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Abstract: In regression analysis of multivariate data, it is tacitly assumed
that response and predictor variables in each observed response-predictor
pair correspond to the same entity or unit. In this paper, we consider the
situation of “permuted data” in which this basic correspondence has been
lost. Several recent papers have considered this situation without further
assumptions on the underlying permutation. In applications, the latter is
often to known to have additional structure that can be leveraged. Specifi-
cally, we herein consider the common scenario of “sparsely permuted data”
in which only a small fraction of the data is affected by a mismatch be-
tween response and predictors. However, an adverse effect already observed
for sparsely permuted data is that the least squares estimator as well as
other estimators not accounting for such partial mismatch are inconsistent.
One approach studied in detail herein is to treat permuted data as outliers
which motivates the use of robust regression formulations to estimate the
regression parameter. The resulting estimate can subsequently be used to
recover the permutation. A notable benefit of the proposed approach is its
computational simplicity given the general lack of procedures for the above
problem that are both statistically sound and computationally appealing.
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1. Introduction

A largely unquestioned assumption in regression analysis with response-predictor
pairs {(y;,x;)}", is that each y; corresponds to the same statistical unit as x;.
In this paper, we consider the situation where the identifiers of the predictors (or
equivalently those of the responses) are subject to an unknown permutation so
that correspondence between y; and x; may not be be taken for granted. We re-
fer to this situation as “permuted data” respectively “sparsely permuted data”
when the permutation only affects a small fraction of all response-predictor
pairs. Restoring the original correspondence between responses and predictors
may not be achievable in practice for both computational and statistical reasons,
but may also not be required for consistent estimation of regression parameters.
Conversely, if the primary interest concerns recovering the permutation itself,
which is the case in entity resolution, the regression model can facilitate that
task.

1.1. Background and motivation

Large organizations that own or have access to multiple data sources regularly
rely on data integration for conducting large-scale scientific projects. Available
datasets are gathered or produced at different points of time and independently
of one another. The main reason for combining datasets is that no single dataset
contains all variables of interest that pertain the research questions. Data col-
lected from a single source are often limited and do not have all the variables
needed for statistical analysis. Limited budget, time and resources prevent each
particular agency from collecting a comprehensive dataset. In most situations,
however, relevant datasets from other sources are already available. For example,
if a demographic survey does not have all the relevant variables for a particular
research project, other existing surveys or administrative data can be used to
include those missing variables.
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Fic 1. Illustration of the effect of mismatches in the response variable on linear regression
with merged data. For this analysis, a subset of the El Nino data set (cf. §3.2) was artifi-
cially broken into two parts which were subsequently merged based on a non-unique identifier.
Left: Original response vs. response observed after data merging. Middle: Residuals vs. fitted
values in linear regression when using the original (dots) and merged data set (triangles),
respectively. The circles and triangles colored in red correspond to the excerpt of the response
variable depicted on the right hand side.

Record linkage, or entity resolution, is an essential task in data integration.
The task is to identify which records in different datasets belong to the same
entity. In this context, the term “entity” is to be understood in a broad sense,
and may refer to customers, tax payers or patients, etc. Record linkage has a
long history of uses in large enterprises, government agencies and health care
institutions. A business register consisting of names, addresses, and other iden-
tifying information such as total financial receipts might be constructed from
tax and employment data bases; a survey of retail establishments or agricultural
establishments might combine results from an area frame and a list frame. In
this case, units from the area frame would need to be identified in the list frame
[55].

Generally, due to the lack of unique entity identifiers in data files, record
matching is based on methods of probabilistic record linkage [25] that score
similarity between common quasi-identifiers. For example, when the data files
contain health information of individuals, the quasi-identifiers can be first and
last names, addresses, dates of birth. Spelling errors, typographical variation
and missing values in records inhibit exact matching and lead to matching er-
rors: mismatches and missed-matches. Even low matching error rates can lead to
selection bias and pervasive outliers, particularly when the record linkage pro-
cess includes or excludes particular types of entities and their attributes [11].
Selection bias and outliers contaminate subsequent statistical analysis. To re-
duce bias, it is of interest to develop statistical methods that can alleviate the
adverse effects of matching errors.

In this paper, we focus on the problem of linear regression with sparsely
permuted data as it arises frequently when linking survey records to external
data. The canonical example is regression estimation of a study variable y on
auxiliary variables x that reside in another data source such as master data
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Fic 2. Regression with lost correspondence between response and predictors.

or administrative records. The matching error, determined by the fraction of
mismatches and missed-matches, is expected to be only a small fraction of the
sample size n [55]. The paper [49] considers two such situations. To model the
energy economy properly, an economist might need company-specific data on
the fuel and feedstocks used by companies that are only available from Agency
A and corresponding microdata on the goods produced for companies that is
only available from Agency B. To model the health of individuals in society,
a demographer or health science policy worker might need individual-specific
information on those receiving social benefits from Agencies B1, B2, and B3,
corresponding income information from Agency I, and information on health
services from Agencies H1 and H2.

Regression with permuted data arises in other applications as well. The pa-
pers [3, 42] provide extensive lists including multi-target tracking in radar sys-
tems [45] and pose and correspondence estimation in computer vision [20].

1.2. Problem statement

To setup the problem more concretely, suppose the data (y1,X1), ..., (Yn,Xy,) is
obtained from matching two data files A and B, where for each i, y; € R resides
in file A and x; € R? resides in file B. Since the process of record linkage is not
error-free, some x; may have been paired up with a non-correspondent y;. If the
number of such mismatches is known to be less than or equal to k < n, then there
is an unknown permutation ¢ on [n] := {1,...,n} so that: ¢ moves at most k
of the indices, and (y1,Xy(1)); - -, (Yn, Xp(n)) are independent realizations from
the classical linear regression model

y=x'fB* + ¢, where e ~ N(0,0%) and x 1L e. (1)
Let IT* and IT*T be the matrix representations of ¢ and its inverse, respectively,
and let X = (x1 e xd). Eq. (1) readily implies that
y =II"X3* + €, where y = (y1,...,yn) and € = (e1,...,€,)"

2
o Iy =Xp +1I"e. @

For simplicity, since the distribution of II*Te and € is the same, we do not

distinguish between II* "€ and € in the sequel and write € in place of IT* Te.
The main question to be studied here is how the parameters IT* and £* can be

accurately and efficiently estimated from the partially mismatched pairs (y;, x;).
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Efficiency here refers to computational complexity of the procedure that outputs
the desired estimates. Let us consider the number of mismatches which can be
expressed as dg (IT*, I,,) :== |[{i : II}; = 0}|, the Hamming distance between IT*
and the identity matrix I,,. We can naturally estimate II* and * by a least-
squares approach as:

(I, B) = argmin |I1X5 — y|3
I (3)

subject to dg (1L, I,,) < k,

where II and 8 run over P,, the set of all permutation matrices in R"*"™ and
R?, respectively. A permutation respectively its matrix representation II is said
to be k-sparse if dg (I1, I,) < k. We note that [42] have shown that unless d =1
the optimization problem (3) is NP-hard for & = n. The same is true for any &
that is defined as a fraction of n.

Notation. We here gather some notation frequently used in the present paper.
For a positive integer m, I,, denotes the m x m identity matrix, and S™~!
denotes the unit sphere in R™. We write |S| for the cardinality of a set S. The
complement of S with respect to a given base set depending on the context
is denoted by S°¢. For a matrix A, ||All2 = omax(A) denotes its spectral norm
respectively maximum singular value, and range(A) denotes the column space of
A. For an index set I C [m] :={1,...,m} and v € R™, v; denotes the subvector
of v corresponding to I. We write a V b = max{a, b}. Positive constants are
denoted by C, ¢, c¢; etc. We make use of the usual Big-O notation in terms of
0, o, Q and ©.

1.3. Prior work

Linear regression with linked data files is a common scenario in which tradi-
tional methods of statistical data analyses are error-prone. Early work in [39]
recognizes the adverse effect of matching error on the regression analysis of
linked datasets. They show that as a consequence of matching error, the ordi-
nary least squares estimator 3° is generally not an unbiased estimator of 3*.
In the paper [39], the process of matching is regarded as random. Letting z; de-
note the response that is actually in correspondence to x;, and letting y; denote
the response that has been matched to x;, the model in [39] assumes that for
1=1,...,n,

)z with probability g;; @)

vi zj with probability g¢;;, ¢ # j.

Assuming that these probabilities can be estimated [35, 36, 39, 48, 49] focus on
constructing an estimator that is unbiased or less biased than BOIS. In fact, in
[36] the matrix @ = (g;;) is used to construct an unbiased estimator of §*. The
papers [30, 31, 52] propose to estimate 5* using a Bayesian procedure. The main
shortcoming of these approaches are that they rely on the assumption that the
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doubly stochastic matrix @ is known or can be accurately estimated from the
data. In addition, while achieving reduction in bias, the proposed estimators
may still be inconsistent and may have large mean squared errors.

The classical papers [21, 22, 23] and the later note [56] consider the situation
of permuted data under the term “broken sample”. A broken sample is a sample
of (y;,%;)-pairs that up to some permutation of the {x;} (or equivalently the
{yi}) are generated from their joint distribution. In other words, each compo-
nent of (y;,x;) is observed separately (as if it were generated from its marginal
distribution), with possibly different orders for each component. Assuming that
the {(y;,x;)} are generated from a bi-variate normal distribution up to a per-
mutation, these papers discuss recovering the permutation or estimating the
correlation parameter of the underlying bivariate normal distribution. In [5, 16],
the authors discuss whether that parameter can be consistently estimated from
a broken sample.

In recent years, computer science and engineering have witnessed a surge of
interest in regression analysis of permuted data resulting from problems in multi-
target tracking, statistical seriation [26], and unlabeled compressed sensing [53],
to mention just a few. The papers [41, 42, 53] are particularly important as they
provide rigorous results on fundamental questions associated with the problem.
We shall refer to some of these results in the subsequent sections in more detail.
While the paper [18] is not concerned with a regression setting, it provides a
detailed analysis of the problem of finding correct matches between two sets
of objects in the presence of noise, which bears some relation to the problem
discussed in §2.4 below.

1.4. Summary of contributions

The analysis in this paper concerns estimators of II* and 5* given model (1)
under the additional assumption x; ey (0,14), i € [n], as also assumed in
the recent work [42]. It is not hard to extend the results to the case where
X; N (0,%), i € [n], where ¥ is a d x d symmetric positive definite matrix.

We first provide a negative result concerning the least squares approach (3)
if k = n, i.e., if no constraint is imposed on the permutation II. It is shown that
optimizing over all possible choices of II leads to overfitting in the sense that if
B* = 0, one still has ||3]|3 = ©(1) with high probability. This result complements
another one of a similar spirit in the recent paper [3] who show that for d = 1,
the least squares estimator (3) converges almost surely to a limit different from
B*. Our result also aligns well with a minimax lower bound in [41].

Altogether, these negative results provide additional justification to consider
the regime of sparse permutations with k£ < n. We demonstrate a bound on the
estimation error |3 — 8*||2 with 8 as in (3). Specifically, the bound implies that
the error vanishes as both d/n and klog(n/k)/n — 0. In view of the fact that
the optimization problem (3) is not computationally tractable, we consider a
convex relaxation that takes the form of a robust regression estimation problem
as it has been considered before in different contexts [27, 40, 50], with the
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1T > B > X — X" » S*={i: I}, #1}
Theorem 3 Theorem 1 Lemma 2 (B) Corollary 1
Theorem 2 Lemma 6 (D)

F1a 3. Schematic overview on targets in the setting of linear regression with sparsely permuted
data and pointers to corresponding results in the paper. The directions of > indicate that if
the object on the left hand side is known or can be accurately estimated, it immediately yields
or simplifies estimation of the object on the right hand side.

permuted observations here being in correspondence to gross errors. The robust
regression formulation can be reduced to a specific sparse regression problem in
an underdetermined setting with n — d samples and n parameters, one for each
observation in a given sample that is affected by partial mismatches between the
{x;}_; and the {y;}"_;. Our analysis of the robust regression problem applies
generically beyond the specific setting of sparsely permuted data. Prior works
[27, 40] have considered a more general version of the problem in which 5* is
assumed to be sparse as well, thereby being able to cover the regime n < d, but
it is not clear whether the results in [27, 40] can be specialized to match those
of the present paper for the traditional n > d case.

While the robust regression formulation gives rise to an error bound for esti-
mating 8* that is comparable to that of the computationally hard formulation
(3), it does not immediately yield an estimator for the permutation IT*. We
address this issue by adopting a two-stage approach that uses an accurate es-
timator 6 of 3* to match the fitted values {x, 6}"_; to the responses {y;}™ .
This reduces to simple sorting operations, thereby avoiding the computational
challenges associated with problem (3). We show that our approach recovers the
underlying permutation under qualitatively the same condition as in [42] which
is considerably more stringent in terms of required signal-to-noise ratio than
what is required for accurate estimation of the regression coefficients 5*. We
complement our result with a comparable lower bound on the signal-to-noise
ratio that is required for permutation recovery even if 8* itself is known.

As already pointed out in [42], the Hamming ball constraint in (3) does not
substantially change the fundamental statistical limits of permutation recovery.
However, that constraint does help in that it gives rise to a computationally
efficient estimator of IT*, whereas the statistical achievability result in [42] is for
the computationally hard estimator (3).

2. Main results

This section is structured as follows. We start by showing that the estimator B
in (3) lacks statistical consistency if k& = n. This sets the stage for considering
the scenario k < n. We first focus on recovery of 5*, treating II* as a nuisance
parameter. We then present and analyze a post-processing step for recovering
IT* given an accurate estimate of 5*.
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In the sequel, unless stated otherwise, we assume Gaussian design for the

{xi}titq:
iid. .
(G): x; < N(0,14), i€ [n].

Our results generalize to the case x; N (0,%), i € [n], for a symmetric
positive definite matrix ¥ € R¥*? in a straightforward manner by defining a
new regression parameter X'/23*. An estimator of that parameter (as discussed
in the sequel) and an estimator of ¥ can then be combined to form an estimator
of 5*. Note that estimation of ¥ is not affected by the presence of an unknown
permutation.

2.1. Least squares estimation of (II*, 3*) without additional
constraints:
a negative result

Let us consider problem (3) for k = n, i.e., no further constraints are imposed on
the solution (ﬁ, E) It turns out that in this case, we cannot hope for B to be a
good estimator of 8*. As can be seen from the proof of the following proposition,
complete freedom in choosing II to fit the data results into over-adaptation to
noise even if §* is low-dimensional — in fact, the phenomenon already manifests
itself for d = 1.

Proposition 1. Let * =0 and I[1* = I,,, i.e., y = € and consider the estimator
(3) with k = n. Then there exist constants ¢, C > 0 such that with probability at
least 1 — C'exp(—cn)

n 0'2

2012
>
|wm_2n+d%ﬂ

In other words, in a pure noise setting, ||B |2 will be bounded away from zero
by a constant (assuming d = O(n)). A result of a similar flavor is shown in [3].
For d = 1, they show that the estimator ,73’\ converges almost surely to a limit
different from B* as n — oo, and they derive an explicit expression for that
limit. Our result here is more of a qualitative nature, but it is non-asymptotic
and not limited to d = 1.

Both the result in [3] as well as Proposition 1 raise the question whether there
exist alternative estimators that do significantly better in a regime where IT*
can be an arbitrary element of P,,. Theorem 1 in [41] indicates that the answer
is negative: they show that for any estimator (ﬁ, E), one has

sup E [%HﬁXB— I*X 5*)|3| > co?.
H*Epn,7 B*E]Rd

While the above lower bound concerns estimation of II* X 5* rather than (§*,
accurate in-sample prediction (or synonymously denoising), i.e., recovery of
II* X 5*, is typically easier than recovery of $*. Along this direction, another
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negative result is shown in [33]. They demonstrate that a lower bound on the
signal-to-noise ratio (SNR)

SNR = [|5*[|3/0? ()

of the order €2(d/loglogn) is required for any estimator of S* to achieve a
non-trivial expected relative estimation error!. As shown in [42], the condition
SNR > n¢ for ¢ large enough is sufficient for the solution II of (3) to recover
IT*, in which case || B— B*||3 scales as O(d/n) as in the usual regression setting
in the absence of an unknown permutation.

2.2. Least squares estimation of 3* if II* is k-sparse, k < n

In summary, the previous section points to the fact that we cannot hope for
accurate estimation of 5* without additional assumptions on IT* and/or the
SNR of the problem. As motivated in the introduction, we henceforth turn our
attention to the case of IT* being k-sparse, with k “significantly smaller” than
n. The allowable range of k is addressed in our analysis presented below.

We start by fixing notation. For 0 < k£ < n, let us introduce the shorthand

Por={1€P,: dy(ILl,I,) <k}

for the constraint set of II in problem (3). Moreover, for a compact and sym-
metric? set K C R", its Gaussian width is defined by

w(K) = Eyonion) [ggy (9,3) |] | ®)

While originating in geometric analysis, the Gaussian width is a measure of com-
plexity that has been increasingly adopted in the analysis of high-dimensional
linear inverse problems [14, 17, 44] in connection with Gordon’s “Escape Through
a Mesh Theorem” [28], which is the key component in the proof of Theorem 1
below as well. In our setting, we use the Gaussian width (6) in conjunction with
the set

T = U {range(Il —1I* ")} nS™~ 1, (7)

HePn k

where we recall that II*T € P, ; is the inverse of IT*. Let ||-||o denote the £o-
"norm”, i.e., the number of non-zero entries of a vector. A simple observation
is that for any II € P, , and any v € R", it holds that

ITo-1Twllg = [(T-L)o— (1T = L)olly < (T~ L )ollo+ | (1T L)oo < 2.

1Noll-trivial here refers to a relative estimation error of lower order than that of the esti-
mator 6 = 0.
2A set S C R™ is called symmetric if z € S implies that —z € S.
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As a result, T C By(2k;n) NS"~ 1, where for 0 < r < n, the set By(r;n) =
{v € R" : ||v]lo < r} denotes the £yp-“ball” of radius r in R™. By well-known
results (cf. [43], Lemma 2.3), we hence have that

w(T) < w(Bo(2k;n) NS™ 1) < 3.51/2k log(en/2k). (8)

Moreover, it is not hard to show that w(7) > w(Bo(n —k; k) NS"~1), i.e., there
is a lower bound on w(7T) of the same order. After these preparations, we are
in position to state the following result.

Theorem 1. Consider optimization problem (3) and for positive integers m,

denote v = Bguno,1,)[llgll2] € [W7 m'/2| and let ¢ € (0,1/2) be a

number such that
€ 2

>
1-e"=1-¢

w(T). 9)

Vn—d —

If furthermore n > 9V 4d, then with probability at least 1 — %exp(—cgn) —
2exp (—4(dVlogn)),

1B 871> <

o ( 5(dviogn) | 2(1+ Ve *{w(T) v log n}> .

1— 4dVlogn n \/’ﬁ
V n

We start our interpretation of Theorem 1 by inspecting condition (9) which
imposes a limit on how large d and k can be in relation to n. Roughly speaking,
the requirements are n = Q(d) and n = Q(w?(7)). In light of (8), the latter
condition becomes n = Q(klog(n/k)). Specifically, let us fix e = 1/4 and d = an
for a € (0, 1), then (9) essentially evaluates as

(10)

"= (a%a—wﬂzm

The error bound (10) consists of two parts. The first part equals the error one
would have if the permutation IT* were known in advance and is thus inevitable.
The second term is a bound on the excess error incurred for not knowing IT*.
That term is well controlled as long as the fraction of permuted observations is
small relative to n. A crucial intermediate step in the proof of Theorem 1 is a
bound on |[IT* 'y — Ily||2. Under an additional condition on the SNR, we may
deduce from that bound that II identifies the “support” §* = {i: II}; # 1} of
IT*. We may then re-fit with the corresponding observations left out, to achieve
a smaller error in estimating 8*.

Corollary 1. For any 6 € (0,1), under the conditions of Theorem 1, if it
additionally holds that

2(1 ++/2)%c4 kH{w(T) Vlogn}?

N
SNR > = - ,

n—k>9V4d,
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the following events hold with probability at least 1 — § — 2exp(—3(d V logn)):

o 5(d Vv logn)
1— 4dVlogn n—=k '
V n—k

where B denotes the ordinary least squares estimator based on data {(y;,%x;) :
i€n]\S}.

Under the conditions of the corollary, as long as n — k = Q(n), the error rate
in estimating 8* is of the same order as if II* were known in advance; the second
term in (10) gets eliminated. It is important to note that support recovery (i.e.,
{§ = §*}) is a weaker result than permutation recovery (i.c., {II* = II}). As
discussed in more detail in §2.4 below, the latter requires a considerably more
stringent condition on the SNR than what is required in Corollary 1.

Si={i: My #1} =5, 18 =572 <

2.3. Convex relaxation

While the approach of the previous section has appealing statistical properties,
its computational hardness asks for computationally efficient alternatives with
similar guarantees. As long as II* is treated as a nuisance parameter, we may
eliminate it in the following way. Introducing f* = II*Xg* — Xp* = (II* —
I,) X 3*, model (2) can be re-expressed as

y=X8"+["+e
This prompts the optimization problem

min —XB - f|?
Lmin |y = X5~ fI3

subject to f € U range(Il — I,,).
IHePn i

A first relaxation is given by

min |y - X8 - fII3
BERL fER™ (11)

subject to || fllo < k.

We note in passing that one could additionally impose the constraint Y, f; =
1. However, it turns out that its addition does not yield significant statistical
benefits, and it is thus omitted. Relaxation (11) is still not convex, but following
the standard approach of replacing the £y-norm by the ¢1-norm, we end up with
the convex optimization problem

min _|ly — X5 — f|3
BERY, fER™ (12)
subject to || f|]1 < b.
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Since it tends to be difficult to choose b appropriately in practice, it is more
convenient to work with the Lagrangian form of (12). After re-parameterizing

e = f/y

. 1
min  —|ly — X8 — vne||2 + Aell;, A>0. (13)
BERL ecR™ N

Formulation (13) and variants thereof have been used in robust regression and
signal recovery with gross corruptions (e.g., [27, 37, 40, 50]). In fact, (13) is
equivalent to employing Huber’s loss [34] instead of squared loss, cf. [50] and
the references therein. The connection to robust regression comes naturally as
observations with mismatch between x and y are likely to induce severe errors
in model fitting beyond the usual noise, and hence take the role of outliers.
Indeed, this reasoning could have been used to motivate (13) right away instead
of via the sequence of relaxations stated above. Formulation (13) is related to
least absolute deviation regression

infy — X 14
/grel}Rglly Bl (14)

in that (14) is obtained from (13) in the limit A — 0 and the additional constraint
y = X3 + /ne. In that sense, (14) can be seen as the counterpart to (13) in a
noiseless setup. Problem (14) has been analyzed under assumption (G) in the
landmark papers of [15, 47] on the classical error correcting problem in coding
theory.

Theorem 2 below provides an upper bound on the fso-error of the estimator
of 8* resulting as the optimal 3 for (13).

Theorem 2. Let (3,€) be a minimizer of (13) with A = 4(14+ M)o+/2log(n)/n
for some M > 0. There exist constants cy,ca,€ > 0 so that if

b < n—d
= “log(n/k)’

the following holds with probability at least 1 — 2exp(—ca(n — d)) — 2n=M° —
2exp (—3(d Vlogn)):

~ dVl 2k 1
1B=8"» < o 5(d vV ogn)+48(1+M) n_ -1 [2klogn '
1 — /4dviogn n n—d n

(15)

Comparing the upper bounds (10) and (15) of the original problem and
its relaxation, respectively, we observe a close agreement given that w(7) =
O(klog(n/k)). Apart from the slight change of the order in the second term, only
constants differ. It is noteworthy that in the absence of mis-matches (k = 0),
(15) reduces to an error bound for the ordinary least squares estimator. Indeed,

3This reparameterization is merely for technical reasons
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it follows from the proof of Theorem 2 that under the conditions of the theorem,
B = ° with the stated probability.

We also note that the choice of A in the theorem is proportional to o which is
generally unknown. In this case, one can work with the ¢3-norm in (13) rather
than with the squared fo-norm [7], or if o is of independent interest, it can be
estimated simultaneously [50, 51].

Similarly to Corollary 1, we may consider a two-stage procedure in order to
further improve upon (15): given € and a suitable threshold ¢, we let
Sy = {i: |&| >t} and obtain a plain least squares fit based on data {(y;,x;) :

i € [n]\ S} yielding 3. With k assumed to be known, we may take ¢ as the k-th
largest largest entry of € in absolute magnitude. The formal analysis is similar
to Corollary 1 and is hence omitted.

2.4. Estimation of II* given an estimator of 3*

Having discussed estimation of 5*, we now come back to the problem of estimat-
ing IT*. As indicated above, the latter problem turns out to be significantly more
challenging than the former problem. In the sequel, we study the question of
how the availability of an accurate estimate of 8* can be leveraged to construct
an estimator of II* that is computationally feasible including the case d > 1.
As mentioned earlier, except for d = 1, the optimization problem in Eq. (3)
is in general NP-hard. When d = 1, that is there is only one predictor in the
regression model, II is determined as a minimizer of the optimization problem

rI}qe})x{(l’[X, yv),(IIX, —y)} subject to dy (11, I,,) < k. (16)
€Pn

For k = n, maximizing each term inside the curly brackets is a specific instance
of a linear assignment problem [13], a class of problems that can be solved in
polynomial time despite their combinatorial nature. In fact, it easy to see that

n
max (ILX, y) = z; XYy (17)
1=
where X(;) and y(; denote the i-th order statistic of X and y, respectively,
i € [n]. Hence, for k = n, problem (16) reduces to two vanilla sorting operations.
At this point, it is not well understood yet whether the Hamming constraint
dy (I, 1) < k for general k causes problem (16) to be NP-hard again. So far,
we are not aware of any computationally efficient algorithm for general k.
Note that when * is known, computing the least squares estimator of IT*
reduces to solving precisely one of the two optimization problem encountered in
(16) for d = 1:
Inax (IIX5*,y) subject to dg (11, I,,) < k. (18)
€Pn
At this point, a natural idea is to replace 5* by an accurate and computationally
feasible estimator like the one discussed in §2.3. From a computational point of
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view, this already constitutes a simplification as (18) reduces to an integer linear
program; while problems in this class are still NP-hard in general, problem
(18) can be considered as much more benign than the original problem (3)
which belongs to the class of quadratic assignment problems notorious for their
computational hardness. Due to recent advances in integer programming that
have meanwhile been taken advantage of for a series of other statistical problems
[8, 9], it turns out that problem (18) is practically feasible at least for n in
the order of a few thousands. For large n, we instead recommend estimating
the support of II* and then solve the unconstrained problem (17) restricted to
observations in the estimated support. Formally, denote by S an estimator of the
support of II* and let y 5 and Xz be the sub-vector of y and the row submatrix

of X corresponding to observations in 5, respectively. We then estimate II* by

II defined by
~ = ~
X = 851X, (19)
n—|3|
where
~ Xz ~
Mg X = Xz ) and Hg.s = argmax <HX§,y§>.

I3]

We now turn to the statistical limits of permutation recovery, including a lower
bound on the SNR in the idealized case with known S*. For simplicity, the
theorem stated below is for the case k = n, but it generalizes to k < n conditional
on having {S = 5*} in that all expressions in n below would get replaced by k.

Theorem 3. For b € RY, consider T1(b) = argmaxyep, (I1XD,y).

(a) Let 6, A, >0, and let 8 be an estimator s.t. the event {||X§— XB*|oo <
oA} holds with probability at least 1 —n. If

161 _ n(n 1

2
i <A +2log "(”51)> , then P(I1(F) # IT*) < 25+1).

o2 4627
(b) Suppose that n > 5. There exists a constant C > 0 so that if
*||2 -
w < Cn?, then P(II(B*) # IT*) > .35.

o

If B* is known, specializing part (a) to the case A = 0 asserts that SNR =
ﬁ(n4)4 is a sufficient condition for permutation recovery. This is to be compared
to a result in [42] stating that the estimator II in (3) recovers II* if SNR = €(n°),
where the constant ¢ > 0 is not specified. Next, let us now turn to the case where
B* is substituted by an estimator . Using standard concentration arguments,
one shows that

X0 — XB*|loo < max [|xi[l2]18 — 5[l < C(Vd + v/logn)[[6 — 57|

holds with high probability. Specifically, considering the estimator E in §2.3,
Theorem 2 then yields || X8 — X %[l < Coy/n for k small enough, with high

4Q)(f(n)) is short for Q(f(n) - polylog(n)).
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probability. Inserting A = C'v/n into part (a) then results into the requirement
SNR = Q(n®). We stress again that as opposed to II, the estimator I1(B) is
computationally appealing as it is obtained from a quadratic program (13) and
subsequent sorting.

Finally, part (b) provides evidence that the condition SNR = §2(n?) is nec-
essary for permutation recovery. While the result in (b) concerns a specific
estimator, there does not seem to be much indication for the existence of a sub-
stantially better estimator. In [42], it is shown that SNR = Q(n%/?) is necessary
for any estimator.

3. Numerical results
3.1. Simulated data

Below, we present the results of two synthetic data experiments that are meant
to serve as illustration of the developments in the previous section. In the first set
of experiments, we generate n = 200 observations from model (2) under (G) with
d =10, o € {.01,.02,.05,.1,.2,.5,1}, and k/n € {.01,.02,.05,.1,.15,.2, ..., .5},
where the support of IT* is selected uniformly at random. The parameter 5*
is generated from the uniform distribution on S9~!. For each pair (o,k/n), we
conduct 100 independent replications.
We compare the following estimators:

(i) The naive estimator (ordinary least squares estimator) of 8* that ignores
the fact that a fraction of the data is mismatched; this corresponds to the
choice k =0 in (3).

(ii) The estimator (3,€) of §2.3 with the choice A = 0.20/log(n)/n.

(iii) A thresholded version of the estimator in (ii) that discards those observa-
tions corresponds to the largest k elements of {|€&;|, ¢ € [n]}, and performs
a least squares re-fit using the remaining n — k observations.

The estimator (8, A) is computed in CVX [29].

The estimator 5 in §2.2 is compared to 6 in a second set of simulations only
for the case d = 1. In that case, computation of /3 reduces to (16) where each of
the two inner optimization problems can be cast as an integer linear program
with n? variables and 2n + 1 linear constraints. It turns out that the general
purpose routine cplexbilp in IBM CPLEX [1] is able to solve such problems in
only a few seconds for n = 200. Again, such reduction is limited to the case
d=1.

Inspection of Figure 4 shows that the approach (ii) improves dramatically
over the naive estimator (i) as long as the SNR is not too small (for ¢ = 1 and
o = 0.5, there is no longer a visible improvement). The results look promising
in that the tolerable fraction of permuted observations can be as much as 0.5
as long as the noise level is small; “tolerable” here refers to the fact that the
estimation error increases gently with the fraction of permuted observations as
opposed to (i) with a sharp increase in error as k/n moves away from zero.
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Fiac 4. Comparison of the average £a-errors (logs-scale) in recovering 8* for the approaches
(i) to (i1i) described above. Each curve corresponds to a different value of the noise level o.
The black dashed lines correspond to the oracle (ordinary least squares with knowledge of II* ).

Approach (iii) appears to yield further improvements over (ii) for large SNR.
For small SNR, (ii) and (iii) are not distinguishable. This observation aligns
well with Corollary 1. Figure 5 reveals that for d = 1, the estimator S performs

B B
= 2 = 2
S 3 e 3
1
S 5led=0s S 5705
T 6 =02 T 6 ,/UQA//
£ 7 g-0 E et
2 8/.__g=005 | e
S Y a0 et
S o= 9 107" o
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Fia 5. Comparison of the average £2-errors (logy-scale) in recovering B* for the estimators

E and ,E for d = 1. Each curve corresponds to a different value of the noise level o. The black
dashed lines correspond to the oracle (least squares with knowledge of 11* ).

substantially better than the convex formulation yielding E . We observe that B
is on par with the oracle for o < 0.2, being hardly effected by an increase in
k/n. That starts changing for o = 0.2, while for o = 0.5, the adverse effect of
an increase in k/n becomes clearly visible. At this point, it is not clear whether
similar improvements of ﬁ over ﬂ would be observed for d > 1. The analysis
in §2 only provides (comparable) upper bounds for both approaches, and lower
bounds would be needed to answer that question. The observation made from
Figure 5 hence points towards an important open direction.

3.2. Real data

The El Nino data set in the UCI Machine Learning Repository [2] contains
oceanographic and surface meteorological readings taken from a series of buoys
positioned throughout the equatorial Pacific. The data set consists of n = 93,935
records with the following attributes: buoy identifier, date, location (latitude
and longitude), zonal and meridional wind speeds (zon and mer), relative hu-
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midity (humidity), air temperature (air.temp), sea surface temperature and
subsurface temperatures down to a depth of 500 meters (s.s.temp). The fol-
lowing linear regression model is considered:

air.temp = 5y + Bzon - 200 + Pyer - mer+

+ Ohunidity - humidity + Bs. s temp - S.S.temp + €. (20)

The results of least squares regression indicate an excellent fit of this model with
an R-squared of about 0.9. With the goal to mimic the situation of data merg-
ing based on non-unique identifiers, the data set is divided into two data sets
A and B, with A containing the response variable and B containing the predic-
tors. The variables latitude, longitude, year and day are maintained in both
data sets, and used as quasi-identifiers for record linkage of A and B with the R
package fastLink [24]. Since (latitude, longitude, year, day)-tuples are gen-
erally associated with multiple observations, the linkage process is not free of
mismatches. The merged data set in turn follows the format depicted in Figure
2 with a permutation affecting the correspondence between responses and pre-
dictors. As shown in Table 1, least squares regression with the thus merged data
set leads to an increase of the residual sum of squares by 27%. In addition, the
estimates of the regression parameters of the linear model (20) change notice-
ably. As an alternative, we consider the approach (13) studied in detail herein,
where the parameter X is chosen as A = 2¢a/+/n with ¢ = 1.345 and & being
a robust estimator of the residual standard error. More specifically, we use the
function rlm (short for “robust linear model fitting”) in the R package MASS [46]
with its default arguments which is in exact correspondence to the above choice
of A, as follows from the connection between linear regression with the Huber
loss and formulation (13) (cf., e.g., Proposition 3.1 in [50]). The specific choice of
A is motivated by a general contamination model and ensures an asymptotic rel-
ative efficiency of 95% if the errors are i.i.d. from a Gaussian distribution ([38],
pp. 25-27, 99-100). The figures in Table 1 indicate that this approach provides
some remedy relative to the naive use of the least squares estimator based on the
merged data set. The estimates of the regression parameters from (13) reduce
the gap to those obtained with the original data set by about a factor of one half
in terms of fo-distance. Moreover, approach (13) also yields a better fit in terms
of the mean squared prediction error on a collection of twenty hold-out sets ob-
tained from leaving out different random subsets of 10% of the observations; in
each of those twenty runs, the hold-in data set is split and subsequently re-linked
in the same manner as described above. The reduction in excess risk (relative to
the least squares estimator) achieved by (13) in comparison to the naive least
squares solution is again a factor of roughly one half. Figure 6 illustrates the
results on the subset of the El Nino data set used for Figure 1.

4. Conclusion

Regression problems in which the correspondence between responses and predic-
tors has been lost can be traced back to classical work in statistics and naturally
arises in the context of record linkage. Despite its long history, the problem has
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TABLE 1
Results of the real data analysis. Here, B"”wlc denotes the least squares estimator based on
the original data set, B°' denotes the naive least squares estimator, and B denotes the
estimator from formulation (13). The columns labeled zom, ..., s.s.temp contain the
regression parameter estimates for the respective variable; interc refers to the intercept.
The three rightmost columns contain the root mean square errors (RMSEs) on the original
(Bomde) respectively the merged data set (B"ls, E), the {2-distance to E"”’Clﬁ, and the
average hold-out errors (standard errors in parentheses), respectively.

interc zon mer humidity | s.s.temp | RMSE | ¢»-dist. | @-hold-out error
poracte 5.15 —.056 | —.031 —.022 .844 .509 0 .260 (4.6-1073)
Bt 6.72 —.037 | —.045 —.017 774 771 1.57 .276 (4.9:1073)
B 5.74 —.044 | —.037 —.016 .806 773 .59 .267 (4.8-1073)

y (original) y (re-paired)

~0.96 ~0.96

- T —3.45 —3.45
g 0.28 0.28

. —0.33 —0.33
‘ g . - —0.53 —0.53
N : . —3.06 —3.02

Permuted response variables in the merged data

« original data —2.98 —3.63
© | & merged data (re-paired) —1.35 —1.35

-4 -2 0 2 -4 3 2 - 0 1
Response variables as observed in the original data Fitted

Fic 6. Results of the two-stage approach presented in this paper when applied to the excerpt
of the El Nifo data underlying Figure 1 in the introduction. The permutation is estimated
from (18) with B* replaced by the estimator B, and subject to the additional constraint that
the permutation can only match pairs with identical quasi-identifier. The steps in Figure 1
were reproduced with the thus re-paired (X,y)-pairs.

seen revived interest lately and has been analyzed through the lens of mod-
ern non-asymptotic statistical theory. An additional layer of complexity to be
dealt with is the computational hardness of (quadratic) assignment problems. In
the present paper, both aspects are taken into account under the assumption of
sparsely permuted data. One central insight of our work is that the availability of
an accurate estimator of 8* may be helpful in circumventing the computational
barrier associated with permutation recovery. On the other hand, preliminary
numerical results for d = 1 indicate a gap in statistical performance between
a presumably hard formulation capturing precisely the notion of a sparse per-
mutation and a computationally convenient relaxation that introduces a loss of
information. This observation deserves further investigation. Another potential
direction of future research concerns the extensions of results shown herein for
Gaussian design to sub-Gaussian design.

Appendix A: Proof of Proposition 1
Consider the least squares problem (3) with y = e:
in|le — ILX 3][3.
rg}glle B2
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Omitting the term not depending on 3, an equivalent problem is given by

min —2 (Ile, X ) + | X813

Re-parameterizing X3 = u - r, with 7 > 0 for v € range(X) NS"~!, we obtain
the optimization problem

min —2 (e, u) r + 72
II,u€range(X)NS*—1,r>0

Observe that for any u and II, the optimal value of r is found as
7(u) = max{(Ile, u),0}.
In particular, for a minimizer (ﬁ, u),
7:=7(IL @) = (Ile, @)

so that 7= HXB”Q, and the optimal value of the objective is given by —72. We
hence have

r= max (ITe, u)
u€range(X)NSn—1 11

> . )
2 Jax (Ile, X;/].X;]2)

1

> max(Ile, X1) ——.
= max{lle, X0)

We now bound
mﬁtx{HE,Xﬁ > (Tlre, X1),

where the permutation IT4 is defined as follows. Define

Net+ ={i: ¢ >0}, Ne,— =N — Ne +,
nX17+:{7;: Xi >0}7 NXy,— =N —NXy,+-
Let further
ny = min{nE,Jra nX1,+}’ n-= min{n6ﬁ7 nXh*}’v

ne=n-—ny—n_.
Denote by

it <<t . the indices of the positive entries of Xy,

X+
<. < j;fe . the indices of the positive entries of €,

1 <...<f%,

nx,_ theindices of the negative entries of X,

Ji <...<Jn._ theindices of the negative entries of €.
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Furthermore, let
<L <,
JE <. < i
be the indices in
{1 onp\ (e, it Y udin,. i, b
respectively {1,...,n}\ ({jf‘,...,j,tr} Ui, dn 1)

in increasing order. We then construct I such that
ny n_ n4
(e, X1) =Y Xypepr > X6+ Xis 6,5
k=1 k=1 k=1

All terms inside the first two sums are i.i.d. from the same distribution as |g||A/,
where g and h are independent N (0, 1)-random variables, and accordingly the
terms inside the last summand are i.i.d. from the same distribution as —|g||A]|.
Conditional on ny, hence (IIy€, X;) follows the same distribution as

n—m4 n

Z|gi||hi|_ Z |gillhal,
i=1

i=n—m+-+1

where {g;}7; and {h;}]", are two independent sequences of n i.i.d. random
variables from the N (0, 1)-distribution. The expectation of the above expression
(conditional on ny) is given by

2

(n— 2n4) Bllgl[h]] = (n = 2n2) Ellg]]* = (n — 2n4)~.

From Proposition 5.16 in [54], we have the following concentration inequality:

P( > (gillhil =Elgllal) = >~ (gillhil = EllgllAl])
=1 i=n—nm4—+1

1
>(n—2ng)—
7r

Hence, conditional on ny, with probability at least 1 — exp(—nc),

< exp(—nc).

n—mn4 n

1

Z |gillhil — Z |gillhil = ;(n— 2ny).
=1 i=n—m++1

Consider the definition of n, and n_ Observe that ne 4, nx, +, ne,— and nx, —

are each binomial random variables with n trials and probability of success 1/2.

By repeated application of Hoeffding’s inequality, we hence have

P(ny <3n/8) <2exp(—n/32), P(n_ <3n/8) < 2exp(—n/32).
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Conditional on the events {ny > 3n/8} and {n_ > 3n/8}, we have ny < 1/4
and thus with probability at least 1 — C exp(—nc)

n—n4 n

n
S lalnl— Y Tl = o
i=1 i=n—n4+1

Accordingly, the same applies to the event {(II+e, X1) > 5-}. Lemma 15 in Ap-
pendix H yields || X1||2 < 24/n with probability at least 1 — exp(—n/2). Putting
together the pieces, it follows that with probability at least 1 — C'exp(—nc)

3 ~_Vn 3 Vn
X =7r> = >
IXBla =72 Y2 = B>

where 0p,,x(X) denotes the maximum singular value of X. Finally, Lemma 16
in Appendix H yields that opmay(X) < v2n + v/d with probability at least
1 — exp(—cn), which concludes the proof.

Appendix B: Proof of Theorem 1

We start with a basic, yet important observation that allows us to decouple I
and 3. Let Px and P% denote the orthogonal projection on range(X) respectively
its orthogonal complement.

Lemma 1. Consider optimization problem (3). Then, if n > d, with probability
one

I’ e argmin||Px Iy||3,

HePn k
- XTX\ "Xy -
Be {( ) Y 17 € argmin|[p y|2 b . (22)
n n I ok

Proof. We have
min 11X 3 — y||3 = min | X5 — Ty3

= min {|| Px Ty + | X5 ~ Px Ty 3}

The second part can always be made equal to zero by choosing 8 such that
Xp =Px Ily. It hence suffices to minimize the first part w.r.t. Il and to back-
substitute the result into the second part. Under model (G), X is non-singular
with probability one as long as n > d which yields the second expression in
(22). |

In the next lemma, we bound the fy-distance between IT* Ty and ﬁTy.
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Lemma 2. Under the conditions of Theorem 1, the following holds with proba-
2

bility at least 1 — L exp (—%) —exp(—{w(T) Vlogn}), where ¢ (e,d/n)

is defined in (24) below.

2(1 +v2)oe~2{w(T) Vlogn}
T .

Proof. In view of Lemma 1, by definition of IIT and the fact that II*T is a
feasible solution, we have

ITTy — " Tylls <

IPx Iy |3 < [IPx T Ty |3
= [Px" Iy +Px I Tyl < [P II* T3
= [Px(7T —1I"T)y|l3 < 2/(Px " Ty, (IT7 — 1T Ny)|.
Since
P IT" Ty = P (XB* +€) = Pxe,
we have the implication that
[P (IIT — I Nyl[3 < 2/(Px €, (IIT —II"")y)].
Dividing both sides by |[P%(IIT — II* T )y||2, we obtain that

I 1)y 3Pk Al < 21k € A) (T - 1)yl
- o7 — 1T
A': (/\ )y )
[(ITT = 1I* Tyl

= |7 = Tyo|Py Al < 2/(Px € A). (23)

i) Lower bounding the left hand side of (23).

Observe that A € T as defined in (7). Moreover, note that under (G), the
random subspace range(X ) C R™ follows the uniform distribution on the Grass-
mannian G(n, d). Hence, applying Lemma 13 with K = 7, V = range(X) and
thus m = n and [ = n — d, we have for any ¢ € (0,1/2) in compliance with (9)

P(dist(7,range(X)) >¢) =P (IAnégP)L( Al > 5)

7 1 (1 =¢e)wp_gq—evy—w(T) 2
Zl—iexp <_§< 3+e+evy/Vn_q

s 1 Lo (LMoY,

8
(1-e)2=t —c\’
34+e+ -2 ’

Y(e,d/n):

1—e
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where the last inequality follows from condition (9). Conditional on the event
{|IPx Al|2 > €}, which holds with the probability as stated, the left hand side
of (23) is lower bounded by &2|/(IIT — II* T )y||2.

it) Upper bounding the right hand side of (23).
Consider t > 0 arbitrary, to be chosen later. We have

P(|(Py e, A)| > 1) <P (sup (P4 €, A)] > t) |
AeT

Now note that € and Px are independent. As a result, when conditioning on
P+, we have from Lemma 14 that

P <Sup |(Px €, A)| >t ‘Pé})
AeT

<P (Sup |(Px €, A)| > E [sup |(P% €, A)] ‘PJX} +7 ‘Pﬁ;)
AeT AET

<P (sup |(Px €, A)| > ow(T) +7 ’PJX)
AeT

< exp(—r?/(20), 7=t~ B s (P e8] [p]
AET
>t —ow(T).
The second equality is a consequence of the Sudakov-Fernique comparison in-
equality (Theorem 2.2.3 in [4]) and the fact that ||P%|2 < 1. Choosing t =
(1 +v2)o{w(T) Vlogn}, combining this result with i), and putting together

the pieces in (23), the assertion of the lemma follows. O

In order to complete the proof of Theorem 1, we need one last lemma whose
proof is deferred to Appendix G.

Lemma 3. Let omin(-) denote the minimum singular value of a matriz. If n >
9V 4d, it holds that

P {amin<X/\/ﬁ> <1- \/“dv;og”}
| H <X;X>1 XJ;

1
< 2exp (—E(d\/logn)> .

5(d Vlogn)}

>0
5 1— 4dVlogn
V n
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Equipped with Lemmas 2 and 3, we are in position to conclude Theorem 1.
Expanding the expression for 3 in (22), we obtain that

n n n n n

B (XTX>1 X'y _ (XTX)1 X' Ty N (XTX>1 XTI -1y
n

’

XTX> T XT(e+ @ -1 )y)
n

:5*+<

n

and thus

(ﬁT _H*T)Y“z

" 5]
Vi Vn

1A =1 Tyl

||B— B2 <

1
2 + Umin(X/\/E)

= Vi Vi
< o 5(d Vv logn) N 2(1 4+ v/2)oe 2{w(T) Vlogn}
- 1— /4(1\/Tllogn n \/ﬁ

with the stated probability by combining Lemmas 2 and 3.

Appendix C: Proof of Corollary 1

Observe that the event {S = $*} is implied by the event

: T T
{Z,rglsr; Yi — Yp10py] > [Ty — 1T ylloo},
which is in turn implied by
{ani;} Yi = Yp1(p| > [Ty =T Tylls = 7} :

‘We now have

P <min

mim fy; — Yo10)| < 7) < Z P (\yi —Yo1(3)] < ’7)

1€S*
< kmaxP (|y; —y;| < 7).
i£]

Note that for any i # j, y; —y; ~ N(0,2(||3*[|3 + 02)). Invoking Lemma 19, we
thus obtain that for any ¢ # j

gl

P(lyi—yjl <7) € ———oee.
(i —yil <) TS
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It hence follows from the previous two displays that for any § > 0,

p (rglsn Yi = Yor(5)] < v) <4
if
k2")/2
* (12
1815 > g5

Substituting v by the bound from Lemma 2, the above condition becomes

2(1+v2)%* k*{w(T) Vlogn}?

N
SNR > = - ,

and the first part of the corollary follows from Lemma 2. Turning to the second
part, consider the least squares estimator using the reduced data set {(x;, ), @ €

[n] \ S*} and denote by B (S*) the corresponding least squares estimator. We
then have for any 6 > 0

P(|B(S") — B*|l2 < 6) = P(IB(S™) — B*|2 < 6.8 = §")+
+P(|B(S7) = Bll> < 8,5 # 57,

which implies
P(|B = B"[l2 < 8) > P(|B(S™) = B2 < 8) = P(S # ).
It thus remains to control the first probability on the left hand side, which can

be done with arguments similar to those used in the last part of the proof of
Theorem 1.

Appendix D: Proof of Theorem 2

We start with a Lemma that parallels Lemma 1. The reasoning is analogous,
and the proof is hence omitted.

Lemma 4. Consider optimization problem (13) with solution (5,5}. Then, if
n > d, with probability one

- 1
¢ € argmin — [Py (y = v/ne)[5 + Alle[,
€

= { (XTX)1 XT(y — /ne)

_ 1
Be . @ argmin —[PE(y — vae)l} + Allel }-
n n e n

For our analysis of the optimization problem of Lemma 4, we need the fol-
lowing crucial lemma whose proof is provided in Appendix F.
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Lemma 5. There exists constants c1,co,e > 0 so that if k < 01%, the
following event holds with probability at least 1 — 2 exp(—ca(n — d))

n—d

1
{2k oz Aol vects ).

with S* = {j : 113, # 1} and C(S*,3) defined in (32).

In correspondence with Lemma 2, we first bound ||€ — e*||2, where e* =
(I XB* — X8%) /v,

Lemma 6. Under the cogditions of Theorem 2, with probability at least 1 —
2exp(—c:(n —d)) —2n~M" | we have

_ Kl
16— e*[l» < 48(1 + M)o 11,/ B8
n—d n

Proof. We first decompose

PYy =P%(XB" +Vne" +€) =Pk Vne" +€ €:=Pye

According to Lemma 4, since € is a minimizer, we have that

1 _ I I
~[[Px Vn(e” =€) + €[5+ Allellx < —[[€]5 + Alle”|1-

Expanding the square on the left-hand side and re-arranging terms, we obtain
that

1 * ~ * ~ ~ *
~lIPx Vn(e” = @5 + Mllefh < 2 (" =& &/vn) |+ Alle’ll, (25)

which implies
Al < 2fle” — el €/ vnlloo + Alle*1,

and in turn

Ale(s)e = elsyellt = Allegsyellr < 2lle” = ell1llé/v/nlloo + Allle™[lx = lI€s- 1)

< 2lle” — ell1 [[€/V/nllos +Alles- — €5+ 1.
——

=:Ao
Re-arranging, we arrive at
()\ — 2AO)H’€(S*)C — 6?5*)6H1 < ()\ + 2)\0)”62* — €gx ||1

Conditional on the event A = {\ > 4)\y}, we hence have that

||g(s*)c — e?s*)CHl S 3||g3* — eg* 1- (26)

Equipped with this is intermediate result, we go back to (25). We first obtain
by re-arranging that
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1 ~ *

EHP)l( V(e =e)]3 < (220 + A)lle —e*|h
< (2X0 + N4les- — el
< (2)\0 + )\)4\/E||€5* — €52

where we have used (26) in the second inequality. In order to lower bound the
left hand side, note that (26) can be written as € — e* € C(S*, 3) according to
(32). Conditional on the event in Lemma 5,

*IIPX Vale* = 2)[3 > ™

le* —ell3-
Combining this with the previous display, we find that

le* — &lls < 1267 ——AVE.
n—d

In view of Lemma 18, the choice A = 4(1 + M)o+/2log(n)/n for M > 0 guar-
antees that the event A defined above (26) occurs with probability at least
1—2n~M* This completes the proof of the Lemma. g

Using Lemmas 2 and 4, the proof of the theorem is completed along the lines
of the last part of the proof of Theorem 1. For brevity, we omit those steps here.

Appendix E: Proof of Theorem 3

The proof of part (a) of the theorem relies on two lemmas, which are stated and
proved first.

Lemma 7. Letv,6 > 0. Consider the event
Ay = {minGT 5 -] 577 <07 (27)
Then P (A,) <6 if , .
671 > "y

Proof. 1t is clear that A, C |J,_; {x]p* - x;'—ﬁ*)2 < +?}. Using the fact that
x| B* — x;-rﬂ* ~ N(0,2]|5*||3), we have

Y ey !
P <P ({5, < 0 G, < vam

_§ < fllﬂ*llz<g—f||5 |2), g~ N(0,1)
n(n —1) v

by Lemma 19 in Appendix H.

I 1o | PAVES
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. . nn—1) ~ .
Thus, it suffices to require that < 4. Resolving for ||5*|2
| 7 5NV 7
this condition becomes 2 2
sz =17
> ——"".
181 >

O

The following lemma is of interest in its own when the design matrix is
fixed and both 8* and o2 are known or accurate estimates of these quantities
are available. Condition (28) can then be evaluated explicitly, at least after
substituting 4* and o2 by their respective estimates. The result is close in spirit
to those in the framework in [18].

Lemma 8. Conditional on X, we have P (ﬁ(ﬂ*) # IT* | X) <0 if

—1
min (xiT,B* - x-Tﬁ*)2 > 402 log M

i<j J 0 (28)

Proof. Without loss of generality, we may assume that I[I* = I;,. By construction
of II(8*), it is clear that II(5*) # II* whenever there exists i # j such that
(yi — yj)(x] B* — x;rﬁ*) < 0, that is, the order between x; * and xyﬁ* is
different than that of y;, ;. First, conditioning on the random design matrix X,
we have

PI(B) A" | X)=2P | J{yi—y; > 0%/ 8" —x] B <0}
1<j
§22P(yi—yj >O|XiTﬂ* —x;»rﬂ* <0)

1<J

Since y; —y; | X 8* —x] 8* ~ N(x/ f* —x/ #*,20?), using the usual tail bound
for the Gaussian distribution for each term in the above sum, we obtain

X—-r *—X.T )2
P<ﬁ<6*>¢n*|x><zzexp<_<zﬁ Jff))

— 402
1<J

402

<n(n—1)exp (—man] (. 8 Xjﬂ) )

Hence, for any 6 > 0, P(II(8%) £ II* | X) < § if
: T g+ T g%\ 2 2 n(n—1)
Iln<1§1(xzﬁ —Xjﬁ) > 4o logT.
U

Combining Lemmas 7 and 8, part (a) in Theorem 3 follows immediately for

ﬁ(ﬁ*) from the previous lemma by invoking Lemma 7 with v = 204/log @.
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We then have P(II(8*) # IT*) < P(A,)+ (1 —-P(A,))d < 26 under the condi-
tions of the theorem. The general version of the theorem results from

mln\xTH - X; 9\ > mln\xTﬂ* - XTB*\ —2 max |x; (8" — §)|
1<J 1<i<n

> min |x; % — x;—ﬁ*\ —20A.
1<g

conditional on the event {|| X 3* — X@HOO < oA}. The assertion follows from an
application of Lemma 7 with v = 20 (y/log @ + A).

The proof of part (b) in Theorem 3 requires another lemma.
Lemma 9. Consider the event A, in (27). Then, for alln > 5, P (A,) > 0.85
if
16°18 < 45 (29)
2= Jon ’Y
Proof. Since x; 8*/||8*||2 ~ N(0,1), we have for g ~ N(0,1)

gl

§<XT6*< i

Nep(o ¥ v
) P< 215 0T ﬁnwn) = Hﬁ*llz2\(/§)’)

whenever v < 3||3*||2, otherwise p > .86 as can be verified by evaluating the

Gaussian cumulative distribution function numerically.

Let B := {—% <x'p* < %} For i.i.d. observations x1,...,x,, let

p:=P<—

u = ZH(Xi € B) ~ binom(n,p)a

i=1

with p as defined in (30). The event A, in (27) occurs whenever at least two
X;,X; € B, i.e., the event {u > 2} C A,. Let us suppose for the moment that
p > 3.5/n for n > 5. Then

> .85 formn > 5.

Using Eq.(30), we now conclude that P (A,) > .85 whenever
3.5/n. This holds if

Y
- >
18*[l22v/7 —

1
187113 < gg-n*7* O
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We finally turn to the proof of part (b) of the theorem. Define indices ig, jo C
[n] by the relation XTB* - XJTO * = min, ., |x; B* — ijB*|. For given v > 0, we
have
P(II(B") A 10%) > P (yi, — yj <010 < x] f* —x) " <) x

><P(0<x B* —x; ﬂ <'y)

:P(x- 4 o€, — X;l; —O’Ej0<0‘0<x;-l; *—x;[) ¥ <) x
x P (0 < x,. B* - X; 1B <)

> P (o€, — 06, < —7)P (0 < x/ B* - X; 1B <)

2P(g<—ﬁ> (0<x B - X; ﬁ <’y)

oo M) o <L)
VT8 |2
)

by choosing v =
> ®(—.1)(.85), by Lemma 9 and provided that

WS g B 2 g
vaon L
(3)

> .35,

where in the penultimate line, ®(z) = [*__ \/L exp(— t2/2) dt denotes the Gaus-
sian cumulative distribution function. Therefore, P(II(8*) # II*) > .35 when-

ever Hi# < C'n? with C specified in (31). This concludes the proof of part (b)
of the theorem.

Appendix F: Proof of Lemma 5
The proof of Lemma 5 is given at the end of this section. The proof depends on
several lemmas collected from the literature which are stated first.
For 1 < s < p, let J(s) denote the set of all index subsets of [p] of size s.
Definition 1. For J € J(s), and a € [1,00), define

C(J,a) ={veR: vy < afvsl} (32)

Definition 2. [15] Let A € RN*P and Boy(s;p) = {v € R? : ||v||o < s}. Define
the s-sparse minimum and mazximum eigenvalues associated with A by

A L A
2 2
veBo(s;p)\{0} ||v]|3 veBo(s;ip)\{0} ||v]3
Let 6 € (0,1). We say that A is an (s, 0 )-restricted isometry if
1 =06 < Amin(8) < Amax(s) <146

Anlin(s) = )\max(s) =
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Definition 3. [10] Let A € RN*P. We define the (s, a)-restricted eigenvalue

by
|| Av|13

min min 5
JeT(s) vee(La)\o |lvsll3

(;5(5,05) =

Lemma 10. [10] Suppose that A is a (3s,6*/4)-restricted isometry for some
0* € (0,1). The (s, 3)-restricted eigenvalue then satisfies ¢(s,3) > 1 — 6*.

(33)

Lemma 11. [6] Let A be a random of matrix of size N X p satisfying
P((1 = ¢)[lv]3 < [|[Av]3 < (1 +&)[v]|3) < 2exp(—Neo(e)) (34)

for any € € (0,1) and any v € RP, where co(e) > 0 is a constant depending only
on . Then for any § € (0,1), there exist constants ci,ca > 0 depending only
on § such that A is a (q,0)-restricted isometry for any g < c1N/log(p/q) with
probability at least 1 — 2exp(—caN).

Lemma 12. (from Lemma 2.2 in [19]) Let P denote the orthogonal projec-
tion on an N-dimensional subspace of RP chosen uniformly at random from the
Grassmannian G(p, N). Then, for any v € RP and any ¢ € (0, 1),

P ((1-)loll3 < £ poll} < (1+)[0l)3) < 2exp(~N (/4 - 2/6)})

Proof of Lemma 5: the lemma is essentially implied by the fact that under
the stated conditions, the matrix P% has its (k, 3)-restricted eigenvalue bounded
away from zero by a constant € as to be shown below. “Essentially” refers to the
fact that it can be shown (cf. [57]) that a matrix A with restricted eigenvalue
¢(k,3) obeys

JAof3 > 30E3)lz  Vue U cw.3).
JET (k)
As sketched above, a lower bound on ¢(k, 3) follows if A is a (3k, §* /4) restricted
isometry for some §* € (0,1). That property is in turn satisfied with high
probability if A satisfies (34). Applying Lemma 12 with P = P%, p = n and
N =n — d yields the conclusion.

Appendix G: Proof of Lemma 3

-1
We invoke Lemma 17 conditional on X, with (%) % in the role of A, so

\/_ n

(i) tx(T) = ((
(i3i) \/tr(T2) <

that I' = == (XTX) T Observe that

(@) T2 =

) ) s ok
(5
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In view of the relations in (35), application of Lemma 17 with ¢t = d V logn and
comparison of terms yields that
o ’X) < exp(—d V logn).

P<H<X;X> XVTﬁ 7 X/

Using Lemma 16 for o,y (X) with the choice ¢ = v/dVlogn, the assertion
readily follows.

v5{dVlogn}

Appendix H: Additional lemmas

We here collect various auxiliary results acting as lemmas in the proofs of our
main results.

Lemma 13. (Gordon’s Escape through a Mesh theorem [28]) Let K
be a closed subset of the unit sphere in R™, let v, = Eguno,1,)[ll9ll2], and let
e > 0. If the Gaussian width (6) of K obeys w(K) < (1 — )y — evyy, then
an (m — 1)-dimensional subspace V' drawn uniformly from the Grassmannian
G(m,m —1) satisfies

P(dist(K,V) >¢) > 1— ;exp (% ((1 —;)—:_/zg—+€;/;nm7yllv(f{)> ) .

Lemma 14. (Concentration of Gaussian processes [12]) Let K be a closed
subset of the unit sphere in R™ with Gaussian width w(K), and let g ~ N(0, L,,).
Then for allt >0

P (sup g,2)| > w(K) + t) < exp(—1/2).
zeK

Lemma 15. (Concentration of the norm of Gaussian random vectors
[54])
Let g ~ N(0,1,,). Then for all t > 0, P(||gll2 > (1 +t)v/n) < exp(—t?n/2).

Lemma 16. (Concentration of extreme singular values of Gaussian ma-
trices [54])

Let X be an nxd Gaussian matriz with i.5.d. N(0,1)-entries. Denote by omin(X)
and omax(X) the minimum respectively maximum singular value of X . Then for
any t >0

P(omin(X) > \/_ - \/a —t) < exp(—t2/2),
P(0max(X) > v+ Vd +t) < exp(—t2/2).

Lemma 17. (Concentration of quadratic forms [32])
Let A be a an m x n matriz, T = AT A, and g ~ N(0,1,,). Then for all t > 0

P(||Ag||3 > tr(T) + 24/tr(I2)t + 2||T||2t) < exp(—t).
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Lemma 18. (Maximal inequality for Gaussian random variables)

Let g1,...,9n, be zero-mean Gaussian random wvariables such that
maxi <<, E[g2] < 0%, Then for all M > 0, P(maxi<;<n |gi| > (1+M)o+/2logn)
< 2n_M2.

Lemma 19. (Small ball probability)
Let g ~ N(0,1). Then for allt >0, P(lg] <t) < \/gt <t.
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