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Abstract: The paper gives a unified study of the large sample asymp-
totic theory of penalized splines including the O-splines using B-splines
and an integrated squared derivative penalty [22], the P-splines which use
B-splines and a discrete difference penalty [13], and the T -splines which use
truncated polynomials and a ridge penalty [24]. Extending existing results
for O-splines [7], it is shown that, depending on the number of knots and
appropriate smoothing parameters, the L2 risk bounds of penalized spline
estimators are rate-wise similar to either those of regression splines or to
those of smoothing splines and could each attain the optimal minimax rate
of convergence [32]. In addition, convergence rate of the L∞ risk bound,
and local asymptotic bias and variance are derived for all three types of
penalized splines.
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1. Introduction

Penalized spline smoothing has become popular in the last two decades. The
approach uses a flexible choice of bases and penalty and is often viewed as
a bridge between regression splines and smoothing splines. Indeed, penalized
splines exploit the mixed effect presentation of smoothing splines but are com-
putationally much simpler because they use low rank bases; penalized splines
inherit the computational simplicity of regression splines but relieve the over-
fitting of regression splines as they employ a smoothness penalty. Therefore,
penalized splines have enjoyed widespread use in methodology development and
applications. For example, penalized spline methods have been well developed
in functional data analysis, e.g., [44, 15, 43, 40]. Another example is penalized
splines methods for generalized additive models [38]. See [24] for a comprehen-
sive introduction to penalized splines. The paper [25] gives a review of penalized
splines in the 2000 decade and most recently, the paper [14] provides a review
of P -splines [13], one popular type of penalized splines.

Theoretic understanding of penalized splines has been largely lagging be-
hind. The flexibility of penalized splines in terms of usage of bases, placement
of knots and choice of penalty actually dramatically increases the difficulty of
the theoretic study of penalized splines. Indeed, the O-splines [22] use B-splines
as bases and impose an integrated squared derivative penalty to control overfit,
the P -splines [13] also use B-splines but directly impose a penalty on the associ-
ated coefficients, and the T -splines [24] use truncated polynomials and impose
a ridge-type penalty on the associated coefficients. While it seems a consensus
in the literature that all three types of penalized splines have similar practical
performance, existing theoretic works usually focus on one type. The paper [7] is
a seminal work and shows that, for the L2 risk bound, depending on the number
of knots and the penalty, O-splines behave similar to either regression splines
or smoothing splines. Specifically, when the penalty is appropriately small, the
number of knots for constructing the B-spline bases determines the convergence
rate, leading to asymptotics rate-wise similar to those of regression splines; but
when the penalty is large, the number of knots does not matter as long as it
is sufficiently large and the penalty determines the convergence rate, leading to
asymptotics rate-wise similar to these of smoothing splines. In particular, the
optimal number of knots for the regression spline type asymptotics is rate-wise
no bigger and can be much smaller than that required for the smoothing spline
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type asymptotics; thus, for penalized splines, the regression spline type asymp-
totics is referred to as the small number of knots scenario while the smoothing
spline type asymptotics is referred to as the large number of knots scenario. It is
interesting to study if such two-scenario asymptotics will also hold for P -splines
and T -splines.

Table 1 gives a summary of existing theoretic works on penalized splines.
As mentioned earlier, the paper [7] derives the L2 risk bound of O-splines for
both the small and the large numbers of knots. In addition, the work gives the
local asymptotics of O-splines and T -splines for the small number of knots.
The local asymptotics for the scenario of large number of knots is quite chal-
lenging to derive and equivalent kernel methods [30] have been adopted in the
literature. Indeed, the papers [21], [37] and the unpublished [41] use equivalent
kernel methods for P -splines, while the paper [27] studies O-splines. Note that
all those works assume equally-spaced design points which is quite stringent.
Another note is that, for the large number of knots scenario, P -splines have a
slower convergence rate near the boundary [37]. Similar boundary behaviors of
O-splines and T -splines have not been established yet. Early theoretic works of
penalized splines also include [17] and [18]. For generalized additive models, the
paper [45] studies the local asymptotics of a ridge-corrected P -spline estima-
tor. For longitudinal data, the paper [5] studies the local asymptotics and the
L2 convergence rate of O-splines. Theoretic work on penalized splines in two
dimensions include [42], [20] and [39].

Many theoretic gaps, e.g., the convergence rate of L∞ risk bound, still remain
and the paper intends to fill a number of the gaps. The checkmarks in Table
1 indicate the contributions of the paper. First, the L2 convergence rates of
P -splines and T -splines shall be established for both scenarios, extending [7].
Second, the L∞ convergence rates of all three types of penalized splines shall
be established and the rates are optimal for the small number of knots scenario.
Third, the local asymptotic bias and variance of P -splines and T -splines will
also be given.

Table 1

Summary of theoretic works on penalized splines. The checkmarks indicate the major
contributions of the paper. Note that the ∗ around the ✓ means that the newly derived
convergence rates for the bias might not be rate optimal. The details are provided in the

theorems or remarks in parentheses.

Small number of knots
O-splines P-splines T -splines

L2 (Rem 5.3) [7] ✓(Rem 5.6) ✓(Rem 5.7)
L∞ (Thm 6.1) ✓(Rem 6.5) ✓(Rem 6.5) ✓(Rem 6.5)
Local (Thm 7.1) [7] ✓(Rem 7.1) [7]

Large number of knots
O-splines P-splines T -splines

L2 (Rem 5.3) [7] ✓(Rem 5.6) ✓(Rem 5.7)
L∞ (Thm 6.1) ✓∗ (Rem 6.6) [37] ✓∗ (Rem 6.6)
Local (Thm 7.1) [27] [21], [37], [41] ✓∗ (Rem 7.2)

In order to obtain the new theoretic results, two key observations are made
and three key results are established. We first list the two observations.
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• The three types of penalized splines differ essentially only in the penalty
matrix being used and the three penalty matrices are inherently very sim-
ilar to D, where D is a difference penalty matrix defined in Section 2; see
also Section 4.

• The local variance of the three types of penalized splines can be studied
via the bounds on the diagonals of (I + ηD)−1, where η > 0 is a scalar
and D is the difference penalty matrix mentioned above.

Now we list the three key results.

• The decay rates of the eigenvalues of the three different penalty matrices
are derived; see Propositions 4.1 and 4.2. These results show that the
eigenvalues of the penalty matrices have similar decay rates.

• A property of penalized splines is established in Propositions 4.3, 4.4 and
4.5 for all three types of penalized splines.

• The rates of the local asymptotic variance of penalized splines are estab-
lished for all three types of penalized splines; see Propositions 6.1, 6.2 and
6.3.

These three results ensure that a unified theoretic study is attainable. Finally,
the paper provides several new theoretic results regarding the approximation
accuracy of B-splines, which are useful for the theoretic derivations; see Section
3.

The rest of the paper is organized as follows. In Section 2, we introduce
penalized splines. In Section 3, we consider the approximation accuracy of B-
splines. In Section 4, we study the singular properties of penalized splines. In
Section 5, we derive the L2 convergence rate of penalized splines. In Section 6,
we derive the L∞ convergence rate of penalized splines. In Section 7, we derive
the local asymptotic bias and variance of penalized splines. Proofs of theorems
are provided in Section 8. Technical lemmas are given in Appendix B.3, the local
variance of penalized splines is studied in Appendix B, and lower and upper risk
bounds on the variance of penalized splines are derived in Appendix C.

We shall use the following notation convention. For a vector a = (ak), ‖a‖2
denotes its Euclidean norm and ‖a‖max = maxk |ak|. For a matrix A = (Ak�),
‖A‖2 is its operator norm, ‖A‖max = maxk� |Ak�|, ‖A‖F is its Frobenius norm
and ‖A‖∞ = maxk

∑
� |Ak�|. For two square matrices A and B , A ≤ B means

that B −A is positive semidefinite. For a function g(x) defined over an interval
T , we let ‖g‖ be its supremum norm over T , i.e., ‖g‖ = supx∈T |g(x)|, and we
shall use g(i)(x) to denote its ith derivative. We also use the notation a ∼ b to
denote that limn→∞ a/b = c for some constant c > 0.

2. Penalized splines

Consider the nonparametric regression problem

yi = f(xi) + ei, i = 1, . . . , n,
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where the n design points xi ∈ T = [0, 1] can be either deterministic or random,
yi are the observed responses, and ei are random errors. Let p be a fixed positive
integer. It is assumed that f ∈ Cp(T ), the class of functions with continuous
pth derivatives over T . The aim is to estimate the unknown smooth function
f by penalized splines. We introduce three types of penalized splines that are
commonly used and then formulate a unified estimator that contains all of them.

2.1. O-splines

We first introduce splines [8]. A spline is a piecewise polynomial that is smoothly
connected at its knots. More specifically, for a fixed integer m, denote by S(m, t)
the set of spline functions with knots t = {0 = t0 < t1 < . . . < tK0+1 = 1}.
For m = 1, S(m, t) is the set of step functions with jumps at the knots and, for
m ≥ 2,

S(m, t) ={s ∈ Cm−2(T ) : s is a polynomial of degree

(m− 1) on each interval [ti, ti+1]}.

A basis for S(m, t) can be formed by B-splines, which are defined as

N
[m]
k (x) = (tk − tk−m)[tk−m, . . . , tk](t− x)m−1

+ , 1 ≤ k ≤ K = K0 +m,

where (t − x)+ = t − x if t > x and 0 otherwise, [tk−m, . . . , tk](t − x)m−1
+

denotes the mth order divided difference of (t−x)m−1
+ as a function of t [8] and

t1−m ≤ · · · ≤ t−1 ≤ t0, tK0+1 ≤ tK0+2 ≤ · · · ≤ tK . The B-spline basis functions

can also be recursively defined as N
[m]
k (x) = Ñ

[m]
k−m(x) with

Ñ
[1]
k (x) =

{
1, tk ≤ x < tk+1,

0, otherwise,

Ñ
[m]
k (x) =

x− tk
tk+m−1 − tk

Ñ
[m−1]
k (x) +

tk+m − x

tk+m − tk+1
Ñ

[m−1]
k+1 (x),

for k = −(m−1), . . . ,K0. Here 0/0 = 0. Then any spline function s(x) ∈ S(m, t)

can be written as
∑K

k=1 θkN
[m]
k (x) with some scalars θk.

The O-spline estimator [22] is defined to be a spline function

f̂O ≡ arg min
s∈S(m,t)

[
1

n

n∑
i=1

{yi − s(xi)}2 + λO

∫ {
s(q)(x)

}2

dx

]
, (2.1)

where q < m is a fixed integer, s(q) denotes the qth derivative of s, and λO ≥ 0
is a smoothing parameter. For O-splines, it is assumed that t1−m = · · · = t−1 =
t0 = 0 and tK = · · · = tK0+2 = tK0+1 = 1.

The derivative of a spline function is closely related to the difference oper-
ators. Let ΔK,1 ∈ R

(K−1)×K be the first order difference operator such that,
for a vector θ ∈ R

K , ΔK,1θ = (θ2 − θ1, . . . , θK − θK−1)
T . For 1 < q < K, let
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ΔK,q ∈ R
(K−q)×K be the qth order difference operator that is defined recursively

as ΔK,q = ΔK−1,q−1ΔK,1. To simplify notation, denote N
[m]
k (x) by Nk(x) and

let N(x) = {N1(x), . . . , NK(x)}T ∈ R
K . Similar to [46, equality (40)], we derive

that
dN [m](x)

dx
= ΔT

K,1W
[m]
K N [m−1](x),

where W
[m]
K ∈ R

(K−1)×(K−1) is a diagonal matrix with the kth diagonal element

(m−1)(tk−tk−m+1)
−1. Let Δ̃K,1,m=W

[m]
K ΔK,1 ∈ R

(K−1)×K be a weighted first

order difference operator and define recursively Δ̃K,q,m = Δ̃K−1,q−1,m−1Δ̃K,1,m.
To extend the definition to the case q = m for T -splines to be introduced later,

we let W
[1]
K = h−1I. For simplicity, we suppress the dependence of the weighted

operators Δ̃K,q,m on t. We obtain that

dqN [m](x)

dxq
= Δ̃T

K,q,mN [m−q](x)

and hence
s(q)(x) = θTN (q)(x) = θT Δ̃T

K,q,mN [m−q](x). (2.2)

Thus,
∫ {

s(q)(x)
}2

dx = θTPqθ, where

Oq = Δ̃T
K,q,mG[m−q]Δ̃K,q,m (2.3)

with G[m−q] =
∫
N [m−q](x)N [m−q],T (x)dx ∈ R

(K−q)×(K−q).
Let Y = (y1, . . . , yn)

T ∈ R
n and N = [N(x1), . . . , N(xn)]

T ∈ R
n×K . It

follows that the minimizer of (2.1) is f̂O(x) = NT (x)θ̂ with

θ̂ = argmin
θ

(
1

n
‖Y −Nθ‖22 + λOθ

TOqθ

)
.

Therefore, θ̂ =
(
NTN/n+ λOOq

)−1
(NTY/n) and

f̂O(x) = NT (x)
(
NTN/n+ λOOq

)−1
(NTY/n). (2.4)

2.2. P-splines

The P -splines [13] imposes a penalty directly on the qth order consecutive dif-
ference of the coefficient vector θ. Specifically, the P -spline estimator is also a
spline function

f̂P ≡ arg min
s∈S(m,̃t)

[
1

n

n∑
i=1

{yi − s(xi)}2 + λP θ
TDK,qθ

]
,

where DK,q = ΔT
K,qΔK,q ∈ R

K×K , λP is also a smoothing parameter, and the

set of spline functions S(m, t̃) is defined over equally-spaced knots, i.e., t̃ contains
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knots with ti = i/(K0 + 1), 1 −m ≤ i ≤ K. With slight abuse of notation, we
still denote the corresponding B-spline basis functions by N(x). The difference
in the bases is minor for the theoretic study as we will discuss later. Then the
P -spline estimator, denoted by f̂P (x), takes the following form

f̂P (x) = NT (x)
(
NTN/n+ λPDK,q

)−1
(NTY/n). (2.5)

The difference penalty is effectively a smoothness penalty. Indeed, when
θTDK,qθ = 0, the resulting estimate reduces to a polynomial of degree q − 1.

2.3. T-splines

Finally, we introduce the T -splines [24]. Let t be as in the O-splines and F (x) =
{1, x, · · · , xm−1, (x − t1)

m−1
+ , . . . , (x − tK0)

m−1
+ } ∈ R

K . The T -splines is the
estimator

f̂T ≡ arg min
θ∈RK

[
1

n

n∑
i=1

{
yi − FT (xi)θ

}2
+ λT θ

T ĨK,mθ

]
,

where λT is a smoothing parameter and ĨK,m = blockdiag(0m,m, IK−m). We
derive that

f̂T (x) = FT (x)(FTF/n+ λT ĨK,m)−1(FTY/n),

where F = [F (x1), . . . , F (xn)]
T ∈ R

n×K . There exists an invertible transfor-
mation matrix LK,m ∈ R

K×K that depends only on t and such that N(x) =
LT
K,mF (x), where N(x) denote the B-spline bases for O-splines. Thus,

f̂T (x) = NT (x)(NTN/n+ λT D̃K,m)−1(NTY/n), (2.6)

with D̃K,m = LT
K,mĨK,mLK,m. We derive that (see Lemma A.8),

D̃K,m = h2

{
1

(m− 1)!

}2

Δ̃T
K,m,mΔ̃K,m,m, (2.7)

which can be thought of as an extension of the penalty matrix Oq for O-splines
to the case q = m. Indeed, Oq and the O-splines can only be defined for q < m.

2.4. A unified penalized spline estimator

Comparing the three penalized splines estimators in (2.4), (2.5) and (2.6), we
see that the main difference between them is the penalty matrix. In Section
4, we shall show that the penalty matrices (after adjusting the corresponding
smoothing parameters) have eigenvalues of similar decay rates, which paves the
way for a unified theoretic study of all three estimators. This motivates us to
consider the following estimator

f̂(x) = NT (x)(NTN/n+ λPq)
−1(NTY/n), (2.8)
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where Pq ∈ R
K×K is an arbitrary positive semi-definite matrix and two as-

sumptions (Assumptions 3 and 4) on Pq will be made in Section 4. These two
assumptions are satisfied by each type of penalized splines. We shall study the
L2 convergence rate, L∞ convergence as well as local asymptotics of the unified
penalized spline estimator f̂ and then apply the theoretic results to the three
types of penalized splines.

3. Spline approximation

In this section we establish some necessary results on the approximation accu-
racy of a smooth function by splines. We make the following assumption.

Assumption 1. K ≥ nδ for some δ > 0 and K = o(n).

We next specify some conditions on the placement of knots. Let hi = ti+1−ti
and h = max0≤i≤K0 hi. We assume that

max
0≤i≤K0−1

|hi+1 − hi| = o(K−1) and
h

min0≤i≤K0 hi
≤ M, (3.1)

where M is a fixed constant. The same assumptions on the knots can be found
in [46]. In many works, e.g., [3], the knots are assumed to be generated from
a positive density, which will lead to (3.1). Therefore, (3.1) is slightly more
general. Note that (3.1) implies that h ∼ K−1, i.e., h and K−1 are rate-wise
equivalent.

If the design points x = (x1, . . . , xn) are deterministic, we assume that

‖Qn −Q‖ = o(h), (3.2)

where Qn(x) = n−1
∑n

i=1 I(xi ≤ x) is the empirical cumulative distribution
function and Q(x) is a distribution with a positive and continuously differen-
tiable density ρ(x). Assumption (3.2) is also common; see, e.g., [46].

Denote by Bk(x) the kth Bernoulli polynomial function, i.e.,

Bk(x) = xk +

(
k

1

)
B1x

k−1 + · · ·+Bk, x ∈ T ,

where the Bks are the Bernoulli numbers satisfying the following: for k ≥ 1,∫
T Bk(x)dx = 0 and for k ≥ 2,

B
(1)
k (x) = kBk−1(x), B

(j)
k (0) = B

(j)
k (1), 0 ≤ j ≤ k − 2.

As f ∈ Cp(T ), define, whenever p ≥ m, for 0 ≤ k ≤ K − 1,

bf (x) = −f (m)(tk)
hm
k

m!
Bm

(
x− tk
hk

)
, tk ≤ x < tk+1.

We use the notation b
(i)
f (x) with values at the knots being the right derivatives.
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Lemma 3.1. If f ∈ Cp(T ) with p = m, then there exists a spline sf ∈ S(m, t)
such that ∥∥∥f (i) − s

(i)
f + b

(i)
f

∥∥∥ = o
(
hm−i

)
, i = 0, 1, . . . ,m− 2,

and for i = m− 1, ∥∥∥f (m−1) − s
(m−1)
f + b

(m−1)
f

∥∥∥ = O(h),

and ∥∥∥f (m−1) − s
(m−1)
f + b

(m−1)
f

∥∥∥
L2

= o(h).

Remark 3.1. The lemma is adapted from Lemma 1 of [4] and can be easily
extended to prove that: if f ∈ Cp(T ) with p < m, then there exists a spline
sf ∈ S(m, t) such that,∥∥∥f (i) − s

(i)
f

∥∥∥ = o
(
hp−i

)
, i = 0, 1, . . . ,min(p,m− 2).

and
∥∥∥f (p) − s

(p)
f

∥∥∥
L2

= o(1). To see this, let g(x) =
∑p

k=0 f
(k)(0)xk/k! which

satisfies ‖f (i)−g(i)‖ = o(hp−i) and apply Lemma 3.1 to g which gives bg(x) = 0.

Remark 3.2. The results in Lemma 3.1, Remark 3.1 and Lemma 3.2 for i ≥ 1
are important for the theoretic study of O-splines which involves the derivative
penalty of the spline estimators. To our best knowledge, such results have not
been formally stated in the statistics literature.

We denote the spline sf (x) in Lemma 3.1 by
∑

k βkNk(x) and let β =
(β1, . . . , βK) ∈ R

K . Lemma 3.2 below further characterizes the accuracy of sf
for approximating f .

Lemma 3.2. Suppose that (3.1) holds and f ∈ C(p)(T ) with p ≤ m. For 0 ≤
i ≤ min(p,m− 1) and r ≥ 1,

max
k

∣∣∣∣
∫
T
N

[r]
k (x)

{
f (i)(x)− s

(i)
f (x)

}
dQ(x)

∣∣∣∣ = o
(
hp+1−i

)
.

Lemma 3.3. Suppose that the assumptions in Lemma 3.2 hold. For the fixed
design, if (3.2) holds, then

max
k

∣∣∣∣
∫
T
Nk(x) {f(x)− sf (x)} dQn(x)

∣∣∣∣ = o
(
hp+1

)
.

For the random design where the design points x are randomly sampled from
Q(x), if K = o(nδ∗) for some δ∗ ∈ (0, 1/2), then

max
k

∣∣∣∣
∫
T
Nk(x) {f(x)− sf (x)} dQn(x)

∣∣∣∣ = o
(
hp+1

)
, a.s.

Remark 3.3. The fixed design case in Lemma 3.3 was proved in [1, Lemma
6.10].
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4. Properties of penalty of penalized splines

In this section we establish the properties of penalty of penalized splines. For
smoothing splines, the eigenvalues of penalty play a fundamental role in the
study of asymptotic properties; see, e.g., [34] and [31]. Given the similarity of
penalized splines and smoothing splines, it seems not unreasonable to believe
that such an approach can be extended for the theoretic study of penalized
splines. Indeed, a number of theoretic studies of penalized splines used results
on eigenvalues for smoothing splines albeit without a formal proof. Because
smoothing splines use polynomial splines with some boundary conditions [36]
while penalized splines do not satisfy those conditions; see, e.g., [37] for P -
splines, a formal proof on the eigenvalues of penalty of penalized splines is needed
but does not exist as far as we are aware of. We shall fill the gap and establish
that the three penalty matrices of the respective penalized spline estimators
introduced in Section 2 have eigenvalues of similar decay rates.

The assumptions on the knots and design points are summarized as below.

Assumption 2. For the B-spline bases, assume that the interior knots are
equally-spaced with ti = i/(K0 + 1), 0 ≤ i ≤ K0 + 1. For the fixed design points,
(3.2) holds.

Remark 4.1. (3.1) holds under Assumption 2 and h = 1/(K0 + 1).

A square matrix A = (aij) is said r-banded if aij = 0 whenever |i− j| > r/2.
If r is a finite number, we say that A has a finite band. For a symmetric matrix
A, denote by λk(A) its k

th smallest eigenvalue. We first derive the spectrum of
the penalty matrix DK,q for P -splines. Note that λk (DK,q) = λk (Oq) = 0 for

k ≤ q and λk

(
D̃K,m

)
= 0 for k ≤ m.

Proposition 4.1. Suppose that Assumption 1 holds. The matrix DK,q is (2q)-
banded and there exists a constant C1 > 1 that depends only on q and such that
for q + 1 ≤ k ≤ K,

C−1
1

(
k − q

K

)2q

≤ λk(DK,q) ≤ C1

(
k

K

)2q

.

Proposition 4.2. Suppose that Assumptions 1 and 2 hold. The matrices Oq and

D̃K,m are both (2m)-banded. And there exists a constant C2 > 1 that depends
only on q and m and such that for q + 1 ≤ k ≤ K,

C−1
2

(
k − q

K

)2q

≤ λk

(
h2q−1Oq

)
≤ C2

(
k

K

)2q

and for m+ 1 ≤ k ≤ K,

C−1
2

(
k −m

K

)2m

≤ λk

(
h2m−2D̃K,m

)
≤ C2

(
k

K

)2m

.
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Remark 4.2. Propositions 4.1 and 4.2 show that the eigenvalues of h2q−1Oq

and DK,q have the same decay rate and the eigenvalues of h2m−2D̃K,m and
DK,m have the same decay rate.

Remark 4.3. Results on the singular values of Oq without a rigorous proof has
been used in the penalized spline literatures; see, e.g., [7] and [5]. To our best
knowledge, our proof is the first one.

Remark 4.4. The results are comparable to the eigenvalues of smoothing splines
[34] and our proofs are also similar to those in [34].

Propositions 4.3, 4.4 and 4.5 give another useful property of the various
penalized splines.

Proposition 4.3. Suppose that Assumptions 1-2 hold. Assume that f ∈ Cp(T )
with q ≤ p ≤ m and q < m. Then

‖Oqβ‖max = O(Kq−1), βTOqβ = O(1),

where β is defined in Section 3 so that sf (x) = NT (x)β.

Proposition 4.4. Suppose that Assumptions 1-2 hold. Assume that f ∈ Cm(T ).
Then ∥∥∥h−1D̃K,mβ

∥∥∥
max

= O(Km−1), βT
(
h−1D̃K,m

)
β = O(1).

Proposition 4.5. Suppose that Assumptions 1-2 hold. Assume that f ∈ Cp(T )
with q ≤ p ≤ m and q ≤ m. Then∥∥h1−2qDK,qβ

∥∥
max

= O(Kq−1), βT
(
h1−2qDK,q

)
β = O(1).

5. L2 convergence rate

The L2 convergence rate of O-splines was first proved in [7] and similar proofs
can be adopted to establish the L2 convergence of the unified penalized spline es-
timator. Then the L2 convergence of P -splines and T -splines can be established.
However, it is worth noting that the adaption is not entirely trivial because O-
splines only allows q < m, but T -splines uses essentially an mth order penalty
and we also allow q = m for P -splines.

Assumptions 3 and 4 below summarize the key properties of penalty of all
three types of penalized splines derived in Section 4.

Assumption 3. Suppose that Pq is a symmetric and positive semi-definite
square matrix with a finite band that depends only on q and m and satisfies:
λq(Pq) = 0 and there exists a constant C3 > 1 that depends only on q and m
and such that for q + 1 ≤ k ≤ K,

C−1
3

(
k − q

K

)2q

≤ λk

(
h2q−1Pq

)
≤ C3

(
k

K

)2q

.

Assumption 4. βTPqβ = O(1).
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Let Gn = NTN/n and Hn = Gn+λPq/n. Define G =
∫
N(x)NT (x)ρ(x)dx ∈

R
K×K and H = G + λPq/n. Let A = NG

− 1
2

n and P̃q = G
− 1

2
n PqG

− 1
2

n . Let f =

{f(x1), . . . , f(xn)}T ∈ R
n and f̂ = {f̂(x1), . . . , f̂(xn)}T ∈ R

n. Then f̂ = A(IK+
λP̃q)

−1ATY . The singular values of P̃q plays an indispensable role in studying

the L2 convergence of f̂(x) [7]. Lemma 5.1 can be derived from Assumption 3
and A.1.

Lemma 5.1. Suppose that Assumptions 1 - 3 hold. Then λk

(
P̃q

)
= 0 for k ≤ q

and there exists a constant C4 > 1 such that for q + 1 ≤ k ≤ K,

C−1
4 h−2q

(
k − q

K

)2q

≤ λk

(
P̃q

)
≤ C4h

−2q

(
k

K

)2q

.

Assumption 5. λ = o(1).

Lemma 5.2. Suppose that Assumptions 1 - 3 and 5 hold. Then∥∥∥∥(I + λP̃q

)−1
∥∥∥∥
2

F

= O(h−1
e ),

where ‖ · ‖F is the Frobenius norm and he = max(h, λ
1
2q ).

Assumption 6. The random errors ei are independent from xi and are i.i.d.
with mean 0 and E|ei|τ < ∞ for some constant τ > 2.

We shall only give results for the fixed design. However, the extension to the
random design is straightforward and the only additional assumption required
is K = O

(
nδ∗

)
for some δ∗ ∈ (0, 1

2 ).

Theorem 5.1 (L2 convergence). Suppose that Assumptions 1 - 6 hold. If f ∈
Cp(T ) with q ≤ p ≤ m, then

E

(∥∥∥f̂ − f
∥∥∥2
L2

)
= O

(
K−2m

)
+ o(K−2p) +O

{
min

(
λ2K2q, λ

)}
+O

(
1

nhe

)
,

where he = max(h, λ
1
2q ) is defined in Lemma 5.2.

Remark 5.1. The first two terms correspond to the approximation bias of spline
functions, the third term is the shrinkage bias due to the penalty, and the last
term is the variance.

Remark 5.2. Assume in addition that ei ∼ N(0, σ2), then a concentration in-

equality on the term
∫
T

{
f̂(x)− Ef̂(x)

}2

ρ(x)dx, which measures the integrated

variability of penalized splines, can be established; see Lemma C.1 in Appendix
C.

Remark 5.3. As first observed in [7] for O-splines, depending on the number
of knots K and the smoothing parameter λ, the convergence rates of penalized
splines are similar to either those of regression splines or those of smoothing
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splines, giving rise to two-scenario asymptotics: the small number of knots sce-
nario corresponding to regression spline asymptotics and the large number of
knots scenario for the smoothing spline asymptotics.

(a) (Small number of knots scenario). Suppose that the conditions in Theorem
5.1 and that f ∈ Cm(T ). If λK2q = O(1), then

E

(∥∥∥f̂ − f
∥∥∥2
L2

)
= O

(
K−2m

)
+O

(
λ2K2q

)
+O

(
K

n

)
,

and for K ∼ n
1

2m+1 , λ = O
(
n− m+q

2m+1

)
, the estimator attains the optimal

rate of convergence n− 2m
2m+1 .

(b) (Large number of knots scenario). Suppose that the conditions in Theorem
5.1 and that f ∈ Cq(T ). There exists a sufficiently large constant C that
does not depend on K or n such that, if λK2q ≥ C, then

E

(∥∥∥f̂ − f
∥∥∥2
L2

)
= O

(
1

n
λ− 1

2q

)
+O (λ) +O

(
K−2m

)
+ o

(
K−2q

)
,

and for K ≥ C
1
2q λ− 1

2q , and λ ∼ n− 2q
2q+1 , the estimator attains the optimal

rate of convergence n− 2q
2q+1 .

Because q ≤ m, the optimal number of knots K in (a) is rate-wise no bigger and
can be much smaller than that in (b), explaining why the two-type asymptotics
can be referred to as the small number of knots scenario and the large number
of knots scenario.

Remark 5.4. The same convergence rate can also be established for AMSE(f̂) =

1
n

∑n
i=1 E

(
f̂(xi)− f(xi)

)2

.

Remark 5.5. To apply Theorem 5.1 and Remark 5.3 to O-splines with q < m,
just let Pq = Oq and λ = λO.

Remark 5.6. To apply Theorem 5.1 and Remark 5.3 to P-splines with q ≤ m,
just let Pq = h1−2qDK,q and λ = λPh

2q−1. As mentioned in Section 2, the bases
for P-splines are different from those for O-splines. However, the difference does
not matter for the theoretic study because Lemmas A.1, A.2 and A.3 in Appendix
B.3 still hold for the P-spline bases, which can verified by checking the proofs in
[46].

Remark 5.7. To apply Theorem 5.1 and Remark 5.3 to T-splines, just let
Pm = h−1D̃K,m and λ = λTh.

6. L∞ convergence rate

In this section, we shall establish the L∞ convergence rate of penalized splines.
Note that while bounds on the eigenvalues of Pq and P̃q are useful for deriving



760 L. Xiao

the L2 convergence rate of penalized splines, they are not sufficient for studying
the local and L∞ convergence of penalized splines. For example, to study the
local variance, proper bounds on the diagonals of H−1

n and H−2
n are required.

Thus, we shall first derive the local asymptotic variances of the three types of
penalized splines, in addition to those in Section 4. Then, we derive a unified
convergence rate that applies to the three penalized splines.

6.1. Local asymptotic variance

Proposition 6.1. Suppose that Assumptions 1, 2 and 5 hold. Let λ = λO and
Hn = Gn + λOOq with q < m. Then there exists a constant C5 > 1 such that,
for r = 1 and 2,

C−1
5 h1−rh−1

e ≤ min
k

(
H−r

n

)
kk

≤ max
k

(
H−r

n

)
kk

≤ C5h
1−rh−1

e .

Proposition 6.2. Suppose that Assumptions 1, 2 and 5 hold. Let λ = λTh and
Hn = Gn + λT D̃K,m. Then there exists a constant C6 > 1 such that, for r = 1
and 2,

C−1
6 h1−rh−1

e ≤ min
k

(
H−r

n

)
kk

≤ max
k

(
H−r

n

)
kk

≤ C6h
1−rh−1

e .

Here he = max(h, λ
1
2q ) with q = m.

Proposition 6.3. Suppose that Assumptions 1, 2 and 5 hold. Let λ = λPh
2q−1

and Hn = Gn + λPDK,q with q ≤ m. Then there exists a constant C7 > 1 such
that, for r = 1 and 2,

C−1
7 h1−rh−1

e ≤ min
k

(
H−r

n

)
kk

≤ max
k

(
H−r

n

)
kk

≤ C7h
1−rh−1

e .

6.2. Unified L∞ convergence rate

The results in Section 6.1 can be summarized as follows for the unified penalized
spline estimator.

Assumption 7. There exists a constant C8 > 1 such that, for r = 1 and 2,

C−1
8 h1−rh−1

e ≤ min
k

(
H−r

n

)
kk

≤ max
k

(
H−r

n

)
kk

≤ C8h
1−rh−1

e .

The results in Propositions 4.3, 4.4 and 4.5 can also be summarized as follows
for the unified penalized spline estimator.

Assumption 8. ‖Pqβ‖max = O
(
Kq−1

)
.

Remark 6.1. Assumption 8 is satisfied by Oq for q < m, h−1D̃K,m for q = m
and h1−2qDK,q for q ≤ m.

We also need the following assumption, which is common for establishing
uniform convergence rates [6].
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Assumption 9. Assume that

K

(
n

logn

) 2
τ −1

= O(1),

where τ is in Assumption 6.

Theorem 6.1 (L∞ convergence). Suppose that Assumptions 1 - 9 hold. If f ∈
Cp(T ) with q ≤ p ≤ m, then∥∥∥f̂ − f

∥∥∥ =O
(
K−m

)
+ o

(
K−p

)
+O

[
min

{
λKq

(
1 + λK2q

) 3
2 , (λK)

1
2

}]

+O

{(
logn

nhe

) 1
2

}
, a.s.

Remark 6.2. The terms on the right hand in the equation correspond to the
L∞ bound of the approximation bias of splines (first two terms), the L∞ bound
of the shrinkage bias due to the smoothness penalty (third term), and that of the
variability (last term) of the penalized spline estimator.

Remark 6.3. The proof of the theorem can be adapted to show that the same

rate holds for E

∥∥∥f̂ − f
∥∥∥.

Remark 6.4. Assume in addition that ei ∼ N(0, σ2), then both lower and upper

tail risk bound inequalities on the term supx∈T

∣∣∣f̂(x)− Ef̂(x)
∣∣∣ can be established;

see Lemma C.2 and its following remark in Appendix C.

Remark 6.5. If f ∈ Cm(T ) and λ = o
(
K−2q

)
, then he = h, the shrinkage

bias is negligible, and the L∞ convergence rate is O

{
K−m +

(
K logn

n

) 1
2

}
, the

L∞ rate for regression splines. In addition, when K ∼
(

n
logn

) 1
2m+1

, the L∞

convergence rate becomes
(

log n
n

)− m
2m+1

, the minimax optimal rate [6]. Similar to

[6], such an optimal rate can be achieved when τ ≥ 2+ 1
m because of Assumption

9. Thus, λ does not matter as long as it is small and K as in regression splines
serves as the smoothing parameter.

Remark 6.6. If λ is sufficiently large, then he = λ
1
2q , the approximation

bias of spline functions is negligible, and the L∞ convergence rate becomes

O

[
min

{
λKq(1 + λK2q)

3
2 , (λK)

1
2

}
+
(

logn
n

) 1
2

λ− 1
4q

]
. When λ ∼

(
logn
n

) 2q
2q+1

and K ∼
(

n
log n

) 1
2q+1

and that λK2q is sufficiently large, the L∞ convergence

rate is
(

logn
n

)− q
2q+1

, the minimax optimal rate [12]. Because of Assumption 9,

such an optimal rate can be achieved when τ ≥ 2 + 1
q .
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Remark 6.7. Comparing the derived L∞ rate with the optimal L2 rate in
part (b) of Remark 5.3, we see that when λK2q → ∞, the derived L∞ rate

O

{(
logn
n

) 1
2

λ− 1
4q

}
for the asymptotic variance is optimal. However, the derived

L∞ rate O
[
min

{
λKq(1 + λK2q)

3
2 , (λK)

1
2

}]
for the shrinkage bias is subopti-

mal and we believe the optimal rate should be O
(
λ

1
2

)
.

Remark 6.8. To apply the unified L∞ rate to the three types of penalized
splines, we just follow the specifications in Remarks 5.5, 5.6 and 5.7, respec-
tively.

7. Local asymptotic bias and variance

Theorem 7.1 (Local asymptotics). Suppose that Assumptions 1 - 8 hold. If
f(x) ∈ Cp(T ) with q ≤ p ≤ m, then∥∥∥Ef̂ − f − 1{p=m}bf − bλ

∥∥∥ = o
[
K−p +min

{
λKq

(
1 + λK2q

) 3
2 , (λK)

1
2

}]
.

The shrinkage bias bλ(x) is −NT (x)H−1(λPq)β, where β is defined in Section 3.

If additionally, λK2q = O(1) or ‖Qn −Q‖ = o
(
h

3
2

)
, then

sup
x

∣∣∣∣var{f̂(x)}− σ2

n
NT (x)H−1GH−1N(x)

∣∣∣∣ = o

(
1

nhe

)
.

Remark 7.1. If λK2q = O(1),∥∥∥Ef̂ − f − 1{p=m}bf − bλ

∥∥∥ = o
(
K−p + λKq

)
and

sup
x

∣∣∣∣var{f̂(x)}− σ2

n
NT (x)H−1GH−1N(x)

∣∣∣∣ = o

(
1

nh

)
.

The above results are the same as the local asymptotics of O-splines derived
in [7] and also hold for P-splines and T-splines with specifications in Remarks
5.6 and 5.7, respectively. Suppose that f ∈ Cm(T ) and λ = o

{
K−(m+q)

}
, then

the local asymptotics are the same as those for regression splines and hence are
optimal.

Remark 7.2. If λK2q is sufficiently large, then the discussion is similar to
Remark 6.6 and the derived rates may be suboptimal.

8. Proofs

To simplify notation, we may use D for DK,q, Δ for ΔK,q and P for Pq in the
proofs.
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8.1. Proofs for Section 3

Proof of Lemma 3.2. We first consider the case p = m. Let g(x) = f(x) −
sf (x) + bf (x). By Lemma 3.1,

∥∥g(i)∥∥ = o(hm−i) if i ≤ m− 2. We derive that∣∣∣∣
∫
T
N

[r]
k (x)

{
f (i)(x)− s

(i)
f (x)

}
dQ(x)

∣∣∣∣
≤
∣∣∣∣
∫
T
N

[r]
k (x)g(i)(x)dQ(x)

∣∣∣∣+
∣∣∣∣
∫
T
N

[r]
k (x)b

(i)
f (x)dQ(x)

∣∣∣∣ .
(8.1)

Let gk(x) = N
[r]
k (x)ρ(x). By integration by parts,∫

T
N

[r]
k (x)g(i)(x)dQ(x) =

[
g(i−1)(x)gk(x)

]∣∣∣1
x=0

−
∫
T
g(i−1)(x)g

(1)
k (x)dx

=o(hm+1−i)−
∫
T
g(i−1)(x)g

(1)
k (x)dx.

Note that
∥∥g(i−1)

∥∥ = o(hm+1−i), g
(1)
k (x) = ρ(x)dN

[r]
k (x)/dx+ ρ(1)(x)N

[r]
k (x) is

non-zero for an interval of length O(h), and is of order O(h−1), uniformly for

all k. Thus,
∫
T g(i−1)(x)g

(1)
k (x)dx = o(hm+1−i) and

max
k

∣∣∣∣
∫
T
N

[r]
k (x)g(i)(x)dQ(x)

∣∣∣∣ = o
(
hm+1−i

)
. (8.2)

We now consider the second right hand term in (8.1) and shall prove that

max
k

∣∣∣∣
∫
T
N

[r]
k (x)b

(i)
f (x)dQ(x)

∣∣∣∣ = o
(
hm+1−i

)
. (8.3)

Note that b
(i)
f (x) = −f (m)(tk)

hm−i
k

(m−i)!B(m−i)

(
x−tk
hk

)
, tk ≤ x < tk+1 and we have

defined gk(x) = N
[r]
k (x)ρ(x). It follows that∫

T
N

[r]
k (x)b

(i)
f (x)dQ(x)

=−
∑
k

f (m)(tk)
hm−i
k

(m− i)!

∫ tk+1

tk

gk(x)B(m−i)

(
x− tk
hk

)
dx

=−
∑
k

f (m)(tk)
hm−i+1
k

(m− i)!

∫ 1

0

gk(tk + hky)B(m−i)(y)dy

=−
∑
k

f (m)(tk)
hm−i+1
k

(m− i)!
wk,

where wk =
∫ 1

0
gk(tk + hky)B(m−i)(y)dy. By the definition of B-splines, wk is

non-zero only for a few ks. Moreover, using the fact that
∫ 1

0
B(m−i)(y)dy = 0,
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we have

wk =

∫ 1

0

{gk(tk + hky)− gk(tk)}B(m−i)(y)dy = o(1)

uniformly with respect to k. It follows that (8.3) holds and together with (8.1)
and (8.2), the proof for the case p = m is complete.

Now we assume that p < m and let g(x) = f(x)− sf (x) instead. By Remark

3.1,
∥∥g(i)∥∥

L2
= o(hp−i). Let gk(x) = N

[r]
k (x)ρ(x). Then,

max
k

∣∣∣∣
∫
T
N

[r]
k (x)g(i)(x)dQ(x)

∣∣∣∣ ≤ max
k

‖gk‖L2‖g(i)‖L2 = O(h)o(hp−i) = o(hp+1−i).

The proof is now complete.

Proof of Lemma 3.3. We first consider the fixed design. We derive that

max
k

∣∣∣∣
∫
T
Nk(x) {f(x)− sf (x)} dQn(x)

∣∣∣∣
≤max

k

∣∣∣∣
∫
T
Nk(x) {f(x)− sf (x)} dQ(x)

∣∣∣∣
+max

k

∣∣∣∣
∫
T
Nk(x) {f(x)− sf (x)} d(Qn −Q)(x)

∣∣∣∣ .
By Lemma 3.1, maxk

∣∣∫
T Nk(x) {f(x)− sf (x)} dQ(x)

∣∣ = o(hp+1). Hence, it suf-
fices to show

max
k

∣∣∣∣
∫
T
Nk(x) {f(x)− sf (x)} d(Qn −Q)(x)

∣∣∣∣ = o(hp+1). (8.4)

Let gk(x) = Nk(x){f(x)− sf (x)}. By integration by parts,∫
T
Nk(x) {f(x)− sf (x)} d(Qn −Q)(x) = −

∫
T
(Qn −Q)(x)g

(1)
k (x)dx.

Hence,∣∣∣∣
∫
T
Nk(x) {f(x)− sf (x)} d(Qn −Q)(x)

∣∣∣∣ =
∣∣∣∣
∫
T
(Qn −Q)(x)g

(1)
k (x)dx

∣∣∣∣ (8.5)

Note that

g
(1)
k (x) = N

(1)
k (x){f(x)− sf (x)}+Nk(x){f (1)(x)− s

(1)
f (x)}.

Since ‖f − sf‖ = O(hp) and ‖f (1) − s
(1)
f ‖ = O(hp−1),∫

T

∣∣∣g(1)k (x)
∣∣∣ dx ≤

∫
T

∣∣∣N (1)
k (x)

∣∣∣ |f(x)− sf (x)|dx+

∫
T
Nk(x)|f (1)(x)− s

(1)
f (x)|dx

= O(hp).
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where the big O is uniform with respect to k and in the second to last equality

we used the fact that ‖N (1)
k ‖ = O(h−1) uniformly with respect to k and N

(1)
k (·)

is non-zero for an interval of length O(h) [26, Theorem 4.2]. It follows that∣∣∣∣
∫
T
(Qn −Q)(x)g

(1)
k (x)dx

∣∣∣∣ ≤ ‖Qn −Q‖
∫
T
|g(1)k (x)|dx = o(hp+1),

where we used the assumption ‖Qn −Q‖ = o(h) (equation (3.2)).
For the random design, by Serfling [29, Theorem 2.1.4b],

‖Qn −Q‖ = O
{
n− 1

2 (log logn)
1
2

}
= o

(
K−1

)
almost surely since K = o(nδ∗) with δ∗ < 1/2. The proof is then similar to that
for the fixed design.

8.2. Proofs for Section 4

Proof of Proposition 4.1. Let AK,q = Dq
K,1 − DK,q. Note that AK,1 = 0. By

[2, pp. 289-290], for q > 1, AK,q are non-zero only for elements with indices
i, j ≤ q and K − i+1 ≤ q,K − j +1 ≤ q. Moreover, it is easy to verify that the
non-zero elements in AK,q depends only on q when K is sufficiently large. Thus,
DK,q and Dq

K,1 should have similar singular eigenvalues (Lemma 8.2), and we

could study the singular values of DK,q via those of Dq
K,1 (Lemma 8.3). We first

present three Lemmas.

Lemma 8.1. AK,q ≥ 0 and has at most 2q non-zero eigenvalues.

Proof. The second claim is straightforward because AK,q has at most 2q rows
with non-zero elements. So we focus on the first claim. Let ĎK,1 = ΔK,1Δ

T
K,1.

We first prove that ĎK,1 ≥ DK−1,1. Let b = (b1, . . . , bK−1)
T . Then bT ĎK,1b =

b21 + b2K−1 +
∑K−1

j=2 (bj − bj−1)
2 ≥

∑K−1
j=2 (bj − bj−1)

2 = bTDK−1,1b. Note

that DK,q = ΔT
K,1Δ

T
K−1,q−1ΔK−1,q−1ΔK,1 = ΔT

K,1DK−1,q−1ΔK,1 and Dq
K,1 =

ΔT
K,1D̃

q−1
K,1ΔK,1. Thus,

AK,q = ΔT
K,1

(
Ďq−1

K,1 −DK−1,q−1

)
ΔK,1 ≥ ΔT

K,1(D
q−1
K−1,1 −DK−1,q−1)ΔK,1,

where the last term equals ΔT
K,1AK−1,q−1ΔK,1. Therefore, the proof is complete

by induction.

Lemma 8.2. For 2q + 1 ≤ k ≤ K,

λk−2q(D
q
K,1) ≤ λk(DK,q) ≤ λk(D

q
K,1).

Proof of Lemma 8.2. The proof follows from Weyl’s Theorem [28, pp. 117],
Lemma 8.1 and that λj(AK,q) = 0 for j ≤ K − 2q. Specifically, the right
hand side of the inequality follows from Dq

K,1 = DK,q + AK,q and Ap,q is pos-
itive semidefinite by Lemma 8.1. For the left hand side, by Weyl’s Theorem,
λk−2q(D

q
K,1) ≤ λk(DK,q) + λK−2q(AK,q) = λk(DK,q) as λK−2q(AK,q) = 0.
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The following lemma is adapted from Theorem 6.5.4 in [2].

Lemma 8.3. The eigenvalues of DK,1 are given by νk = 4
(
sin π(k−1)

2K

)2

, k =

1, 2, . . . ,K and the corresponding eigenvectors are u1 =
√

1
K {1, 1, . . . , 1}T and

uk =
√

2
K

{
cos π(k−1)

2K , cos 3π(k−1)
2K , . . . , cos (2K−1)π(k−1)

2K

}T

for k > 1.

Now we prove Proposition 4.1. By Lemmas 8.2 and 8.3, for k ≥ 2q + 2,

4q
(
sin

π(k − 2q − 1)

2K

)2q

≤ λk(DK,q) ≤ 4q
(
sin

π(k − 1)

2K

)2q

It is easy to verify that 2
πx ≤ sinx ≤ x for x ∈ [0, π/2]. Thus,

(
2(k − 2q − 1)

K

)2q

≤ λk(DK,q) ≤
(
π(k − 1)

K

)2q

.

Since (q + 2)(k − 2q − 1) ≥ k − q for k ≥ 2q + 2, we further obtain that for
k ≥ 2q + 2,

(
2

q + 2

)2q (
k − q

K

)2q

≤ λk(DK,q) ≤ π2q

(
k

K

)2q

.

The proof is complete if for any K > q, λq+1(DK,q) ≥ CK−2q for some constant
C > 0 that depends only on q. Note that λq+1(DK,q) = λ1(ΔK,qΔ

T
K,q). Hence,

it suffices to show that

ΔK,qΔ
T
K,q ≥ CK−2qIK−q. (8.6)

We shall prove (8.6) by induction on q. By Lemma 8.3, we have ΔK,1Δ
T
K,1 ≥

4
(
sin π

2K

)2
IK−1. Since sin π

2K ≥ 1
K , for any K > 1,

ΔK,1Δ
T
K,1 ≥ 4K−2IK−1. (8.7)

Hence, (8.6) holds for q = 1. Note that

ΔK,qΔ
T
K,q = ΔK−1,q−1

(
ΔK,1Δ

T
K,1

)
ΔT

K−1,q−1 ≥ 4K−2ΔK−1,q−1Δ
T
K−1,q−1,

where in the last inequality (8.7) was used. Hence by an inductive proof, (8.6)
holds for any q and the proof is complete.

Proof of Proposition 4.2. We prove the inequalities for the eigenvalues of Oq

as the proof for those of D̃K,m is similar. Note that the weight matrix W
[m]
K

has the kth element (m − 1)/(tk − tk−m+1) for m ≥ 2 and W
[1]
K = h−1I. By

the assumption of equally-spaced interior knots in Assumption 2, W
[m]
K is the

same as h−1IK−1 except the first m − 2 diagonal element. With slight abuse
of notation, lnet Pq = Δ̃T

K,q,mΔ̃K,q,m. Then it can be shown that h2qPq differs
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from DK,q in at most the first kq,m and the last kq,m rows, where kq,m is a
finite constant that depends only on q and m. Then with a proof similar to
that of Lemma 8.1, it can be shown that there exists a constant c > 1 such
that cDq

K,1 − h2qPq is positive semi-definite and that Dq
K,1 − h2qPq is non-zero

only in the first and last few rows. Hence a proof similar to that of Proposition
4.1 proves the same inequalities for h2qPq. For example, inequality (8.6) can be
similarly proved. Note that by Remark A.1, there exist constants 0 < c < c̃
such that chI ≤ G ≤ c̃hI. Hence, chPq ≤ Oq ≤ c̃hPq, which implies that the
eigenvalues of hPq and Oq are rate-wise similar. Therefore, the inequalities for
the eigenvalues of Oq are proved.

Proof of Proposition 4.3. By the definition of Oq in (2.3),

Oqβ = Δ̃T
K,q,m

∫
N [m−q](x)s

(q)
f (x)dx.

Denote
∫
N [m−q](x)s(q)(x)dx by γ̃ ∈ R

K−q. Then

‖Oqβ‖max ≤ ‖Δ̃T
K,q,m‖∞‖γ̃‖max

By definition, Δ̃K,q,m is a sparse matrix with a finite band and each element is

O(h−q). Thus, ‖Δ̃T
K,q,m‖∞ = O(h−q) and ‖Oqβ‖max = O(Kq−1) if

‖γ̃‖max = O(h). (8.8)

By Lemma 3.2, we obtain that

γ̃k =

∫
N

[m−q]
k (x)s

(q)
f (x)dx =

∫
N

[m−q]
k (x)f (q)(x)dx+ o(hp+1−q) = O(h),

where O(h) is uniform with respect to k and hence (8.8) holds.
Next, we derive that

βTOqβ =

∫ {
s
(q)
f (x)

}2

dx

≤
∫ {

f (q)(x)
}2

dx+

∫ {
f (q)(x)− s

(q)
f (x)

}2

dx

= O(1),

where the last equality holds by Lemma 3.1 and Remark 3.1. The proof is
complete.

Proof of Proposition 4.4. By equation (2.2),

s
(m−1)
f (x) = βT Δ̃T

K,m−1,mN [1](x).

Define γ = (γ1, . . . , γK0+1)
T = Δ̃K,m−1,mβ, then s

(m−1)
f (x) = γk if x ∈ [tk, tk+1).

By Lemma A.8,

D̃K,m =

{
1

(m− 1)!

}2

Δ̃T
K,m−1,mDK−m+1,1Δ̃K,m−1,m.
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It follows that

{(m− 1)!}2
(
D̃K,mβ

)
= Δ̃T

K,m−1,mΔT
K−m+1,1 (ΔK−m+1,1γ)

and

{(m− 1)!}2 βT D̃K,mβ = γTDK−m+1,1γ = ‖ΔK−m+1,1γ‖22 =

K0+1∑
k=2

(γk − γk−1)
2.

Note that

(γk − γk−1)
2

=
{
s
(m−1)
f (tk)− s

(m−1)
f (tk−1)

}2

≤
{
s
(m−1)
f (tk)− f (m−1)(tk)

}2

+
{
s
(m−1)
f (tk−1)− f (m−1)(tk−1)

}2

+
{
f (m−1)(tk)− f (m−1)(tk−1)

}2

=O(h2),

where the big O is uniform with respect to k and the last equalities follow
by Lemma 3.1 and the fact that f ∈ Cm. Since ‖Δ̃T

K,m−1,m‖∞ = O(Km−1),

‖ΔT
K−m+1,1‖∞ = O(1), we derive that

{(m− 1)!}2 ‖D̃K,mβ‖max ≤ ‖Δ̃T
K,m−1,m‖∞‖ΔT

K−m+1,1‖∞‖ΔK−m+1,1γ‖max

= O(Km−1)O(1)O(h)

= O(Km).

Thus, ‖h−1D̃K,mβ‖max = O(Km−1).
Next, we derive that

{(m− 1)!}2 βT D̃K,mβ =

K0+1∑
k=2

(γk − γk−1)
2 = O(h).

The proof is complete.

Proof of Proposition 4.5. First note that Lemma 3.1 and Proposition 4.3 also
hold when the boundary knots for O-splines are the same as those for P -splines.
We first consider the case q < m. Then Δ̃K,q,m = h−qΔK,q and

s
(q)
f (x) = N [m−q],T (x)Δ̃K,q,mβ = h−qN [m−q],T (x)ΔK,qβ.

Hence,

ΔK,qβ = hq
(
G[m−q]

)−1
∫

N [m−q](x)s
(q)
f (x)dx.
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The proof in Proposition 4.3 (see equation (8.8)) shows that∥∥∥∥
∫

N [m−q](x)s
(q)
f (x)dx

∥∥∥∥
max

= O(h).

It follows that

‖DK,qβ‖max ≤ ‖ΔT
K,q‖∞‖ΔK,qβ‖max

≤ hq

∥∥∥∥(G[m−q]
)−1

∥∥∥∥
∞

∥∥∥∥
∫

N [m−q](x)s
(q)
f (x)dx

∥∥∥∥
max

= O(hq).

Therefore,
‖h1−2qDK,qβ‖max = O(h1−q).

Next, note that Oq = h−2qΔT
K,qG

[m−q]ΔK,q. Hence

O(1) = βTOqβ = h−2qβTΔT
K,qG

[m−q]ΔK,qβ = h−2qγTG[m−q]γ,

where γ = ΔK,qβ. By Remark A.1 after Lemma A.1, the eigenvalues of G[m−q]

are of order h. Thus,

βTDK,qβ = ‖γ‖22 = O(h2q−1)

and we have proved the cases with q < m.
Now we consider q = m. Let γ = ΔK,mβ. Note that

s
(m−1)
f (x) = βT Δ̃T

K,m−1,mN [1](x) = h1−mγTN [1](x).

Hence, s
(m−1)
f (x) = h1−mγk if x ∈ [tk, tk+1). We next derive that

DK,mγ = ΔT
K,m(ΔK−m+1,1γ)

and

βTDK,mβ =γTDK−m+1,1γ

and the rest of the proof is similar to that of Proposition 4.4.

8.3. Proofs for Section 5

Proof of Lemma 5.1. Note that P̃q = G
− 1

2
n PqG

− 1
2

n . By Lemma A.1, it is easy to
show that (

c
− 1

2
2 + o(1)

)
h− 1

2 ≤ λmin

(
G

− 1
2

n

)
≤

(
c
− 1

2
1 + o(1)

)
h− 1

2 .

Since both G
− 1

2
n and P are non-negative and symmetric matrices, applying twice

the inequalities 6.76 in [28, page 119] and Assumption 3 proves the lemma.
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Proof of Lemma 5.2. Let s̃k denote the kth smallest eigenvalue of P̃q, then (1+

λsk)
−1 is the kth largest eigenvalue of (I + λP̃q)

−1. Then

∥∥∥∥(I + λP̃q

)−1
∥∥∥∥
2

F

=

K∑
k=1

(
1

1 + λs̃k

)2

.

By Lemma 5.1, s̃1 = . . . = s̃q = 0 and s̃k ≥ C4h
−2q

(
k−q
K

)2q

for k ≥ q + 1. It

follows that

K∑
k=1

(
1

1 + λs̃k

)2

≤ q +

K−q∑
k=1

(
1

1 + C4λh−2qk2qK−2q

)2

and the sum can be easily shown is O(h−1
e ). The proof is complete.

Proof of Theorem 5.1. We first consider the bias Ef̂(x)− f(x) and derive that

Ef̂(x) =NT (x)H−1
n (NT f/n)

=NT (x)γ −NT (x)H−1
n (λP )γ,

where f = {f(x1), . . . , f(xn)}T ∈ R
n and γ = G−1

n (NT f/n). Because

sf (x) = NT (x)β = NT (x)G−1
n (NT sf/n),

where sf = {sf (x1), . . . , sf (xn)}T ∈ R
n, we further obtain

(Ef̂ − f)(x) = (sf − f)(x) +NT (x)G−1
n α−NT (x)H−1

n (λP )γ, (8.9)

where α = NT (f − sf )/n. It follows that

1

3

∫ {
Ef̂(x)− f(x)

}2

ρ(x)dx

≤
∫

{sf (x)− f(x)}2 ρ(x)dx+ αTG−1
n GG−1

n α+ γT (λP )H−1
n GH−1

n (λP )γ.

(8.10)

We first derive ‖sf −f‖. Consider first p = m. By Lemma 3.1, ‖sf −f−bf‖ =
o(hm). By definition, ‖bf‖ = O(hm). Hence,

‖sf − f‖ = O(hm). (8.11)

Assume now p < m. By Remark 3.1, ‖sf − f‖ = o(hp). Therefore, for general p
with p ≤ m, we obtain that

‖sf − f‖ = O(hm) + o(hp). (8.12)

For the second right hand term in (8.9), note by (8.18) that ‖α‖max =
o(hp+1). Thus,

αTG−1
n GG−1

n α ≤ ‖α‖22‖G−1
n GG−1

n ‖∞ = o(h2p).
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It follows from (8.10) that

1

3

∫ {
Ef̂(x)− f(x)

}2

ρ(x)dx = O
(
h2m

)
+ o

(
h2q

)
+ γT (λP )H−1

n GH−1
n (λP )γ.

(8.13)
Denote the last right hand term in (8.13) by ξ. Note that

ξ = (1 + o(1))γT (λP )H−1
n GnH

−1
n (λP )γ

= (1 + o(1))γTG
1
2
n P̃ (I + P̃ )−2P̃G

1
2
nγ,

where P̃ = G
− 1

2
n (λP )G

− 1
2

n . Thus,

ξ = O(1)γTG
1
2
n P̃ (I + P̃ )−2P̃G

1
2
nγ. (8.14)

Since P̃ (I + P̃ )−2P̃ ≤ ‖P̃‖2P̃ , we derive that

ξ = O(1)‖P̃‖2γTG
1
2
n P̃G

1
2
nγ

= O(1)‖P̃‖2γT (λP )γ.

Note that ‖P̃‖2 ≤ λ‖G− 1
2

n ‖22‖P‖2, ‖G
− 1

2
n ‖2 = O(h− 1

2 ) and ‖P‖2 = O(K2q−1)
by Assumption 3. Therefore, ‖P̃‖2 = O(λK2q). In addition, by Lemma 8.4,
γTPγ = O(1). Thus,

ξ = O(λ2K2q).

On the other hand, by (8.14) and the fact that P̃ (I + P̃ )−2P̃ ≤ P̃ , we obtain

ξ = O(1)γTG
1
2
n P̃G

1
2
nγ

= O(1)γT (λP )γ

= O(λ).

Thus, we obtain that

ξ = O
{
min(λ2K2q, λ)

}
. (8.15)

Combining (8.13) and (8.15), we obtain

1

3

∫ {
Ef̂(x)− f(x)

}2

ρ(x)dx = O
(
h2m

)
+ o

(
h2p

)
+O

{
min(λ2K2q, λ)

}
,

(8.16)
which finishes the derivation of bias.

Next, we consider the variance and derive that

∫
var{f̂(x)}ρ(x)dx =

σ2

n
tr
(
H−1

n GnH
−1
n G

)
.
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We derive that

tr
(
H−1

n GnH
−1
n G

)
= {1 + o(1)}tr

(
H−1

n GnH
−1
n Gn

)
= O(1)tr

{(
I + P̃

)−2
}

= O(1)

∥∥∥∥(I + P̃
)−1

∥∥∥∥
2

F

= O(h−1
e ),

where the last equality follows by Lemma 5.2. It follows that∫
var{f̂(x)}ρ(x)dx = O

(
1

nhe

)
. (8.17)

Thus, by combining (8.16) and (8.17), we obtain that

E

∫ {
f̂(x)− f(x)

}2

ρ(x)dx

=

∫ {
Ef̂(x)− f(x)

}2

ρ(x)dx+

∫
var{f̂(x)}ρ(x)dx

=O
(
h2m

)
+ o

(
h2p

)
+O

{
min(λ2K2q, λ)

}
+O

(
1

nhe

)
.

Because

E

∫ {
f̂(x)− f(x)

}2

dx ≤ 1

infx∈T ρ(x)
E

∫ {
f̂(x)− f(x)

}2

ρ(x)dx

and infx∈T ρ(x) > 0, we obtain the desired bounds for E‖f̂ − f‖2L2
.

Lemma 8.4. Suppose that Assumptions 1, 3-4 hold. Assume that f ∈ Cp(T )
with q ≤ p ≤ m. Let γ = G−1

n (NT f/n) with f = {f(x1), . . . , f(xn)}T ∈ R
n.

Then
γTPqγ = O(1).

Proof. Note that G−1
n (NT sf/n) = β, where β is defined in Section 3. Hence

γ = β +G−1
n {NT (f − sf )/n} = β +G−1

n α,

where α = NT (f − sf )/n. Since Pq is positive semi-definite, it is easy to show
that (

γTPqγ
) 1

2 ≤
(
βTPqβ

) 1
2 +

(
αTG−1

n PqG
−1
n α

) 1
2 .

By Assumption 4, βTPqβ=O(1). Thus, if suffices to show that αTG−1
n PqG

−1
n α=

O(1). Note that

‖α‖max = ‖NT (f − sf )/n‖max =

∥∥∥∥
∫

N(x){f(x)− sf (x)}dQn(x)

∥∥∥∥
max

.
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By Lemma 3.3,
‖α‖max = o

(
hp+1

)
. (8.18)

Thus,

αTG−1
n PqG

−1
n α ≤ ‖α‖22‖G−1

n PqG
−1
n ‖2

= o(h2p+2h−1h−2h1−2q)

= o(1).

And the proof is complete.

8.4. Proofs for Section 6

Proofs of Propositions 6.1, 6.2 and 6.3. We first focus on Gn+λOOq. Note that

Oq = Δ̃T
K,q,mG[m−q]Δ̃K,q,m with q < m. By Lemma A.1, c1hI ≤ Gn ≤ c2hI,

where c1 and c2 are constants in Lemma A.1. Similar to Gn, we may assume for
the same two constants c1 and c2 that c1hI ≤ G[m−q] ≤ c2hI. Then,

c1hΔ̃
T
K,q,mΔ̃K,q,m ≤ Oq ≤ c2hΔ̃

T
K,q,mΔ̃K,q,m.

Let Ōq = Δ̃T
K,q−1,mΔ̃K,q−1,m. It follows that

c1h
(
I + λOŌq

)
≤ Gn + λOOq ≤ c2h

(
I + λOŌq

)
.

Thus, for r = 1, 2,

c−r
2 h−r

(
I + λOŌq

)−r ≤ (Gn + λOOq)
−r ≤ c−r

1 h−r
(
I + λOŌq

)−r
.

Hence, Proposition 6.1 holds if the minimum and maximum of the diagonal

of
(
I + λOŌq

)−r
are of order hh−1

e . With a similar argument, Proposition 6.2

holds if the minimum and maximum of the diagonal of
(
I + λT D̃K,m

)−r

are of

order hh−1
e with he = max(h, λ

1
2m ) and Proposition 6.3 holds if the minimum

and maximum of the diagonal of (I + λPDK,q)
−r

are of order hh−1
e . Note that

Ōm = {(m−1)!}2h−2D̃K,m by Lemma A.8. Because of Assumption 2, the matrix
h2qŌq is the same as DK,q except for the first and the last few rows and the

matrix h2(m−1)D̃K,m is the same as DK,m except for the first and the last few
rows. As a result, an asymptotic study of (I + λPDK,q)

−r for r = 1, 2 is the
key and some minor technical modifications are sufficient to accommodate the
differences in the first and last few rows. We first note that when λP = O(1), the
corresponding he = O(1) and the diagonals of (I + λPDK,q)

−r are necessarily
O(1), which proves the propositions. Therefore, we just need to focus on the
case that if λP ≥ C for some sufficiently large constant C, there still exists a
constant, say C̃ > 1, such that

C̃−1λ
− 1

2q

P ≤ min
k

{
(I + λPDK,q)

−r
}
kk

≤ max
k

{
(I + λPDK,q)

−r
}
kk

≤ C̃λ
− 1

2q

P .

The desired results are given in Theorem B.1 in Appendix B.
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Proof of Theorem 6.1. We consider the bias and variance of f̂(x) separately.
By (8.9) and (8.12), we obtain that

‖Ef̂ − f‖ ≤ O(hm) + o(hp) +
∥∥NT (·)G−1

n α
∥∥+

∥∥NT (·)H−1
n (λP )γ

∥∥ . (8.19)

By (8.18), ‖α‖max = o(hp+1). Hence,∥∥G−1
n α

∥∥
max

≤ ‖G−1
n ‖∞‖α‖max = O(h−1)‖α‖max = o(hp).

It follows that ∥∥NT (·)G−1
n α

∥∥ = o (hp) . (8.20)

As for the last right hand term in (8.19), we have∥∥NT (·)H−1
n (λP )γ

∥∥ ≤
∥∥H−1

n (λP )γ
∥∥
max

.

Note that γ = β +G−1
n α. Hence,∥∥H−1

n (λP )γ
∥∥
max

≤
∥∥H−1

n (λP )β
∥∥
max

+
∥∥H−1

n (λP )G−1
n α

∥∥
max

.

Therefore,∥∥NT (·)H−1
n (λP )γ

∥∥ ≤
∥∥H−1

n (λP )β
∥∥
max

+
∥∥H−1

n (λP )G−1
n α

∥∥
max

. (8.21)

We derive the orders of each of the two right hand terms in (8.21) now. By
Assumption 8 and Lemma A.4,

∥∥H−1
n (λP )β

∥∥
max

≤ λ‖H−1
n ‖∞‖Pβ‖max = O

{
λKq(1 + λK2q)

3
2

}
.

On the other hand, we derive that∥∥H−1
n (λP )β

∥∥2
max

≤ βT (λP )H−2
n (λP )β

= O(h−1)βT (λP )H−1
n GnH

−1
n (λP )β.

Matrix algebra shows that (λP )H−1
n GnH

−1
n (λP ) ≤ λP . Hence,

∥∥H−1
n (λP )β

∥∥2
max

= O(h−1)βT (λP )β = O(λK).

Thus, we have shown that

∥∥H−1
n (λP )β

∥∥
max

= O
[
min

{
λKq(1 + λK2q)

3
2 , (λK)

1
2

}]
. (8.22)

Now we work on the second right hand term in (8.21). Note that by Lemma

A.4, ‖H−1
n ‖∞ = O{K(1 + λK2q)

3
2 }. We derive that∥∥H−1

n (λP )G−1
n α

∥∥
max

≤ λ‖H−1
n ‖∞‖P‖∞‖G−1

n ‖∞‖α‖max

= O
{
λK(1 + λK2q)

3
2h1−2qh−1

}
o(hp+1).
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Since p ≥ q, we obtain that∥∥H−1
n (λP )G−1

n α
∥∥
max

= o
{
λKq(1 + λK2q)

3
2

}
.

On the other hand,∥∥H−1
n (λP )G−1

n α
∥∥2
max

≤ αTG−1
n (λP )H−2

n (λP )G−1
n α

= O(h−1)αTG−1
n (λP )H−1

n GnH
−1
n (λP )G−1

n α

= O(h−1)αTG−1
n (λP )G−1

n α,

The proof of Lemma 8.4 derives that αTG−1
n PG−1

n α = o(1). Thus,∥∥H−1
n (λP )G−1

n α
∥∥2
max

= o(λK).

The above derivations prove that∥∥H−1
n (λP )G−1

n α
∥∥
max

= o
[
min

{
λKq(1 + λK2q)

3
2 , (λK)

1
2

}]
. (8.23)

Combining (8.21), (8.22) and (8.23), we have proved that∥∥NT (·)H−1
n (λP )γ

∥∥ = O
[
min

{
λKq(1 + λK2q)

3
2 , (λK)

1
2

}]
. (8.24)

Now combining (8.19), (8.20) and (8.24), we have∥∥∥Ef̂ − f
∥∥∥ = O (hm) + o(hp) +O

[
min

{
λKq(1 + λK2q)

3
2 , (λK)

1
2

}]
.

Now we consider f̂(x)− Ef̂(x). Let

u(x) = f̂(x)− Ef̂(x) =

n∑
i=1

wi(x)ei,

where
wi(x) = NT (x)H−1

n N(xi)/n.

We shall use the following results: for any constant r > 0,

max
i

‖wi‖ = O

(
1

nhe

)
, (8.25)

sup
x

[
n∑

i=1

{wi(x)}2
]
= O

(
1

nhe

)
, (8.26)

sup
x,z∈T :|x−z|≤n−r

max
i

|wi(x)− wi(z)| = O

{
1

nr

1

nh

(
1

hhe

) 1
2

}
. (8.27)

The above equalities will be derived at the end of the proof. Define also

Ln =

(
nhe

logn

) 1
2

.
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We derive that

u(x) =
n∑

i=1

wi(x)ei = u1(x) + u2(x), (8.28)

where

u1(x) =
∑
i

wi(x)ei1{|ei|>Ln}, u2(x) =
∑
i

wi(x)ei1{|ei|≤Ln}.

Note that ∣∣ei1{|ei|>Ln}
∣∣ ≤ L1−τ

n |ei|τ ,
where τ > 2 is a constant in Assumption 9. Thus,

|u1(x)| ≤
∑
i

|wi(x)|L1−τ
n |ei|τ ≤ max

i
|wi(x)|

(
L1−τ
n n

)(
n−1

∑
i

|ei|τ
)
.

It follows by (8.25) and the strong law of large numbers that

‖u1‖ = O
{
(nhe)

−1(L1−τ
n n)

}
, almost surely.

By Assumption 6,
‖u1‖ = O(L−1

n ), a.s. (8.29)

Let r be a sufficiently large constant such that

n−rh− 3
2

(
n

logn

) 1
2

= O(1). (8.30)

Define χ(r) = {n−r, 2n−r, . . . , 1− n−r, 1}. Then

‖u2‖ ≤ sup
x∈χ(r)

|u2(x)|+ sup
x,z∈T :|x−z|≤n−r

|u2(x)− u2(z)|. (8.31)

For the second term in (8.31), by Hölder’s inequality,

|u2(x)− u2(z)| ≤
∑
i

|wi(x)− wi(z)||ei|

≤
{∑

i

|wi(x)− wi(z)|
1

1− 1
τ

}1− 1
τ
(∑

i

|ei|τ
) 1

τ

.

By derivation similar to that for (8.29), we obtain that

|u2(x)− u2(z)| ≤ max
i

|wi(x)− wi(z)|O(n),

where the big O is uniform with respect to x and z. By equality (8.27),

sup
x,z∈T :|x−z|≤n−r

|u2(x)− u2(z)| = O
{
n−rh−1(hhe)

− 1
2

}
= O(L−1

n ), a.s. (8.32)
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Note that the last equality above follows from (8.30). Next we focus on the first
term in (8.31). Note that∑

i

E
{
w2

i (x)e
2
i 1{|ei|≤Ln}

}
≤ (E|ei|τ )

2
τ

∑
i

w2
i (x) ≤ (E|ei|τ )

2
τ C̃(nhe)

−1,

where C̃ is a constant and the last inequality follows from (8.26). In addition,
by (8.25), there exists another constant C̄ > 0 such that

|wi(x)ei1{|ei|≤Ln}| ≤ LnC̄(nhe)
−1

uniformly with respect to x. By Bernstein’s inequality for bounded random
variables, for any constant c > 0,

P

{
sup

x∈χ(r)

|u2(x)| > cL−1
n

}
≤ nr exp

{
− c2L−2

n /2

Č(nhe)−1 + cC̄(nhe)−1/3

}
= nγ−c∗ ,

where c∗ = c2/2

Čσ2+cC̄/3
and Č = (E|εi|τ )

2
τ C̃. We can choose c sufficiently large so

that the above inequality is summable. By the Borel-Cantelli lemma [11, pp.46],

sup
x∈χ(r)

|u2(x)| = O(L−1
n ), a.s.

The above equality together with (8.31) and (8.32) leads to

‖u2‖ = O(L−1
n ), a.s. (8.33)

Combining (8.28), (8.29) and (8.33), we obtain that

∥∥∥f̂ − Ef̂
∥∥∥ = O

{(
logn

nhe

) 1
2

}
, a.s.

and the proof is complete once we have established (8.25), (8.26) and (8.27).
For (8.25), we derive that

|wi(x)| = n−1

∣∣∣∣∣
∑
k�

Nk(x)N�(xi)(H
−1
n )k�

∣∣∣∣∣ ≤ n−1‖H−1
n ‖max

∑
k�

Nk(x)N�(xi),

where the latter inequality follows because Nk(x) ≥ 0, N�(xi) ≥ 0 and H−1
n is

symmetric and positive definite. Since
∑

k Nk(x) = 1 and
∑

� N�(xi) = 1, we
obtain that |wi(x)| ≤ n−1‖H−1

n ‖max = O{(nhe)
−1} by Assumption 7 and (8.25)

is proved. For (8.26), we derive that

n∑
i=1

{wi(x)}2 =
1

n
NT (x)H−1

n GnH
−1
n N(x)

= O

(
1

n

)
‖H−1

n GnH
−1
n ‖max

= O

(
1

n

)
‖H−2

n ‖max‖Gn‖∞ = O

(
1

nhe

)
,
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where the last equality follows by Assumption 7 and Lemma A.1. Finally for

(8.27), since |N (1)
k (x)| = O(h−1) uniformly for x and k, we derive that |Nk(x)−

Nk(z)| = O(h−1)|x− z| uniformly for x, z and k. Note that Nk(x)−Nk(z) 
= 0
only for a finite number of k. Thus, if |x− z| ≤ n−r,

|wi(x)− wi(z)|2 = n−2{N(x)−N(z)}TH−1
n N(xi)N

T (xi)H
−1
n {N(x)−N(z)}

= n−2O(h−2n−2r)‖H−1
n N(xi)N

T (xi)H
−1
n ‖2

= n−2O(h−2n−2r)NT (xi)H
−2
n N(xi)

= n−2O(h−2n−2r)‖H−2
n ‖max

= n−2O(h−2n−2r)O(h−1h−1
e ),

and the big O is uniform with respect to i, x and z. Thus, |wi(x) − wi(z)| =
O{(nh)−1n−r(hhe)

− 1
2 } uniformly for i, x and z and (8.27) is proved.

8.5. Proofs for Section 7

Proof of Theorem 7.1. We first establish the asymptotic bias of f̂(x). With sim-
ilar derivations for the bias in the proof of Theorem 5.1 (specifically, equalities
(8.9), (8.11) and (8.12)) and the derivation of L∞ rate of bias in the proof of
Theorem 6.1 (specifically, equalities (8.21) and (8.23)), we obtain that

sup
x

∣∣∣Ef̂(x)− (f + 1{p=m}bf )(x)−NT (x)H−1
n (λP )β

∣∣∣
=o

[
hp +min

{
λKq(1 + λK2q)

3
2 , (λK)

1
2

}]
.

Next we focus on the asymptotic variance of f̂(x). First,

var{f̂(x)} =
σ2

n
NT (x)H−1

n GnH
−1
n N(x).

By Lemma A.6,

sup
x

∣∣∣∣var{f̂(x)} − σ2

n
NT (x)H−1GH−1N(x)

∣∣∣∣
=o

(
1

n

)
sup
x

NT (x)H−1GH−1N(x).

Again by Lemma A.6,

NT (x)H−1GH−1N(x) = (1 + o(1))NT (x)H−1
n GnH

−1
n N(x)

= (1 + o(1))h‖H−2
n ‖max = O(h−1

e )

where the last equality holds by Assumption 7 and he = max{h, λ1/(2q)}.
If λK2q = O(1), h ≤ he = O(h), thus NT (x)H−1GH−1N(x) = O(h−1).
Otherwise if λK2q ≥ C for a sufficiently large C, then he = λ1/(2q) and
NT (x)H−1GH−1N(x) = λ−1/(2q). The proof is now complete.
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Appendix A: Technical lemmas

We assume that Assumptions 1 and 2 hold for Lemmas A.1-A.6. Lemmas A.1,
A.2 and A.3 below list existing results concerning Gn from [46].

Lemma A.1. There exist constants c2 > c2 > 0 such that

c1h ≤ λmin(Gn) ≤ λmax(Gn) ≤ c2h.

Moreover, ‖Gn‖∞ = O(h).

Remark A.1. The same inequalities holds for G =
∫∫

N(x)NT (x)ρ(x)dx with
a similar proof.

Lemma A.2. Denote the (i, j)th element of G−1
n by αij. There exists a constant

c3 > 0 and γ ∈ (0, 1) such that, for large n, |αij | ≤ c3h
−1γ|i−j|. In addition,

‖G−1
n ‖∞ = O(h−1).

Remark A.2. The same inequalities holds for G−1.

Lemma A.3.

‖Gn −G‖max = O(‖Qn −Q‖) = o(h),

‖G−1
n −G−1‖max = O(h−2‖Qn −Q‖) = o(h−1),

‖G−1
n −G−1‖∞ = O(h−2‖Qn −Q‖) = o(h−1).

Lemma A.4. Suppose that Assumption 3 holds. Then,

∥∥H−1
n

∥∥
∞ = O

{
K

(
1 + λK2q

) 3
2

}
.

Proof. The lemma is proved by Theorem 2.4 in [10], which extends Theorem
2.2 in [9] by allowing a large conditional number in the matrix. Specifically, it
can be shown that

∣∣(H−1
n )k�

∣∣ = O
{
K(1 + λK2q)

}(√
cond(Hn)− 1√
cond(Hn) + 1

) 2|k−�|
m∗

,

where m∗ is the band of Hn and cond(Hn) = λmax(Hn)/λmin(Hn). Since
λmax(Hn) has the same order as h(1+λK2q) and λmin(Hn) has the same order
as h, straightforward calculation gives the desired result.
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Lemmas A.5 and A.6 below are useful for deriving the local asymptotic bias
and variance of penalized splines.

Lemma A.5. There exists an ε1 > 0 and ε1 = o(1) such that the following
inequalities hold:

(1− ε1)G ≤ Gn ≤ (1 + ε1)G,

(1− ε1)G
−1 ≤ G−1

n ≤ (1 + ε1)G,

(1 + ε1)
−1H−1 ≤ H−1

n ≤ (1− ε1)
−1H−1.

Proof. Since Gn − G is a band matrix, ‖Gn − G‖2 ≤ ‖Gn − G‖∞ = O(‖Gn −
G‖max) = o(h), where the latter equality holds by Lemma A.3. Note that Lemma
A.1 shows that the eigenvalues of G are all of order h. Thus, there exists an
ε1 = o(1) such that (1 − ε1)G ≤ Gn ≤ (1 + ε1)G. It follows that (1 − ε1)H ≤
Hn ≤ (1 + ε1)H because Hn = Gn + Pq/n, H = G + Pq/n and Pq is positive
semi-definite. Thus, (1 + ε1)

−1H−1 ≤ H−1
n ≤ (1− ε1)

−1H−1.

Lemma A.6. Suppose that Assumptions 3 and 7 hold. If∥∥H−1
n (Gn −G)2H−1

n

∥∥
∞ = o(1), (A.1)

then there exists an ε2 > 0, which is o(1) and independent from x and λ, such
that:

1− ε2 ≤ NT (x)H−1
n GnH

−1
n N(x)

NT (x)H−1GH−1N(x)
≤ 1 + ε2.

Remark A.3. If λK2q = O(1), then by Lemma A.4, ‖H−1
n ‖∞ = O(h−1). Thus,

the assumption (A.1) is satisfied without additional conditions. Otherwise, a

sufficient condition for (A.1) is ‖Qn−Q‖ = o(h
3
2 ) which leads to ‖Gn−G‖∞ =

o(h
3
2 ). Indeed, one can derive that∥∥H−1

n (Gn −G)2H−1
n

∥∥
∞ ≤K

∥∥H−1
n (Gn −G)2H−1

n

∥∥
max

≤K
∥∥H−2

n

∥∥
max

‖Gn −G‖2∞
=KO(h−2)o(h3) = o(1).

Proof. First note that the little o notation in the proof is independent from x
and λ. By Lemma A.5, −ε1G ≤ Gn−G ≤ ε1G with ε1 = o(1). Thus, by Lemma
A.7,

−ε1H
−1
n GH−1

n ≤ H−1
n (Gn −G)H−1

n ≤ ε1H
−1
n GH−1

n .

It follows that,∥∥H−1
n GnH

−1
n −H−1

n GH−1
n

∥∥
max

= o(1)
∥∥H−1

n GH−1
n

∥∥
max

. (A.2)

It can be shown that

H−1
n GH−1

n −H−1GH−1 ≤
(
H−1

n −H−1
)
G
(
H−1

n −H−1
)

= H−1
n (Gn −G)

(
H−1GH−1

)
(Gn −G)H−1

n .
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Note that ∥∥H−1
n (Gn −G)

(
H−1GH−1

)
(Gn −G)H−1

n

∥∥
max

≤
∥∥H−1

n (Gn −G)2H−1
n

∥∥
∞

∥∥H−1GH−1
∥∥
max

.

By the assumption
∥∥H−1

n (Gn −G)2H−1
n

∥∥
∞ = o(1), we derive that

∥∥H−1
n (Gn −G)

(
H−1GH−1

)
(Gn −G)H−1

n

∥∥
max

= o(1)
∥∥H−1GH−1

∥∥
max

.

It follows that∥∥H−1
n GH−1

n −H−1GH−1
∥∥
max

= o(1)
∥∥H−1GH−1

∥∥
max

. (A.3)

Combining (A.2) and (A.3), we derive that∥∥H−1
n GnH

−1
n −H−1GH−1

∥∥
max

= o(1)
∥∥H−1GH−1

∥∥
max

. (A.4)

Therefore, the lemma is proved if we prove that∥∥H−1GH−1
∥∥
max

= O(1) inf
x

NT (x)H−1GH−1N(x)

or equivalently,∥∥H−1GH−1
∥∥
max

= O(1)min diag
(
H−1GH−1

)
.

Because of (A.4), it is also equivalent to prove that∥∥H−1
n GnH

−1
n

∥∥
max

= O(1)min diag
(
H−1

n GnH
−1
n

)
. (A.5)

Note that
∥∥H−1

n GnH
−1
n

∥∥
max

≤ ‖H−2
n ‖max‖Gn‖∞ = O(h−1

e ) by Assumption

7. On the other hand, we have H−1
n GnH

−1
n ≥ (c1 + o(1))hH−2

n by Lemma
A.1 and here c1 is a constant. Thus, again by Assumption 7, we obtain that
min diag

(
H−1

n GnH
−1
n

)
≥ Ch−1

e for some constant C > 0 and (A.5) is proved.
The proof is complete.

Lemma A.7. Let A and B be two square and symmetric matrices of the same
size. Assume C is another matrix with compatible dimension. If A ≤ B, then
C(A−B)CT ≤ 0.

Proof. Let α be any vector of the size of A. Then αTC(A− B)CTα = γT (A−
B)γ ≤ 0, where γ = CTα.

Lemma A.8. The penalty matrix D̃K,m for the T-splines satisfies

D̃K,m = h2

{
1

(m− 1)!

}2

Δ̃T
K,m,mΔ̃K,m,m.
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Proof. Define L̃K,k,m ∈ R
K×K for k ≤ m recursively as −L̃T

K,1,m is the left
K ×K matrix of ΔK+1,1 and for 2 ≤ k ≤ m− 1 with m ≥ 2,

L̃T
K,k,m = L̃T

K,1,mblockdiag

((
m− 1
k − 1

)
, (k − 1)−1W

[k]
K L̃T

K−1,k−1,m

)
.

Then it can be shown that LK,1 = L̃K,1,1 and for m ≥ 2

LT
K,m = LT

K,1blockdiag

((
m− 1
m− 1

)
, (m− 1)−1W

[m]
K L̃T

K−1,m−1,m

)
.

It follows that

D̃K,1 = LT
K,1ĨK,1LK,1 = DK,1 = h2Δ̃T

K,1,1Δ̃K,1,1

because W
[1]
K is defined as h−1I and for m ≥ 2

D̃K,m

=LT
K,mĨK,mLK,m

=LT
K,1blockdiag

(
0,

1

(m− 1)2
W

[m]
K L̃T

K−1,m−1,mĨK−1,m−1L̃K−1,m−1,mW
[m]
K

)
LK,1

=
1

(m− 1)2
ΔT

K,1

(
W

[m]
K L̃T

K−1,m−1,mĨK−1,m−1L̃K−1,m−1,mW
[m]
K

)
ΔK,1

=
1

(m− 1)2
Δ̃T

K,1,m

(
L̃T
K−1,m−1,mĨK−1,m−1L̃K−1,m−1,m

)
Δ̃K,1,m.

Thus, using an inductive proof, we obtain the desired equality and the proof is
complete.

Appendix B: Local asymptotic variance of penalized splines

For η > 0, define Λ = I + ηDK,q. In this appendix, we study Λ−1 and de-
rive its order of convergence in terms of η when η is large. The results can
be used for studying the local asymptotic variance of P -splines. Note that
essentially the same proof can be applied to I + ηD̃K,m for T -splines and

I + ηΔ̃T
K,q−1,mΔ̃K,q−1,m for O-splines.

With slight abuse of notation, we let he = η
1
2q K−1. We assume that K → ∞

and that there exists two constants δ1 and δ2 > 0 such that η > δ1K
δ2 . In

addition, we assume that η = O(K2q) so that he = O(1). We also use C and C0

to denote constants that depend only on q and to simplify notation, they are
allowed to vary from place to place.

The main result is Theorem B.1.

Theorem B.1. Suppose that η > C for a sufficiently large constant C. Then
for r = 1 or 2,

min
k

(Λ−r)kk � max
k

(Λ−r)kk � η−
1
2q .
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To prove Theorem B.1, we shall follow [41] and invert Λ directly. Consider
the equation

η(−1)q(1− ρ)2q + ρq = 0 (B.1)

and let {ρν , ν = 1, . . . , q} be the q roots of (B.1) such that when η is large,
the real parts of the first q roots are all positive and less than 1. Using a proof
similar to that of Proposition 4.3 in [41], we derive that, when η > C and C is
a sufficiently large constant,

ρν = 1− ψνη
− 1

2q +
1

2
ψ2
νη

− 1
q +O

(
η−

3
2q

)
, 1 ≤ ν ≤ q, (B.2)

where ψ1, . . . , ψq are the roots of x
2q+(−1)q = 0 with positive real parts. Notice

that |ρν | < 1 if C is sufficiently large.

Notice that (D)ij = (D)(K−i),(K−j), which implies that

(Λ−1)kk = (Λ−1)(K−k),(K−k).

Hence, we may assume that k ≤ K/2 in this section. Define Sk=
∑q

ν=1aνU k(ρν),
where

U k(ρ) = (ρk−1, . . . , ρ, 1, ρ, . . . , ρK−k)T ∈ R
K

and a = (a1, . . . , aq)
T ∈ R

q is the vector of coefficients to be determined soon.
Fix k and assume that k ≥ q + 1. For 1 ≤ ν ≤ q, it can be shown that U k(ρν)
is orthogonal to all columns of Λ except the first and last q columns and the
jth columns with |k − j| < q. Thus, for any a, the same holds for Sk. Since
Sk is linear in a, there exists an a such that Sk is also orthogonal to the jth

columns with k < j < k + q and ST
kΛk = 1, where Λk is the kth column of Λ.

Note that it can be easily verified that Sk will be also orthogonal to Λj with
max(q+1, k−q) ≤ j < k. Therefore, Sk is orthogonal to all columns of Λ except
the first and last q columns and the kth column. By the derivations in Sections
4.2 in [41], we obtain that, a does not depend on k, and moreover, when η > C
for a sufficiently large constant C,

aν =
ψν

2q
η−

1
2q

{
1 +O

(
η−

1
q

)}
, 1 ≤ ν ≤ q. (B.3)

In particular, a satisfies the following equalities [41, pp. 11]:

q∑
ν=1

aν
(
ρ�ν − ρ−�

ν

)
= 0, � = 1, . . . , (q − 1). (B.4)

Note that both U 1(ρν) and UK(ρν) are orthogonal to all columns of Λ except
the first q and the last q columns. Hence, there exists akν and ãkν , ν = 1, . . . , q,
such that, if we define Rk =

∑q
ν=1 akνU 1(ρν) and T k =

∑q
ν=1 ãkνUK(ρν), then

Λ(Sk + Rk + T k) = ek, (B.5)
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where ek ∈ R
K is a unit vector with the kth element 1 and others 0. Equation

(B.5) implies that the kth column of Λ−1 takes the form

(Λ−1)k = Sk + Rk + T k, q + 1 ≤ k ≤ K/2. (B.6)

Let ak = (ak1, . . . , akq)
T ∈ R

q and ãk = (ãk1, . . . , ãkq)
T ∈ R

q.
Assume now k ≤ q. There exists ak and ãk such that

Λ(Rk + T k) = ek. (B.7)

The existence of ak and ãk follows from the fact that, for arbitrary ak and ãk,
Rk+T k is orthogonal to all columns of Λ except the first and the last q columns,
and that {U 1(ρ1), . . . ,U 1(ρq),UK(ρ1), . . . ,UK(ρq)} are linearly independent.

B.1. Notation

Let Bk = [U k(ρ1),U k(ρ2), . . . ,U k(ρq)] ∈ R
K×q. Let

r(x) = {exp(−ψ1x), . . . , exp(−ψνx)}T ∈ R
q.

Note that there exists a constant ψ0 > 0 that depends only on q and satisfies
exp(−ψν |x|) ≤ exp(−ψ0|x|) for all ν.

Define Ψq,1 ∈ R
q×q with the (j, ν)th element ψq+j−1

ν and Ψq,2 ∈ R
q×q with

the (j, ν)th element (−1)q+jψq+j
ν . Let Ω1 be a q × q Vandermonde matrix with

the (j, ν)th element ρj−1
ν and Ω2 be a q×q Vandermonde matrix with the (j, ν)th

element ρ
−(j−1)
ν . Let Φ1 be a q×q matrix with the (j, ν)th element (1−ρν)

q+j−1

and Φ2 be a q × q matrix with the (j, ν)th element (1− ρ−1
ν )q+j−1.

Finally, for a matrix A, we shall use Ak to denote its kth column.

B.2. Proof of theorem

We first describe a few lemmas and propositions, whose proofs are given in
Section B.3.

Lemma B.1. Assume that η > C for a sufficiently large C. There exists a
universal constant C0 that depends only on q and satisfies∣∣ρK−k

ν

∣∣ = O
{
exp

(
−C0h

−1
e

)}
,

for any k ≤ K/2 and 1 ≤ ν ≤ q.

Lemma B.2. Fix q + 1 ≤ k ≤ K/2. For any j with j < k,

ST
k (Δ

T )j =

q∑
ν=1

aν(−1)q(1− ρ−1
ν )qρk−j

ν , (B.8)

and if j ≥ k,

ST
k (Δ

T )j =

q∑
ν=1

aν(−1)q(1− ρν)
qρj−k

ν . (B.9)
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We first derive ak and ãk in the following two propositions.

Proposition B.1. Suppose that η > C for a sufficiently large constant C. Fix
k with q + 1 ≤ k ≤ K/2. Suppose that ak and ãk satisfy (B.5). Then,

ak =
1

2q
η−

1
2q Ψ−1

q,1Ψq,2r

(
k − 1

η
1
2q

)
+O

(
η−

1
q

)
exp

(
−ψ0

k − 1

he

)
1q, (B.10)

and there exists a universal constant C0 that depends only on q and satisfies

ãk = exp
(
−C0h

−1
e

)
O(1q). (B.11)

In particular, the big O notation is uniform with respect to q + 1 ≤ k ≤ K/2.

Proposition B.2. Suppose that η > C for a sufficiently large constant C. Fix
k with k ≤ q. Suppose that ak and ãk satisfy (B.7). Then

ak =
(−1)q+1

q
η−

1
2q Ψ−1

q,1ẽq +O
(
η−

1
q

)
exp

(
−ψ0

k − 1

he

)
1q,

where ẽq ∈ R
q is a unit vector with the qth element 1, and there exists a universal

constant C0 that depends only on q and satisfies

ãk = exp
(
−C0h

−1
e

)
O(1q). (B.12)

Proof of Theorem B.1. We shall first establish that

‖Λ−r‖max = O
(
η−

1
2q

)
. (B.13)

Consider first that q < k ≤ K/2. By (B.6),

(Λ−1)k� =

q∑
ν=1

(
aνρ

|k−�|
ν + akνρ

�−1
ν + ãkνρ

K−�
ν

)
. (B.14)

Since |ρν | < 1 for large η,

(Λ−1)kk ≤
q∑

ν=1

(|aν |+ |akν |+ |ãkν |) .

By Proposition B.1, (Λ−1)kk = O
(
η−

1
2q

)
uniformly for q < k ≤ K/2. Now for

Λ−2, we have

(Λ−2)kk =
K∑
�=1

{
q∑

ν=1

(
aνρ

|k−�|
ν + akνρ

�−1
ν + ãkνρ

K−�
ν

)}2

.

We derive that ∣∣∣∣∣
K∑
�=1

aν1aν2(ρν1ρν2)
|k−�|

∣∣∣∣∣ ≤ |aν1aν2 |
2

1− |ρν1ρν2 |
,
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uniformly for q < k ≤ K/2 and because 1−|ρν1ρν2 | ≥ C̃η−
1
2q for some constant

C̃ and aν = O
(
η−

1
2q

)
,

∣∣∣∣∣
K∑
�=1

aν1aν2(ρν1ρν2)
|k−�|

∣∣∣∣∣ = O
(
η−

1
2q

)
.

We can similarly show other terms in (Λ−2)kk are O
(
η−

1
2q

)
. Similar derivation

can be done for k ≤ q by (B.7) and Proposition B.2. We have now established
(B.13).

Next we show that there exists a constant c > 0 such that, for r = 1 or 2,

min
k

(
Λ−r

)
kk

≥ (c+ o(1))η−
1
2q . (B.15)

Note that DK,q ≤ Dq
K,1. Thus, Λ ≤ I + ηDq

K,1 ≤
(
I + η

1
q DK,1

)q

as DK,1

is positive semidefinite. Let Λ1 = I + η
1
q DK,1. Let U = [u1, . . . , uK ] be the

eigenvectors of DK,1 and ν = (ν1, . . . , νK)T be the vector of eigenvalues of
DK,1. Then

Λ−r ≥ U
{
I + η

1
q diag(ν)

}−rq

U T .

Since Λ−1 ≥ Λ−2 and hence
(
Λ−1

)
kk

≥
(
Λ−2

)
kk
, it suffices to consider

(
Λ−2

)
kk
.

We derive that (
Λ−2

)
kk

≥
K−1∑
j=0

u2
jk(

1 + η
1
q νj

)2q .

By Lemma 8.3, νj = 4
(
sin πj

2K

)2 ≤ π2j2

K2 . Thus,

(
Λ−2

)
kk

≥
K−1∑
j=0

u2
jk{

1 +
(
η

1
2q πj

K

)2
}2q = O

(
1

K

)
+

2

K

K−1∑
j=0

{
cos (2k−1)πj

2K

}2

{
1 +

(
η

1
2q πj

K

)2
}2q .

By the Euler-Maclaurin formula,

1

K

K−1∑
j=0

{
cos (2k−1)πj

2K

}2

{
1 +

(
η

1
2q πj

K

)2
}2q

=

∫ K−1

0

{
cos (2k−1)πx

2K

}2

K

{
1 +

(
η

1
2q πx

K

)2
}2q dx+O

(
1

K

)

=
1

η
1
2q π

∫ η
1
2q π

0

{
cos (k−0.5)y

η
1
2q

}2

(1 + y2)
2q dy +O

(
1

K

)
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=
1

η
1
2q π

∫ ∞

0

{
cos (k−0.5)y

η
1
2q

}2

(1 + y2)
2q dy +O

(
1

K

)
+ o

(
η−

1
2q

)

=
1

2η
1
2q π

∫ ∞

0

1 + cos (2k−1)y

η
1
2q

(1 + y2)
2q dy +O

(
1

K

)
+ o

(
η−

1
2q

)
.

It can be shown that [16, pp. 430, equality 3.737.1], for any k ≥ 1,

∫ ∞

0

cos (2k−1)y

η
1
2q

(1 + y2)
2q dy > 0.

Let

cq =

∫ ∞

0

1

(1 + y2)
2q dy > 0.

Then,

1

K

K−1∑
j=0

{
cos (2k−1)πj

2K

}2

{
1 +

(
η

1
2q πj

K

)2
}2q ≥ cq

2η
1
2q π

(1 + o(1)).

It follows that (
Λ−2

)
kk

≥ cq

η
1
2q π

(1 + o(1))

for all k and we have proved (B.15).
The proof is complete by combining (B.13) and (B.15).

B.3. Proofs of lemmas and propositions

Proof of Lemma B.1. Let bν = η1/(2q) log(ρν), then bν = ψν + O(η−1/q). Since
exp(−ψν |x|) ≤ exp(−ψ0|x|), we derive tat | exp(−bν |x|)| ≤ exp(−0.5ψ0|x|) for
any x when η is sufficiently large. It follows that

ρK−k
ν = exp

(
−bνη

1
2q |K − k|

)
= O

{
exp

(
−0.5ψ0η

1
2q |K − k|

)}
.

Since k ≤ K/2, |K − k|η 1
2q ≥ 1/2h−1

e and the proof is complete by letting
C0 = ψ0/4.

Proof of Lemma B.2. First we have

ST
k (Δ

T )j =

q∑
ν=1

aν

{
q∑

�=0

w�ρ
|k−j−�|
ν

}
=

q∑
�=0

w�

{
q∑

ν=1

aνρ
|k−j−�|
ν

}
,
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where w = (w0, . . . , wq)
T ∈ R

q+1 is the vector such that Δθ = wT θ. We derive
that

ST
k (Δ

T )j −
q∑

ν=1

aν(−1)q(1− ρ−1
ν )qρk−j

ν

=

q∑
ν=1

aν

{
q∑

�=0

w�ρ
|k−j−�|
ν

}
−

q∑
ν=1

aν

{
q∑

�=0

w�ρ
k−j−�
ν

}

=

q∑
�=0

w�r�,

where r� =
∑q

ν=1 aν

(
ρ
|k−j−�|
ν − ρk−j−�

ν

)
. Thus, if k − j − � ≥ 0, r� = 0 and if

−q < k − j − � < 0, by (B.4), r� is also 0. Therefore, (B.8) holds for k − j > 0.
Next for k − j ≤ 0,

q∑
�=0

w�ρ
|k−j−�|
ν =

q∑
�=0

w�ρ
−(k−j−�)
ν = ρ−(k−j)

ν (−1)q(1− ρν)
q,

which proves (B.9).

Proof of Proposition B.1. By equation (B.5),

(Sk +Rk +T k)
T (ej +ηDj) = 0, j = 1, . . . , q, or j = K− q+1, . . . ,K, (B.16)

where ej is a lengthK vector with the jth element 1 and other elements 0 andDj

is the jth column of D. Note that ST
k ej =

∑q
ν=1 aνρ

k−j
ν , RT

k ej =
∑q

ν=1 akνρ
j−1
ν

and TT
k ej =

∑q
ν=1 ãkνρ

K−j
ν . Then (B.16) for 1 ≤ j ≤ q can be rewritten into a

matrix form:

0q = (Ω2A
k−1 + ηΣ1Σ̃1Bk)a+ (Ω1 + ηΣ1Σ̃1B1)ak + (Ω2A

K−1 + ηΣ1Σ̃1BK)ãk,
(B.17)

where A is a q × q diagonal matrix with the νth diagonal element ρν , Σ1 is the
top left q × q submatrix of ΔT , and Σ̃1 is the top q ×K submatrix of Δ.

Similarly, we derive that

0q = (Ω2A
K−q−k+1 + ηΣ2Σ̃2Bk)a+ (Ω1A

K−q + ηΣ2Σ̃2B1)ak

+ (Ω2A
q−1 + ηΣ2Σ̃2BK)ãk,

(B.18)

where Σ2 is the bottom right q×q submatrix of ΔT and Σ̃2 is the bottom q×K
submatrix of Δ.

Let A1 = Ω2A
k−1 + ηΣ1Σ̃1Bk, A2 = Ω1 + ηΣ1Σ̃1B1, A3 = Ω2A

K−1 +
ηΣ1Σ̃1BK , A4 = Ω2A

K−q−k+1 + ηΣ2Σ̃2Bk, A5 = Ω1A
K−q + ηΣ2Σ̃2B1, and

A6 = Ω2A
q−1 + ηΣ2Σ̃2BK . Then, we derive from (B.18) that

ãk = −A−1
6 (A4a+ A5ak), (B.19)
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and then from (B.17) that

ak = −(I − A−1
2 A3A

−1
6 A5)

−1A−1
2 (A1 − A3A

−1
6 A4)a. (B.20)

By Lemma B.1, because of A3, each element of A−1
2 A3A

−1
6 A5 and A3A

−1
6 A4 as

a function of h−1
e decays to 0 exponentially fast and uniformly for k ≤ K/2.

Therefore,

ak = −A−1
2 A1a+ o

(
η−

1
q

)
exp

(
−Ch−1

e

)
1q, (B.21)

where the little o is uniform for k ≤ K/2 and C is a constant.
Define bk = −A−1

2 A1a. Then,

(Ω1 + ηΣ1Σ̃1B1)bk = −(Ω2A
k−1 + ηΣ1Σ̃1Bk)a.

A matrix perturbation analysis shows that

bk = −(Σ̃1B1)
−1(Σ̃1Bk)a+O

(
η−

1
q

)
exp

(
−ψ0

k − 1

he

)
1q, (B.22)

where the big O is uniform for k ≤ K/2.
Define ck = −(Σ̃1B1)

−1(Σ̃1Bk)a, which gives

Σ̃1B1ck = −Σ̃1Bka. (B.23)

It can be derived that Σ̃1B1 = Ω1L1, where L1 is a q × q diagonal matrix
with the νth diagonal element (−1)q(1− ρν)

q and Φ1 (as well as Φ2 used later)
is defined in Section B.1. Similarly, by Lemma B.2, we derive that Σ̃1Bk =
Ω2L2A

k−1, where L2 is a q × q diagonal matrix with the νth diagonal element
(−1)q(1− ρ−1

ν )q. Thus, (B.23) becomes

Ω1L1ck = −Ω2L2A
k−1a. (B.24)

By row transformations on Ω1 and Ω2, we obtain from (B.24) that

Φ1ck = −Φ2A
k−1a,

where Φ1 and Φ2 are defined in Section B.1. By (B.2) and (B.3), a simple matrix
perturbation analysis gives

ck =
1

2q
η−

1
2q Ψ−1

q,1Ψq,2r

(
k − 1

η
1
2q

)
+O

(
η−

1
q

)
exp

(
−ψ0

k − 1

he

)
1q, (B.25)

where Ψq,1 and Ψq,2 are defined in Section B.1 and the big O is uniform for
k ≤ K/2. Combining (B.21), (B.22) and (B.25), we obtain (B.10). Then (B.11)
follows from (B.10), (B.19) and Lemma B.1.

Proof of Proposition B.2. Using the same notation in the proof of Proposition
B.1, we first derive that

A2ak +A3ãk = ẽk,
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A5ak +A6ãk = 0q,

where ẽk is a length q vector with the kth element 1 and others 0. Then we get

ãk = −A−1
6 A5ak, (B.26)

and
ak = (I − A−1

2 A3A
−1
6 A5)

−1A−1
2 ẽk.

By Lemma B.1, we obtain that every element of A−1
2 A3A

−1
6 A5 decays exponen-

tially fast as a function of h−1
e . Therefore,

ak = A−1
2 ẽk +O

(
η−

1
q

)
. (B.27)

Let bk = A−1
2 ẽk, i.e., (Ω1 + ηΣ1Σ̃1B1)bk = ẽk. Then another matrix perturba-

tion analysis shows that

bk = (Σ̃1B1)
−1(η−1Σ−1

1 ẽk) +O
(
η−

1
q

)
. (B.28)

Now let ck = (Σ̃1B1)
−1(η−1Σ−1

1 ẽk), which gives

Σ̃1B1ck = η−1Σ−1
1 ẽk. (B.29)

By the proof of Proposition B.1, Σ̃1B1 = Ω1L1. Let R be the unique transfor-
mation matrix such that RΩ1L1 = Φ1, we derive that

ck = Ψ−1
q,1Ξ

{
R(Σ1)

−1
}
ẽk +O

(
η−

1
q

)
,

where Ξ is a q× q diagonal matrix with the jth diagonal element η−
q−j+1

2q . This
implies that

ck = η−
1
2q Ψ−1

q,1ẽqẽ
T
q

{
R(Σ1)

−1
}
ẽk +O

(
η−

1
q

)
.

It is easy to verify that ẽTq R(Σ1)
−1 = (−1)q+11T

q . It follows that

ck = (−1)q+1η−
1
2q Ψ−1

q,1ẽq +O
(
η−

1
q

)
, (B.30)

and the proof is complete by combining (B.27), (B.28) and (B.30).

Appendix C: Lower & upper bounds on the variance of penalized
splines

Lemma C.1 (A concentration inequality on the variance of penalized splines).
Suppose that Assumptions 1 - 6 hold. Assume further that ei ∼ N(0, σ2). Let

Z =
∫
T {f̂(x) − Ef̂(x)}2ρ(x)dx and Σ = 1

n2NH−1
n GH−1

n NT . Then there exists
an absolute constant c > 0 such that, for every t > 0,

P
{∣∣Z − σ2tr(Σ)

∣∣ ≥ tσ2tr(Σ)
}
≤ 4 exp

[
−cmin

(
π2

4

t2{tr(Σ)}2
‖Σ‖2F

,
π

2

t{tr(Σ)}
‖Σ‖2

)]
.

In particular, c can be chosen as 1
64π .
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Remark C.1. It can be shown that tr(Σ) � (nhe)
−1, ‖Σ‖2F � (n2he)

−1 and
‖Σ‖2 = O(n−1). Thus, {tr(Σ)}2/‖Σ‖2F ≥ ch−1

e and tr(Σ)/‖Σ‖2 ≥ ch−1
e for

some constant c > 0. Thus, the concentration inequality indeed shows that Z
concentrates at σ2tr(Σ).

Proof. It can be shown that Z = eTΣe, where e = (e1, . . . , en)
T . Then EZ =

σ2tr(Σ). Let C = ‖e1‖ψ2 , the sub-Gaussian norm of the random variable e1 (see
Definition 5.7 in [35]). By the Hanson-Wright inequality [23], there exists an
absolute constant c > 0 such that, for every t > 0,

P
{∣∣Z − σ2tr(Σ)

∣∣ ≥ t
}
≤ 2 exp

[
−cmin

(
t2

C4‖Σ‖2F
,

t

C2‖Σ‖2

)]
.

Note that for Gaussian random variables, C = σ
√

2/π. Hence, we obtain the
desired inequality. By going through the proofs in [23] and [35], we find that c
can be chosen as 1

64π .
The proof is now complete.

The following Lemma is adapted from [19] using the volume-of-tube formula
[33].

Lemma C.2 (An equality on the supremum of variance of penalized splines).
Suppose that Assumptions 1 - 6 hold. Assume further that ei ∼ N(0, σ2). Let

Z(x) = f̂(x) − Ef̂(x). Denote NT (x)H−1
n NT /n by g(x) and define v(x) =

g(x)
‖g(x)‖2

. Let c0 =
∫
x∈T

∥∥∥dv(x)
dx

∥∥∥
2
dx. Then, for t > 0,

P

{
sup
x∈T

|Z(x)|
σ‖g(x)‖2

≥ t

}
=

c0
π

exp

(
− t2

2

)
+ 2 {1− Φ(t)}+ o

{
exp

(
− t2

2

)}
,

where Φ is the cumulative distribution function of the standard normal and the
little o is with respect to t.

Remark C.2. It can be shown that (see also the derivation in [19]) that c0 �
K. Thus, supx∈T

|Z(x)|
σ‖g(x)‖2

is of order
√
logK. By Assumption 1, the order is

equivalent to
√
log n. Note that

1

σ supx ‖g(x)‖2
‖Z‖ ≤ sup

x∈T

|Z(x)|
σ‖g(x)‖2

≤ 1

σ infx ‖g(x)‖2
‖Z‖.

By Assumption 7, we can show that supx ‖g(x)‖2 � infx ‖g(x)‖2 � (nhe)
− 1

2 .

Thus, up to multiplicative constants,
(

logn
nhe

) 1
2

is both a lower and upper bound

for ‖Z‖.
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