28]. Namely,
they report that the correlation between Energy (E) and Financials (F) disap-
pears but Consumer Staples (CS) and Utilities (U) remain strongly correlated
after 2010, which is consistent with the p-values reported in Table 3.
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TABLE 3
p-values of multiple testing for the absence of within- and between-secor covariations (the
null hypotheses are the absence of covariations).

CD CS E F HC I 1T M RE TS U
CD| 0.001 0.002 0.119 0.246 0.003 0.246 0.001 0.076 0.246 0.226 0.045
CS 0.001 0.044 0.007 0.001 0.413 0.001 0.891 0.025 0.017 0.001
E 0.001 0.502 0.446 0.211 0.076 0.932 0.098 0.662 0.076
F 0.001 0.246 0.246 0.076 0.846 0.246 0.662 0.246
HC 0.001 0.001 0.003 0.932 0.308 0.008 0.024
I 0.001 0.246 0.502 0.846 0.662 0.224
1T 0.001 0.446 0.246 0.072 0.004
M - 0.932 0.909 0.932
RE - 0.256  0.004
TS 0.001 0.001
U 0.001

Note. The p-values are computed using the Romano-Wolf method with 999 bootstrap
resamples. The sector names are abbreviated as follows: CD: Consumer Discretionary;
CS: Consumer Staples; F: Financials; HC: Health Care; I: Industrials; IT: Informa-
tion Technology; M: Materials; RE: Real Estate; TS: Telecommunication Services; U:
Utilities.

Overall, our methodology partially provides a statistically formal support of
the findings by [28], although the scope of our analysis is quite limited and thus
more comprehensive empirical studies will be necessary.

Appendix A: Proofs for Section 3
A.1. Additional notation

This subsection introduces some additional notation related to multi-way arrays
and derivatives, which are necessary for the subsequent proofs.

As in Section 2.2, K denotes the real field R or the complex field C. We
consider a vector space V' over K. Let Ni,..., N, be positive integers. For T' €
VNxxNeg and 2 € KN XN we set

Tla] = 3 Titiagiteia g V.
(i1,--iq) €I} 1 [Ni]
In particular, for z; € KNi (j =1,...,q) we have
T[!El ®®wq] — Z T7;17..47iqm.’i1 .._l,f]q.

(4150y5q) ETT =y [Nk]

Here, note that we identify KM @ .- @ KN¢ with KN1>*Na in the canonical
way (see Section 2.2). Moreover, we evidently have

ITz]] < NTNewe l[]ley - (A1)
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Now suppose that K =R and V is a real Hilbert space. Then we have

(Tla], v)y = > (T w)paitie = (To)vle] (A2)
(7;1""7iq)€HZ=1[Nk]

for any v € V' (recall (2.1)). Let Vj be another real Hilbert space and Ny, ..., N}, €

N. Then, for any S € VON{XWXN’,’ and y € RN{X”'XN;», it holds that
Tzl © Syl = (T© S)[z @yl (A.3)
In fact, we have
Tlx] @ S[y]
_ Z (Til,“.,iqxil,.“,iq) ® (Sj11~»~7jpyj17“'1jp)

(ilv"aiq)eHZ:l[Nk] (jl»“'vjp)EHQ):l[NU

_ E E (Til ----- tq g Gt jp)xil ----- iqyjl 11111 Jp

(i1,0yig) €M1}y [Nk] (G1s-000p) €T R =y [V}
T

Let ¢ = (¢(y))yern be a real-valued function. If ¢ is a C*° function, we define
the R-valued N-dimensional ¢g-way array af’ng(y) by

8§q¢(y) - (ayiL'-yW A(Y))1<iy,...ig<N € RNXxN

for any y € RY and ¢ € N, where Opir..yia = d1/dy™ - - dy's. We set 050 ¢(y) =
o(y) by convention. In general, we say that ¢ is rapidly decreasing if ¢ is a C*°
function and

sup (1+ [|ylle) 105 96(y) e < 00

yeRN

for any A > 0 and ¢ € Z,. When ¢ is rapidly decreasing, we define its Fourier
transform ¢ : RY — C by

o(y) = » o(y)e Mdy,  yeRN.

Here, i denotes the imaginary unit. By Theorem 7.4(c) from [62], one has

T{(iy)*1)0(y) = T[O"H(y) (A4)

for any y € RV, ¢ € N and C-valued N-dimensional ¢-way array 7' € CN*xN,

If iy = - = ig =i, we will write J,i;, i, as 3;11-. We set 821«,0(3;) = o(y)
by convention. For a multi-index o = (ay,...,ay) € Z%, we write oy =
3;‘11 631{,\’ as usual. Given a subset A = {ay,...,ax} of {1,...,s}, we will

write [ e 4 Oyia 1= 0,jiay oy - We set ([[,ep Oyia )é(y) := ¢(y) by convention.
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A.2. Proof of Theorem 3.1
We begin by noting that it is enough to prove the theorem for the special case
that all the rows of the matrix X,, are identical:

Lemma A.1. Suppose that the claim of Theorem 3.1 holds true if X;' =... =
X for every n € N. Then the claim of Theorem 3.1 holds true for the general
case as well.

Proof. Define the m x md matrix Y, by

(T};)T 0 0
0 (rz)yr o .- 0
T . ) .
0 0
0 e 0 (X

We also define the m x md random matrix X,, so that all the rows are identical
to the md-dimensional random vector given by

(X)L (X))

n

In addition, we define the md-dimensional random vector Z,, so that

Z =T,z
—_————

m

By assumption we can apply Theorem 3.1 with taking Y,,, X, and Z,, as T,
X, and Z,, respectively, which yields the desired result. O

Taking account of Lemma A.1, we focus only on the case that X,l1 = ... =
X =: X, for every n € N.

Next we recall the following anti-concentration inequality called Nazarov’s
inequality in [19]:

Proposition A.1 (Nazarov’s inequality). Let £ be an m-dimensional centered
Gaussian vector such that ||£7]l2 > a for all 5 = 1,...,m and some constant
a > 0. Then for any y € R™ and € > 0,

P(<y+e)-PlE<y) < 2 (\/QIOgm+2>.

The above form of Nazarov’s inequality is found in [20]. An application of
the above result immediately yields the following anti-concentration inequality
for a mixed-normal random vector:

Lemma A.2. Let £ be an m-dimensional standard Gaussian vector. Also, let
I’ be an m x m symmetric positive-semidefinite random matriz independent of
&. Then for any y € R™ and b,e > 0,

PIYV2% < y+e)— PIYV2%¢ <y) < % («/210gm + 2) + P (mindiag(T') < b).
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Now we turn to the main body of the proof. As is pointed out in the In-
troduction, the key part of the proof is to derive reasonable estimates for the
quantities

E[f(Zn, Xn)] = E[f(3n, Xn)] (A.5)

for smooth functions f : R?¢ — R. In fact, the remaining part of the proof is
essentially the same as the one for the high-dimensional central limit theorem
of [19]. To get a reasonable estimate for (A.5), we derive an interpolation for-
mula for it, borrowing an idea from [57]. Namely, we use the duality between
iterated Malliavin derivatives and multiple Skorohod integrals combined with
the interpolation method in the frequency domain introduced in [57] (see also
[66)).
Following [57], we set

A (0;2,x) = OM,,[iz] + 271 (1 — 6%)€,,[(i2)®?] + W, [iz] + X, [ix]

and
n(0;2,%) = Bl #2]

for € [0,1] and z,x € R%. We first derive a representation formula for the
derivative of ¢, (0;z,x) with respect to 6. For this purpose we need the following
Malliavin derivative version of the (generalized) Faa di Bruno formula for the
iterated derivative of a composition of functions:

Lemma A.3. Let q,r be positive integers and g = (g(x))zcrr be a real-valued
C? function all of whose partial derivatives up to order q are of polynomial
growth. Then, for any F € Dy o (R"), we have g(F) € Dy o and

Dig(F)= Y > Cla,w)all---olrrlg(F)sym | Q) KD FI)e s

a€A(q) vEN, (o) i=1 j=1

where

q!
C(Oé, V) ;1:1(2-!)0” H;:1 Vz'j! .

Noting that Malliavin derivatives can be characterized by directional deriva-
tives along Cameron-Martin shifts (cf. Chapter 15 of [37]), we can derive Lemma
A.3 from the usual Faa di Bruno formula (found in e.g. [51]). Alternatively, we
can prove Lemma A.3 in a parallel way to the usual Faa di Bruno formula using
the chain rule for Malliavin derivatives (see e.g. Theorem 15.78 of [37]) instead
of that for standard ones.

Lemma A.4. Under the assumptions of Theorem 3.1, the partial derivative
Oppn(0;2,%) exists and it is given by

d
non(032,%) =0 > B[O ((DDMul) oo, — €F) (i2')(i2)]

i,j=1
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+y > Clanw) {27t (1 - 02}l (izd)

j=1acA(q;) vENF ()

< E {EA(O;LX)A”J (V)[(iz)®(l’il+2l’i2+l’i3) ® (ix)®¥1]| .

Proof. By assumption the function 8 — ¢, (0;z,x) is evidently differentiable
and we have

Doon(0:2,%) = Ele> #=9(M, fiz) - 08, (i2)*2]). (A.6)
By duality we obtain
E[#9M]) = E[(DYR[M 9] ) oo, | +IE(DY [ 029, ) 6ay]
for every j. Therefore, Lemma A.3 yields
E[eM @29 i)
= Z Z Cla, )01 11271 (1 — g2)} w2l L jlvalt2lvaltlv sl vl

a€A(q;) vEN(@)

x B

q;
e>\(9;z,x) <®(D1Mn [Z])®w1 ® (Dicn [Z®2])®w2

i=1

D(D'Wa[2))** @ (D' Xn})®, 1) o, |
where we also use the identity

(Sym(f), 9)res = (f, 9) rea (A7)

holding for any f,g € H®? such that g is symmetric. Now, by (A.3) we have

D Mala) ™ & (D' 52) 2 @ (D W ) @ (DX, )

i=1

q;
= ®(DiMn)®Vi1 [Z®Vi1] ® (DiQ:n)®V1‘2 [Z®2Vi2] ® (DiWn)®l’i3 [Z®Vi3}
=1
® (Dan)®l/i4 [X®Vi4]

q;
) <®(DiM")®V” ® (D'€,)™2 © (D'W,)*" @ (Dan>®m4>
i=1
X [z®(”i1+2Vi2+Ws) ® x®Vi4),

so using (A.2) we obtain
E[e)\n(O;z,x)Mg]
= Z Z Clo, )01 1{271 (1 — 62)} w2 . jlvalH2lval sl + vl

a€A(qj) vENs ()



High-dimensional mized-normal limit theorems 1477
%< E |:€>\(9;Z’X)An,j (V)[Z®(ui1+2wz+m3) ® X®Vi4]:|
= 0B [X029 (D My ) s, li]]
+ > > Claw)pri{eTi (- o))

acA(gs) veN; (@)
< E {EA(O;LX)A”J (V)[(iz)®(l’il+2l’i2+l’i3) ® (ix)®¥1]| .

Combining this identity with (A.6), we obtain the desired result. O

The following lemma is presumably a standard result. We prove it for the
shake of completeness.

Lemma A.5. Let [ = (f(y))yer~ be a real-valued C* function all of whose
partial derivatives are of polynomial growth. Then there is a sequence (fj);?‘;l of
compactly supported real-valued C™ functions on RN such that

as j — oo for any &y,&1,...,En € L7 andaEZf.

Proof. Take a C* function ¢ : RY — [0,00) having compact support and
satisfying ¢(0) = 1. For every j = 1,2,..., we define the function ¢; : RN —
[0,00) by ¢;(y) = #(5~'y), y € RY. Then we define f; := f¢; forj =1,2,.... f;
is evidently a C°° function with compact support. Moreover, we have 0y’ f;(y) —
0y f(y) as j — oo for any y € RY and « € Z¥. In addition, for any s € N,
there is a constant C' > 0 which depends only on ¢ and s such that |f;(y)| <
CUfW) + nei 105% F(y)lle,) for any y € RY; we can easily prove these facts
by directly differentiating f; with the help of the Leibniz formula and the chain
rule. Consequently, we have sup;cy [|§00; fj(§1, -+, §n)[]2 < oo for any o € Zj\_f
because &, &1, ..., &n € L7 and all the partial derivatives of f have polynomial
growth. Therefore, (£o0 f;(&1, - --,&n))jen is uniformly integrable, so the Vitali
convergence theorem yields (A.8). This completes the proof. ]

Now we get the following interpolation formula for (A.5):

Lemma A.6. Let f : R?? — R be a C function all of whose partial derivatives
are of polynomial growth. Under the assumptions of Theorem 3.1, we have

E[f(Zn, Xa)] = Elf (3n, Xn)]

d 1
=2 / OB [((D% M ul) oo, =€) 0-,0, F(07Zn + /1 = 623, X,)| a6
i,j=1"70

d 1
+Z Z Z C(a,y)/o 9\11.1\(2—1(1_92))”.2‘

j=1 acA(q;) vENF ()

¥ E [An,j(V)[3§‘”|*3§‘”‘4‘32jf(9Zn +V1- 62 n,Xn)}} df.



1478 Y. Koike

Proof. Thanks to Lemma A.5, it is enough to prove the lemma when f is
rapidly decreasing. In this case the Fourier inversion formula and the Fubini
theorem yield

B (Zo X)) = I G X)) = (2) 7 [ f20{p(152,) — 0(0:2,) )z

1 A
= (277)72[1/ de f(z,x)090(0; z, x)dzdx.
0

R2d

Hence the desired result follows from Lemma A.4, (A.4) and the Fourier inver-
sion formula. 0

We will use the following elementary result in the proof:
Lemma A.7. Let k,[ be two positive integers. Then we have

l

k
azil.“zik (Zjl T Zjl) = Z H l{jc's:'is} H Zjb

Ci,..,cp=1s5=1 b#cy,..., ck

cs#ct

for any iy, ... ig, g1, 5 € {1,...,d}.

One can easily prove the above lemma by induction on k and application of
the Leibniz rule, so we omit its proof.

Finally, as in the original CCK theory, a special approximation of the maxi-
mum function (called the “smooth max function”) will play a crucial role in our
proof. The following lemma summarizes the key properties of this smooth max
function used in the proof:

Lemma A.8. Lete > 0 and set 3 = e ' logm. Define the function ®5 : R™ —
R by

Dp(w) =p"og [ D exp(fu’) |,  weR™ (A.9)
j=1
Then we have A
0 < Pg(w) — max w? < B 'logm =¢e (A.10)
1<j<m

for every w € R™. Moreover, for any C* function g: R - R, s € N, ¢ > 0 and
w € R™, it holds that

||(‘95?59(671@/3(w))Hz1 < Cys max{z—:*ﬂs*lﬁsfl} = ngsefs(logm)sfl, (A.11)

where Cy s > 0 depends only on g and s.

Proof. First, note that ®3 is usually denoted by Fj3 in the literature on the
CCK theory. Now, (A.10) is stated in e.g. Eq.(1) of [17]. On the other hand,
(A.11) is obtained by applying Lemma 5 in [24] with h =g, n =1, m = s and
b= ¢! in their notation. O
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Proof of Theorem 3.1. First, as is already noted in the above, for the proof
it is enough to focus only on the case that X}, =...= X" = X, for every
n € N due to Lemma A.1. Note that in this case we have 2,z = T,,(z 0 X,,) for
every z € R?

We turn to the main body of the proof. Take a number € > 0 arbitrarily, and
set 3 = e~ ! logm. We define the function ®5 : R™ — R by (A.9). We also take
a C* function g : R — [0, 1] such that all the derivatives of g are bounded and
g(t)=1fort <0and g(t) =0 for t > 1.

Now let us fix a vector y € R™ arbitrarily, and define the functions ¢ : R™ —
R, 9 :R? = Rand f:R?*? = R by

pw) = g(e™ ' Pp(w —y —¢)), w € R™,
b(w) = p(Tpv),  veERT,
f(z,x) =¢Y(z0x), z,x € R4,
For any k,l € Z, and any z,z € R? we have

d
0908 ey = X [0 (P a(zo ).

U1yeenshsJ150-5J1=1

Applying the Leibniz rule repeatedly (cf. Proposition 5 of [33]), we deduce
10207 (=, 0],

-y Ly (o) e ()

1,0 50k,015-01=1 [AC{1,....k} \a€A afA
X <H (91,1‘,,,) Dyir ..yt Y(2 0 T)
ag A
d d
S D <Haz”>(zﬁ---zﬁ)
e di=L AC{1,.. k) i1sesin=1 | \a€A

X (H xia> <H &,i“) Oy e P(z 0 T)| .
ag A ag¢g A

Now let us fix a subset A of {1,...,k}. Let r be the number of elements of
A and we write A = {ay,...,a,} and {1,...,k}\ A= {b1,...,bg_r}. Assume
1 <r <. Then, by Lemma A.7 we obtain

d
(H azia> (Zjl s Zjl) (H xiu> (H 8via> a’ujl---vjlw(z °© :L')
acA agA ag A

2
- Xd: Z H Uomiey 11 2"

i1yeenyin=1
B1,e.ip=1 Cl,...,cp=1s=1 b#c1,...,crn

cs#ct
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k—r
i
X <H x bt) 81)%1 mvibkﬂvhmv_”w(z ox)

t=1
d l r
— E E b
= H l{jcs :ias} H ZJ
Gaqyeeslba, =1 [ClyeesCpr=185=1 b#cy,..., Cr
cs#ct
d k—r
E ib, . )
X H z 8»07’1’1...rulbk—rvjl...ru]jw(zox)
Gby sy, =11 \t=1

2l g |08 * By i (2 0 @)

o

( )

Note that the above inequality evidently holds true if A = (). Moreover, we
obviously have (HaeA 8zia) (zjl -~-z”) = 0 if r > [. Consequently, we infer
that

kNI

k l —-Tr —-Tr
Jogaz ol < 3 (F) (V) el et
r=0

Meanwhile, we can easily verify that

(z0a)

1

Opir_pis () = Z Dot ..apis P( L) TR - T

Jis--sds=1
for any s € N and 41,...,is € {1,...,d}. Hence we have
d s m
10253 (v) ||e, < <1r<r§a<xmz TZ;) Z 0wt ...wis P(Ln)]
T a=l JiyeensJs=1

= [ITnllS 1050 (Tnv) e, -
Now, by (A.11) it holds that
105 ¢(w)lley < Cgee™*(logm)*~

for all w € R™, where Cy, > 0 is a constant which depends only on g and s.
Therefore, we obtain

lo2* 05" f (2, @),
kAL

T r k41— T r —r—
<cgklzr'()()|| T eG4 (log ==t

l k+l —(k+1 _
< Syt (Izllew V1) (lzlle v 1" 1T allS /(log m)* 171,

where €1 := e Al and cg 1, cg k. > 0 are constants which depend only on g and
k,l (recall || Tyl > 1 by assumptlon) We especially infer that all the partial
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derivatives of f are of polynomial growth. Therefore, noting that A, ;(v) = 0
when v ¢ UaeA(qj)Nf(a), by (A.1) and Lemma A.6 we obtain

(&) = |E[f(Zn, Xn)] = E[f(3n, X0)]|
1 d

g/ E [ Anllew Y (0202, £(0Zn + V1 —023,, X,,)
0

4,j=1

G Y Z/ (18050l

i=1 acA(q;) vENS (@)

X”a@)\ul a®\l’4|5 f@Z +\/ﬁ3n, ||£1}

< [ (I 8l S oK o (07473, | a0

1,7=1

v Y S [ B s 1800l 02

a€A(q) vEN ()

xOBWl £(0Z, + /1 — 023, X wde
< ot e7 2 (logm) || Tn |12 E [1XnllZ 11 An e ]

wx—1 o wxt+1
g > > e T dogm)Ml

acA(g) vENS (@)

v]s+1 v. V.
xE [(1+||Xn||'zw ) (12l + 1302 ) ma 1850 e

where Kz > 0 depends only on g and c'g’ﬁ > 0 depends only on g and §. Now
we have

P(EnZ, <y) Ps(Yn(ZnoX,)—y—e) <0) (.- Eq.(A.10))
f(Zn, Xn)] < Elf(3n, Xn)] + ()
8(Tn(3n0Xy) —y—e¢) <e)+nu(e) (. the definition of g)

Endn Sy +2¢) +mn(e) (- Eq.(A.10)).

ININ N IA

—~ o~
A

Set I, := EannE;';. Then, by Lemma A.2 we obtain
P(EnZn <)
< P(mindiag(I) <) + P(E:30 <)+ —=(v/ZIogm +2) + 10
for every b > 0. By an analogous argument we also obtain
P(EnZn <)
> P(mindiag(T,,) < b) — P(E,3, <v) — %(\/QIOgm +2) — nu(e)



1482 Y. Koike

Therefore, we conclude that

yeR™

< P(min diag(T’) < b) + %(\/2 Togm +2) + 1 (€)

Taking

1/3

e = (ViogmlITullZ B [1XalE 1Al ]) v
maxx {(log )1 ~H T, 1 E [+ 1)1
veN,(q)

1
” ” ToTen+2
(L 1Zall2 1302 ) a0l |}

we obtain

limsup sup |P(E,Z, <y)— P(E,3, <y)| < limsup P(mindiag(T,) < b)

n—oo yeRm n— 00

by assumption. Letting b — 0, we complete the proof. O

A.3. Proof of Lemma 3.1

Take a number € > 0 arbitrarily. For any y € R™, we have
P(Y, <y) < P(logml||Yy, —ZnZulle.. > )+ P(EnZn <y+e//logm)

< P(\/logm|Y,, —E,.Z,le., >¢€)+ P(E3n < y+e/\/logm) + pn,
where

yeR™

Therefore, Lemma A.2 yields

P(Y, <y) < P(\/logm||Y, —E,Zule.. >¢)+ P(Endn <)

c (v/2logm + 2) + P(mindiag(I',) < b) + pn
m
for any b > 0. An analogous argument yields

P(Y, <y)> —P(\/logmHY = EnZnlle. > )+ P(En3n <)

(v/2logm + 2) + P(mindiag(T',) < b) — pp,
blog

so we conclude that
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Slﬁ{p |P(Y, <y) — P(En3n <y)| < P(Vlogml||Y, —E,.Z,|le.. > ¢€)
yeRM

2e
+ ——(v/2logm + 2) + P(mindiag(T',,) < b) + pn-
\/—(v )+ P( ( )

blogm
Now, by assumption we obtain

limsup sup |P(Y, <y) — P(E,3» <y)|

n—oo yER™

2e 2
<= (V24 >+limsu P(mindiag(I',,) < b).
<z ( s ) + limsup P(min diag(T) <b)

We first let ¢ — 0. After that, we let b — 0. Then we conclude that

limsup sup |P(Y, <y) - P(E,3, <y)|=0.

n—oo yeRm™

This completes the proof. O

A.4. Proof of Proposition 3.1

The proof is analogous to that of Theorem 2 from [17] (see also the proof of
Theorem 4.1 from [19]). Setting

~

T
I, =2,¢6,2,, r,:=

~ ot
= -
nCnZy Ly 1= ZEn W, Ly 1=

[11)

we have
P(En3n < y|F) = P(0}/ 260 + pn < y|F)
and L R
P(En3n < y|F) = P(L/%€, + fin < y|F)
for all y € R™, where &, and £, are two independent m-dimensional standard
Gaussian vectors jointly independent of F. Therefore, it is enough to prove

sup |P(CY/2€), + iy < y|F) — P(CY26 + pn < y|lF)| =7 0
ye m

as n — oo. In addition, thanks to the condition (3.7), it suffices to prove the
above convergence on the set Q, := {diag(I',,) > b} for an arbitrarily fixed b > 0.
More precisely, it is enough to prove

P (szb n { sup [P(EYE, + i < y|F) — POCY260 + 1 < 4l F)| > n}) S0
yeR™

as n — oo for any n > 0.
We first prove

P (ﬂ n { sup [P(TY26, +fin < ylF) = POCY26, + pn < y|F)] > n}) ~0
yeR™
(A.12)
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as n — oo for any 1 > 0. By Nazarov’s inequality we have

P26, 4 < )~ PC 6 < o1)] < Al (/oo +-2)

a.s. on the set € for every y € R™. Since the function y — |P(I‘711/2£n + fn <
y|F) — P(F,l/2§n + pn, < y|F)| is a.s. right-continuous, the above result yields

Slﬁ{p |P(F71L/2£n + fin < Y|F) — P(F}L/an + i, < Y| F)]
ye m
< M"_TIZ”HZOO (‘ /210gm—|—2)

a.s. on the set . Hence (A.12) follows from the assumption (3.18).
Thanks to (A.12), it suffices to prove

P (n n { sup |PEY2€, + fin < yIF) — P(CY26, + fin < yIF)| > n}) -0
yeR™

as n — oo for any 1 > 0. However, since we have

sup \P(TY2€ + fin < y|F) — P(Y26, + i < y|F)|
i
= sup |P(T}/%€, <y|lF) - P(LY2€, <yl F)|,

yER™

this amounts to proving

P (Qb n { sup |P(FY2€, < y|F) - PTY?6, < 4l F)| > n}) S0 (A3)
yeR™

as n — oo for any n > 0. To prove this claim, we take a number £ > 0 arbitrarily
and set 8 = e 'logm as in the proof of Theorem 3.1. Then we define the
function ®5 : R™ — R by (A.9). We also take a C*° function ¢ : R — [0, 1] such
that all the derivatives of g is bounded and g(¢) = 1 for ¢ < 0 and g¢(¢t) = 0 for
t>1.

Fix a vector y € R™ arbitrarily and define the function ¢ : R™ — R by

p(w) = gle " @s(w —y —¢)), w e R™.
Then we define the stochastic process ¥ = (¥ (t)):e[0,1) by
() =E [@ (x/if“}/?f; +V1- tri/zgn) \f] . telo,1].

We evidently have

A (t) x T
= E |03 (VIT)/2¢, + VT —11)/%, o F
i e (VITNg, + V) |2t - =S|
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for all t € (0,1)

with probability one. Then, Stein’s identity yields

%}E” = B [05% (VIT}/2¢, + VT =1T}/2%,) [T - Tu) 17|
for all ¢ € (0,1)

with probability one. Consequently, we obtain
dv(t
()' it

Pl () ] - 2 o () 1] < [
< Ce™2(logm)| Ty = Tule,

by Lemmas 3—4 of [17], where C' > 0 is a constant which depends only on g.
Now we have

P (T}, < yF)
< P (®4(T}/%¢, —y—) <OIF) (. Eq.(A.10))
< B [ (T1/%¢,) 1F| < B[ (T4/26.) 1F] + Ce 2(10gm)|IT — Tl
< P (94(1Y26, —y — 2) < =|F) + Ce*(logm)||T — Dol
(. the definition of g)
< P (T} < y+22) + C="2(logm) [T — Tulo.. (- Ea.(A10)).
Since we have on the set €,
2
P(TY2¢, < y+ 2:|F) < P(TY/2%, < y|F) + 781_)(\/210gm +2)
by the Nazarov inequality, we obtain
P (fi/%; < y|f>
2 .
< (0?60 <ylF) + - (v/2logm +2) + 0=~ (logm) [T — T

NG

a.s. on the set ;. By an analogous argument we also obtain

P (T}, < yIF)

> P(T}/%, < 417) = Z(v/2logm+2) = C=*(logm) [F, = ..
a.s. on the set ;. Therefore, we conclude that

\p (f}/?g; < y|f) — P(Y/%¢, < y|F)
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2 ~
< f(\/Zlogm +2) + Ce 2 (logm) Ty — Tnlleo

a.s. on the set {2y Since the function y ‘P (f}lﬂﬂl < y|.7:) - P(P}L/an <y|F)

is a.s. right-continuous, the above result implies that

sup |P (T}/2€, <y|F) = P(T}/ ¢, < yl.7)|

yER™
2 ~
< f(m logm + 2) + Ce~2(logm)|[ T — Tnlleo

a.s. on the set €. Hence we deduce

P (ﬂ n { sup [P, < y|F) — PTY2%, < y|F)| > n})
yeRWL

2 ~
<P (f(\/Qlogm +2)+ 08_2(logm)||Fn —Tulle. > 17)

for all n € N. Now, take a number a > 0 such that 22(v/2 +2/,/Iog2) < Z and
set € = a/+/logm. Then the above inequality yields

P (Q n { sup |P(EY2€, < y|F) - PTY?6, < 4| F)| > n})
yER™

C ~
<P (E(log m)2||[Ty — Talle. > g) .

Therefore, (A.13) follows from the assumption (3.18), which yields the desired
result. d

A.5. Proof of Proposition 3.2

We follow Step 3 in the proof of Theorem 2 from [41]. First, by assumption and
Theorem 9.2.2 of [26] there is a sequence &,, of positive numbers tending to 0
such that

P (&) <en,  suwp|P(L, <)~ P(If<z)|<e,
z€eR

for all n € N, where

En = {sup |P (T} < 2| F) — P(T; < a|lF)| < an}.
z€R

Next, let us denote by g/ the F-conditional quantile function of 7. Then, on
the set &, N E,, we have

P (T < gl(a+e,)|F) 2 P (T} < ql(a+e,)|F) —en=a.
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Hence, on &, N E,, it holds that ¢ (a) < ¢ (a + €,,). Therefore, we obtain

P (T, < qy(@)) < P (T < gl(a+en)) + P(E5) + P(Ey)
< P(T! < gl (a+¢n)) + 260 + P(ES) = a + 3¢, + P(ES).

Meanwhile, for any w € &, N E,, and any z € R such that P(T} < z|F)(w) > «,
we have

P (T} < gf(a — &) (@)|F) (w)
=a—¢e, < P(T) <z2|F)(w)—e, <P (TnJr < 2| F) (w).

Hence it holds that g}, (o —&,)(w) < z. This implies that ¢’ (a) > ¢f (a« —¢&,,) on
&, N E,,. Therefore, we obtain

P (T, < qp(a)) = P (T, < gl (o —en)) = P(E7) = P(EY)
> P (T} < gl (a—¢,)) —2e, — P(ES) = a — 3¢, — P(ES).

Consequently, we obtain P (T}, < ¢(a)) — a as n — oo. O

Appendix B: Proofs for Section 4
B.1. Proof of Theorem 4.1

We first introduce some notation. For two sequences (x,,), (y5) of numbers, the
notation z, < y, means that there is a universal constant C' > 0 such that
Tn < Cyy, for all n. Here, the value of the constant C' will change from line to
line. We define the d-dimensional processes A = (A¢):ep0,1] and M = (M¢)sefo,1]

by t t
&Z/m%, wz/%ws
0 0

for every t € [0,1]. If & = (é¢)ie[o,1) is an r-dimensional (F;)-progressively

measurable process such that fol [¢ell7,dt < oo a.s., we define

t T t
/¢S-st :=Z/ $*dB*
0 a=1’0

for all t € [0, 1].
For every n € N, we set I, = I}) := (tp_1,t] for every h = 1,...,n and
define the filtration (Gf'):cj0,1] by Gi := Fo and

g? = ‘Fth—l
when ¢ € I, for some h = 1,...,n. Then we define the process (s¢)¢ejo,1) by

s = E[04|G}], t € [0,1]
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(we subtract the index n from ¢; although it depends on n). For all¢,j = 1,...,d,
we define the symmetric H®2-valued random variable u% by

uld =vn Y fiiln,
h=1
where fi = Sym (gi‘ ®¢7 ) We note the following result:

Lemma B.1. Given an inder n € N, let & = (&)iejo,1) and 1 = (0t)iefo,1) be
(Gi")-adapted r-dimensional processes such that sup,e(o 1 E[||€:17, +17:]|7,] < oo
Then & @ nly, x1, € Dom(8%) and

th t th t
S2(E@nlnxr,) = / ( &s -st> Ut'dBt-i-/ ( & - st> Nt - dBy
th—1 th—1 th—1 th—1

for every h=1,...,n.

Proof. Set S := {(s,t) € [0,1]? : s < t}. For any ¢ € [0, 1], the process

(Esnelr, x1)ns (5, 1)) sef0,1]

is evidently F-predictable and H-valued, so it belongs to Dom(¢d) and

t
S Lrxtns(:0) = mn, (0) [ €1, (5)- dB,
0
by Proposition 1.3.11 of [55]. Moreover, from the above expression the process

(0(EneL (1, x1)ns (5 1)))eelo.n

is evidently F-predictable and H-valued. Therefore, Proposition 1.3.11 of [55]
and Proposition 2.6 of [58] imply that £ ® n1(s, x1,)ns belongs to Dom(6?) and

th t
62(5 (2 nl(lh,XI;,,)ﬂS) = / ( gs . st) ne - dBt
th—1 th—1

Similarly, we can show that £ ® 717, x1,)nse € Dom(§?) and

th t
52(5 ® nl(I;LxI,L)mSC) = / </ Ns * st) & - dBy.
th—1 th—1

This completes the proof. O

Thanks to Lemma B.1, we have u%¥ € Dom(§?), so we can define the variable
M7 by
M = §%(uid).

n
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Next we prove some auxiliary results. We begin by noting some elementary
facts which are frequently used throughout the proof. First, for any random
variable £ and any p, ¢ € (0,00), it holds that

€1 = 1154

Second, for two random variables &, 7 and numbers p € (0,00), ¢ € (1,00), we
have

1€nllp < 1€llgplInll 25 p-

This is a consequence of the Holder inequality. These facts will be used without
reference in the following. We also refer to two inequalities which are repeatedly
used throughout the proof. The first one is the following integral version of the
Minkowski inequality:

Proposition B.1. Let (X, A,m) be a o-finite measure space and f: X x Q —
[0, 0] be an A ® F-measurable function. Then we have

\ [ remas)

Proposition B.1 is an easy consequence of the standard Minkowski inequality
via approximating the function f by simple functions (see also Proposition C.4
of [37]).

The second one is the following Burkholder-Davis-Gundy inequality with a
sharp constant:

E /X (@) [pm(dz)

for all p € [1,0].

Proposition B.2 (Barlow & Yor [3], Proposition 4.2). There is a universal
constant ¢ > 0 such that

sup | My
0<t<T

< evp a0y

for any p € [2,00) and any continuous martingale M = (Mj).ep0,7) with Mo = 0.
We then prove some auxiliary estimates.

Lemma B.2. There is a universal constant C' > 0 such that

h1 th t
/ / Ns * ng §t . dBt
h=ho+1"tr-1 th—1 »
pvVhi — ho
<C sup  [[&ellgpe. sup 0| ey 22
n th <t<tp, thy<s<tp,

for any p € [2,00), ¢ € (1,00), n € N, hg,h1 = 0,1,...,n such that hg < hy
and any r-dimensional (F;)-progressively measurable processes & and n such that
supye(o,1) (1€ellp + [Iellp) < 00 for all p € [1, 00).
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Proof. Set ¢ = q/(1 — q). By Propositions B.1-B.2 we have

hy th t
> / / N dB, | & - dB
th—1 th—1

h=ho+1

P

2

h1 th t
svi|y X [ lals ([ neas)
th—1 th—1

h=ho+1 »
ha th t 2
<\p X [Nl neas]
h=ho+1"th—1 th—1 a'p
hi th t 2
<p| Y €12, 0, / Il ds| dt
h=ho+1“tr-1 th—1 a'p

Y h1 — ho
S —————— Ssup ”fthp,Zz Sup ||775||q’p’@2-

n thy <t<tn, thy <s<tn,
Hence we obtain the desired result. O

Lemma B.3. There is a universal constant C > 0 such that

p
max Sup | Hft - E[£t|~7:th71]”2p742 < C\/; Sup L HDu£UH2P,€2

Ish=n—lielty q,thia 0<u<v<

for allm € N, p € [2,00), r € N and any r-dimensional (F;)-progressively
measurable process & such that § € D1 o (R") for all t € [0,1].

Proof. By the Clark-Ocone formula (Proposition A.1 of [56]) we have
t
g =EgIF, )+ [ EDGIR)-dB as
th—1

for all t € [tp—1,tpt1] and a = 1,...,r. Therefore, it suffices to show that there
is a universal constant C’ > 0 such that

r t 2
max sup > ( E[D£2|Fy -dBS>

lghgnilte[th—lathﬁ»l] a=1 th—1
P
<O sup |Dul,
N o<u<v<i ’
for all n € N and p € [2,00).
Fixh=1,...,n—1and ¢ € [th_1,tn+1] arbitrarily. By It&’s formula we have

a=1

> ( / " EID.IF)- st>
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:2/;- Z(/h E uftl‘F] dB>E[Ds£ta|~Fs]dB

1a=1

[ S IE DRI b =1,
th

—1la=1

fOI' every 7 S [thfl,t]. The Lyapunov inequality and PI'OpOSitiOH B.1 yleld
L[, < L 1 Duéoll3
su .
= ”oguggg et

Meanwhile, we have

LI, < VB Z/
th—1

2

ds

a=1

( / E[D.£8|F.] dB>E[D§b)€?IfsJ
p

(-.- Proposition B.2)

1/2
r T
< Vb / ( / E[D.&f|F.] - ) YD BIDPEF P ds
th—1 g—1 a—1 b— b2
(.- Schwarz)
T r s 2
< |p / Z( E[Dufﬂfu]dBu) E[ID&Z 7] | ds
th—1 ||g=1 th—1 p/2
(. Lyapunov, Proposition B.1)
T r s 2
< p/ Z( E[Du§§|]-'u]-dBu> |12 [I1Ds&:li7, 175 ], ds
th—1 ||q=1 th—1
p
(.- Schwarz)
T r s 2
< |p SUP ||Du€v||§p,£2/ Z E[Dy& | Ful - dBy ds
0<u<w h=1 |la=1 th—1
p

(". Lyapunov).

Therefore, defining the function g : [tp—1,t] — [0, 00) by
2

r r 2
g(T) = Z (/ E[Dagﬂf.s] : st) y TE [th_1,t],
a=1 th—1

p

we obtain

2 T
o)< o swp IDulye + Cop s 1Dl [ Valolds

0<u<v<1 <u<Lv<l1 th_1
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for any 7 € [tp—1,t] with some universal constant Cy > 0. Hence the Bihari
inequality (cf. Section 3 of [8]) yields

V2 Cop
g(t) < == sup [|Du&ll3,, + 5y . SUP [1Duoll3p.e,
N o<u<wv<1 0<u<v<1

This implies that the desired result holds true with the constant ¢/ =1/ V2 +
Co/2. O
Lemma B.4. Under the assumptions of Theorem 4.1, it holds that ||s} ||2p.e, <
0% Nl2p,en = ||E“H1/2 foranyt€0,1],i=1,...,d and p > 1.

Proof. The last equality is evident from the identity ||lof'[|7, = Xi’. Meanwhile,
the Lyapunov inequality yields

r

512, = > (£ [oi167]) <ZE[ ) 1g0] = £ (ot Iy, 197 -

a=1

Therefore, the Lyapunov inequality again yields

E(Is12] < B [(E[lo 17, 190])"] < 2 [le311]

This means [|s;"[|2p.e, < [|07 [|2pe5- O

Lemma B.5. Under the assumptions of Theorem 4.1, for alli =1,...,d and

€ [0,1], 6% € Dooo(R") and Dysk, D45t are G-measurable for any s, t €
[0,1]. Moreover, the following estimates hold true for any p € [1,00) and s,t €
0,1

[0, 1]:

1Dest [l2p,e. < [1Di0; ll2p,e (B.1)
[ Ds,¢55 ll2p,62 < [ Ds ey, [|2p,055 (B.2)
ka (a) < ykk 1/2
Z< D, < max |25 Dot ]y, (B3)
p,l2
ka 1b (a,b) ;. kk i
1<kl<d Zlgg“ e D Sl@/??dnz || HDSthLH?,sz' (B-4)
a —
L2

Proof. First, by Proposition 3.1 of [38] ¥ € Dy o(R") and we have
Dga)dz =F [D(a) i |g :| 1[0 ([nu]— 1)/n]( )

and (a;b) i (a,b)

DSk = [D oGy ] Lio,(fru]—1)/n)2 (5, t)
for any s,t € [0,1] and a,b = 1,...,r. In particular, D", D; s’ are G-
measurable. Moreover, (B.1)-(B.2) can be shown in an analogous way to the
proof of Lemma B.4, which also implies that ¢¢ € Dy o (R").
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Next, the Schwarz inequality, Lemma B.4 and (B.1) yield

2
o] =[5 (Serine)
.l b 1 \a=1
P
1/2 y
<[k s Desi L, | < IZEEIL 1200y, -
and thus we obtain (B.3).
Finally, the Schwarz inequality, Lemma B.4 and (B.2) yield
2
T T
Z gka Ibp ab) i _ Z Z gkagth(a b)gzc
s,t U
a,b=1 c=1 \a,b=1
p,l2
P
< liss eallst Nl l1D3 s llea 1, < (11165l llst Nl [, 103 5
Ss 1le211St 112 stgu 123 = |[lISs e 1St 1es stgu 3p,L2
1/2 1/2
szkH HE”H HD to-uH3p7fza
so we obtain (B.4) and thus complete the proof. O

Now we turn to the main body of the proof. We begin by evaluating the
approximation error between /n([Y?, Y], — [Y*,Y7];) and M/7.
Lemma B.6. Under the assumptions of Theorem 4.1, it holds that

A AT !
i J <_
s VAR AL < 2 mas s B,

for any p € [1,00) and n € N. Moreover, there is a universal constant C > 0
such that

| v A
p

1

fp sup ||Duuz;||2p,e2)

C
< == swp [0l (\/ﬁ sup |
0<t<1 2p 0<u<v<l

N 0<s<
foranype[2,00),neNandi,j=1,...,d.

Proof. The first claim is an immediate consequence of the Holder inequality
and Proposition B.1.

—_—n
To prove the second claim, by It6’s formula we decompose /n[Mi, AJ]; as

t
ValME, ATy WZ {/ (/ /ﬂ;d8> oy - dBy
h—1 th—1
th t ) .
+/ (/ oy -st> ,ugdt}
th—1 th—1
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—. T ij
= 1Y 4+ 119,

By Propositions B.1-B.2 we have

2
th ) }
T4, < V/ip 2) (/ d) loi |2, dt
h—

th—

< /2 s el s ot Lo

In the meantime, we further decompose IIij as

I — \/ﬁhil {/: (/t: ol .st> E |ulg; ] at
) (= ] o

= 117 (1) + 117 (2).

p

Since E [mgy] is F3, _,-measurable for ¢ € I}, we have

I (1 \FZ/t </t (tn_1,t]($)E [M{IQZ"} ai’-st> dt.

Therefore, the stochastic Fubini theorem (e.g. Corollary 5.28 of [50]) yields

th th ) .
I \/_Z </ Lty _1(s)E [uiIQZ’] dt) o' - dB,.

th—1 th—1

Hence, Propositions B.1-B.2 and the Lyapunov inequality imply that

2
[ (]|, < vop Z/t (/ (tnr.t) (5)E {uilgt"} dt) lo¥ 117, ds

» . -
<1/ = sup ||uill2p sup ||og ||l2p,es-
N o<t<1 0<s<1

Meanwhile, Propositions B.1-B.2 and Lemma B.3 yield

p

th

el < vads [* [ otan) -z ] @
th—1 th— 2p 2p
th .
<pz / lot2.ds| dt sup Dupllzpee
th_1 th_1 2% <u<v<1
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< P i D. i
< sup [|o¢ ll2p.e,  sup ([ Dupsll2p,e,-
N 0<s<1 0<u<v<1
Combining these estimates, we complete the proof. O

Lemma B.7. Under the assumptions of Theorem /.1, there is a universal con-
stant C' > 0 such that

Mi M| — [V, Y], ) — MY
3 J — —
o [V (W0, = 0t ) - o]
3/2
P ii111/2 i
< ro it D, o)
< O i 2, I, s, o DDt

for everyn € N and p € [2,00).

Proof. By Ito’s formula we deduce the following decomposition:
n
1

Vi (IME ML) = [V, Y7, )

n th t ) ) th t ) )
N / / ol - dB, a;'-dBt+/ / o -dB, | ol - dB,
h=1 th—1 th—1 th—1 th—1

=T +II7.

Propositions B.1-B.2 and Lemmas B.3-B.4 yield

n th t
’ \/ﬁz (/ ol -dBS> (Uf — gZ) - dBy
h=1 th—1 »

th—1

n_o oty t . 2
s\ [ ([ ean) Jot
h=1"th-1 th—1 2

P
t . 2
/ o) - dB,
th—1

2p

ok = 15t

n th

<vm 3 |

h=1 th—1

<p s [0
0<s<1

D n1/2 ;.
< =—— sup ||X¥ su Dyo! ¢
\/ﬁ 0§521|| s Hp Ogugggln u v”2p>2

sup |7 —<f'[|;
p0<t<1 2p,ta

and

n th t _ _ _
iy [T ([ e -d) s s
h=1Yth-1 th—1 p
n th t . . 2 )
< v\ / / (of — ) -dB. ) s 3,
h=1Ylh-1 th—1

p
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\/‘/th 1
3/2

p i
S sup ||DuUz]; H2p,fz sSup ||
0<s<1

~ \/ﬁ 0<u<sv<

Hence we obtain

19 — fZ/tM(/ dB) dBtp

2

J: J:
Us — Gs

2/\

2
‘ ds
Lo

521136, 4t
2p

n
th 1

ii||1/2
=20

3/2

p . 11/2
<=—— max su Do’ ¢, sup [|XY .
NG 1<Z]<d0<u<€<1 1Ducllzp.s2 0§s§1 H ® H
Analogously we can prove
th
119 — /n Z / ¥ - dB, -dB,
th—1 th—
P
3/2
pe i nl/2
<=—— max su Do’ ¢, sup [|[XY .
Vn 1<ZJ<do<u<IZ<1 [P0 20, ogsI; H s Hp
Consequently, the desired result follows from Lemma B.1. O

Next we establish some properties of M which are necessary for the appli-
cation of our main theorem. The first result gives the moment bounds.

Lemma B.8. Under the assumptions of Theorem 4.1, there is a universal con-
stant C > 0 such that

iJ < i
(fax M7, < Cp fax, sup 12811

for allm € N and p € [2,0).
Proof. This is an immediate consequence of Lemmas B.1-B.2 and B.4. O

Second, we prove the Malliavin differentiability of M and compute its Malli-
avin derivatives. For this purpose we prove an auxiliary result. Recall that we
have Dy 2(H) C Dom(d) by Proposition 1.3.1 of [55].

Lemma B.9. Let k € N.
(a) Suppose that u € Dy o(H) satisfies D( N Dy € Dom(d) for all j =

J

1....k, a1,...,a; € {1,...,r} andtl,..., 5 €10,1] and

/ N0 (Dey.y) |17, dty - dt | < 0. (B.5)
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Then we have 6(u) € Dy 2 and
Dy, 06(w) = 6 (Dyy,gpu) + kSym (DF 1) (1, ..., 1) (B.6)

for all ty,... .ty €[0,1].
(b) If u € Dy o(H) is F-adapted, then 6(u) € Dy 2 and (B.6) holds true for all
t1,...,tk € [0,1}

Proof. (a) We prove the claim by induction on k. When & = 1, the claim
follows from Proposition 1.3.8 of [55]. Next, supposing that the claim holds true
for k = K € N, we prove the claim for £k = K + 1. From (B.5) we have

! 2
EUO 16 (D (Diy....t )7, dt| < o0 (B.7)

for all ¢1,...,tx € [0,1]. Moreover, by the assumption of the induction (B.6)
holds true for all ¢1,...,tx € [0, 1]. Now let us take t1,...,tx € [0,1] arbitrarily,
and set v := Dy, ;,u. Then, by assumptions and Proposition 1.3.8 of [55],
d(v) € Dy 2 and Dyd(v) = §(Dyv) + v(t) for all ¢ € [0, 1]. Therefore, by (B.6) we
have Dy, . 4, 0(u) € Dy 2 and

Dy (Dy,....16(w)) = 6(Dyv) 4+ v(t) + KDy Sym (D) (t1,..., tx)
=0 (Dyy,...tx1v) + (K +1)Sym (DKu) (t1,...,tKg,t)
for all ¢ € [0,1]. This implies that the claim also holds true for k = K + 1 and
thus completes the proof.

(b) This claim is an immediate consequence of claim (a) and Propositions
1.2.8 and 1.3.11 of [55]. O

We then obtain the following result.

Lemma B.10. Under the assumptions of Theorem 4.1, the following statements
hold true for anyn € N and i,j=1,...,d:

(a) f¥ € Do o(H®?) and it holds that

D £ (u,v) = (D(“) @) +ch @Dl + DMl @k +¢) @Dk
(B.8)
and
D(a b)f”(u v)
1

= 5 (Dl @i+ DWWt @ DPs + DYt @ DI+t @ DY
+Dgatb)<u ®¢+ DWW @ DVt + PV @ D@t ¢ - ®D(a b) 2)

(B.9)

forany a,b=1,...,7 and s,t,u,v € [0, 1].
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(b) i € Dooo(H®?) and u"(s )%, DU (t, ) € Dom(), D% uid e

Dom(62) for any a,b=1,...,7 and s,t € [0,1].
(¢) MY € Dy o and we have

DM = (D) + 25 (5, ))
and
Dgizt,b)MTiLj — (S (D(a ,b) 2]) +25 (D(a) 7,]( )b)
+ 26( )y (s ,-)“‘) + 2u (s,1)?°
for any a,b=1,...,r and s,t € [0,1].

Proof. Claim (a) follows from Lemma B.5 as well as Lemma 15.82 and Theorem
15.83 of [37]. Claim (b) is a consequence of claim (a), Proposition 1.3.11 of [55]
and Lemmas B.1 and B.5.

Now we prove claim (c). By Lemma B.1 we can rewrite M as

M%ﬂﬁZ/&ﬁwmmmd& (B.10)
h=1"1In

im (a), fi(,t) € Dy oo(H) for all ¢ € [0,1], so Lemma B.9(b) implies
that 8(f7(-,t)11,0,4) € D2,2(R") and
Vo(fid (-t t)11,n0.4) = 0(D (a)fvi,j('at)lfhﬁ[O,t]) + fﬁj(uvt)a'llm[o,t] (u),
Dq(ﬁ{;b)(;(fw( ) 1r,00,4) =
5(D7(f,1{;b)f”( lr,n0.4) + DP) £ (u, t) 11,00, (w) + Dga)fij(%t)b'llm[o,t] (v)

for all a,b = 1,...,r and u,v € [0,1]. These formulae imply that the pro-
cess ( (fij( t)))tejo,1) belongs to Dy o(H ), so Lemma B.9(b) again implies that
f[ St 11,n0,4) - dBt € Da o and

From claim (
t

DW(MW(MWMMQ
Ih

= [ DS (-)11,m0.0) - dBe + (7 (-, u) L1, mjo.u)) L1, (1)
I

5(DL® () 1,00,) - dBy +/ F(u,t)* 15, mp0.4 (u) - dBy
I Iy
+ 8(f5 (-, u) 11, Aj0,u) 11, (1)

=/ ( t Dia)fﬁj(s’t)d3s>'dBt+5(f;ij(ua')“'hhxfh(ur)) (B.11)
In,

th—1

and

Dﬁ( WW)%W»MQ
Iy
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:/1 DD S(f1 (- )11, mp0,0) - dBe + DS (7 (- w) L, mjo,u) L1, (1)
.
+ DES(f (o) "Ly o.) 1, (0)
:/1 {5(D7(f{;b)fﬁj(',t)lIm[o,t]) +Dq(;b)fﬁj(uvt)a'llm[o,t] (u)
.
+D 7 (0,0)" 11,00, (U)} -dBy
+ {8 7 () L rpo) + £ (0,10 L1, 0,0 () 11, (1)

+ {8(DE £330 "L g0 .0) + S (1, 0) ML, 0,0 () } 11, (0)

t
= / { D) i3 (s,¢)dBs + D® £ (u, 1) 11, Ao, (u)
I,

th—1

+ DO £33 (0, L, oo <v>} -dB;

+ 6D £ (- u) L, mpo,u) 11, (W) + 3D £ (-, 0) P11, 000,011, (0)

+frizj('uﬂv)ablfhxfh(u?U)
t
-/ { [ oy :’f<s,t>st} By + 8(D® £ (4, ) L1y, ()
In th_1

+ 6(D’L(l,a)f’l”ilj (U’ .)b'lIh xIp ('Ua )) + frzbj (u’ v)ablthIh (u7 U) (B'12)

for all a,b = 1,...,7 and u,v € [0,1]. Now, noting that formulae (B.8)—(B.9)
can be rewritten as

D) £37 (u,0) = Sym (DI @ 7 ) (u.v) + Sym (¢ @ DIV ) (u,v)
and
Dgflt’b)fflj(u, v) = Sym (ng‘t’b)ﬁ' ® cj'> (u,v) + Sym (Dga)§i' ® Dt(b)cj') (u,v)
+ Sym (ng)ci' ® Dga)cj') (u,v) + Sym (c& ® D‘Eﬁgb)cg’) (u,v),

by Lemma B.1 we obtain

t
2 / D i1 (s,t)dB, | - dB, = 6% (D 1), (B.13)
Ip, th—1
t
2 / { DY £ (&t)st} B, = % (D) 117 (B.14)
Iy, th—1

Now claim (c) follows from (B.10)—(B.14) and the assumptions of the lemma.
O

Third, we prove the Malliavin differentiability of ¥ and €,, as well as establish
moment estimates for their Malliavin derivatives.
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Lemma B.11. Under the assumptions of Theorem 4.1, for any i,j =1,...,d
and t € [0,1], By € Do o and

.. i111/2 .
||DUE;J||Z7,Z2 S 21£%§d HE;ZHP ||Du0—i ||2p,227

ii111/2
1w, [lp.ez < 2(@?@”2?‘@ 1Duw0? ll2p.e2

N LY N

for any p € [1,00) and u,v € [0, 1].

Proof. Since XY = Y27 0i%7]%, Theorem 15.78 of [37] implies that X €
Dy, o for all t € [0,1] and

DX = Z (a{“Daia + JZ“DJ{G>
a=1
and
D2E? = Z (a{“D%i“ + Da{a ® Dol + Dol @ DU{G + J§GD2J{G) .

a=1

In particular, we have
1045y < 37 (1011008 ey + 11 1D 1)
a=1

<\ EPNDoy |le, + \/Zi |1 Dol e,
and

||DU7UZ;J ||[2
s
<> (161D w00t s + 1Du0? e Doi® s + 1Duri® e | Do e
a=1
+ 10t | Duo e )

<SP Du ol lle, + 1Duc? |1 Dot ey + 1 Do lles || Duo |le,
+ Eii‘lDu7v0g“‘€z

by the triangular and Schwarz inequalities. Hence we complete the proof by the
Holder inequality. O

Lemma B.12. Under the assumptions of Theorem 4.1, &, € }D)Q)OO(RdZXdz)
and

o o a9 N
Dy (=D <8 max  sup [S7]302] Duc? Ilap.e..
1<i,5<d 0<s,t<1
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i—1)d+7,(k—1)d+1
Dy @~ DS =Dy,

<8 o 5 Dyol
<8 gnax | S E 2 1 Duwor lap.ea

i g k-
+ 241<%a§<d0<§128 - 124 ||2pHDuUt ||4p,€2HDvUT ||4p’l2

foranype[l,00),neN, i jkl=1,...,d and u,v € [0,1].
Proof. By Remark 15.87 of [37], [, $dt € Dy o and

D( / z?’m&): DYYdt,  D? < / 2;’%): D2yt
Ip Iy, I Iy

for any ¢, = 1,...,d and h = 1,...,n. Therefore, by Theorem 15.78 of [37],
(i—1)d+j,(k—1)d+1

the Schwarz inequality and Proposition B.1 we obtain &;, €Dy
and
D, €= DT E=DE] <4 max_ sup IIE”“HszD S8 |2p,t2

1<i,g,k,l<d g<s,t<
| Dy @G D=

<4 _max_sup ([SF 2| DL, apes + IDuEE lapts| Do 129
<i,5,k,1Sd 0<s,t <1

forany p > 1,4,5,k,0=1,...,d and u,v € [0,1]. Now the desired result follows
from the Schwarz inequality and Lemma B.11. O

Now we proceed to checking the conditions of Theorem 3.1 in the current
setting.

Lemma B.13. Under the assumptions of Theorem 4.1, there is a universal
constant C' > 0 such that

2 gid kL (i—1)d+j,(k—1)d+l
max D“MY - ¢
1§i,j,k,l§dH< non >H®2 "

p

gci( max, s [S]5° s [[Dugo

Vvn \1<i,j<d g<s<1 "H4p,€2

(2 SN “Z'“'“”Qp”D g ”4%)

+c\/; max sup (D ap |53

1< J<d0<s t,u<l

for anyn € N and p € [2,00).

Proof. By Lemma B.10 the desired result follows once we verify the following
statements for all p € [2,00) (note (A.7)):

H<62(D2u1‘]) kl H®2H
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p i
S L e L] P

mx, s 2, Do, ) (B9

1<i,k<dp<s,
5(Dufl P D.ot A2 (B
(S(Dul) ) ]|, S max  sup |[Dsoy|lap,e, 27|27, (B.16)
N 1<4,j<d 0<s,t,u<l
ottt |
p 3/2
< D, ZN . B.17
S /% s, s (Dot e, sup 15715 (B.17)
We first verify (B.15). We can rewrite (62(D?u#), uk!) yeo2 as
(6*(D*u¥),uf"y ges = n Z / (a b)f”lfh, x 17, ) ¥ (s,t)* dsdt
h,h'=1a,b=1"InXIn
— / DY i1, 1 ,h,) aclbdsdt,
h’ Lab=171nx1In

where the last identity holds true because (p, Sym(¥)) go2 = (@, V) go2 for any
@, € H®? if ¢ is symmetric. Then, noting that f¥(u,v) is F4,,_,-measurable
when u, v € Ij, by construction, Corollary 1.2.1 of [55] yields

n
(0*(D*u), ulh) gos = nz Z /I . Dgatb)fljllh, X 11h,)§§a§ébdsdt.
h=1h":h'>hab=1"1r"In

Moreover, since g, is J;, ,-measurable when u € Iy, using Lemma B.1 and
Exercise 2.30 in Chapter 3 of [39] repeatedly, we obtain

(0*(D*uf), up) pro

—nz / 5 [ S ctneped i, 1y, | dsd.

InxIn p, h’>h a,b=1
Hence Proposition B.1 yields
18> (D*ui), up) ez |,

r

n

2 ka 1b y(ab) pij

<o [ w3 denl i, <, | | dsar
h=1"InxXIn ||pr.hr>h a,b=1 ,

Now, from (B.9) we infer that

S bt nl? £ (u, )

a,b=1
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{ Z ket Dl | @ o 4 (Z cf“Dﬁ‘”;i’) ® (Z ctlbD,Eb)Q%")
a=1 b=1

a,b=1

3

+ ( <”’D§b)<f;> ® <Z <§“D§“)<5'> tae | Y LDl
b=1 a=1

a,b=1

I

+ C bD(a b)§] ® Cf; + (Z gfaDga)CZ-> ® (Z géngb)gii).>
b=1

a,b=1 a=1

() o (Semmee ) v o £ anermiin
b=1

a=1 a,b=1

Hence Lemmas B.2 and B.4-B.5 yield

2 Ib ab ij
sip | 3 Z ket DY fii1y % 1y,
0S8, t<1 i ip>n a,b=1 p
p T
Z ka _lb ry(a;b) _i- J:
g ] sup gs gt Ds,t gu Hg'U H4p /2
n| 0<s,tup<t || S ’
a,b=1 4
3p.02
T
k . b b) 4.
sup E ke D > D<)
< <
0 s,t,u,v<1 2p,6y |1b= 2p, Lo
ka b ab)
sup il e, > el
0<stuv<1 a,b=1
4p.L2

P ii3/2 i
S ﬁ (122%010?21 HE‘]SJHQP ogiltl,ggl HDS’tU; ||4P)52

2
£ g [ 1D ).

Therefore, we obtain (B.15).
Next we verify (B.16). We have

(3(Dui) i) oz =n 33 / BDI L 0L, () - s, 1)" st

h=1a=1

Since f*(s,t) is J;,_,-measurable when s,t € I, by Proposition 1.3.11 of [55]
and Exercise 2.30 in Chapter 3 of [39] we obtain

(8(Dw), uy) o2
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=ny, / / S s, )P D f (u, )" | - dB, | dsdt.
h=1 IhXIh

In a,b=1
Therefore, Propositions B.1-B.2 and the Schwarz inequality yield
(D) ) oz,

2

5W3n§n: / / Z ifﬁl(s,t)anga)f:;j(u,t)bc du|| dsdt

h=1"InxIn In =1 \a,b=1
P
n B 1/2
<V S [ | [ U0 g 0| ds
et Y InxIn 11, p/2
n ..
< Vpny / \/ 15 (5,0) 13,0, | Ds £i7 (1w, £)3,,.4, dudsdt
h=1 IpxIp I,
<\ sl D2 )
= n S U12p o || s)n (U U)||2p,45-
T 0<s,t,u<l
Since we have ||f5!(s,t)[l2p,e < /IZ5¥]|2p]| 2 [|2p and
1D £ (u,t)llape, <2 max — sup  [|Dsod ap.e, [ 5F]13))°
1<i,j<do<s,t,u<1
by the Schwarz inequality and Lemmas B.4-B.5, we obtain (B.16).
Finally we verify (B.17). We can rewrite 2(u’/, uf!) yo2 as
2<uizjvui€zl>H®2
n T ) .
=n> Y / (cﬁ“gfbgfactlb + §§“§§b§tkb§§“) dsdt
h=1a,b=1"InxIn
:nZ{</ ¢ 'Qfds) (/ §§"§ids> I (/ g;'-€i4d5> (/ §£§fds)}
h=1 In In, In Iy,

Note that we have

ny ( [ -an) -cf'ds) ( [« .ggds)
h=1 In Iy »

n
<03 (16 = sl ) ([ 8 s s
h=1 Iy In

p - i13/2
<./= su Do’ max sup ||X77
~ \/;0<u<5;)<1 ” uy ||4P752 1§j§d0§t21 ” t H2p

for any ¢,7,k,l =1,...,d by Proposition B.1 and Lemmas B.3 and B.4. There-
fore, we obtain (B.17) and complete the proof of the lemma. O
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Lemma B.14. Under the assumptions of Theorem 4.1, we have

1
2
D*Fuiymeall, < 7= sup IDuiFly, max, sup (51,

for anyp € [1,00), n € N and F € Dg .
Proof. Since D?F is symmetric, (A.7) yields

(D*Foufypor = vy (D*F,<) @] L1, x1, ) o
h=1

=vny_ Dy F - ¢ @ dsdt.
h=1 IhXIh

Therefore, by Proposition B.1, the Schwarz inequality and Lemma B.4 we have

(D Fuly e, < fz/

IpxIp

Dy F - " ®<tj'H dsdt
P

<+/n / D, F ot J- dsdt
hz:; I x1Ip, 1D ||2p’€2 H 3 H4p’£2 4p,la
1
= — D, F »é. .
0<S;1P<1 IDs.c ”2”’22 1<a<xd0iup H ng
This completes the proof. O

Lemma B.15. Under the assumptions of Theorem 4.1, there is a universal
constant C' > 0 such that

i i JJ
s DA <1 < O s, sup 1007, s, s 1541,

3/2
+f%%gyWW)

for any p € [2,00), n € N and s € (0,1].

Proof. By Lemma B.10 the desired result follows once we verify the following
statements for all p € [2, 00):

I8 (Di)) -y S o, sup[|Daot |, o, sup IS, (B18)
(%) (%3 3/2
ot 5. <&, % VB s, sup [ (B.19)

Let h be the unique integer such that s € I;. First we verify (B.18). Since
fi9(u,v) is Fy,,  -measurable when u,v € I/, by Corollary 1.2.1 of [55] we have

n
(D) = v/n 3 (D £y, x1,) =V Y 84D fi1y,,u1,,)

h'=1 h’:h’>h
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for any a = 1,...,r. Hence Lemmas B.1 and B.5 as well as Exercise 2.30 in
Chapter 3 of [39] yield

63(Dsui) -k = /n Z §° (Z <§“D§a)f,ij11h,xzh,> .

h':h'>h a=1

Since (B.8) implies that

ZT: D fi
{(ngaD(a)1>®gj +§ ®<ngaD(a >
a=1

+ (Z CfaDga)gj) ®c"+¢0 ® (Z shapla)gt ) } ;
a=1
Lemmas B.1-B.2 and B.4-B.5 imply that
182(Dsus?) - <5 [l
S e

kknl/2 JJj
Sp max sup 1= 115, (| Dsor ng,eszE‘d sup 337115

jpax, sup Hq [EX

<p max sup
<j<do<

1<i,k<dp<t<1

2p,ty
1/2
3p,ls

<p max sup sup ||E”H3

1<i<dg<s,t<1 HD Ut H3p L2 1<j<d0

Next we verify (B.19). Proposition 1.3.11 of [55] yields

(i) = 1,00 [ (Sed v o) i
W1 Ih’
_ Y

5 (§§'®<{'+<§'®<§') dB,
I,

so we obtain

S(u (s,7) - sk = g {(cf N RS AN (S| cf'}dBt.
Iy

Therefore, Propositions B.1-B.2, the Schwarz inequality and Lemma B.4 yield

60t (5, ) -1, )+ ()5, o

2
dt
P2

(ki + (§§' -§§'> o

<\ [
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2
<92 ke . i )|2 J- ‘ dt
B 1§IZ‘I’1ﬁJI§Sd \/np Ip, Ies”-<s H%p K 3p, L2
< 2,/p max_sup Hg’”g < 2,/p max_sup HZ”H?Q
= 1<i<dgei<y 7 I8Pl = 1<i<dgopey | PSP
This completes the proof. O

Lemma B.16. Under the assumptions of Theorem 4.1, there is a universal
constant C' > 0 such that

H (DM © DM u") e

p

C . iy
< — Dot »i
< (i, 2 19t oo, o, 1

2
i113/2
VB ma, s [[5F°)
(DM @ D, il s,
— i 77 |13/2
=7 (Pfg?gdo S P50l e, 023, sup 1547

2
B, s L) oo, 1Pl

||<DF®DG,u£§l>H®Hp
C

< — max su P su D,F su D.G
~n 1§i§dogt]§1 =% HS” ogslg)l IDsFllspe, 0§321 1D:Cllsp.eo

foralln eN, i,5,¢,5 k,l=1,...,d, F;G €D o and p € [2,00).

Proof. For any H-valued random variables &, 7, we have

<€ ® nvujg)H@Z

2 hgl L s Ssds /I;L Ns-Sads ) + . §s - sids /Ih ne-<ids ) b

Hence, Proposition B.1 yields

€ © muid)mesl], < Vi max > ( /I e, ds) ( / =<2, ds) .

h=1

Now the desired result follows from the Schwarz inequality and Lemmas B.4
and B.15. 0

Proof of Theorem 4.1. Set G, := }/QC,L. By the hypercontractivity of Gaus-

sian variables, we have

B[S, | F] < ( (p— 1)¢gk>p
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for any k =1,...,d? and p € [2,00). Hence we obtain

1/2 .
L 525 I&nll, < vp—1lle],, <2vp - 11%135(10221 1=, (B.20)

for any p € [2,00) by the Hélder inequality and Proposition B.1.

We turn to the main body. First we prove claim (a). Note that we have
IIEllewllp < kP maxi<i<k [|€7]), for any p > 1, k € N and k-dimensional ran-
dom vector £. Then, thanks to Lemmas 3.1, B.6 and B.7, it suffices to prove

lim sup |P (2, (M, +W,) <y)— P(E,(S,+W,) <y)|=0.

n— oo yERm

To prove this equation, we apply Theorem 3.1. For this purpose we need to
verify conditions (3.7)—(3.17). (3.7) follows from (4.1). (3.8) follows from Lemma
B.13. (3.9) follows from Lemmas B.12 and B.14. (3.10) follows from Lemma
B.14. (3.11) follows from Lemmas B.8, B.14 and (B.20). (3.12)—(3.13) follow
from Lemmas B.12 and B.16. (3.14) follows from Lemmas B.8, B.16 and (B.20).
(3.15) follows from Lemmas B.12 and B.16. (3.16)—(3.17) follow from Lemmas
B.8, B.12, B.16 and (B.20). So we complete the proof of claim (a).

Next, if a k-dimensional random vector ¢ satisfy maxi<;<y [|€7], < Ap™/?
for any p € N with some constants A > 0 and r € N, then Lemma A.7 and
Proposition A.1 of [45] imply that |[||€]le ]I, < Alog™?(2k — 1 4 eP"/271) for
any p > 0 with pr > 2. Using this fact, we can prove claim (b) in the same way
as the proof of claim (a). O

B.2. Proof of Theorem 4.2

For every v € N, define the process Y (v) = (Y (v)¢)sefo,1] by

Y(v)y =Yy + /t u(v)sds + /t o(v)sdBs, t e 0,1].

By the local property of It6 integrals (cf. pages 17-18 of [55]) we have Y; = Y (v);
on Q,(v) for all t € [0,1]. Therefore, setting

$uv) = vee [V (Y (0).Y )], = Y ). Y ()]
we obtain

pn(V) ==

5 [P (Z0(0) (S0 Wa (1) 1)~ PE0 () (€00) 2 Cut W) <0)| 0

as n — oo by Theorem 4.1. Now, for every y € R™, we have

P (Zn (Sn+Wy) <y) < P(En(v) (Sn(v)+Wi(v)) <y)+P(Qn(v)°)
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< P(En(V)(Q:n(y)lﬂgn"'wn(”)) < Y)+pn(v)+P(Qn(v))
< P(En(Qvlz/2Cn+Wn) < Y)+pn(V)+2P (2, (v)).

By an analogous argument we also have
P(E, (S +Wy) <y) > P(E'VL(Q:}L/QCn +Wh) <y) = pu(v) = 2P(Qn(v)°).
Consequently, we obtain

limsup sup |P (=, (S, +W,) <y) — P(En(€Y2C, + W,) < y)

n—oo yeR™

< 2limsup P(Q,(v)°).

n—oo

Letting v — oo, we complete the proof. O

B.3. Proof of Proposition /.1

We introduce some notation. Given a process §{ = (&t)¢cjo,1) and an interval
I=(S,T]) C0,1], we set

§(I) :=¢&r — &5, I := &nr — &ns (L €[0,1]).

Also, we define B . ‘ o
L(h)¥ = M*(I,)M7 (I,) — [M*, M7](1},)

and
L(h){ := MY (1), M7 (1), — [ME,MIY(T,), (€ [0,1])

fori,j=1,...,dand h=1,...,n.
Next we remark that a localization procedure allows us to reduce the situation
of the proposition to the case that yu = p(v) and o = o(v) for all n,v € N:

Lemma B.17. Suppose that the statement of Proposition 4.1 holds true when
we additionally assume p = p(v) and o = o(v) for all n,v € N. Then the
original statement of Proposition 4.1 holds true as well.

The proof of Lemma B.17 is analogous to the one of Theorem 4.2, so we omit
it.
Lemma B.18. There is a universal constant C > 0 such that

: 2 (| i j k l
1<%, Sup n (| A (L)X (1n)Y* (In)Z' (In) ],

13 ..
A Rl
4p

3/2
2p )

Proof. This is an immediate consequence of the Holder inequality and Propo-
sitions B.1-B.2. O

<£ max  sup Hu”” (’
T VN 1<ig<do< pecy AP

for any X,Y,Z € {A;M}, p € [2,00) and n € N.
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Lemma B.19. There is a universal constant C > 0 such that

max

<C— max sup HE”
1<i,jk1<d

n 1<’L<d0< <1 ||2p

nZ/ MY (I1,) s M (1;,) MY (I,) sdM,
th—1

P
for allp € [2,00) and n € N.
Proof. Propositions B.1-B.2 yield

n

th . )
nZ/ M7 (I1,)sM* (1) s MY (1) s M
h=1"%h

p

th .
) Z MJ (I1)2MFk (I1,)2MY (1) 2d[Mi, M7]
h=1"th—

P

<n\jp2/t 1M (2[5, 1M (Z) s 15, IME (I )s 15, (1287, s
h—1

< np? / Z”du E’“’“du E”du ||E“H2p ds
h 1 th 1
p [
< — max su g
~Vn 1<l<do<321 2p
This completes the proof. O

Lemma B.20. Suppose that the assumptions of of Proposition 4.1 hold true
under the additional assumption that u = p(v) and o = o(v) for all n,v € N.
Then there is a universal constant C > 0 such that

ik !
Lmax_ o ST L) ME, MY (Ths,)
= P
C
< _ i
< <p ax, sup =13,
3/2 i k-
T max, sup [ 5 2 S [Duo I4p,e2)
forallp € [2,0), n € N and v € {0,1}.
Proof. We decompose the target quantity as
nZL R IMF, MY (Iyr)
- Z L(h)”/ E[SH|F, ] dt+n Y L(h)”/ (SH_B[SMF, ]) dt
h=1 Thiv h=1 Tniv

=:1,+1L,.
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First we consider I,,. Set
b ::/ E [Si R, ] dt, h=1,....,n—v.
In4o

Then we can rewrite I,, as

—nz {/ (/t i'-dBS> dnol - dB, +/l ( tt ¢hag'-d35> ot -dBt}.

Therefore, Lemmas B.4-B.2 and the Holder inequality imply that

ILall, S pvn sup (o7 llape,  sup [lépnsol llspe,
0<s<1 0<s<l—v/n 3

1/2 1/2
<pvi sup. ||z“u / s G a1 .
0

<s<l-v/n

Now, Proposition B.1 and the Lyapunov and Schwarz inequalities yield

1 1
su < — su Zkl < — max su »k
Ogsdgu/nllwnswl\zp e H lop < — max, sup 55y

Consequently, we obtain

ITnll, S —= max sup. (DA

N\/_lz<d<

Next we consider II,,. By Proposition B.1 we have

n—v

L[l < 7Y ([L()7]|2p / I8 — B[S Fo o], dt-

h=1 Into

It6’s formula, Lemmas B.2 and B.4 yield

P
L z] < L E“
L) 2 5 5 max, sup 15412

Meanwhile, Lemmas B.3 and B.11 yield

28— B 2815 ]y 42, up_ 1D e

0<u<v<1

P .
S/ e, sup_ IIE”H”ZIIDuaﬁ lapes-

n 1<k l<d0< <v

Consequently, we obtain

3/2 k-
MLl S \/ E?é‘doiuﬁ ISi (xS 1Dy llapta-

We thus complete the proof.

1511
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Lemma B.21. Under the assumptions of of Lemma B.20, there is a universal
constant C' > 0 such that

nZ/ h)FL M, M7,
th—1

ax
1<z,j k,l<d

EH
\F<plrgg<xdoiup 12113,

3/2 3/2 k-
0, IS g, 1ot )

for allp € [2,00) and n € N.

Proof. By It6’s formula we can rewrite the target quantity as

n

nZ/th L(R)f'dM*, M7,

h=1"7tn-1

_nZL h)E M MI(T;,) +nZ/ [M?, M) (I},)¢d L(h)¥
th—1

Since we have

n

> [ "MWz

h=1"7th-1

n th t
h=1 th—1 th—1
th t ) )
+/ (/ U‘ls. . dBS> [Ml, M]](Ih)taf' . dBt}
th—1 th—1

by It6’s formula, Lemmas B.2 and B.4 yield

n

n), / " ML) L)

h=1"th-1 »
S Vnp, max | sup o5 llap.e. S 1M, MY (L) 50 [l 4,

1/2 1/2
< Vip max sup (1235, sup (MY, MUI(En)allap |22 135
1<k,i<dg
Since Proposition B.1 and the Schwarz inequality imply that

1 1
7 J <7 j <7 i
IIM*, M7](1n) s l2p < n oS 1= Ml2p < ax, sup, 135 l2ps

we obtain

n

ny / REVAVIARTE

h=1"th—1

Ell
Vn 112?<Xd0iup I H2p
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Combining this estimate with Lemma B.20, we obtain the desired result. O

Lemma B.22. Under the assumptions of of Lemma B.20, there is a universal
constant C' > 0 such that

max
1<i,j,k,1<d

ny ML) M (1, MF (1, )M (I,)
h=1

-n i{[Mi7 M7J(15) [MF, MT] (1) + [M*, M*] (1) M7, M) (1)
h=1
+ (M7, MEJ(2) M, MU (),

C
< % <P max sup ||2”||2p

1<i<d g<t<1

3/2 . yid 3/2 D. ok
+p mmax, sup, [pavisipes B SR [ Doy ||ap.e.
for all p € [2,00) and n € N.
Proof. Using [t6’s formula repeatedly, we have
M (In)M (1 )M* (1n)M (1)

th

— M7 (I;,) M* (13,) s MY(T,) sAME + /th M?(I1,) sME (I,) sME (1) sdMY

th—1 th—1

th . . th

+ M (1) M (11,) ME(I3,) sdME - / M?(15,) s M7 (1) M (1,) s dMY,
th—1 th_1
th ) ) th

+ L(h)*a[Mmt, M7], +/ L(h)Id[M*, M¥], + L(h)Ikda[Mt, MY,
th—1 th—1 th—
th . . th th

+/ L(h);ld[MJ,M’“]S+/ L(h)*dMI MY, + L(h)4 d[MF MY,
th—1 th—1 th—1

+ (M M) (1) [ME, MU (T) + [MF, MP) (1) M7, MY (1)

+ (M7, M¥) (1) M7, MY (1)

for every h. Therefore, the desired result follows from Lemmas B.19 and B.21.
|

Lemma B.23. Under the assumptions of of Lemma B.20, there is a universal
constant C' > 0 such that

n—1

) ) thy1 . &
ny M’(Ih)MJ(Ih)/ M (I}, 41)sdME

h=1 tn

2

<CT max sup ||E”H2p

max
1<4,5,k,01<d ’<d0<€

p

for allp € [2,00) and n € N.
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Proof. Proposition B.1-B.2 yield

n—1

. , bt A
ny  M(Iy)M (Ih)/ M (Ip41)sdM
h=1 th »
n—1 ‘ ‘ thit
S B || MM )2 [ M2 M,
h=1 th

p

n—1

thy1

2

<nyp Y M, ||'V|J(fh)||4p/t M (Iht1) sl 125 (15, ds
h=1

y ? . tht1 s 2
Yids ¥ ds / lds| %5y, ds
In, Iy, 4p th th 4p
< p_ max sup ||E”||2
\/ﬁ 1<i<d 0<s P’
This completes the proof. O

Lemma B.24. Under the assumptions of of Lemma B.20, there is a universal
constant C' > 0 such that

n—1 n—1

1<igi<d ”hZ_l M* (L )M (I)M* (T 41)M' (Tng1) — nhZ_I[Mly M7] (1) [M*, M) (T41)

- - p
¢ P’ max sup ||Z 15 +p*? max sup |z ||3/2 max sup ||D ak‘|\4 P)

B \/_ <i<d o< vz 1<i<d g<¢<1 P 1 <k<d do<u<v<l v R
for allp € [2,00) and n € N.
Proof. By It6’s formula we have

M* (L )M (I )M (T 1 )M (T 11)

) ) tht1 ) ) thy1
= Ml(]h)lvl](fh)/ Ml(1h+1)sd|\/|’;+Ml([h)MJ(Ih)/ ME (I, 41)sdM,
th th

+ L(R)Y[M*, M (In1) + [ME, M (1) [MP, MU (Zh41)

for every h. Therefore, the desired result follows from Lemmas B.20 and B.23.
O
Proof of Proposition 4.1. Thanks to Lemma B.17, throughout the proof we

may assume p = pu(v) and o = o(v) for all n,v € N.
(a) According to Lemmas B.18, B.22 and B.24, it suffices to show that

E | _max _ [n[MW](L) M M(L)] | = O™, (B.21)
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E =0(n=7).

max
1<id,,k,1<d

0 3 IME M) (M MY (D) — M, Mlm}‘
h=1

(B.22)

(B.21) is evident from assumptions. In the meantime, the Schwarz inequality
and Proposition B.1 yield

E

max

Lmax_ o S MA(2) M MY (T ) - (M, Mlum}‘

gnZE[ max [[M*, M7](1,)| max |[M’“,Ml](1’h+1)[Mk,Ml}(Ih)|]
h=1

1<i,j<d 1<k,I<d
< sup || max ‘Eij sup max ’EH L =2 (B.23)
0<t<1||1<i,i<d 2 0<t<1-1 |[1Shi<d )

so (B.22) also follows from assumptions. This completes the proof.
(b ) By assumptions we have E[maxi<; j <4 [n[M’, M7](I,)[M¥, M'](1,,)|] =
O(n™1). Moreover, from (B.23) and assumptions, we also have

n—1

E n Yy [MY W) {MF, MY (I) — MF, MY (14) }
h=1

max
1<4,5,k,1<d

1 =0(n™").

Therefore, the desired result follows from Lemmas B.18, B.22 and B.24 as well
as Lemma A.7 and Proposition A.1 of [45]. O

B.4. Proof of Proposition 4.2

An analogous argument to the proof of Theorem 4.2 allows us to assume p =
u(v) and ¥ = X(v) for all n,v € N.
Define the d* x d? random matrix X, by

[Y7, Yd \/EZ]” ifk=14,1=d,
i d 4/ yytJ : — 4 —
~ (i—1)d+7j,(k—1)d+1 ¥, Y] n if k=3, 1=d,
X, =q -4y Yd] CNTT ifk=1=d
— Y, YJ] /\/%” ifk=id,l=j

otherwise.

fori,j=1,...,dand k,l=1,...,d. We also define the d* x d? matrix Y,, by

1 ifke{ijhl=d
YEDdr kDA Ly f k= l=jork=1=d,
0 otherwise

fori,j=1,...,dand k,l =1,...,d. Then we set

—n — 7-Xn 9 —n — _Xn 9 n - 71’” :
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Since we have

(1>

sun (). (R )

as well as all the diagonal entries of Z,¢,Z, are equal to 1 by the definition of
X, Lemma 3.1 and Proposition 3.1 imply that it suffices to prove the following
equations:

sup  |P(E,S, <y)— P(E,CY%¢, <y)| =0, (B.24)
Y€ (c0,00]242
V10gd||Z,Sn — EnSnlle. =P 0, (B.25)
(log d)?||2, €5, — E,€,E N [lo. —P 0 (B.26)

as n — 00.

We begin by proving (B.24). Since X,, = X, oY, and [|X,[|,, = 4, an
application of Theorem 4.1 implies that the desired result follows once we show
that X, € Dy oo(RY @ RY") and

X D, X D, X} <
oup e (IX2+ sup DX s+ s 1D X ) < o

for all p € [2,00). By Remark 15.87 of [37], we have [Y*,Y7]; € Dy and
DIyt Y|, = fol Dqujdt for any 4,7 = 1,...,d and ¢ = 1,2. Therefore, by
Corollary 15.80 of [37], the desired result follows once we show that 1/v/0} €

Dy o for any 4,5 =1,...,d and
1
20,

max H

sup
neN 1<i,5<d /U ” 0<t§1 ool

1

+ sup ||Dot | ——== < 00 (B.27)
0<s,t<1 g
p,l2
for all p € [2,00). Note that we have
HDt[Yiij]lHP,fz < sup ”thzjnp,fw
0<u<1
HDS’t[YZ’Yj] prz = OSllp HD tzl Hp 12

foralli,7 =1,...,d, p € [2,00) and s,t € [0,1] by Proposition B.1. Therefore,

Lemmas B.llfB.12 and Corollary 15.80 of [37] imply that ¥ € Dy o for any
i,7=1,...,d and

sup max <||‘13”|| + sup HD,&IJH

sup | max, . sstg)gl ||Ds,tﬁff”p,éz) < oo

Péz
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for all p € [2, 00). Now, since we can write 1/\/‘1]_25 = (0%)5/2(20%9)~3, Theorem
15.78 and Lemma 15.152 of [37] as well as (4.11) imply that 1/v/0% € Dy o, for
any i, = 1,...,d and (B.27) holds true for all p € [2,00). Hence we complete
the proof of (B.24).

Next we prove (B.25)—-(B.26). First, note that we have ||S,||¢,.. = Op(n") as
n — oo for any n > 0 by Corollary 4.1 and (B.20). Since ||[Y, Y]1]|¢., = Op(n")

—_—N
as n — oo for any 1 > 0 by assumptions, this especially yields ||[Y,Y], [l... =
O,(n) as n — oo for any n > 0. Next we verify

fnax [T —Ty| = Op(n™7)

as n — oo for any w € (0,7). In fact, by definition we have

‘ |¢n||¢m)
. éw).

Since ||€, e, = Op(n™) for any n > 0 by assumptions, the desired result follows
from Proposition 4.1 and the results noted above. In particular, it holds that

maxi<; j<d |1/V ”| = O,(n") for any n > 0 because maxi<; j<q|1/V ”| =
Op(n) for any n > 0 by assumptlons Moreover, we have

max [T — 0|
1<i4,5<d

< (H[Y,Y]?Hem + I[Y,thlem) <’

(IFT v

¢,
14

oo

HXn - XnHéoo

< | o, + Y|

= 15‘12}%4 NGzl R P 123@ \/TJ \/7 oo
and thus it holds that || X, — X .|, Op(n~%) as n — oo for any w € (0,7).

Noting that we have || X, ||g =0 (n”) for any n > 0 by assumptions, this

particularly implies that || X, [, = O,(n") for any n > 0.

Now since we have
Hénsn - EnSnHEoo < 4||Xn - anlfoo ||Sn||‘€oo
and
Héné:néz - En@nEZHfoo

<16 {1 Xl _1€n = Callen + (I Xllew + 1Xnlles ) I€allen 1K = Xl }

(B.25)—(B.26) follow from the results remarked above. Thus we complete the
proof. O
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B.5. Proof of Corollary 4.2

By construction both the Bonferroni-Holm and Romano-Wolf methods evidently
satisfy condition (i). So it remains to check that they also satisfy (ii). Since it
holds that maxsez, (g,) T4 = maxeer, (0,) maxyepe |T|, Proposition 4.2 yields
P max T!>cErn)(1—a))—P| max max |[C”
(eez:n(an) noon ( ) €€L . (0n) KEKL n

>c,§”(9”)(1—a)> —0

as n — oo, where K == {(i — 1)d +j : (i,7) € AL} and ¢, := XnQI}L/QCn. Now

if we use the Bonferroni-Holm method, we have

P max max
LeELn (0n) kEKY

S5 o

LeLy (0n) kEKE

gk

> cf"(e")(l - a))

o
> 1-— =a,
oD ( 2# s, 0.) K3l ))

so condition (ii) is satisfied. Meanwhile, if we use the Romano-Wolf method,
Propositions 3.2 and 4.2 yield

é:k:

P max max |C*| >0 (1—a)) = a

(g | max[ch] > £ 001 - )

as n — 00, so condition (ii) is satisfied. Thus we complete the proof. O
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