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Abstract: In this paper we study the frequentist convergence rate for the
Latent Dirichlet Allocation (Blei, Ng and Jordan, 2003) topic models. We
show that the maximum likelihood estimator converges to one of the finitely
many equivalent parameters in Wasserstein’s distance metric at a rate of
n−1/4 without assuming separability or non-degeneracy of the underlying
topics and/or the existence of more than three words per document, thus
generalizing the previous works of Anandkumar et al. (2012, 2014) from an
information-theoretical perspective. We also show that the n−1/4 conver-
gence rate is optimal in the worst case.
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1. Introduction

The Latent Dirichlet Allocation (LDA) model, first introduced by Blei, Ng and
Jordan (2003), has been very influential in machine learning as a probabilistic
admixture model that characterizes latent topic structures in natural language
document collections. The original LDA paper (Blei, Ng and Jordan, 2003)
has accumulated a total of over 20,000 citations up to the year of 2017, with
many follow-up works also impactful in machine learning research (Griffiths
and Steyvers, 2004; Blei, 2012; Fei-Fei and Perona, 2005; Blei and Lafferty,
2006). At a higher level, the LDA model posits the existence of K latent (un-
known) topic vectors, and models the generation of a document as a collection
of m conditionally independent words given a mixing topic vector for the docu-
ment.

More specifically, let V be the vocabulary size, K be the number of topics
and denote conveniently each of the V words in the vocabulary as 1, 2, · · · , V .
Let θ = (θ1, · · · , θK) where θk ∈ ΔV−1 = {π ∈ R

V : π ≥ 0,
∑

i πi = 1}
be a collection of K fixed but unknown topic word distribution vectors that
one wishes to estimate. The LDA then models the generation of a document
X = (x1, · · · , xm) ⊆ {1, · · · , V } =: [V ] of m words as follows:

(x1, · · · , xm)|h i.i.d.∼ Categorical(h1θ1 + · · ·+ hKθK), h ∼ ν0. (1)
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Here Categorical(π) is the categorical distribution over [V ] parameterized by
π ∈ ΔV−1, meaning that p(x = j|π) = πj for j ∈ [V ], and ν0 is a known
distribution that generates the “mixing vector” h ∈ ΔK−1. A likelihood model
pθ(x) can then be explicitly written out as

pθ(x) =

∫
ΔK−1

pθ,h(x)dν0(h) =

∫
ΔK−1

[
m∏
i=1

pθ,h(xi)

]
dν0(h)

=

∫
ΔK−1

[
m∏
i=1

K∑
k=1

hkθk(xi)

]
dν0(h) (2)

for every x = (x1, · · · , xm) ∈ [V ]m. In the original LDA model (Blei, Ng and
Jordan, 2003) ν0 is taken to be the Dirichlet distribution, while in this paper
we allow ν0 to belong to a much wider family of distributions. We also remark
that the number of topics K is known before estimation and inference.

The objective of this paper is to study rates of convergence for estimating θ
from a collection of independently sampled unlabeled documents X1, · · · , Xn.
Each document is assumed to be of the same length m. 1 The estimation error
between the underlying true model θ and an estimator θ̂ is evaluated by their
Wasserstein’s distance:

dW(θ, θ̂) = min
π:[K]→[K]

K∑
k=1

‖θk − θ̂π(k)‖1, (3)

where π : [K] → [K] is a permutation on K. When K and V are fixed, the
�1-norm in the definition of Eq. (3) is not important as all vector �p norms are
equivalent. Apart from the data (documents) X1, · · · , Xn, the vocabulary size
V , number of topics K and mixing distribution ν0 are also known. The latent
topic mixing vectors {hi}ni=1 as well as the parameter of interest {θk}Kk=1, on
the other hand, are unknown.

When θ satisfies certain non-degenerate conditions, such as {θj}Kj=1 being
linear independent (Anandkumar et al., 2012, 2014) or satisfying stronger “an-
chor word” (Arora, Ge and Moitra, 2012) or “p-separability” conditions (Arora
et al., 2013), computationally tractable estimators exist that recover θ at an
n−1/2 rate measured in the Wasserstein’s distance dW(·, ·). The general case
of θ being non-separable or degenerate, however, is much less understood. To
the best of our knowledge, the only convergence result for general θ case in
the dW(θ̂,θ) distance measure is due to Nguyen (2015), who established an
n−1/2(K+α) posterior contraction rate for hierarchical Dirichlet process models.
We discuss in Sec. 1.1 several important differences between (Nguyen, 2015) and
this paper.

We analyze the maximum likelihood estimation of the topic model in Eq. (1)
and show that, with a relaxed “finite identifiability” definition, the ML esti-
mator converges to one of the finitely many equivalent parameterizations (see

1Our analysis is still valid if the length of each document is sandwiched between two
constants. However we decide to proceed with the assumption that each document is of equal
length to simplify presentations.
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Definition 2 and Theorem 1 for a rigorous statement) in Wasserstein’s distance
dW(·, ·) at the rate of at least n−1/4 even if {θj}Kj=1 are non-separable or degen-
erate. Such rate is shown to be optimal by considering a simple “over-fitting”
example. In addition, when {θj}Kj=1 are assumed to be linear independent, we re-

cover the n−1/2 parametric convergence rate established in (Anandkumar et al.,
2012, 2014).

In terms of techniques, we adapt the classical analysis of rates of convergence
for ML estimates in (Van der Vaart, 1998) to give convergence rates under finite
identifiability settings. We also use Le Cam’s method to prove corresponding
local minimax lower bounds. At the core of our analysis is a binomial expansion
of the total-variation (TV) distance between distributions induced by neigh-
boring parameters, and careful calculations of the “level of degeneracy” in the
TV-distance expansion of topic models, which subsequently determines the con-
vergence rate.

1.1. Related work

In the non-degenerate case where {θj}Kj=1 are linear independent, Anandkumar
et al. (2012, 2014); Arora, Ge and Moitra (2012) applied the method of moments
with noisy tensor decomposition techniques to achieve the n−1/2 parametric rate
for recovering the underlying topic vectors θ in Wasserstein’s distance. Exten-
sion and generalization of such methods are many, including supervised topic
models (Wang and Zhu, 2014), model selection (Cheng, He and Liu, 2015), com-
putational efficiency (Wang et al., 2015) and online/streaming settings (Huang
et al., 2015; Wang and Anandkumar, 2016). Under slightly stronger “anchor
word” type assumptions, Arora, Ge and Moitra (2012) developed algorithms
beyond spectral decomposition of empirical tensors and Arora et al. (2013)
demonstrated empirical success of the proposed algorithms.

Topic models are also intensively studied from a Bayesian perspective, with
Dirichlet priors imposed on the underlying topic vectors θ. Early works con-
sidered variational inference (Blei, Ng and Jordan, 2003) and Gibbs sampling
(Griffiths and Steyvers, 2004) for generating samples or approximations of the
posterior distribution of θ. Tang et al. (2014); Nguyen (2015) considered the

posterior contraction of the convex hull of topic vectors and derived an Ñ−1/2

upper bound on the posterior contraction rate, where Ñ = logn
n + logm

m + logm
n .

Nguyen (2013, 2016) further considered the more difficult question of posterior
contraction with respect to the Wasserstein’s distance. Apart from the Bayesian
treatments of posterior contraction that contrasts our frequentist point of view
of worst-case convergence, one important aspect of the work of (Tang et al.,
2014; Nguyen, 2015, 2013, 2016) is that the number of words per document m
has to grow together with the number of documents n, and the posterior con-
traction rate becomes vacuous (i.e., constant level of error) for fixed m settings.
In contrast, in this paper we consider m being fixed as n increases to infinity.

Our work is also closely related to convergence analysis of singular finite-
mixture models. In fact, our n−1/4 convergence rate can be viewed as a “dis-
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cretized version” of the seminal result of Chen (1995), who showed that an n−1/4

rate is unavoidable to recover mean vectors in a degenerate Gaussian mixture
model with respect to the Wasserstein’s distance. Difference exists, however, as
topic models have a K-dimensional mixing vector h for each observation and are
therefore technically not finite mixture models. Ho and Nguyen (2016) proposed
a general algebraic statistics framework for singular finite-mixture models, and
showed that the optimal convergence rate for skewed-normal mixtures is n−1/12.
More generally, singular learning theory is studied in (Watanabe, 2009, 2013),
and the algebraic structures of Gaussian mixture/graphical models and struc-
tural equation models are explored in (Leung, Drton and Hara, 2016; Drton,
Foygel and Sullivant, 2011; Drton, 2016).

1.2. Limitations and future directions

We state some limitations of this work and bring up important future directions.
In this paper the vocabulary size V and the number of topics K are treated as
fixed constants and their dependency in the asymptotic convergence rate is
omitted. In practice, however, V and K could be large and understanding the
(optimal) dependency of these parameters is important. We consider this as a
high-dimensional version of the topic modeling problem, whose convergence rate
remains largely unexplored in the literature.

Our results, similar to existing works of Anandkumar et al. (2012, 2014), are
derived under a “fixed m” setting. In fact, the convergence rates remain nearly
unchanged by uniformly sampling 2 or 3 words per document, and it is not clear
how longer documents could help estimation of the underlying topic vectors
under our framework. In contrast, the posterior contraction results in (Tang
et al., 2014; Nguyen, 2015) are only valid under the “m increasing” setting. We
conjecture that the actual behavior of the ML estimator should be a combination
of both perspectives: m ≥ 2 and n → ∞ are sufficient for consistent estimation,
and m growing with n should deliver faster convergence rates.

A more general setting is when the number of topics K or even the mixing
prior ν is unknown. In such cases, the problem of estimating {θk}Kk=1 is ill-
posed because one may split each θk into two identical vectors (thus doubling
the number of topics K) without affecting the probabilistic model governing
the generation of documents. In such settings, an alternative target of inference
would be Ep(h) = Eν0p(h), where p(h) =

∑K
k=1 hkθk is the word distribution

conditioned on h.

Finally, the ML estimator for the topic modeling problem is well-known to
be computationally challenging, and computationally tractable alternatives such
as tensor decomposition and/or non-negative matrix factorization are usually
employed. In light of this paper, it is an interesting question to design com-
putationally efficient methods that attain the n−1/4 convergence rate without
assuming separability or non-degeneracy conditions on the underlying topic dis-
tribution vectors.
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1.3. Additional notations

For two distributions P and Q, we write dTV(P ;Q) = 1
2

∫
|dP − dQ| =

supA |P (A) − Q(A)| as the total variation distance between P and Q, and
KL(P‖Q) =

∫
log dP

dQdP as the Kullback-Leibler (KL) divergence between P

and Q. For a sequence of random variables {An}, we write An = OP(an) if for
any δ ∈ (0, 1), there exists a constant C > 0 such that lim supn→∞ Pr[|An/an| >
C] ≤ δ.

2. Assumptions, identifiability, and target of inference

2.1. Assumptions

We make the following regularity assumptions on θ and ν0:

(A1) There exists constant c0 > 0 such that θj(�) > c0 for all j ∈ [K] and
� ∈ [V ];

(A2) ν0 is exchangeable, meaning that ν0(A) = ν0(π(A)) for any permutation
π : [K] → [K]; furthermore, Eν0 [h

2
1] > Eν0 [h1h2] for K ≥ 2 and Eν0 [h

3
1] +

2Eν0 [h1h2h3] > 3Eν0 [h
2
1h2] for K ≥ 3.

The assumption (A2) only concerns the mixing distribution ν0 which is known
a priori, and is satisfied by “typical” priors of h, such as Dirichlet distributions
and the “finite mixture” prior pν0(h = ek) = 1/K, ∀k ∈ [K]. We also remark
that if ν0 is exchangeable and “non-degenerate”, meaning that ν0(A) > 0 for
any A with positive Lebesgue measure, then (A2) is implied.

Condition (A1) assumes that all topic vectors {θj}Kj=1 in the underlying pa-

rameter θ lie on the interior of the V -dimensional probabilistic simplex ΔV−1.
This is a technical condition, which can be viewed as an analogue of the “sup-
port condition” in classical analysis of MLE where parameters in the considered
parameter set Θ = {θ} give rises to the same support on observables. If (A1)
is violated, then different parameterization θ might lead to different support
of observables, posing technical difficulties for our analysis. More specifically,
Proposition 4 will no longer hold as pθ(x) could be arbitrarily small. We also re-
mark that (A1) is a well-received technical condition in previous works (Nguyen,
2015; Tang et al., 2014) on convergence rates of admixture models. We use Θc0

to denote all parameters θ that satisfies (A1).
Suppose X1, · · · , Xn ∈ [V ]m are n documents i.i.d. sampled from Model (1),

each with m words. Let

pθ,m(Xi) =

∫
ΔK−1

m∏
j=1

pθ,h(Xij)dν0(h) (4)

be the likelihood contribution of Xi with respect to parameter θ, where
pθ,h(x) =

∑K
j=1 hjθj(x). Alternatively, we also write pθ,m(Xi) = Eh[pθ,h(x)]

where pθ,h(x) =
∏m

j=1 pθ,h(Xij).
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2.2. Finite identifiability

Our target of inference is the underlying topic vectors θ = (θ1, · · · , θK). In the
classical theory of statistical estimation, one necessary condition to consistently
estimate θ from empirical observations {Xi}ni=1 is the identifiability of θ, loosely
meaning that different parameter in the parameter space gives rises to different
distributions on the observables.

Definition 1 (exact/classical identifiability). A distribution class {pθ}θ∈Θ is
identifiable with respect to Θ if for any θ, θ′ ∈ Θ, dTV(pθ; pθ′) = 0 implies θ = θ′.

In the context of mixture models, the classical notion of identifiability is
usually too strong to hold. For example, in most cases θ1, · · · , θK can only be
estimated up to permutations, provided that ν0 is exchangeable. This moti-
vates us to consider a weaker notion of identifiability, which we term as “finite
identifiability”:

Definition 2 (finite identifiability). A distribution class {pθ}θ∈Θ is finitely
identifiable with respect to Θ if for any θ ∈ Θ, |{θ′ ∈ Θ : dTV(pθ; pθ′) = 0}| < ∞.

Finite identifiability is weaker than the classical/exact notion of identifiability
in the sense that two different parameterization θ, θ′ ∈ Θ is allowed to have the
same observable distributions (almost everywhere), making them indistinguish-
able from any statistical procedures. On the other hand, finite identifiability is
sufficiently strong that non-trivial convergence can be studied for any infinite
parameter space Θ.

Example 1. If dTV(pθ; pθ′) = 0 implies dW(θ, θ′) = 0 then {pθ} is finitely identifi-
able. This includes a wide range of convergence results for finite mixture models
(Chen, 1995; Hsu and Kakade, 2013; Ge, Huang and Kakade, 2015), in which
the underlying parameter θ = (θ1, · · · , θK) can be consistently estimated up to
permutations.

2.3. Identifiability in topic models

For topic models, the following lemma characterizes the finite identifiability of
θ under various settings of K and m.

Lemma 1. Suppose there are K ≥ 2 topics and m ≥ 1 words per document.

1. If m = 1, then θ = (θ1, · · · , θK) is not finitely identifiable;
2. If m ≥ 2, then θ = (θ1, · · · , θK) is finitely identifiable.

The non-identifiability of θ for the m = 1 case is easy to see, because
with one word per document the distribution of each document is determined
by K−1

∑K
k=1 θk, to which an uncountable number of parameterizations θ =

(θ1, · · · , θK) exist. The finite identifiability of θ when m ≥ 2 words are available
per document, on the other hand, is much more involved and involves connec-
tions between total-variation distance between distributions and the “order of
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Table 1

Marginal distributions of m = 2 words per document, parameterized by θ and θ′ in Eq. (5).
To calculate the marginal probability of (j1, j2) ∈ {apple, pear}2, simply evaluate

Eν0 [h1θ1(j1)θ1(j2) + h2θ2(j1)θ2(j2)] =
∫ 1
0 [xθ1(j1)θ1(j2) + (1− x)θ2(j1)θ2(j2)]dx.

(apple, apple) (apple, pear) (pear, pear)
θ = (θ1, θ2) .25 .50 .25
θ′ = (θ′1, θ

′
2) .26 .48 .26

degeneracy” of θ (an important concept that will be introduced in the next
section). To make our presentation clean we defer the complete proof of Lemma
1 to Sec. 5.1.

Lemma 1 shows that inference of θ = (θ1, · · · , θK) is possible (in a finite
identifiability sense) if and only if each document consists of at least two words.
We shall thus make the following assumption throughout the rest of this paper
to make the target of inference sound.

(A3) m ≥ 2.

To better illustrate the finite identifiability of θ, we consider a toy model
with V = 2 words, K = 2 topics and m = 2 words per document. Two potential
parameterizations θ = (θ1, θ2) and θ′ = (θ′1, θ

′
2) are considered:

θ :

{
θ1 = (0.5, 0.5);
θ2 = (0.5, 0.5).

θ′ :

{
θ1 = (0.6, 0.4);
θ2 = (0.4, 0.6).

(5)

The mixing distribution ν0 is taken to be the Dirichlet distribution Dir(1, 1),
meaning that for h ∼ ν0, h1 follows the uniform distribution on [0, 1] and h2 =
1− h1.

For notational simplicity, we use “apple” and “pear” to denote the two words
in the vocabulary. Because both θ and θ′ have the same “average” marginal
distribution θ = 0.5(θ1 + θ2) = (0.5, 0.5), the marginal word distribution with
one word per document is (apple : 0.5, pear : 0.5) for both θ and θ′, meaning
that θ and θ′ are not distinguishable with m = 1 word per document. On the
other hand, with m = 2 words per document, θ and θ′ yield different marginal
distributions (see Table 1) despite the fact that they have the same average
distribution. This is consistent with Lemma 1.

3. Order of degeneracy

We introduce a concept which we name the order of degeneracy, which is later
used to establish finite identifiability of θ (Lemma 1) and also to characterize
the optimal local convergence rates of latent topic models.

Definition 3 (Order of degeneracy). Let X = [V ] be the vocabulary set and
μ be the counting measure on X . Let Xm = [V ]m be the product space of X
and μm be the product measure of μ. For any θ = (θ1, · · · , θK) ⊆ ΔV−1 and
1 ≤ p ≤ m, the pth-order degeneracy criterion dm,p(θ) is defined as
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dm,p(θ) := inf
‖δ‖1=1,

∑
� δj(�)=0∫

Xm

∣∣∣∣Ehpθ,h(x)
∑

1≤i1<···<ip≤m

δh(xi1) · · · δh(xip)

pθ,h(xi1) · · · pθ,h(xip)

∣∣∣∣dμm(x), (6)

where δ = (δ1, · · · , δK) ∈ R
V , ‖δ‖1 :=

∑K
k=1 ‖δk‖1 and δh(x) =

∑K
k=1 hkδk(x).

The definition of dm,p(θ) arises from a Taylor expansion of the likelihood
function at neighboring parameters pθ′,m(x)−pθ,m(x), which is given in Eq. (13).
While Eq. (6) appears complicated, for the purpose of convergence rates it
suffices to check whether dm,p(θ) > 0 or dm,p(θ) = 0, and the exact values of
dm,p(θ) are not important. We thus define

p(m;θ) := min
{
p ∈ Z

+ : dm,p(θ) > 0
}

(7)

as the smallest positive integer such that dm,p(θ) > 0. (If dm,p(θ) = 0 for all
1 ≤ p ≤ m then define p(m;θ) := ∞.) The quantity p(m;θ) will be used
exclusively in Theorem 1 in the next section, establishing upper and local lower
bounds on the convergence rates of θ. Intuitively, the smaller p(m;θ) is, the
faster an estimator converges to θ (or one of its finite equivalents), with the
special case of p(m;θ) = 1 corresponding to the classical n−1/2 convergence
rate for regular parametric models.

We next give some additional results regarding p(m;θ). We show that under
assumptions (A1) through (A3), it always holds that p(m;θ) ≤ 2 regardless of
the number of words per document (provided that m ≥ 2, i.e., (A3)) and the
underlying parameter θ. This is shown in Lemma 5, which essentially implies
finite identifiability and a general n−1/4 convergence rate under (A1) through
(A3) by Theorem 1. Furthermore, Lemma 2 shows that under additional linear
independence conditions p(m;θ) = 1, yielding the classical n−1/2 rate that is
faster than n−1/4 for general θ. We also give examples for which p(m;θ) > 1,
showing that the p(m;θ) ≤ 2 result in Lemma 5 cannot be improved uncondi-
tionally. Finally, we remark on how to computationally evaluate p(m;θ), even

when the true θ is unknown and only an estimate θ̂ is available.

3.1. First-order identifiability

When an underlying parameter θ satisfies p(m;θ) = 1, we say it has first-order
identifiability. By Theorem 1, first-order identifiability of θ essentially implies
a (local) convergence rate of n−1/2, which is similar to convergence rates in
classical parametric models (Van der Vaart, 1998). The objective of this sub-
section is to discuss scenarios under which first-order identifiability is present.

Our first lemma shows that, if at least m ≥ 3 words per document are present
and the underlying topic vectors {θ1, · · · , θK} are linear independent, then first-
order identifiability is guaranteed.

Lemma 2. If {θj}Kj=1 are linear independent then d3,1(θ) > 0.
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Remark 1. Lemma 2 implies that p(3;θ) = 1 if θ consists of linearly independent
topics. Furthermore, because p(·;θ) is a monotonic function in m (see Corollary
1), we have p(m;θ) = 1 for all m ≥ 3.

Lemma 2 is a simple consequence of the convergence results of (Anandkumar
et al., 2012, 2014) and the local minimax lower bounds established in Theorem
1 of this paper. More specifically, Anandkumar et al. (2012, 2014) explicitly
constructed method-of-moments estimators that attain n−1/2 convergence rate
for m = 3 and linearly independent θ, which would violate the local minimax
lower bound in Theorem 1 if p(3;θ) > 1. A complete proof of Lemma 2 is given
in Sec. 5.3.

Lemma 2, as well as the results of Anandkumar et al. (2012, 2014), require two
conditions: that {θj}Kj=1 being linear independent, and thatm ≥ 3, meaning that
there are at least 3 words per document. It is an interesting question whether
both conditions are necessary to ensure first-order identifiability. We give partial
answers to this question in the following two lemmas.

Lemma 3. If θj = θk for some j �= k then dm,1(θ) = 0 for all m ≥ 2.

Lemma 4. Suppose {θk}Kk=1 are distinct. Then d2,1(θ) = 0 if and only if K ≥ 3.

Lemma 3 shows that, if duplicates exist in the K underlying topics then θ
cannot have first-order identifiability, regardless of how many words are present
in each document. It is proved by a careful construction of δ = (δ1, · · · , δK)
such that the contribution of δj cancels out δk on all x ∈ Xm, exploiting the
condition that θj(v) = θk(v) for all v ∈ X . A complete proof of Lemma 3 is
given in Sec. 5.4.

Lemma 4 studies the first-order identifiability of θ from a different perspec-
tive. The “IF” part of Lemma 4 shows that, as long as K ≥ 3 topics are present,
merely having m = 2 words per document cannot lead to first-order identifiabil-
ity. We prove this by constructing the δ = (δ1, · · · , δK) vectors as δ1 ∝ θ2 − θ3,
δ2 ∝ θ3 − θ1, δ3 ∝ θ1 − θ2 and showing that δ1, δ2, δ3 cancel out each other
if only m = 2 words are present in each document. On the other hand, the
“ONLY IF” part of Lemma 4 is more intriguing, which states that m = 2 words
per document is sufficient for first-order identifiability if only two distinct topic
vectors are to be estimated. The proof of the only if part is however much more
complicated, involving analytically verifying the full-rankness of a coefficient
matrix. A complete proof of Lemma 4 is given in Sec. 5.5.

While Lemmas 3 and 4 combined show the necessity of m ≥ 3 and additional
non-degeneracy condition in Lemma 2, we remark that Lemmas 2, 3 and 4 do
not cover all cases of θ in the parameter space. One notable exception is when
m ≥ 3, K ≥ 3 and {θk}Kk=1 are distinct but not linearly independent, for which
none of the three lemmas apply and whether such parameterization satisfies first-
order identifiability remains an open question. Nevertheless, in Sec. 3.3 we give
a computational routine that determines whether p(m;θ) = 1 or p(m;θ) > 1

using any consistent estimates θ̂ of θ, which nicely complements the analytical
results in Lemmas 2, 3 and 4.
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3.2. Second-order identifiability

When an underlying parameter θ satisfies p(m;θ) ≤ 2, we say it has second-
order identifiability. By definition, if θ satisfies first-order identifiability then
it also satisfies second-order identifiability, but the reverse statement is gener-
ally not true. Hence, second-order identifiability is weaker than its first-order
counterparts, which also suggests potentially slower rates of convergence in pa-
rameter estimation.

In this section we show, perhaps surprisingly, that all parameterization θ
have second-order identifiability under (A1) through (A3).

Lemma 5. For all θ, d(2, 2)(θ) ≥ c(ν0)/V
3K > 0, where c(ν0) := Eν0 [h

2
1 −

h1h2] > 0 is a positive constant only depending on ν0.

Remark 2. Lemma 5 implies that p(2;θ) ≤ 2 for all θ satisfying (A1) and (A2).
By monotonicity of p(·;θ) (see Corollary 1), we also have p(m;θ) ≤ 2 for all
m ≥ 2.

While appears surprising, the proof of Lemma 5 is actually quite simple. The
key observation is the existence of documents consisting of identical words (i.e.,
x = (x1, x2) where x1 = x2), on which the δh(x1)δh(x2) term becomes a square
and equals zero only if δ = 0. A complete proof of Lemma 5 is given in Sec. 5.6.

Lemma 5 shows that, for any underlying parameter θ, if there are at least
2 words per document then p(m;θ) ≤ 2. This also suggests a general n−1/4

convergence rate of an ML estimate of θ, by Theorem 1. This conclusion holds
even for the “over-complete” setting K ≥ V , under which existing works re-
quire particularly strong prior knowledge on θ (e.g., {θj}Kj=1 being i.i.d. sampled
uniformly from the V -dimensional probabilistic simplex) for (computationally
tractable) consistent estimation (Anandkumar, Ge and Janzamin, 2017; Ma, Shi
and Steurer, 2016).

3.3. Numerical checking of dm,p(θ) > 0

As we remarked in previous sections, Lemmas 2, 3 and 4 do not cover all cases,
and there are parameters θ whose order of degeneracy is not determined by the
above lemmas. In addition, in practical applications it might be desirable to
compute the order of degeneracy with only an estimate θ̂ of the underlying pa-
rameter θ. In this section we present numerical procedures that decides whether
dm,p(θ) > 0. We also show that the calculation can be carried out on estimates

θ̂ and show its asymptotic consistency for the special case of p = 1.

Proposition 1. For any θ, dm,p(θ) > 0 if and only if the following polynomial
system in {δjk}, j ∈ [K], k ∈ [V ] does not have non-zero solutions:

∑
1≤i1<···<ip≤m

K∑
j1,··· ,jp=1

ξ(i, j;θ, x)

p∏
�=1

δj�,xi�
= 0, ∀x = (x1, · · · , xm) ∈ [V ]m;
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Table 2

Numerical estimations of the �1-condition number κ1(A(θ)) := ‖A(θ)‖1‖A(θ)−1‖1 for
different V,K,m and θ. The numerical estimation procedure of κ1(A(θ)) was given in

(Hager, 1984) and adopted in Matlab’s condest routine. Each entry in the topic vectors
are i.i.d. generated from U [0, 1] and then normalized so that ‖θk‖1 = 1 for all k ∈ [K].

V K M κ1(A(θ)) p(m; θ)
linear independent {θk} 10 3 3 2.9× 104 = 1
linear independent {θk} 10 3 2 1.1× 1019 > 1
linear independent {θk} 10 2 2 8.0× 102 = 1
θ1 = θ2 10 2 3 6.0× 1017 > 1
θ1 = θ2 �= θ3 10 3 4 2.1× 1018 > 1
θ3 = 0.5(θ1 + θ2) 10 3 3 9.7× 104 = 1
θ3 = 0.8θ1 + 0.2θ2 10 3 3 4.7× 105 = 1

V∑
k=1

δjk = 0, ∀j ∈ [K].

Here the coefficients ξ(i, j;θ, x) is defined as

ξ(i, j;θ, x) := Eh

⎡⎣ ∏
i/∈{i1,··· ,ip}

pθ,h(xi)

p∏
�=1

hj�

⎤⎦ .

Proof. Because μm in the definition of dm,p(θ) is a counting measure, dm,p(θ) =
0 if and only if all terms within the integral in Eq. (6) are zero. This gives the
proposition.

With Proposition 1, p(m;θ) can be determined by enumerating from p = 1 to
p = m and recording the smallest p such that dm,p(θ) > 0, which is the smallest
p such that the polynomial system in Proposition 1 does not have non-zero
solutions.

The polynomial system in Proposition 1 has maximum degree p. In principle,
whether such a polynomial system admits non-zero solutions can be decided
by converting the system under the Gröbner basis and apply results from com-
putational algebraic geometry. Such an approach is however technically very
complicated, and soon becomes computationally intractable when V is large.

Fortunately, our result in Lemma 5 shows that p(m;θ) ≤ 2 under very mild
conditions. More specifically, as long as each document consists of at least m ≥ 2
words, the task of determining p(m;θ) reduces to checking whether dm,1(θ) > 0
only, as p(m;θ) ≤ 2 is always correct. Furthermore, to decide whether dm,1(θ) >
0 the polynomial system in Proposition 1 reduces to a linear system, whose
existence of non-trivial solutions is easily determined by the rank of its design
matrix. The following proposition formalizes the above discussion.

Proposition 2. dm,1(θ) > 0 if and only if the following linear system does not
have non-zero solutions:

m∑
i=1

K∑
j=1

ξ(i, j;θ, x)δj,xi = 0, ∀x = (x1, · · · , xm) ∈ [V ]m;
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V∑
k=1

δjk = 0, ∀j ∈ [K];

where ξ(i, j;θ, x) := Eh[hj

∏
i′ �=i pθ,h(xi′)].

Proof. Immediately follows Proposition 1.

Proposition 2 constructs a linear system with V K variables and (V m +
K) equations. The existence of a non-trivial (non-zero) solution can be deter-
mined by explicitly constructing the (V m+K)×V K matrix A in the equation
Avec({δk}) = 0 and checking whether A has full column rank.

We give in Table 2 some computational results of p(m;θ) for some represen-
tative θ settings. Due to physical constraints of numerical precision, we use the
�1-condition number κ1(A(θ)) as an indication of whether A(θ) has full column
rank, where a large condition number suggests that A(θ) is rank-deficient. The
first 6 lines in Table 2 verify our results in Lemmas 2, 3 and 4. The last 2 lines in
Table 2 provide additional information regarding the first-order identifiability
of linearly dependent but distinct topic vectors {θk}. They show that {θk}k is
first-order identifiable (i.e., p(m;θ) = 1) even if {θk}k are linear dependent, pro-
vided that they are distinct and m ≥ 3. It remains an open question to formally
establish such first-order identifiability for distinct but linear dependent topics.

In practice, the underlying θ is unknown and only an estimate θ̂ is avail-
able. The following proposition shows that the procedure of checking whether
dm,p(θ) > 0 remains valid asymptotically if one replaces θ with θ̂.

Proposition 3. Let A(θ) and A(θ̂) be the (V m+K)×V K matrices constructed

using θ and θ̂, respectively. Let σmin(A(θ)) and σmin(A(θ̂)) be the smallest sin-

gular values of A(θ) and A(θ̂). If dW(θ, θ̂)
p→ 0 then σmin(A(θ̂))

p→ σmin(A(θ)).

Proof. ByWeyl’s inequality we know that |σmin(A(θ̂))−σmin(A(θ))| ≤ ‖A(θ̂)−
A(θ)‖op. It is easy to verify that [A(θ̂)]ij

p→ [A(θ)]ij for all i, j provided that

dW(θ, θ̂)
p→ 0, because the coefficients are invariant under permutation π :

[K] → [K] thanks to (A2). We then have ‖A(θ̂) −A(θ)‖op
p→ 0 because A(·)

are finite-dimensional matrices.

Proposition shows that by substituting θ with a consistent estimator θ̂ in the
construction of the (V m + K) × V K coefficient matrix A and comparing the
least singular value of A with a small number that slowly grows to zero, we can
decide consistently whether dm,1(θ) > 0 using only θ̂.

4. Maximum likelihood estimation and its convergence rate

We consider the Maximum Likelihood (ML) estimator, defined as

θ̂
ML

n,m ∈ arg max
θ∈Θc0

n∑
i=1

log pθ,m(Xi)
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= arg max
θ∈Θc0

n∑
i=1

log

⎧⎨⎩
∫
ΔK−1

⎡⎣ m∏
j=1

K∑
k=1

hkθk(xij)

⎤⎦ dν0(h)

⎫⎬⎭ . (8)

It should be noted that θ̂
ML

n,m is constrained to the parameter set Θc0 , which
is assumed to be known a priori.

The next theorem is the main result of this paper, which derives the conver-

gence rate of the ML estimator θ̂
ML

n,m using the concept of order of degeneracy
p(m;θ) developed in the previous section. We also prove that such convergence
rates are locally minimax optimal and therefore cannot be improved.

Theorem 1. Fix K ≥ 2, m ≥ 2, θ = (θ1, · · · , θK) ∈ Θc0 . Let Θ̃c0(θ) := {θ̃′ ∈
Θc0 : dTV(pθ,m; pθ′,m) = 0} be the equivalent parameter set with respect to θ,
which is finite thanks to Lemma 1. Let p(m;θ) be defined as in Eq. (13), and
suppose p(m;θ) < ∞.

1. (Global convergence rate of the MLE).

min
θ̃∈Θ̃c0 (θ)

dW(θ̃, θ̂
ML

n,m) = OP(n
−1/2p(m;θ)) (9)

under pθ,m (or equivalently pθ̃,m), where in OP(·) we hide dependency on
ν0,m and θ;

2. (Local minimax rate). Then there exists a constant rθ > 0 depending only
on ν0,m and θ such that

inf
θ̂

sup
θ′∈Θn(θ)

Eθ′

[
dW(θ′, θ̂)

]
= Ω(n−1/2p(m;θ)), (10)

where Θn(θ) is a shrinking neighborhood of θ defined as {θ′ ∈ Θc0 :
dW(θ,θ′) ≤ rθ·n−1/2p(m;θ)}, and an = Ω(bn) means limn→∞ |an|/|bn| > 0.

Remark 3. Our proof for the lower bound part of Theorem 1 actually proves
the stronger statement that, for any θ′ ∈ Θn(θ), there exists constant τ > 0
such that no procedure can distinguish θ and θ′ with success probability smaller
than τ , as n → ∞. Note that Eq. (10) is a direct corollary of this testing lower
bound by Markov’s inequality.

Theorem 1 characterizes the convergence rates of MLE locally at parameters
θ ∈ Θc0 , with the convergence rates dependent on p(m;θ) ∈ N. While conver-
gence rates depending on θ might seem like a weak result, we argue that such
convergence is probably the best one can hope for, and the “local convergence”
results still provide much valuable information about the statistical estimation
problem of latent topic models. In particular, we have the following observations:

1. It is arguable that convergence rates depending on the underlying param-
eter θ (or its close neighborhoods) are the best one can hope for. Because
if the worst-case convergence rates are considered over all θ ∈ Θc0 , by our
Theorem 1 and Lemma 4 the only reasonable convergence rate is n−1/4
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which is slow; on the other hand, by restricting ourselves to “local” conver-
gence we can hope to get much faster rates like n−1/2 for certain parameter
settings;

2. By deriving θ-specific convergence rates, we obtain more information about
the structure of the statistical estimation problem in latent topic models.
In particular, our results show that when topic vectors are linearly inde-
pendent, the convergence rate is much faster than cases when duplicate
topic vectors are present. This is an interesting observation and is largely
unknown in previous research on latent topic models.

3. One common difficulty with θ-specific rates is the challenge of deriving
matching lower bounds, because if θ is known the trivial estimator of
outputting θ always has zero measure. We get around this issue by con-
sidering a “close neighborhood” of θ and derive “local” minimax rates for
any statistical procedure, which match the convergence rates of the ML
estimator. Such a “local analysis” was used, for example in Van der Vaart
(1998) to show the optimality of I(θ0)

−1 of MLE under classical settings.
Our analysis, on the other hand, focuses on “local rates of convergence”
as the Fisher’s information I(θ0) in our model is not necessarily invertible,
under which case rates worse than n−1/2 is unavoidable.

The upper bound on convergence rates of MLE in Theorem 1 is proved by
adapting the classical analysis of (Van der Vaart, 1998) and considering higher
order of binomial approximation depending on p(m;θ). The local minimax lower
bound is proved by considering two hypothesis θ,θ′ and applying the Le Cam’s
inequality. The n−1/2p(m;θ) term arises in the upper bound of TV-distance be-
tween distributions induced by θ and θ′, which is again bounded by higher-order
binomial approximations. The complete proof of Theorem 1 is given in Sec. 5.2.

5. Proofs

In this section we prove the main results of this paper. To simplify presentation,
we use C > 0 to denote any constant that only depends on V,K,m, ν0 and c0.
We also use Cθ > 0 to denote constants that further depends on θ ∈ Θc0 , the
underlying parameter that generates the observed documents. Neither C nor Cθ

will depend on the number of observations n.
We first state and prove a key lemma that connects the defined degeneracy

criterion with the total-variation (TV) distance between measures corresponding
to neighboring parameters. Some corollaries are also given after the proof of
Lemma 6.

Lemma 6. Suppose θ ∈ Θc0 , m ≥ 2 and p(m;θ) < ∞. Then for any 0 < ε ≤
ε0 < 1/2,

inf
ε≤dW(θ,θ′)≤ε0

dTV(pθ,m; pθ′,m) ≥
[
dm,p(m;θ)(θ)−

V mε0
1− ε0

]
· εp(m;θ); (11)

sup
dW(θ,θ′)≤ε

dTV(pθ,m; pθ′,m) ≤ V m

1− ε
· εp(m;θ). (12)
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Proof. We first prove Eq. (11). Let δ̃ = θ′
π − θ under appropriate permutation

π : [K] → [K] such that ε̃ := ‖δ̃‖1 = dW(θ,θ′) ∈ [ε, ε0]. We then have (without
loss of generality let π(k) ≡ k)

pθ′,m(x)− pθ,m(x)

= Eh

[
pθ′,h(x)− pθ,h(x)

]
= Eh

{
pθ,h(x)

[∏m
i=1 pθ′,h(xi)∏m
i=1 pθ,h(xi)

− 1

]}
= Eh

{
pθ,h(x)

[
m∏
i=1

(
1 +

pθ′,h(xi)− pθ,h(xi)

pθ,h(xi)

)
− 1

]}

= Eh

{
pθ,h(x)

[
m∏
i=1

(
1 +

∑K
j=1 hjθ

′
j(xi)−

∑K
j=1 hjθj(xi)

pθ,h(xi)
− 1

]}

= Eh

{
pθ,h(x)

[
m∏
i=1

(
1 +

δ̃h(xi)

pθ,h(xi)

)
− 1

]}

=:

m∑
p′=1

rp′(x), (13)

where δ̃h(xi) =
∑k

j=1 hjδj(xi), δj(xi) = θ′j(xi)− θj(xi) and

rp′(x) := Eh

⎧⎨⎩pθ,h(x)
∑

1≤i1<···<ip′≤m

δ̃h(xi1) · · · δ̃h(xip′ )

pθ,h(xi1) · · · pθ,h(xip′ )

⎫⎬⎭ .

By definition of p(m;θ) and dm,p(θ) we know that rp′(x′) = 0 for all 1 ≤ p′ <
p(m;θ) and x′ ∈ Xm; therefore∫

Xm

|rp′(x)|dμm(x) = 0.

For p′ = p(m;θ), integrating over all x ∈ Xm with respect to the counting
measure we have∫

Xm

|rp′(x)|dμm(x)

=

∫
Xm

∣∣∣∣∣∣Eh

⎧⎨⎩pθ,h(x)
∑

1≤i1<···<ip′≤m

δ̃h(xi1) · · · δ̃h(xip′ )

pθ,h(xi1) · · · pθ,h(xip′ )

⎫⎬⎭
∣∣∣∣∣∣dμm(x)

=‖δ̃‖p
′

1 ·
∫
Xm

∣∣∣∣∣∣Eh

⎧⎨⎩pθ,h(x) ∑
1≤i1<···<ip′≤m

δ̃h(xi1) · · · δ̃h(xip′ )

pθ,h(xi1)‖δ‖1 · · · pθ,h(xip′ )‖δ‖1

⎫⎬⎭
∣∣∣∣∣∣dμm(x)

≥‖δ̃‖p
′

1 · inf
‖δ‖1=1∑V

�=1 δj(�)=0

∫
Xm

∣∣∣∣∣∣Eh

⎧⎨⎩pθ,h(x) ∑
1≤i1<···<ip′≤m

δh(xi1)· · ·δh(xip′ )

pθ,h(xi1)· · ·pθ,h(xip′ )

⎫⎬⎭
∣∣∣∣∣∣dμm(x)
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= ‖δ̃‖p
′

1 · dm,p(θ) = dm,p′(θ)[dW(θ,θ′)]p
′
.

Here the third line holds because δ := δ̃/‖δ̃‖1 satisfies ‖δ‖1 = 0 and∑V
�=1 δj(�) = 0. For p(m;θ) ≤ p′ ≤ m and all x′ ∈ Xm, it holds that∫

Xm

|rp′(x′)|dμm(x)

≤
∫
Xm

∣∣∣∣∣∣Eh

⎧⎨⎩ ∑
1≤i1<···<ip′≤m

∏
i′ /∈{i1,··· ,ip′}

pθ,h(xi′)

p
′∏

j=1

δ̃h(xij )

⎫⎬⎭
∣∣∣∣∣∣ dμm(x)

≤ V m · ‖δ̃‖p
′

1 = V m[dW(θ,θ′)]p
′
.

Subsequently, using the fact that dW(θ,θ′) ∈ [ε, ε0] and ε0 < 1/2, we have

dTV(pθ,m; dθ′,m) =

∫
Xm

∣∣∣∣ m∑
p′=1

rp′(x)

∣∣∣∣dμm(x)

≥
∫
Xm

|rp(m;θ)(x)|dμm(x)−
m∑

p′=p(m;θ)+1

∫
Xm

|rp′(x)|dμm(x)

≥ dm,p(m;θ)(θ)[dW(θ,θ′)]p(m;θ) − V m ·
m∑

p′=p(m;θ)+1

[dW(θ,θ′)]p
′

≥ dm,p(m;θ)(θ)[dW(θ,θ′)]p(m;θ)

− V m

1− dW(θ,θ′)
· [dW(θ,θ′)]p(m;θ)+1

≥
[
dm,p(m;θ)(θ)−

V mε0
1− ε0

]
· εp(m;θ).

We next prove Eq. (12). Let again δ̃ := θ′
π − θ and ε̃ := ‖δ̃‖1 ≤ ε for all

θ′ ∈ Θc0 such that dW(θ,θ′) ≤ ε. Then

dTV(pθ,m; pθ′,m) ≤
m∑

p′=p(m;θ)

∫
Xm

|rp′(x)|dμm(x)

≤ V m
m∑

p′=p(m;θ)

ε̃p
′

≤ V m
m∑

p′=p(m;θ)

εp
′ ≤ V m

1− ε
· εp(m;θ).

Corollary 1 (Monotonicity of p(m;θ)). p(m′;θ) ≤ p(m;θ) for all m′ ≥ m.

Proof. If p(m;θ) = ∞ then the inequality automatically holds. Suppose
p(m;θ) = p and assume by way of contradiction that p(m′;θ) = p′ > p for
some m′ > m. Invoking Lemma 6 and the data processing inequality, we know
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that for all 0 < ε < 1/4,

sup
dW(θ,θ′)≤2ε

dTV(pθ,m; pθ′,m) ≤ sup
dW(θ,θ′)≤2ε

dTV(pθ,m′ ; pθ′,m′) ≤ V m2p
′

1− 2ε
· εp′

. (14)

On the other hand, because p(m;θ) = p, we know that for all 0 < ε ≤ ε0 < 1/2,

inf
ε≤dW(θ,θ′)≤ε0

dTV(pθ,m; pθ′,m) ≥
[
dm,p(θ)−

V mε0
1− ε0

]
· εp

=
1

εp′−p

[
dm,p(θ)−

V mε0
1− ε0

]
· εp′

. (15)

Eqs. (14) and (15) clearly contradict each other by considering ε0 > 0 moder-
ately small such that dm,p(θ) ≥ 2V mε0/(1 − ε0), and θ′ sufficiently close to θ
such that such that ε ≤ dW(θ,θ′) ≤ 2ε and letting ε → 0+. Thus, we conclude
that p(m′;θ) ≤ p(m;θ).

By Lemma 5 and Corollary 1, we immediately have the following claim:

Corollary 2 (Finiteness of p(m;θ)). For any θ ∈ Θc0 and m ≥ 2, p(m;θ) ≤ 2.

5.1. Proof of Lemma 1

We first show if K ≥ 2 and m = 1 then θ is not finitely identifiable. In this
case, any parameterization θ = (θ1, · · · , θK) with the same “average” word

distribution θ = 1
K

∑K
k=1 θk yields the same distribution of documents, and for

any θ there are infinitely many θ′ that matches exactly its average distribution
θ. Therefore θ is not finitely identifiable.

We next show the finite identifiability of θ when K ≥ 2 and m ≥ 2. By
data processing inequality we know that dTV(pθ,m; pθ′,m) ≥ dTV(pθ,2; pθ′,2) for
m ≥ 2. Therefore, we only need to prove finite identifiability for {pθ,2}θ∈Θc0

,
i.e., m = 2.

We first consider the case of K = 2 and let θ = (θ1, θ2) be the under-
lying topics. Let θ′ = (θ′1, θ

′
2) be one of its equivalent parameterization such

that dTV(pθ,2; pθ′,2) = 0. By the data processing inequality, we must have
dTV(pθ,1; pθ,1) = 0 and therefore

Eν0 [h1]θ1(x) + Eν0 [h2]θ2(x) = Eν0 [h1]θ
′
1(x) + Eν0 [h2]θ

′
2(x), ∀x ∈ X .

Because ν0 is exchangeable, the above identity implies that

θ1(x) + θ2(x) = θ′1(x) + θ′2(x) ∀x ∈ X . (16)

We now consider document X = (x1, x2) consisting of identical words x1 =
x2 = x ∈ X . Because

pθ(X) = Eν0

[
(h1θ1(x) + h2θ2(x))

2
]
= pθ′(X),
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using the exchangeability of ν0 we have that

Eν0 [h
2
1]
[
θ1(x)

2 + θ2(x)
2
]
+ 2Eν0 [h1h2]θ1(x)θ2(x)

= Eν0 [h
2
1]
[
θ′1(x)

2 + θ′2(x)
2
]
+ 2Eν0 [h1h2]θ

′
1(x)θ

′
2(x), ∀x ∈ X .

Subtracting Eν0 [h1]
2(θ1(x) + θ2(x))

2 on both sides of the above identity and
invoking Eq. (16) that θ1(x) + θ2(x) = θ′1(x) + θ′2(x), we have

2Eν0 [h1h2 − h2
1]θ1(x)θ2(x) = 2Eν0 [h1h2 − h2

1]θ
′
1(x)θ

′
2(x) ∀x ∈ X .

Because Eν0 [h1h2 − h2
1] > 0 thanks to assumption (A2), we have

θ1(x)θ2(x) = θ′1(x)θ
′
2(x) ∀x ∈ X . (17)

When θ = (θ1, θ2) is fixed, Eqs. (16,17) form a quadratic system of
θ′1(x), θ

′
2(x) for every x ∈ X , which has at most two solutions. Therefore,

|{θ′ : dTV(pθ,2; pθ′,2) = 0}| ≤ 2V < ∞, and the finite identifiability is proved.
We next consider the case ofK ≥ 3 andm = 2. We know that d2,1(θ) = 0 and

d2,2(θ) ≥ c(ν0)/V
3K for all θ ∈ Θc0 , thanks to Lemmas 4 and 5. By choosing

ε0 := c(ν0)/[2V
5K + c(ν0)], by Lemma 6 we have

dTV(pθ,2; pθ′,2) > 0, ∀dW(θ,θ′) ≤ ε0. (18)

For arbitrary θ ∈ Θc0 let Θ̃c0(θ) := {θ′ ∈ Θc0 : dTV(pθ,2; pθ′,2) = 0} be the

set of all its equivalent parameterizations. By Eq. (18), Θ̃c0 forms a packing of
Θc0 with radius ε0 with respect to dW(·, ·). Because ε0 > 0 is a positive constant

depending only on ν0, V,K and Θc0 is compact, we conclude that |Θ̃c0(θ)| < ∞.

5.2. Proof of Theorem 1

We use a multi-point variant of the classical analysis of maximum likelihood
(Van der Vaart, 1998, Sec. 5.8) to establish the rate of convergence for MLE,
and Le Cam’s method to prove corresponding (local) minimax lower bounds.
Proof of upper bound. Let θ ∈ Θc0 be the underlying parameter that generates
the data. Define

Θ̃c0(θ) :=
{
θ̃ ∈ Θc0 : dTV(pθ,m; pθ̃,m) = 0

}
as the set of its equivalent parameterizations, which is guaranteed to be finite
thanks to Lemma 1. For ε > 0, define

Θc0,ε(θ) :=
{
θ′ ∈ Θc0 : dW(θ′, θ̃) ≥ ε, ∀θ̃ ∈ Θ̃c0(θ)

}
as the set of all parameters that are at least ε away from any equivalent pa-
rameterization in Θ̃c0(θ) in Wasserstein’s distance dW(·, ·). The following tech-
nical proposition and corollary shows that dTV(pθ,m; pθ′;m) is uniformly lower
bounded from below for all θ′ ∈ Θc0,ε(θ).



Convergence rates of latent topic models 55

Proposition 4. For every fixed θ ∈ Θc0 , dTV(pθ,m; pθ′,m) is continuous in θ′

with respect to ‖ · ‖2, meaning that for every ε > 0, there exists δ > 0 such
that |dTV(pθ,m; pθ′,m) − dTV(pθ,m; pθ′′,m)| ≤ ε for all θ′,θ′′ ∈ Θc0 such that

‖θ′ − θ′′‖2 ≤ δ, where ‖θ′ − θ′′‖2 :=
√∑K

i=1

∑V
j=1 |θ′i(j)− θ′′i (j)|2.

Proposition 4 can be easily proved by explicitly expanding the total variation
between distributions parameterized by two parameters θ,θ′ ∈ Θc0 . We give its
complete proof in the appendix. As a consequence of Proposition 4, we have the
following corollary:

Corollary 3. For any 0 < ε < 1/2, infθ′∈Θc0,ε(θ)
dTV(pθ,m; pθ′,m) > 0.

Proof. We first show that Θc0,ε(θ) is compact under the general topology of RV K

by treating each θ as a V K-dimensional vector. Θc0,ε(θ) is obviously bounded
(with respect to ‖·‖2), because Θc0 is bounded and Θc0,ε(θ) ⊆ Θc0 . In addition,
Θc0,ε can be written as

Θc0,ε(θ) =
⋂

θ′∈Θ̃c0 (θ)

Θc0\
{
θ′′ ∈ R

V K : ‖θ′′ − θ′‖2 < ε
}
. (19)

Note that we have replaced dW(·, ·) with the ‖ · ‖2 norm, which remains correct

because all permutations of a parameterization θ′ ∈ Θ̃c0,ε(θ) are also contained

in Θ̃c0,ε(θ). Because Θc0 is closed, {θ′′ ∈ R
V K : ‖θ′′−θ′‖2 < ε} is open, and any

intersection of closed sets are closed, we conclude that Θc0,ε(θ) is closed. There-
fore Θc0,ε(θ) is compact. Also, because ε < 1/2, Θc0,ε(θ) is clearly non-empty.
By the extreme value theorem 2 and the fact that dTV(pθ,m; pθ′,m) is continuous
in θ′ with respect to ‖ ·‖2 (Proposition 4), dTV(pθ,m; pθ′,m) attains its minimum
on Θc0,ε(θ). The corollary is then proved by noting that dTV(pθ,m; pθ′,m) > 0
for all θ′ ∈ Θc0,ε(θ).

For any θ,θ′ ∈ Θc0 , and X1, · · · , Xn ∈ Xm i.i.d. sampled from the underlying

distribution pθ,m, define the “empirical KL-divergence” K̂L(pθ,m‖pθ′,m) as

K̂Ln(pθ,m‖pθ′,m) :=
1

n

n∑
i=1

log
pθ,m(Xi)

pθ′,m(Xi)
.

By definition of the ML estimator, we know inf θ̃∈Θ̃c0 (θ)
dW(θ̂

ML

n,m, θ̃) ≤ ε pro-

vided that

K̂Ln(pθ,m‖pθ′,m) > 0 for all θ′ ∈ Θc0,ε(θ). (20)

Furthermore, we know that the “population” version of Eq. (20) must be correct:
infθ′∈Θc0,ε(θ)

KL(pθ,m‖pθ′,m) > 0, because the KL-divergence is lower bounded

by the total-variation distance, which is further uniformly bounded away from

2For any compact set K ⊂ R
d and continuous function f : K → R, f attains its minimum

and maximum on K.
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below by Corollary 3. Therefore, to prove convergence rate of the MLE it suf-
fices to upper bound the perturbation between empirical and population KL-
divergence and lower bounds the population divergence for all θ′ ∈ Θc0,ε(θ).

We first consider the simpler task of bounding the perturbation between
K̂Ln(pθ,m‖pθ′,m) and its population version KL(pθ,m‖pθ′,m). Note that

K̂Ln(pθ,m‖pθ′,m) is a sample average of i.i.d. random variables. Using classical
empirical process theory, we have the following lemma that bounds the uniform
convergence of K̂Ln towards KL; its complete proof is given in the appendix.

Lemma 7. There exists Cθ > 0 depending only on θ, c0,m, ν0 such that

Eθ sup
θ′∈Θc0

∣∣K̂Ln(pθ,m‖pθ′,m)−KL(pθ,m‖pθ′,m)
∣∣√

KL(pθ,m‖pθ′,m)
≤ Cθ√

n
.

As a corollary, by Markov’s inequality we know that for all δ ∈ (0, 1), with
probability 1− δ

K̂Ln(pθ,m‖pθ′,m) ≥ KL(pθ,m‖pθ′,m)−
√

KL(pθ,m‖pθ′,m) · Cθ

δ
√
n
, ∀θ′ ∈ Θc0 .

Subsequently, with probability 1− δ

inf
θ′∈Θε,c0

K̂Ln(pθ,m‖pθ′,m) > 0 ⇐= inf
θ′∈Θε,c0

KL(pθ,m‖pθ′,m) >
C2

θ

δ2n
. (21)

We next establish a lower bound on KL(pθ,m‖pθ′,m) for all θ′ ∈ Θc0,ε(θ). By
Pinsker’s inequality, we have that for any θ′ ∈ Θc0,ε(θ),

KL(pθ,m‖pθ′,m) ≥ 2d2TV(pθ,m; pθ′,m).

Define

ε0(θ) := min

{
1

4
,

dm,p(m;θ)(θ)

2V m + dm,p(m;θ)(θ)

}
.

Invoking Lemma 6 and noting that

dm,p(m;θ)(θ)−
V mε0(θ)

1− ε0(θ)
≤ 1

2
dm,p(m;θ)(θ),

we have for all 0 < ε < ε0(θ) that

inf
θ′∈Θc0,ε(θ)\Θc0,ε0(θ)(θ)

KL(pθ,m‖pθ′,m) ≥ 1

2
[dm,p(m;θ)(θ)]

2 · ε2p(m;θ) =: γθε
2p(m;θ),

where γθ > 0 is a positive constant independent of n or ε. Furthermore, by Corol-
lary 3 and the Pinsker’s inequality we know that infθ′∈Θc0,ε0(θ)(θ)

KL(pθ,m‖pθ′,m)

> 0. Because ε0(θ) does not depend on ε or n, this infimum must be bounded
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away from below by a constant depending only on θ, c0, ν0 and m. Subsequently,
for sufficiently small ε > 0 we have

inf
θ′∈Θc0,ε(θ)

KL(pθ,m‖pθ′,m) ≥ γ′
θε

2p(m;θ), (22)

where γ′
θ is a positive constant depending only on θ, c0, ν0 and m.

Combining Eqs. (20), (21) and (22) with ε � n−1/2p(m;θ) we complete the
proof of convergence rate of the ML estimator.

Proof of lower bound. Let n be sufficiently large such that rθn
−1/2p(m;θ) < 1/2,

where rθ is the positive constant in the definition of Θn(θ) that is independent
of n. Invoking Lemma 6 we have that

sup
θ′∈Θn(θ)

dTV(pθ,m; pθ′,m) ≤ 2V m · rp(m;θ)
θ n−1/2, (23)

In addition, for all θ,θ′ ∈ Θc0 the following proposition upper bounds their
KL-divergence using TV distance:

Proposition 5. There exists a constant C > 0 depending only on V,K, ν0, c0
and m such that, for all θ,θ′ ∈ Θc0 ,

KL(pθ,m‖pθ′,m) ≤ C · d2TV(pθ,m; pθ′,m).

At a higher level, Proposition 5 can be viewed as an “exact” reverse of the
Pinsker’s inequality with matching upper and lower bounds for the KL diver-
gence. It is not generally valid for arbitrary distributions, but holds true for our
particular model with θ,θ′ ∈ Θc0 because both pθ,m and pθ′,m are supported
and bounded away from below on a finite set. We give the complete proof of
Proposition 5 in the appendix.

Let θ′ be an arbitrary parameterization in Θn(θ), and let p⊗n
θ,m = pθ,m×· · ·×

pθ,m be the n-times product measure of pθ,m, Using Eq. (23), Proposition 5 and
the fact that the KL-divergence is additive for product measures, we have

KL(p⊗n
θ,m‖p⊗n

θ′,m) ≤ n ·KL(pθ,m‖pθ′,m) ≤ 2V m · r2p(m;θ)
θ .

Subsequently, using Pinsker’s inequality we have

dTV(p
⊗n
θ,m; p⊗n

θ′,m) ≤
√

2V m · r2p(m;θ)
θ .

By choosing rθ := [8V m]−2p(m;θ) we can upper bound the right-hand side of
the above inequality by 1/2. Applying Le Cam’s inequality we conclude that
no statistical procedure can distinguish θ from θ′ using n observations with
success probability higher than 3/4. The lower bound is thus proved by Markov’s
inequality.
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5.3. Proof of Lemma 2

This lemma is essentially a consequence of (Anandkumar et al., 2014), which de-
veloped a

√
n-consistent estimator for linear independent topics via the method

of moments. More specifically, the main result of (Anandkumar et al., 2014) can
be summarized by the following theorem:

Theorem 2. Suppose 2 ≤ K ≤ V , m = 3 and consider the parameter subclass
Θσ0,c0 := {θ ∈ Θc0 : σmin(θ) ≥ σ0}, where σmin(θ) := inf‖w‖2=1 ‖

∑K
j=1 wjθj‖2

is the least singular value of the topics vectors, and σ0 > 0 is a positive constant.
Then there exists a (computationally tractable) estimator θ̂n such that for all
θ ∈ Θσ0,c0 ,

dW(θ̂n,θ) ≤ Cσ0 ·OP(n
−1/2),

where Cσ0 > 0 is a constant that only depends on V,K, ν0 and σ0.

We remark that the original paper of (Anandkumar et al., 2014) only consid-
ered the case where ν0 is the Dirichlet distribution. However, our assumption
(A2) is sufficient for the success of their proposed algorithms and analysis.

Next consider any θ ∈ Θc0 such that {θk}Kk=1 are linear independent. Define
σθ := σmin(θ)/2 > 0. The “shrinking neighborhood” Θn(θ) defined in Theorem
1 is then contained in Θσθ ,c0 for sufficiently large n. Let θ′ ∈ Θn(θ) ⊆ Θσθ,c0 be
such that dW(θ,θ′) = Ω(n−1/2p(3;θ)). If p(3;θ) = 1 we already proved d3,1(θ) >
0. On the other hand, if p(3;θ) > 1 we know that dW(θ,θ′) = Ω(n−1/4). By
Theorem 2, there exists a statistical procedure that can distinguish θ from θ′

with success probability arbitrarily close to 1 for sufficiently large n, which
violates the lower bound in Theorem 1 (Remark 3). Thus, it is concluded that
p(3;θ) = 1 and therefore d3,1(θ) > 0.

5.4. Proof of Lemma 3

Consider δ = (δ1, · · · , δK) with δj = 1
4 (e1 − e2), δk = 1

4 (e2 − e1) and δ� = 0
for all � �= j, k, where e1 = (1, 0, · · · , 0) and e2 = (0, 1, 0, · · · , 0) are standard

basis vectors in R
V . Clearly ‖δ‖1 = 1 and

∑V
�=1 δj(�) = 0 for all j ∈ [K]. Define

pθ,h(x−i) :=
∏

j �=i pθ,h(xj). We then have, for arbitrary x = (x1, · · · , xm) ∈ Xm,

∣∣∣∣∣Ehpθ,h(x)

m∑
i=1

δh(xi)

pθ,h(xi)

∣∣∣∣∣ =
∣∣∣∣∣

m∑
i=1

k∑
�=1

δ�(xi)Eh [h�pθ,h(x−i)]

∣∣∣∣∣
≤ 1

2

m∑
i=1

1[xi∈{1,2}]
∣∣Eh[hjpθ,h(x−i)]− Eh[hkpθ,h(x−i)]

∣∣.
Because ν0 is exchangeable and θj = θk, we have that Eh[hjpθ,h(x−i)] =
Eh[hkpθ,h(x−i)] for all x−i ∈ Xm−1. Thus, dm,1(θ) = 0.
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5.5. Proof of Lemma 4

Proof of the “IF” part. Let θ1, θ2 and θ3 be any three topic vectors in θ. We
assume θ1, θ2, θ3 are distinct, because otherwise d2,1(θ) = 0 is already implied
by Lemma 3. Consider δ = (δ1, · · · , δK) defined as

δ1 := (θ2 − θ3)/6;

δ2 := (θ3 − θ1)/6;

δ3 := (θ1 − θ2)/6;

δk := 0, ∀3 < k ≤ K.

It is easy to verify that ‖δ‖1 = 1 and
∑V

�=1 δk(�) = 0 for all k ∈ [K]. We then
have, for any x = (x, y) ∈ X 2,

Ehpθ,h(x, y)

[
δh(x)

pθ,h(x)
+

δh(y)

pθ,h(y)

]
= Eh[δh(x)pθ,h(y)] + Eh[δh(y)pθ,h(x)] (24)

By definition of δ, we have that 6δh(x) = θ1(x)(h3 − h2) + θ2(x)(h1 − h3) +
θ3(x)(h2 − h1). Define β := (Eν0 [h

2
1]− Eν0 [h1h2])/6. We then have

Eh[δh(x)pθ,h(y)]

= βθ1(x)(θ3(y)− θ2(y)) + βθ2(x)(θ1(y)− θ3(y)) + βθ3(x)(θ2(y)− θ1(y)).
(25)

Similarly,

Eh[δh(y)pθ,h(x)]

= βθ1(y)(θ3(x)− θ2(x)) + βθ2(y)(θ1(x)− θ3(x)) + βθ3(y)(θ2(x)− θ1(x)).
(26)

Comparing Eqs. (25,26) we note that

Eh[δh(x)pθ,h(y)] = −Eh[δh(y)pθ,h(x)]

for all (x, y) ∈ X 2, which means that the right-hand side of Eq. (24) is always
0. Therefore, d2,1(θ) = 0.
Proof of the “ONLY IF” part. We show that if K = 2 and θ1 �= θ2 then d2,1(θ) >
0. Define β := Eν0 [h1h2] and γ := Eν0 [h

2
1] − Eν0 [h1h2]. By (A2) we have that

γ > 0. We then have

E[δh(x)pθ,h(y)] = E[(h1δ1(x) + h2δ2(x))(h1θ1(y) + h2θ2(y))]

= δ1(x)[βθ(y) + γθ1(y)] + δ2(x)[βθ(y) + γθ2(y)],

where θ(y) := θ1(y) + θ2(y). Similarly,

E[δh(y)pθ,h(x)] = δ1(y)[βθ(x) + γθ2(x)] + δ2(y)[βθ(x) + γθ2(x)].
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We can then simplify Eq. (24) as

Tθ,x,y(δ) := Ehpθ,h(x, y)

[
δh(x)

pθ,h(x)
+

δh(y)

pθ,h(y)

]
= δ1(x)[βθ(y) + γθ1(y)] + δ2(x)[βθ(y) + γθ2(y)]

+ δ1(y)[βθ(x) + γθ1(x)] + δ2(y)[βθ(x) + γθ2(x)].

Assume by way of contradiction that d2,1(θ) = 0, which implies the existence

of δ �= 0,
∑V

�=1 δj(�) = 0 such that Tθ,x,y(δ) = 0 for all x, y ∈ [V ]. We then have

B1δ1 +B2δ2 = 0, (27)

where B1 = (b11, · · · , b1V ) and B2 = (b21, · · · , b2V ) are K × (V 2 + 2) matrices.
Furthermore, bj� for j ∈ {1, 2} and � ∈ [V ] can be explicitly formed as

bj� = (βθ + γθj)(e�· + e·�) + μj�e��

where μj� = βθ(�) + γθj(�) and {e��′}V�,�′=1 denotes the V 2 components of bj�.
Subsequently,

B1δ1 +B2δ2 =

V∑
�=1

δ1(�)b1� +

V∑
�=1

δ2(�)b2�

=

V∑
�=1

e�·

⎡⎣∑
j=1,2

δj(�)(βθ + γθj) + μj�δj

⎤⎦;
therefore, ∑

j=1,2

δj(�)(βθ + γθj) + μj�δj = 0, ∀� ∈ [V ]. (28)

We next state a technical proposition that will be proved in the appendix,
which shows that δ1 and δ2 can be expressed as linear combinations of βθ+ γθ1
and βθ + γθ2:

Proposition 6. There exists ξ11, ξ12, ξ21, ξ22 ∈ R such that δ1 = ξ11(βθ+γθ1)+
ξ12(βθ + γθ2) and δ2 = ξ21(βθ1 + γθ2) + ξ22(βθ1 + γθ2).

Substituting the expression of δ1 and δ2 in Proposition 6 into Eq. (28), we
have ∑

j=1,2

(βθ + γθj)

⎡⎣ ∑
k=1,2

μk�(ξjk + ξkj)

⎤⎦ = 0, ∀� ∈ [V ]. (29)

Because βθ + γθ1 and βθ + γθ2 are linear independent if γ > 0 and θ1 �= θ2, it
must hold that

∑
k=1,2 μk�(ξjk + ξkj) = 0 for all j = 1, 2 and � ∈ [V ]. Recall

that μk� = βθ(�) + γθk(�). Subsequently, for j = 1, 2 we have∑
k=1,2

(ξjk + ξkj)(βθ + γθk) = 0.
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Using again the fact that βθ + γθ1 and βθ + γθ2 are linear independent, we
conclude ξjk + ξkj = 0 for all k = 1, 2. Thus, ξ11 = ξ22 = 0 and ξ12 = −ξ21.
On the other hand, because sum(δ1) = sum(δ2) = 0 and sum(βθ + γθ1) =

sum(βθ+γθ2) = β+γ > 0, where sum(z) :=
∑V

�=1 z(�), we must have ξ11+ξ12 =
ξ21+ξ22 = 0, and hence Eq. (27) only has the trivial solution δ1 = δ2 = 0. Thus,
d2,1(θ) = 0.

5.6. Proof of Lemma 5

For any � ∈ [V ] consider x = (x1, x2) ∈ [V ]2 where x1 = x2 = �. Because of
(A1), pθ,h(x) > 0 for all h ∈ ΔK−1. Subsequently,

Ehpθ,h(x)
δh(x1)δh(x2)

pθ,h(x1)pθ,h(x2)
= Eh [δh(x1)δh(x2)] = Eh

⎡⎢⎣
⎛⎝ k∑

j=1

hjδj(�)

⎞⎠2
⎤⎥⎦

= E[h1h2]

⎛⎝ k∑
j=1

δj(�)

⎞⎠2

+ (E[h2
1]− E[h1h2])

k∑
j=1

δj(�)
2

≥ c(ν0)

k∑
j=1

δj(�)
2.

Here in the last line we use the fact that ν0 is exchangeable and the definition
that c(ν0) = Eν0 [h

2
1 − h1h2] > 0. Subsequently, for every δ satisfying ‖δ‖1 = 1,

it holds that

d2,2(θ) ≥ V −2
V∑

�=1

∣∣∣∣Ehpθ,h(�, �)
δh(�)

2

pθ,h(�)2

∣∣∣∣
≥ V −2 · c(ν0)

k∑
j=1

V∑
�=1

δj(k)
2

≥ V −2 · c(ν0) ·
(
∑k

j=1

∑V
�=1 |δj(k)|)2

V K
=

c(ν0)‖δ‖21
V 3K

=
c(ν0)

V 3K
.

Appendix A: Missing proofs

We give missing proofs of technical lemmas in this appendix.

A.1. Proof of Lemma 7

For any θ′ ∈ Θc0 define a V m-dimensional random vector vθ′ as vθ′(x) :=

log
pθ,m(x)
pθ′,m(x) for x ∈ [V ]m. We then have that K̂Ln(pθ,m‖pθ′,m) = 1

n

∑n
i=1 vθ′(Xi)
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and KL(pθ,m‖pθ′,m) = Eθ[vθ′(X)]. By a simple re-scaling argument, we have
that

Eθ sup
θ′∈Θc0

|K̂Ln(pθ,m‖pθ′,m)−KL(pθ,m‖pθ′,m)|
‖vθ′‖2

≤ Eθ sup
‖v‖2=1

∣∣∣∣∣ 1n
n∑

i=1

v(Xi)− Eθ[v(X)]

∣∣∣∣∣ . (30)

Consider the unit V m-dimensional �2 ball B2(V
m) := {z ∈ R

V m

: ‖z‖2 ≤ 1}.
Using standard empirical process theory (e.g., (Van der Vaart, 1998, Lemma
19.36), (Talagrand, 1994, Theorem 1.1)) we have

Eθ sup
‖v‖2≤1

√
n

∣∣∣∣∣ 1n
n∑

i=1

v(Xi)− Eθ[v(X)]

∣∣∣∣∣ ≤ C, (31)

where C > 0 is a constant that only depends on V and m. In addition, because
θ,θ′ ∈ Θc0 we know that both pθ,m and pθ′,m are lower bounded by cm0 uni-
formly on [V ]m; hence, for any θ′ ∈ Θc0 , using second-order Taylor expansion
of the logarithm we have

‖vθ′‖2 ≤ V m/2 max
x∈[V ]m

∣∣∣∣log pθ,m(x)

pθ′,m(x)

∣∣∣∣ ≤ V m/2 max
x∈[V ]m

2c−2m
0

∣∣pθ,m(x)− pθ′,m(x)
∣∣

≤ 2V m/2c−2m
0 · dTV(pθ,m; pθ′,m) ≤

√
2V m/2c−2m

0 ·
√

KL(pθ,m‖pθ′,m).

(32)

Here the last inequality holds by Pinsker’s inequality. Combining Eqs. (30,31,32)
we complete the proof of Lemma 7.

A.2. Proof of Proposition 4

By definition, for fixed c0,m and any two θ, θ′ ∈ Θc0 , we have

dTV(pθ,m; pθ′,m)

=

∫
Xm

∣∣pθ(x)− pθ′(x)
∣∣dμm(x)

≤ V m · max
x∈Xm

∣∣pθ(x)− pθ′(x)
∣∣

= V m · max
x∈Xm

∣∣∣∣∫
ΔK−1

[pθ,h(x)− pθ′,h(x)]dν0(h)

∣∣∣∣
≤ V m · max

x∈Xm
sup

h∈ΔK−1

∣∣pθ,h(x)− pθ′,h(x)
∣∣

= V m · max
x∈Xm

sup
h∈ΔK−1

∣∣∣∣ m∏
i=1

⎛⎝ K∑
j=1

hjθj(xi)

⎞⎠−
m∏
i=1

⎛⎝ K∑
j=1

hjθ
′
j(xi)

⎞⎠∣∣∣∣
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≤ V m · max
x∈Xm

sup
h∈ΔK−1

K∑
j1,··· ,jm=1

hj1 · · ·hjm

×
∣∣θj1(x1) · · · θjm(xm)− θ′j1(x1) · · · θ′jm(xm)

∣∣
≤ V m · max

x∈Xm
sup

h∈ΔK−1

max
j1,··· ,jm∈[K]

∣∣θj1(x1) · · · θjm(xm)− θ′j1(x1) · · · θ′jm(xm)
∣∣

·

⎛⎝ K∑
j1,··· ,jm=1

hj1 · · ·hjm

⎞⎠
= V m · max

x∈Xm
sup

h∈ΔK−1

max
j1,··· ,jm∈[K]

∣∣θj1(x1) · · · θjm(xm)− θ′j1(x1) · · · θ′jm(xm)
∣∣.

Here the last inequality holds because
∑K

j=1 hj = 1. Furthermore, because
θj(x), θ

′
j(x) ∈ (0, 1], we have

max
j1,··· ,jm∈[K]

∣∣θj1(x1) · · · θjm(xm)− θ′j1(x1) · · · θ′jm(xm)
∣∣

≤ max
j1,··· ,jm∈[K]

m∑
�=1

(
m

�

)(
max

j∈[K],x∈[V ]
|θj(x)− θ′j(x)|

)�

≤ 2m · max
j∈[K],x∈[V ]

|θj(x)− θ′j(x)|

≤ 2m‖θ′ − θ′‖2.

Therefore, we have for any θ,θ′ ∈ Θc0 that

dTV(pθ,m; pθ′,m) ≤ (2V )m · ‖θ′ − θ‖2,

and the proposition is proved, because both V and m are fixed quantities inde-
pendent of θ or θ′.

A.3. Proof of Proposition 5

We prove a more general statement: if P and Q are distributions uniformly lower
bounded by a constant c > 0 on a finite domain D, then there exists a constant
C > 0 depending only on c such that KL(P‖Q) ≤ C · d2TV(P ;Q). This implies
Proposition 5 because for any θ ∈ Θc0 , pθ,m is uniformly lower bounded by cm0
on Xm.

Let μ be the counting measure on D. Using the definition of KL divergence
and second-order Taylor expansion of the logarithm, we have

KL(P‖Q) =

∫
D
P log

P

Q
dμ =

∫
D
P log

(
1 +

P −Q

Q

)
dμ

≤
∫
D

P 2

Q
dμ− 1 +

∫
D

P (P −Q)2

2Q2
dμ

=

∫
D

P 2 −Q2

Q
dμ+

∫
D

P (P −Q)2

2Q2
dμ
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=

∫
D

(P −Q)2 + 2PQ− 2Q2

Q
dμ+

∫
D

P (P −Q)2

2Q2
dμ

=

∫
D

(P −Q)2

Q
dμ+

∫
D

P (P −Q)2

2Q2
dμ

≤ (1/2c2 + 1/c) ·
∫
D
(P −Q)2dμ.

On the other hand, dTV(P ;Q) =
∫
D |P − Q|dμ ≥

√∫
D(P −Q)2dμ. Therefore,

KL(P‖Q) ≤ (1/2c2 + 1/c) · d2TV(P ;Q).

A.4. Proof of Proposition 6

We prove that span{δj}2j=1 ⊆ span{βθ + γθj}2j=1, which would then imply the
proposition. Re-arranging terms in Eq. (28) we have∑

j=1,2

μj�δj = −
∑
j=1,2

δj(�)(βθ + γθj), ∀� ∈ [V ].

Comparing both sides of the above identity it is clear that span{
∑

j=1,2 μj�δj}V�=1

⊆ span{βθ+γθj}2j=1. It remains to prove span{δj}2j=1 ⊆ span{
∑

j=1,2 μj�δj}V�=1.

Recall that μj� = βθ(�)+γθj(�). Because βθ+γθ1 and βθ+γθ2 are linear inde-
pendent, we know that dim span{βθ + γθj}2j=1 = 2 and hence

dim span{(μ1�, μ2�)}V�=1 = 2, because the row rank and the column rank of
a matrix are equal. Thus, for any (u, v) ∈ R

2, there exists real coefficients

{w�}V�=1 such that (u, v) =
∑V

�=1 w�(μ1�, μ2�). This implies span{δj}2j=1 ⊆
span{

∑
j=1,2 μj�δj}V�=1, which completes the proof.
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