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Abstract: Bayesian methods are useful for statistical inference. However,
real-world problems can be challenging using Bayesian methods when the
data analyst has only limited prior knowledge. In this paper we consider a
class of problems, called partial Bayes problems, in which the prior infor-
mation is only partially available. Taking the recently proposed inferential
model approach, we develop a general inference framework for partial Bayes
problems, and derive both exact and efficient solutions. In addition to the
theoretical investigation, numerical results and real applications are used
to demonstrate the superior performance of the proposed method.
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1. Introduction

In many real-world statistical problems, the information that is available to the
data analysts can be organized in a hierarchical structure. That is, there ex-
ists some past experience about the parameter(s) of interest, and data relevant
to the parameter(s) are also collected. For this type of problems, the standard
approach to statistical inference is the Bayesian framework. However, in many
applications, the data analysts have only limited prior knowledge. For instance,
past experience may indicate that the prior belongs to a known distribution
family, but the actual parameters of the prior are unclear. This type of prob-
lems have brought many challenges to statisticians; see for example Lambert
and Duncan (1986); Meaux, Seaman Jr and Young (2002); Moreno, Bertolino
and Racugno (2003). To systematically study such problems that involve par-
tial prior information, in this article we refer to them as partial Bayes problems,
with the precise definition given in Section 4.1. As a preview of the full charac-
terization, in partial Bayes problems we assume that a genuine prior distribution
exists for the model parameters, but due to the limitation of knowledge, some
components of the full prior are missing. The target is to use the available
data to make valid inference about the parameter of interest without assuming
additional subjective hyper-priors for the desired but missing information.
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Partial Bayes problems have drawn a lot of attention in statistics literature.
One common problem of this type is the case where there exists an unknown
prior distribution, either parametric or non-parametric, in a Bayesian hierar-
chical model. A very popular approach to this type of models is known as the
empirical Bayes, which has been first proposed by Robbins (1956) for handling
the case with non-parametric prior distributions, and later by Efron and Mor-
ris (1971, 1972a,b, 1973, 1975) for parametric prior distributions. Another kind
of partial Bayes problems was studied by Xie et al. (2013), in which only the
marginal distributions of a parameter vector are known, but the joint prior
distribution is missing. For clarity, we refer to this type as the marginal prior
problem. In Xie et al. (2013), the solution to the marginal prior problem is based
on the confidence distribution approach (Xie, Singh and Strawderman, 2011),
which provides a unified framework for meta-analysis.

The empirical Bayes and confidence distribution approaches both have suc-
cessful real-world applications. However, one fundamental problem in scientific
research, the exact inference about the parameter of interest, remains to be an
open question for partial Bayes problems. As pointed out by many authors (Mor-
ris, 1983; Laird and Louis, 1987; Carlin and Gelfand, 1990), empirical Bayes in
general underestimates the associated uncertainty of the interval estimators, so
these authors have proposed various methods to correct the bias of the coverage
rate. However, even if they have shown better performance, the target coverage
rates are still approximately achieved for such methods. The same issue hap-
pens in the confidence distribution framework. Confidence distribution provides
a novel way to combining different inference results, but these individual infer-
ences may or may not be exact. All of these indicate that the exact inference
for partial Bayes problems is highly non-trivial.

Recently, the inferential model framework (Martin and Liu, 2013, 2015a,b,c)
has been proposed as a new approach to statistical inference, which not only
provides Bayesian-like probabilistic measures of uncertainty about the parame-
ter, but also has an automatic long-run frequency calibration property. In this
paper, we use this framework to derive interval estimators for the parameter of
interest in partial Bayes problems, and demonstrate their important statistical
properties including the exactness and efficiency. When compared with other
approaches, we refer to the proposed estimators as partial Bayes solutions for
brevity.

The remaining part of this article is organized as follows. In Section 2 we
study a hierarchical normal-means model as a motivating example of partial
Bayes problems. In Section 3 we provide a brief review of the inferential model
framework as the theoretical foundation of our analysis. Section 4 is the main
part of this article, where we introduce a general framework for studying par-
tial Bayes problems, and deliver our major theoretical results. We revisit some
popular partial Bayes models in Section 5, and conduct simulation studies to
numerically compare the proposed solutions with other methods. In Section 6
we consider an application to a basketball game dataset, and finally in Section
7 we conclude with a few remarks. Proofs of theoretical results are given in the
appendix.
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2. A motivating example

Consider the well-known normal hierarchical model for the observed data X =
(X1, . . . , Xn)

′. The model introduces n unobservable means μ1, . . . , μn, one for
each observation, and assumes that conditional on μi’s, Xi’s are mutually inde-
pendent with Xi|{μ1, . . . , μn} ∼ N(μi, σ

2) for i = 1, . . . , n, where the common
variance σ2 is known. In addition, all the μi’s are i.i.d. with μi ∼ N(μ, τ2) for
i = 1, . . . , n, where the variance τ2 is known but the mean μ is an unknown
hyper-parameter.

The problem of interest here is to make marginal inference about the individ-
ual means μi, and for simplicity we focus on μ1, as the approach is the same for
all individual μi’s. The aim of the inference is to construct a sample-based inter-
val estimator for μ1, denoted by Cα(X), which satisfies Pμ1,X(Cα(X) � μ1) ≥
1− α for all μ, a condition given by Morris (1983). The probability Pμ1,X indi-
cates that the coverage rate is computed over the joint distribution of (X,μ1).
We emphasize that when such a condition holds strictly, Cα(X) is said to be a
valid or exact interval estimator for μ1 with 100(1−α)% confidence level. This
concept of exactness is made more clear in Section 4.1.

The standard empirical Bayes approach to this problem can be found in Efron
(2010). It computes the maximum likelihood estimator (MLE) of μ, μ̂ = X,
from the observed data. Plugging μ̂ back into the prior in place of μ, empir-
ical Bayes proceeds with the standard Bayesian procedure to provide an ap-
proximate posterior distribution of μ1, μ1|X ·∼ N

(
(1− ω)X1 + ωX, (1− ω)σ2

)
,

where ω = σ2/(τ2+σ2), and the notation “
·∼” indicates that the distribution is

approximate. Accordingly, the 100(1 − α)% empirical Bayes interval estimator
for μ1 is obtained as

(1− ω)X1 + ωX ± zα/2σ
√
1− ω,

where zα/2 is the 1− α/2 quantile of the standard normal distribution.
The partial Bayes solution, derived in Section 5.1.1, has a slightly different

formula:
(1− ω)X1 + ωX ± zα/2σ

√
1− ω(n− 1)/n. (1)

Compared with empirical Bayes, the proposed interval has the same center but
is slightly wider for small n. For a numerical illustration, we fix α = 0.05, and
take μ = 0, σ2 = τ2 = 1. Figure 1 shows the theoretical coverage rates of both
the empirical Bayes solution and the partial Bayes solution as a function of n.
It can be seen that the coverage probability of the empirical Bayes interval is
less than the nominal value 1 − α, and is close to the target only when n is
sufficiently large. On the contrary, the partial Bayes solution correctly matches
the nominal coverage rate for all n.

3. A brief review of inferential models

Since our inference for partial Bayes problems is based on the recently developed
inferential models, in this section we provide a brief introduction to this new
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Fig 1. The coverage probabilities of empirical Bayes (blue dashed curve) and partial Bayes
(red solid line) as a function of n. The line for partial Bayes is exactly positioned at the 0.95
level, indicating that it achieves the nominal coverage rate exactly for all n.

framework, with more details given in Martin and Liu (2013). The inferential
model is a new framework designed for exact and efficient statistical inference.
The exactness of inference, formally termed as validity in the inferential model
framework, guarantees that the uncertainty of the generated result is appro-
priately quantified. On the premise of validity, the framework also provides a
number of techniques to efficiently combine information in the data, some of
which are mentioned at the end of this section.

Formally, inferential models draw statistical conclusions on an assertion A, a
subset of the parameter space Θ, about the parameter of interest θ. For example,
the subset A = {0} stands for the assertion θ = 0, and A = (1,+∞) corresponds
to θ > 1. In the inferential model framework, two quantities are used to represent
the knowledge about A contained in the data: the belief function, which describes
how much evidence in the data supports the claim that “A is true”, and the
plausibility function, which quantifies how much evidence does not support the
claim that “A is false”.

Like Fisher’s fiducial inference, inferential models make use of auxiliary or
unobserved random variables to represent the sampling model. In order to have
meaningful probabilistic inferential results, unlike Fisher’s fiducial inference, in-
ferential models predict unobserved realizations of the auxiliary variables using
random sets, and propagate such uncertainty to the space of θ. Technically,
inferential models are formulated as a three-step procedure to produce the in-
ferential results:

Association step This step specifies an association function X = a(θ, U) to
connect the parameter θ ∈ Θ, the observed data X ∈ X, and the unobserved
auxiliary random variable U ∈ U with U following a known distribution PU .
This relationship implies that the randomness in the data is represented by an
auxiliary variable U .

Prediction step Let u∗ be the true but unobserved value of U that “gener-
ates” the data. This step constructs a valid predictive random set, S, to predict
u∗. S is valid if the quantityQS(u

∗) = PS(S � u∗), interpreted as the probability
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that S successfully covers u∗, satisfies the condition PU (QS(U) ≥ 1−α) ≥ 1−α,
where U ∼ PU .

Combination step This step transforms the uncertainty from the U space
to the Θ space by defining Θx(S) =

⋃
u∈S Θx(u) =

⋃
u∈S{θ : x = a(u, θ)}, a

mapping from U back to θ after incorporating the uncertainty represented by S.
Then for an assertion A, its belief function is defined as belx(A) = P{Θx(S) ⊆
A|Θx(S) 	= ∅}, and similarly, its plausibility function is defined as plx(A) =
1− belx(A

c).

The plausibility function is very useful to derive frequentist-like confidence re-
gions for the parameter of interest (Martin, 2015, 2017). If we let A be a singleton
assertion A = {θ} and denote plx(θ) ≡ plx({θ}), then a 100(1−α)% frequentist-
like confidence region, which is termed as plausibility region in inferential models
(or plausibility interval as a special case), is given by PRx(α) = {θ : plx(θ) > α}.
It is worth mentioning that the inferential model theory guarantees PRx(α) to
possess at least 100(1 − α)% long-run coverage probability as long as the un-
derlying S is valid.

Besides validity, the inferential model framework also has a number of exten-
sions for efficient inference. When the model has multiple parameters but only
some of them are of interest, the marginal inferential models (Martin and Liu,
2015b) appropriately integrate out the nuisance parameters. For models where
the dimension of auxiliary variables is higher than that of the parameters, the
conditional inferential models (Martin and Liu, 2015a) are used to combine in-
formation in the data such that efficient inference can be achieved. We elaborate
the inference procedure for partial Bayes problems in Section 4.2, where both
techniques mentioned above are used extensively in our development of exact
and efficient inference.

4. Inference for partial Bayes problems

4.1. Model specification

Our attempt here is to provide a simple model framework that is general enough
to describe a broad range of partial Bayes problems introduced in Section 1.

Let X be the observed data, whose distribution f relies on an unknown pa-
rameter vector θ. The information on θ that comes from the collected data is ex-
pressed by the conditional distribution of X given the parameter: X|θ ∼ f(x|θ).
In many cases, we have prior knowledge about θ that can be characterized
as a prior distribution π0(θ). When π0(θ) is fully specified, standard Bayesian
method can be used to derive the posterior distribution of θ. In other cases, there
is only partial prior information available. Formally, assume that the parameter
θ can be partitioned into two blocks, θ = (θ̃, θ∗), so that the desirable fully-
specified prior of θ can be accordingly decomposed as π0(θ) = π(θ̃)π∗(θ∗|θ̃) =
π(θ̃|θ∗)π∗(θ∗), where π(θ̃) and π∗(θ∗) are the marginal distributions of θ̃ and
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θ∗, respectively, and π∗(θ∗|θ̃) and π(θ̃|θ∗) are the associated conditional density
functions.

We define a partial Bayes problem to be such a Bayesian model in which
either π∗(θ∗|θ̃) or π∗(θ∗) is missing. In other words, the prior information is
partial in the sense that only a marginal distribution θ̃ ∼ π(θ̃) or a conditional
distribution θ̃|θ∗ ∼ π(θ̃|θ∗) for θ̃ is available. In general, inference is made on
θ̃ or a component of θ̃, i.e., θ̃ can be further partitioned into θ̃ = (η, ξ), with
η denoting the parameter of interest and ξ denoting the additional nuisance
parameters. In this article we focus on the case that η is a scalar, which is of
interest for many practical problems. For better presentation, we summarize
these concepts and the proposed model structure in the following table:

Sampling model X|θ ∼ f(x|θ)
Parameter partition θ = (θ̃, θ∗), θ̃ = (η, ξ)

Partial prior θ̃ ∼ π(θ̃) or θ̃|θ∗ ∼ π(θ̃|θ∗)
Missing information π∗(θ∗|θ̃) or π∗(θ∗)

Parameter of interest η

Despite its simplicity, the above model includes the well-known hierarchical
models as an important class of practically useful models. Moreover, the for-
mulation goes beyond the hierarchical models, and also includes the marginal
prior problem. As described in Section 1, our target of inference is to construct a
sample-based interval C(X) that satisfies some validity conditions. Specifically,
the following two types of validity properties are considered:

Definition 1. C(X) is said to be an unconditionally valid interval estimator for
η with 100(1− α)% confidence level, if PX,θ(C(X) � η) ≥ 1− α for all π∗(θ∗),
where the probability is computed over the joint distribution of (X, θ).

Definition 2. C(X) is said to be a conditionally valid interval estimator for η
given H(X) with 100(1−α)% confidence level, if PX,θ|H(X)(C(X) � η|H(X) =
h) ≥ 1− α for all π∗(θ∗) and h, where H(X) is a statistic of the data, and the
probability is computed over the joint distribution of (X, θ) given H(X) = h.

Definition 1 is a rephrasing of the validity condition in Morris (1983), and
Definition 2 comes from Carlin and Gelfand (1990). It should be noted that the
second condition is stronger than the first, since it can be reduced to Definition
1 by averaging over H(X). In this article, we aim to produce the second type
of interval estimators, but the first validity property is studied when different
interval estimators for η are compared with each other.

4.2. Procedure of inference

4.2.1. The association step

Constructing the data and prior associations Given the data sampling
model X|θ ∼ f(x|θ), the first association equation can be constructed as X =
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a1(θ,W1), where a1(·) is the “data association” function, andW1 is an unobserv-
able auxiliary variable that has a known distribution. According to the definition
of partial prior, θ can be partitioned into θ = (θ̃, θ∗), and either π(θ̃) or π(θ̃|θ∗)
is available to the data analyst. In both cases, a unified “prior association”
function a2(·) can be formed as θ̃ = a2(θ

∗,W2), where W2 is another auxiliary
variable independent of W1. Note that in the first case, θ̃ has a known marginal
distribution π(θ̃), so the prior association can be simplified as a2(θ

∗,W2) ≡ W2.
Next, by substituting the prior association into the data association, we get

X = a1((a2(θ
∗,W2), θ

∗),W1). To avoid the over-complicated notations, we sim-
ply write this relation as X = a(θ∗,W ), where W = (W1,W2). As described in
Section 4.1, we are only interested in an element of the θ̃ vector, so we divide
the system of equations θ̃ = a2(θ

∗,W2) into η = aη(θ
∗, Vη) and ξ = aξ(θ

∗, Vξ),
where aη(·) and aξ(·) are the decomposed associations, and random vectors Vη

and Vξ are functions of W2. As a consequence, the partial Bayes model can be
summarized by the following system of three equations:

X = a(θ∗,W ), η = aη(θ
∗, Vη), and ξ = aξ(θ

∗, Vξ). (2)

Note that ξ can be regarded as a nuisance parameter, and (2) is “regular” in the
sense of Definition 3 of Martin and Liu (2015b). Then according to the theory
of marginal inferential models (Theorems 2 and 3 of Martin and Liu, 2015b),
the third equation in (2) can be ignored without loss of efficiency.

Decomposing the data association Since the sample X usually contains
multiple observations, the dimension of W can often be very high. In order to
reduce the number of auxiliary variables, assume that the relation X = a(θ∗,W )
admits a decomposition

T (X) = aT (θ
∗, τ(W )), and H(X) = ρ(W ) (3)

for one-to-one mappings x �→ (T (x), H(x)) and w �→ (τ(w), ρ(w)). Martin and
Liu (2015a) shows that this decomposition broadly exists for a large number
of models, and the most common way to constructing such a decomposition is
to take T (X) as a sufficient statistic for θ∗ and H(X) an ancillary statistic.
However, it is worth mentioning that the decomposition (3) is more general
than the sufficiency reduction; see Section 5.1 of Martin and Liu (2015a) for an
example in which a non-trivial sufficient statistic does not exist but (3) is still
available. Lastly, in case that such a decomposition is not available, we simply
take H(X) = 1 and ρ(W ) = 1.

The equation (3) implies that when the collected data have a realization x,
the auxiliary variable WH := ρ(W ) is fully observed with the value h := H(x).
Therefore, by conditioning on WH = h, we are able to predict the remaining
auxiliary variables more efficiently via the following two conditional associations:

T (X) = aT (θ
∗,WT ), WT := τ(W ) ∼ PWT |h, (4)

η = aη(θ
∗, Vη), Vη ∼ PVη|h, (5)
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where the notation Z ∼ PZ|h means that the random variable Z has a distri-
bution PZ|h given WH = h. In the rest of Section 4.2, when we discuss the
distribution of a random variable that depends on WT or Vη, the condition
WH = h is implicitly added.

Obtaining the final association Finally, to make inference about η, the
unknown quantity θ∗ needs to be marginalized out of the equations. We seek a
real-valued continuous function b(·, ·) such that when its first argument is fixed
to some value t, the mapping η �→ b(t, η) is one-to-one. At the current stage we
simply take b as an arbitrary function, and we defer the discussion of its choice
in Section 4.4. As a result, associations (4) and (5) are equivalent to

T (X) = aT (θ
∗,WT ), (6)

b(T (X), η) = Wb(θ
∗), Wb(θ

∗) := b(aT (θ
∗,WT ), aη(θ

∗, Vη)). (7)

Equations (6) and (7) indicate that the only connection between η and θ∗ is
through Wb(θ

∗), a random variable whose c.d.f. FWb(θ∗)|h is indexed by the
nuisance parameter θ∗. Therefore, if the function b is chosen such that FWb(θ∗)|h
does not depend on, or only weakly depends on θ∗, then the connection between
η and θ∗ is effectively broken. By the theory of marginal inferential models, the
association (6) can be ignored, and thus equation (7) completes the association
step.

4.2.2. The prediction step

The aim of the this step is to introduce a valid predictive random set Sh condi-
tional on WH = h that can predict Wb(θ

∗) with high probability. The following
two situations are considered.

The first situation is that Wb(θ
∗) is in fact free of θ∗. This can be easily

achieved if θ∗ has the same dimension as η, and if the mapping η = aη(θ
∗, Vη)

can be inverted as θ∗ = aθ∗(η, Vη). To verify this, plug θ∗ = aθ∗(η, Vη) into (4),
and we obtain T (X) = aT (aθ∗(η, Vη),WT ), which reduces to a single-parameter
inferential model that has a well-defined solution.

The second situation is more general and thus more challenging, in which case
FWb(θ∗)|h relies on the unknown parameter θ∗. Typically this occurs when the
dimension of θ∗ is higher than that of η. To deal with this issue, we generalize
the Definition 5 of Martin and Liu (2015b) to define the concept of stochastic
bounds for tails.

Definition 3. Let Z and Z∗ be two random variables with c.d.f. FZ and FZ∗ re-
spectively, and denote by med(Z) the median of Z. Z is said to be stochastically
bounded by Z∗ in tails if FZ(z) ≤ FZ∗(z) for z < med(Z), and FZ(z) ≥ FZ∗(z)
for z > med(Z).

The difference between this definition and the one in the literature is that here
the medians of Z and Z∗ are not required to be zero.
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Assume that we have found a random variable W ∗
b such that given WH = h,

Wb(θ
∗) is stochastically bounded by W ∗

b in tails for any θ∗. Note that the first
situation discussed earlier can be viewed as a special case, since any random
variable is stochastically bounded by itself in tails. To shorten the argument,
we only consider this more general case for later discussion. There are various
ways to construct such a random variable W ∗

b , see the examples in Martin and
Liu (2015b). Here we provide a simple approach, by defining the c.d.f. to be

FW∗
b |h(z) =

⎧⎨
⎩

supθ∗ FWb(θ∗)|h(z), z < mh
1
2 , z = mh

infθ∗ FWb(θ∗)|h(z), z > mh

, mh = F−1
Wb(θ∗)|h

(
1
2

)
,

provided that the resulting function is a c.d.f..
Given FW∗

b |h, a standard conditional predictive random set Sh can be chosen
for the prediction of Wb(θ

∗). For the purpose of constructing two-sided inter-
val estimators, we first define the generalized c.d.f. of a random variable Z as
F−1
Z (u) = inf{x : FZ(x) ≥ u}, and then construct Sh as follows:

Sh =
{
F−1
W∗

b |h(u
′) : |u′ − 0.5| < |US − 0.5|, u′ ∈ (0, 1)

}
, US ∼ Unif(0, 1). (8)

This completes the prediction step, and other choices of the predictive random
set for different purposes are discussed in Martin and Liu (2013).

4.2.3. The combination step

In what follows, to avoid notational confusions we use η to represent the pa-
rameter of interest as a random variable, and denote by η̃ the possible values
of η. In the final combination step, denote by ΘT (x)(w) the set of η̃ values that
satisfy the association equation (7) with T (X) = T (x) and Wb(θ

∗) = w, i.e.,
ΘT (x)(w) = {η̃ : b(T (x), η̃) = w}, and define ΘT (x)(Sh) =

⋃
s∈Sh

ΘT (x)(s). Then
the conditional plausibility function for η is obtained as

cplT (x)|h(η̃) = 1−PSh

(
ΘT (x)(Sh) ⊆ (−∞, η̃) ∪ (η̃,+∞)

)
= PSh

(
ΘT (x)(Sh) � η̃

)
,

(9)
which completes the combination step.

4.3. Interval estimator and validity of inference

In Section 4.2.3 a conditional plausibility function for the η parameter has been
derived under the inferential model framework, and in this section it is used
to construct the proposed interval estimator. Similar to the construction of
plausibility region introduced in Section 3, we define the following set-valued
function of x:

Cα(x) = {η̃ : cplT (x)|h(η̃) ≥ α}. (10)

From (9) it can be seen that cplT (x)|h(η̃) depends on the data on two aspects:
the random set Sh depends on h = H(x), and the association function ΘT (x)(w)
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depends on T (x). As a result, we define our partial Bayes interval estimator for
η to be Cα(X), obtained by plugging the random sample X into Cα(x).

In the typical case that η is a fixed value, the inferential model theory guar-
antees that Cα(X) is a valid 100(1− α)% frequentist confidence interval for η.
However in our case, the joint distribution of the parameter and data is con-
sidered, as in Definitions 1 and 2. Therefore, the validity of Cα(X) does not
automatically follow from the inferential model theory, and hence needs to be
studied separately. The result is summarized as Theorem 1.

Theorem 1. With H(X) defined in (3), Cα(X) is a conditionally valid interval
estimator for η given H(X) with 100(1− α)% confidence level.

Recall that if the decomposition (3) is unavailable, we will take H(X) = 1
and ρ(W ) = 1. In such cases, Theorem 1 reduces to the unconditional result
corresponding to Definition 1.

4.4. Bayesian-matching and efficiency

Under the guarantee that the proposed interval estimator Cα(X) defined in (10)
satisfies the validity condition, we further study another important property, the
efficiency of the estimator. Note that Section 4.1 introduces two types of partial
prior: either π∗(θ∗) or π∗(θ∗|θ̃) is missing. In this section we study the former
case for simplicity of argument, and the latter one can be dealt with analogously.
The efficiency of Cα(X) is demonstrated based on the following two facts that
will be verified later.

First, if the “oracle” information π∗(θ∗) is in fact known, then a full prior
distribution for θ is available, and the optimal inference for η is via its posterior
distribution given the data. For the proposed method, we can show that there
exists a predictive random set, denoted by Sh,t, which results in an “oracle”
interval estimator Co

α(X) that exactly matches the Bayesian credible interval.
Second, in the actual partial Bayes setting that π∗(θ∗) is unknown, Cα(X)

is shown to be a good approximation to Co
α(X) under mind conditions. This

phenomenon indicates that the missing information π∗(θ∗) only results in a
minor efficiency loss relative to the “oracle” solution, i.e., the Bayesian credible
interval with a full prior.

To show the first point, let θ∗ = U, U ∼ π∗(θ∗) be the association equation
for the marginal distribution of θ∗. Combining it with (6) and (7), we obtain
the following three associations:

θ∗ = U, T (X) = ZT , and b(T (X), η) = Wb, (11)

where ZT = aT (U,WT ) and Wb = b(ZT , aη(U, Vη)). Again, the second equation
implies that given the data x, ZT is fully observed with value t := T (x), so the
auxiliary variable Wb can be predicted using its conditional distribution given
WH = h and ZT = t, which we denote by FWb|h,t. Similar to the prediction step
in Section 4.2.2, we construct a predictive random set Sh,t for Wb by replacing
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F−1
W∗

b |h with F−1
Wb|h,t in formula (8), and proceed with the same combination step

to obtain cplT (x)|h,t(η̃) = PSh,t

(
ΘT (x)(Sh,t) � η̃

)
.

As a result, the interval estimator for η is obtained as Co
α(X), where Co

α(x) =
{η̃ : cplT (x)|h,t(η̃) ≥ α}. This Co

α(x) and the Cα(x) in (10) are defined by the
conditional plausibility functions cplT (x)|h,t and cplT (x)|h, respectively, which
only differ in the distributions assigned to the predictive random sets. The fol-
lowing theorem shows that with this slight change, Co

α(X) matches the Bayesian
posterior credible interval.

Theorem 2. Assuming that π∗(θ∗) is known and η has a continuous distri-
bution function Fη|x given X = x, then Co

α(X) is optimal in the sense that it
matches the Bayesian posterior credible interval, i.e.,

Co
α(x) =

(
F−1
η|x(α/2), F

−1
η|x(1− α/2)

)
.

Theorem 2 implies that given the “oracle” information π∗(θ∗), there exists an
“oracle” predictive random set Sh,t for the auxiliary variable Wb with which the
inference result attains the optimality. This fact suggests that when π∗(θ∗) is
missing, as long as there exists a predictive random set close to Sh,t, the resulting
interval estimator would be as efficient as the “oracle”, at least approximately.

Recall that the predictive random set Sh,t is induced by the distribution
FWb|h,t, and when π∗(θ∗) is missing, only FWb(θ∗)|h is available. Therefore, the
next question we want to answer is under which conditions FWb(θ∗)|h is close
to FWb|h,t. Note that these two distributions are conditional on the same event
H(X) = h, and to avoid technical complications we consider the unconditional
case H(X) ≡ 1, so that FWb(θ∗)|h and FWb|h,t are reduced to FWb(θ∗) and FWb|t,
respectively, where the former is the c.d.f. of Wb(θ

∗) defined in (7), and the
latter stands for the distribution of Wb defined in (11) given ZT = t.

In most real applications, the association relation for T (X) changes with
the data size n. To emphasize the dependence on n, in what follows we write
Wbn(θ

∗), ZTn , and Wbn in place ofWb(θ
∗), ZT , and Wb, respectively. The follow-

ing definition from Sweeting (1989) and Xiong and Li (2008), which generalizes
the usual concept of weak convergence, is needed to study the large sample
property of a conditional distribution.

Definition 4. Given two sequences of random variables Xn and Yn, the condi-
tional distribution function of Xn given Yn, a random c.d.f. denoted by FXn|Yn

,
is said to converge weakly to a non-random c.d.f. FZ in probability, denoted by

Xn|Yn
d.P→ Z, if for every continuous point z of FZ , FXn|Yn

(z)
P→ FZ(z), where

Z ∼ FZ .
Then we have the following result:

Theorem 3. Let gn, hn, and pn denote the densities of Wbn , ZTn , and (Wbn ,
ZTn), respectively. Also define ln(w, z) = pn(w, z)/[gn(w)hn(z)]. If (a) for fixed

u, aT (u,WTn)
P→ u, (b) b(u, aη(u, v)) = v, and (c) ln → 1 pointwisely, then

Wbn |ZTn

d.P→ Vη and Wbn(θ
∗)

d→ Vη, where θ∗ in Wbn(θ
∗) is seen as a fixed

value.
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Remark 1. Conditions (a) and (b) are intentionally expressed in a simple form.

In fact they can be replaced by aT (u,WTn)
P→ f1(u) and b(f1(u), aη(u, v)) =

f2(v) where f1 and f2 are one-to-one functions, and the limiting distribution is
changed to f2(Vη) accordingly.

Remark 2. The three conditions are easy to check. Condition (a) states that
T (X) should be a consistent estimator for θ∗ if θ∗ is seen as fixed. Condition (b)
guides the choice of the b function; see below for more discussions. For condition

(c), it is shown in the proof that (Wbn , ZTn)
d→ (Vη, U), and a sufficient condition

for (c) is that the density of (Wbn , ZTn) also converges to that of (Vη, U), which
is satisfied by most parametric models.

To summarize, Theorem 3 indicates that Wbn(θ
∗) and Wbn |ZTn converge to

the same limiting distribution, in which sense the random sets Sh and Sh,t have
approximately identical distributions when n is sufficiently large. As a result,
the proposed interval estimator Cα(X) can be seen as an approximation to the
“oracle” solution Co

α(X). Combining Theorem 1 and Theorem 3, it can be con-
cluded that the proposed interval estimator possesses the favorable properties
of both validity and efficiency.

Based on the results above, we are now ready to provide some guidelines on
the choice of the b(·, ·) function introduced in (7). One important fact is that
the validity of Cα(X) is unaffacted by b(·, ·), as is indicated by Theorem 1;
therefore, b(·, ·) only influences the efficiency of the estimator. Intuitively, b(·, ·)
plays the role of combining the information in the data equation (4) and prior
equation (5), and meanwhile cancelling the effect of the nuisance parameter θ∗,
i.e., ∂b/∂θ∗ ≈ 0. Below we introduce two useful techniques that are shown to
perform well for many practical models.

First, if the equation η = aη(θ
∗, Vη) is invertible as θ∗ = aθ∗(η, Vη), then

plugging it into (4) yields T (X) = aT (aθ∗(η, Vη),WT ), which is an association
equation merely involving the paramter η. In this case, a desirable b satisfies
∂b/∂η ≈ 0. While for many problems this requirement does not hold globally,
it can be localized such that b(T (x), η̂) = 0 and ∂b/∂η|η=η̂ = 0 hold around
a reasonable estimator η̂ for η. Inspired by Martin (2015), if η̂ is the MLE for
η based on the conditional distribution of Xi given η, and T (X) is a sufficient
statistic, then we can take b(T (x), η) = �(η̂;T (x))− �(η;T (x)), where �(·;T (x))
is the log-likelihood function. An example of this technique is given in Section
5.2 for a Poisson hierarchical model, and a variant of this method is used in the
binomial model in Section 5.3.

Second, in more general settings, b(·, ·) is typically chosen by heuristics,
and the condition (b) of Theorem 3 suggests the following construction. If η
has a continuous distribution, then in general we can solve Vη = aV (θ

∗, η)
from the association η = aη(θ

∗, Vη). Suppose that from (4), a sensible esti-

mator for θ∗, θ̂∗ = t(T (x)), can be obtained for some function t(·). Define
b(T (x), η) = aV (t(T (x)), η), and we can show that such a b(·, ·) function is only

weakly dependent on θ∗ since b(T (X), η) = aV (θ̂
∗, η) ≈ aV (θ

∗, η) = Vη. This
idea is applied to the normal hierarchical model in Section 5.1.2 where both the
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mean and variance parameters in the normal prior are missing.

5. Popular models viewed as partial Bayes problems

5.1. The normal hierarchical model

The normal hierarchical model introduced in Section 2 is extremely popular in
the empirical Bayes literature, partly due to its simplicity and flexibility; existing
inference methods include the naive empirical Bayes (Efron and Morris, 1975;
Casella, 1985), the full Bayes method with flat prior (Lindley and Smith, 1972;
Deely and Lindley, 1981), the approach used by Morris (1983) and Efron (2010),
the bootstrap method (Laird and Louis, 1987), the conditional bias correction
method (Carlin and Gelfand, 1990), etc. We set σ2 = 1 without loss of generality,
since Xi’s can always be scaled by a constant to achieve an arbitrary variance.
We will consider both the cases where τ2 is known and unknown, and our
parameter of interest is μ1. To summarize, we write

Sampling model X|(θ̃, θ∗) ∼
∏

i N(μi, σ
2)

Partial prior θ̃ = (μ1, μ2, . . . , μn), θ̃|θ∗ ∼
∏

i N(μ, τ
2)

Missing information π∗(θ∗), θ∗ =

{
μ, if τ is known
(μ, τ2), if τ is unknown

Parameter of interest η = μ1

As a first step, this model can be expressed by the following association

equations: μi = μ + τεi and Xi = μi + ei for i = 1, . . . , n, where εi
iid∼ N(0, 1),

ei
iid∼ N(0, 1), and ei and εi are independent. An equivalent expression for these

associations is μi = μ + τεi, Xi = μ + τεi + ei, in which the data are directly
linked to the unknown μ. Since the focus is on μ1, equations related to μ2, . . . , μn

can be ignored.

5.1.1. The case with a known τ2

This case corresponds to the motivating example presented in Section 2, and
we are going to derive formula (1) with σ2 = 1. Since τ is known, let Wi =
τεi + ei, i = 1, 2, . . . , n, and then the system of associations Xi = μ + τεi + ei
can be rewritten as X = μ+W and Xi −X1 = Wi −W1 for i = 2, . . . , n, where
X = 1

n

∑n
i=1 Xi and W = 1

n

∑n
i=1 Wi. Therefore, by denoting T (X) = X and

H(X) = X(−1) −X11n−1, where X(−1) = (X2, . . . , Xn)
′ and 1n−1 is a vector of

all ones, the decomposition in equation (3) is achieved. The associated auxiliary
variable for H(X) is WH = W(−1) −W11n−1, where W(−1) = (W2, . . . ,Wn)

′.

Next, we keep the following two associations X = μ+W and μ1 = μ+ τε1,
where W ∼ PW |h and ε1 ∼ Pε1|h conditional on WH = h ≡ H(x). The last step

is to take b(X,μ1) = X − μ1, and the final association equation is b(X,μ1) =
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Wb := W − τε1. It can be verified that the conditional distribution of Wb given
WH = h is

Wb|{WH = h} ∼ N

(
τ2

1 + τ2
(x̄− x1),

nτ2 + 1

n(τ2 + 1)

)
, (12)

and the predictive random set (8) can be constructed accordingly. As a result,
the conditional plausibility function for μ1 is obtained as

cplT (x)|h(μ1) = 2Φ

(
−
∣∣∣∣ τ2

τ2 + 1
x1 +

1

τ2 + 1
x̄− μ1

∣∣∣∣
/√

nτ2 + 1

n(τ2 + 1)

)
, (13)

where Φ is the standard normal c.d.f., and hence the interval estimator for μ1

is

Cα(X) =

(
τ2

τ2 + 1
X1 +

1

τ2 + 1
X

)
± zα/2

√
nτ2 + 1

n(1 + τ2)
. (14)

5.1.2. The case with an unknown τ2

Similar to the previous case, the starting point is to decompose the data associa-
tions into T (X) and H(X), which can be done in two stages as described below.
In the first stage, we keep the association for X1 and decompose X(−1) instead.

Consider the ancillary statistics Hi(X) = (Xi −X(−1))/S(−1) for i = 2, . . . , n,

where X(−1) and S2
(−1) are the sample mean and sample variance of X(−1).

It is clear that X(−1) has a one-to-one mapping to (X(−1), S
2
(−1), H2(X), . . . ,

Hn−1(X)). Since marginally Xi
iid∼ N(μ, τ2 + 1), it is well known that (X(−1),

S2
(−1)) is a complete sufficient statistic for (μ, τ), and thus is independent of

Hi(X) according to Basu’s theorem. Therefore, conditioning on Hi(X) does
not change the distribution of (X(−1), S

2
(−1)), and we obtain the following four

associations: (a) μ1 = μ + τε1, (b) X1 = μ + τε1 + e1, (c) X(−1) = μ + τ̃Z

, and (d) S2
(−1) = (τ2 + 1)M2

n−2, where τ̃ =
√

(τ2 + 1)/(n− 1), Z ∼ N(0, 1),

M2
n−2 ∼ χ2

n−2/(n− 2), and the auxiliary variables ε1, e1, Z, and M2
n−2 are mu-

tually independent. Equations (c) and (d) are derived from the well-known facts
that X(−1) ∼ N(μ, τ̃2) and (n− 2)S2

(−1)/(τ
2 + 1) ∼ χ2

n−2.
Then in the second stage, we condition on the following equation, as the

auxiliary variable WH is known to follow a student t-distribution with n − 2
degrees of freedom:

H(X) :=

√
n− 1

n
·
X1 −X(−1)

S(−1)
= WH :=

τε1 + e1 − τ̃Z√
nτ̃Mn−2

∼ tn−2. (15)

As a result, we keep the associations μ1 = μ + τε1, X(−1) = μ + τ̃Z, and
S2
(−1) = (τ2 + 1)M2

n−2, with ε1 ∼ Pε1|h, Z ∼ PZ|h, and M2
n−2 ∼ PM2

n−2|h
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conditional on WH = h ≡ H(x). Obviously in this case T (X) = (X(−1), S
2
(−1)),

which combined with H(X) completes the decomposition.
Next, by observing that X(−1)−μ1 is free of μ, we can take b(T (X), μ1) to be

a function of X(−1)−μ1 and S2
(−1), so that the corresponding auxiliary variable

Wb(τ) is indexed by only one unknown parameter τ . Specifically, let

μ̃ =

√
n− 1

n
h

(
n− 2

h2 + n− 2
S−1
(−1) − S(−1)

)
,

σ̃2 = max

{
n−γ , 1− (n− 1)(n− 2)(n− 3− h2)

n(n− 2 + h2)2
S−2
(−1)

}
, γ ∈ (0, 1

2 ),

(16)

and then define b(T (X), μ1) = (X(−1) − μ1 − μ̃)/σ̃, where μ̃ and σ̃ are chosen

such that E(Wb(τ)|WH = h) = 0 and that Wb(τ)|{WH = h} d→ N(0, 1). These
two conditions ensure that Wb(τ) will be gradually free of τ when n is large.
Next, let FWb(τ)|h be the c.d.f. of Wb(τ) given WH = h, and we can show that

FWb(τ)|h(s)

=

∫ +∞

0

Φ

(
s
√

max {n−γ , 1− c1ω/x} − c2
√
ω (

√
x− c3/

√
x)√

1− ω(n− 1)/n

)
g(x)dx,

(17)

where ω = (1 + τ2)−1, c1 = (n − 2)(n − 3 − h2)/{n(h2 + n − 2)}, c2 = (n −
1)h/

√
n(h2 + n− 2), c3 = (n− 2)/(n− 1), and g is the p.d.f. of χ2

n−1/(n− 1).

Finally, let F (s) = infω∈(0,1) FWb(τ)|h(s) and F (s) = supω∈(0,1) FWb(τ)|h(s),
both computable using numerical methods, and we can show that

cplT (x)|h(μ1) = min

{
1, 2

[
1− F

(
x1 − μ1 − μ̃

σ̃

)]
, 2F

(
x1 − μ1 − μ̃

σ̃

)}
,

and that

Cα(X) =
(
X(−1) − μ̃− F−1(1− α/2)σ̃, X(−1) − μ̃− F

−1
(α/2)σ̃

)
.

To numerically compare the partial Bayes solution with other existing meth-
ods mentioned in the beginning of this section, we conduct a simulation study
in which both hyper-parameters μ and τ2 are assumed to be unknown, with the
same setting in Laird and Louis (1987): the true μ is fixed to 0, and two values
of τ , 0.5 and 1, are considered. For the partial Bayes solution, the γ constant
in (16) is fixed to be 1

3 . The nominal coverage rate is set to 95%, and data are
simulated 10,000 times in order to calculate the empirical coverage percentage
and the mean interval width for all the methods compared. The results are
summarized in Figure 2.

It is obvious in Figure 2 that among all the methods compared, only the
partial Bayes solution achieves the nominal coverage rate for all sample sizes. In
terms of interval width, the partial Bayes solution has wider interval estimates
than other methods, due to the guarantee of coverage rate; however, as the
sample size increases, the gaps between different methods become smaller and
smaller, indicating that all methods are efficient asymptotically.
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Fig 2. The empirical coverage percentage (the top two panels) and mean interval width (the
bottom two panels) for μ1 with an increasing sample size n and two parameter settings,
among 10,000 simulation runs. For all the methods compared, only the partial Bayes solution
guarantees the nominal coverage rate for all n.

5.2. The Poisson hierarchical model

The Poisson hierarchical model is useful for analyzing discrete data such as
counts. Assume that given parameters λi > 0, the observed data X = (X1, . . . ,
Xn)

′ satisfy Xi|λi ∼ Pois(λiti), i = 1, . . . , n, where ti > 0 are known constants.
In real-world problems, λi can be interpreted, for example, as the rate of events
in unit time, and ti is the length of the time window. It is also assumed that λi’s

follow a common prior, λi
iid∼ γGamma(s), where s is a known shape parameter

and γ is an unknown scale parameter. In this setting the parameter of interest
is λ1. This model can also be expressed using the formulation in Section 4.1:

Sampling model X|(θ̃, θ∗) ∼
∏

i Pois(λiti)

Partial prior θ̃ = (λ1, λ2, . . . , λn), θ̃|θ∗ ∼
∏

i γGamma(s)

Missing information π∗(θ∗), θ∗ = γ

Parameter of interest η = λ1

For this Poisson hierarchical model, the data associations and prior associa-
tions are given by Xi = F−1

λiti
(Ui) and λi = γVi, respectively, with i = 1, . . . , n.

F−1
λ is the generalized inverse c.d.f. of the Poisson distribution with mean λ,

U = (U1, . . . , Un)
′ iid∼ Unif(0, 1), V = (V1, . . . , Vn)

′ iid∼ Gamma(s), and U and
V are independent. After plugging prior associations into data associations and
ignoring irrelevant parameters, the following association equations are kept with-
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out loss of information:

λ1 = γV1, and Xi = F−1
γViti

(Ui), i = 1, . . . , n. (18)

There is a fundamental difference between this Poisson model and the normal
model studied earlier. Due to the discreteness of Xi and the heterogeneity of
the ti values, it is improbable to find a non-trivial function H(x) such that the
distribution of H(X) is free of γ. This is an example that the decomposition (3)
is not available, and hence we trivially take H(X) = 1 and T (X) = X.

Next, the b function is chosen using the technique introduced in Section 4.4.
Let �(λ1;x) denote the log-likelihood function conditional on λ1, and λ̂1 = λ̂1(x)

the MLE for λ1. Define b(x, λ1) = �(λ̂1;x) − �(λ1;x), and the final association
becomes b(X,λ1) = Wb(λ1), where Wb(λ1) is a random variable by replacing
x = (x1, . . . , xn)

′ with

X =
(
F−1
λ1t1

(U1), F
−1
λ1t2V2/V1

(U2), . . . , F
−1
λ1tnVn/V1

(Un)
)′

in the expression for b(x, λ1).
Let Gλ1 be the c.d.f. of Wb(λ1) conditional on λ1, and then the plausibility

function for λ1 is plx(λ1) = 1−Gλ1(b(x, λ1)). Finally, the interval estimator for
λ1 is obtained by inverting the plausibility function, i.e., Cα(x) = {λ̃ : plx(λ̃) ≥
α}. The computational details are given in Appendix 7.

We conduct a simulation study with 10,000 data repetitions and 95% nominal
coverage rate. All the t′is are set to 1, and the true value of θ is fixed to 1. Two
different values of s, s = 2, 10, and a sequence of sample sizes, n = 10, 15, . . . , 50,
are considered. There are fewer existing inference methods for the Poisson model
than the normal one, and here the partial Bayes solution is compared with the
naive empirical Bayes and full Bayes approaches, with the results illustrated in
Figure 3.

The pattern of the simulation results is very similar to that of the normal
model. As expected, the other two solutions have narrower interval estimates
than the partial Bayes solution, but they do not preserve the nominal coverage
rate. In contrast, the partial Bayes solution has coverage percentages above
95%, and its interval width is getting close to the other two when sample size
increases. This interesting result indicates that even if Theorem 3 no longer
applies to this model due to the choice of T (X) = X, the interval estimator
derived in this section is in fact very efficient.

5.3. The binomial rate-difference model

The last binomial rate-difference model is motivated by a clinical trial study
(Xie et al., 2013). It can be described as follows. Assume that two independent
binomial samples, X and Y , were collected with X ∼ Bin(m, p1), and Y ∼
Bin(n, p2). The available prior information is on the difference of the success
rates, δ := p1 − p2 ∼ π, and the task is to make inference about δ. For this
model, we have



Inference for partial Bayes problems 4657

Fig 3. The empirical coverage percentage (the top two panels) and mean interval width (the
bottom two panels) for λ1 with an increasing sample size n and two parameter settings, among
10,000 simulation runs. Three different solutions are compared, showing that the partial Bayes
solution guarantees the nominal coverage rate.

Sampling model X|(θ̃, θ∗) ∼ Bin(m, p1), Y |(θ̃, θ∗) ∼ Bin(n, p2)

Partial prior θ̃ = δ := p1 − p2, θ̃ ∼ π

Missing information π∗(θ∗|θ̃), θ∗ = p1 + p2

Parameter of interest η = δ

Obviously, the data association equations of this model are X = F−1
m,p1

(U1)

and Y = F−1
n,p2

(U2), and the prior association is δ = U , where F−1
k,p is the

generalized inverse c.d.f. of Bin(k, p). The auxiliary variables U1, U2
iid∼ Unif(0, 1),

U ∼ π, and U1, U2, and U are independent. To simplify the notations, p1 and p2
are re-parameterized as δ = p1− p2 and τ = p1+ p2. Since p1 and p2 must lie in
[0, 1], τ is further written as τ = 1+(1−|δ|)ω to guarantee the range, where ω ∈
(−1, 1) is an unknown quantity. As a result, p1 = p1(δ, ω) = {1+δ+(1−|δ|)ω}/2
and p2 = p2(δ, ω) = {1− δ + (1− |δ|)ω}/2 are functions of the new parameters
δ and ω.

Similar to the association steps of previously studied models, we first plug
the prior association into the data association, resulting in

X = F−1
m,p1(U,ω)(U1), Y = F−1

n,p2(U,ω)(U2), and δ = U.

Again due to the discreteness of X and Y , it is unlikely to find a function
H(X,Y ) such that its distribution is free of ω , so the goal is to seek the b
function as in the Poisson model. However, this model has a significant dif-
ference with the Poisson case: δ has a genuine prior δ ∼ π. Our proposal
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here is to make use of the joint log-density function of (X,Y, δ), denoted as

�(δ, ω;x, y) = log f(x, y, δ;ω), to derive the maximum a posteriori estimator δ̂

as an approximation to δ. Let (δ̂, ω̂) = argmaxδ,ω �(δ, ω;x, y) with δ̂ = δ̂(x, y)
and ω̂ = ω̂(x, y), and then b is obtained as

b(x, y, δ) = �(δ̂(x, y), ω̂(x, y);x, y)− �(δ, ω̂δ(x, y);x, y), (19)

where ω̂δ(x, y) = argmaxω �(δ, ω;x, y).
As a consequence, the final association is b(X,Y, δ) = Wb(ω), where Wb(ω) is

obtained by replacing (x, y, δ) with
(
F−1
m,p1(U,ω)(U1), F

−1
n,p2(U,ω)(U2), U

)
in (19).

Let Gω denote the c.d.f. ofWb(ω), and define G(s) = infω∈(−1,1) Gω(s), and then
the plausibility function for δ is plx,y(δ) = 1 − G(b(x, y, δ)), with the interval

estimator Cα(X,Y ) defined by Cα(x, y) = {δ̃ : plx,y(δ̃) ≥ α}. The computational
details are given in Appendix 7.

For a simulation study, the prior of δ ≡ p1−p2 is chosen to have the same dis-
tribution as 2β−1 with β ∼ Beta(a, b) for some known value of (a, b). This choice
of prior guarantees that the support of π(δ) is [−1, 1]. For each simulated δ, the
value of τ ≡ p1+p2 is created as τ = 1+(1−|δ|)ω with ω ∼ Unif(−1, 1). Then the
corresponding true values of p1 and p2 used to simulate the data can be deter-
mined accordingly. Two settings of prior distribution parameters, (a, b) = (2, 2)
and (2, 5), and a sequence of binomial sizes, m = n = 20, 30, . . . , 100, are consid-
ered. Since the typical empirical Bayes methods do not apply to this problem,
in Figure 4 we give the results of partial Bayes and confidence distribution
solutions.

Similar to the empirical Bayes solutions in the previous two models, the
confidence distribution approach does not possess the desired coverage, while
partial Bayes provides exact inference results. This is because the confidence
distribution method for this model relies on large sample theory, and may not
work well for small samples. The interval width of the partial Bayes solution is
slightly wider than that of the confidence distribution method, but the difference
is only tiny; as expected, the width will decrease as sample size increases, which
again indicates the efficiency.

6. Application

In this section we apply the partial Bayes model to a dataset of National Basket-
ball Association (NBA) games. In basketball competitions, a three-point shot,
if made, rewards the highest score in one single attempt. Therefore, as the game
comes to an end, three-point shots are more valuable for a team that has very
limited offensive possessions and needs to overcome the deficit in score. When
the game is decided by the last possession, a three-point shot is usually bene-
ficial or even necessary for such teams, and the choice of player that will make
the attempt is crucial to the outcome of the game.

Typically, the player to be chosen should have the highest success rate of
three-point shots, and historical data can be used to evaluate each player’s
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Fig 4. The empirical coverage percentage (the top two panels) and mean interval width (the
bottom two panels) for δ with an increasing binomial size n and two parameter settings, among
10,000 simulation runs. Partial Bayes and confidence distribution solutions are compared,
showing that the partial Bayes solution guarantees the nominal coverage for all n.

performance. If Xi is the number of three-point shots made in ni attempts by
player i, then usually Xi can be modeled by a binomial distribution Bin(ni, pi)
or a Poisson distribution Pois(nipi), where pi stands for the success rate. In this
application we choose the latter one for simplicity. Given this model, a classical
point estimator for pi is p̂i = Xi/ni, and a 100(1 − α)% frequentist confidence
interval for pi is

(
GXi

(
α
2

)
/ni, GXi+1

(
1− α

2

)
/ni

)
, where Gs(·) is the c.d.f. of

the Gamma(s) distribution.
If additional information is available, for example pi’s are assumed to follow

a common prior distribution π(p), then the efficiency of the inference can be im-
proved by incorporating this prior. This assumption is sensible since the players
are in the same team or league, and they are expected to share some common
characteristics. By combining the two sources of information — player’s own
historical statistics, and those of other players in the team or league — a more
fair evaluation of players’ performance could then be obtained. In what follows,
we analyze the three-point shot data obtained from the official NBA website. We
first select three players from each team that have the highest three-point goal
success rates during the 2015-2016 regular season, and then retrieve the data
from each player’s last ten games within that season. The number of three-
point shots made (Xi) and attempted (ni) for each player are computed from
this dataset.

To take the prior information into account, we first use the empirical Bayes
method to analyze this dataset similar to the analysis in Efron and Morris (1975)
for baseball games, but with a Poisson model instead of a normal one. The pi’s
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are assumed to follow a common exponential prior exp(θ), where θ > 0 stands
for the mean. In reality pi lies in the interval (0, 1), and here the conjugate
exponential prior is used mainly for simplicity of computation. It does not harm
the analysis in practice since when θ is small the majority of probability mass
is on (0, 1), and we manually truncate any interval estimate that is beyond

one. Using the marginal distribution of Xi, the MLE of θ is obtained as θ̂ =
0.410. As a result, the point estimator for pi is taken to be the posterior mean
(Xi+1)/(θ̂−1+ni), and the approximate 100(1−α)% Bayesian credible interval

is
(
GXi+1

(
α
2

)
/(θ̂−1 + ni), GXi+1

(
1− α

2

)
/(θ̂−1 + ni)

)
.

Finally, the partial Bayes model in Section 5.2 is used to derive an interval
estimator for pi, and the point estimator is chosen as the value of pi that max-
imizes plx(pi). The comparison of the three methods mentioned above is shown
in Figure 5 for five representative players.

Fig 5. Comparing three methods for analyzing three-point shot success rates on five repre-
sentative players among the ninety players studied. Numbers of three-point shots made and
attempted are displayed under players’ names. The error bars and the dots stand for the
90% interval estimates and the point estimates respectively. The three different shapes of dots
represent the three inference methods.

Among these five players, Jordan McRae and David West are examples of
players with high success rates but few number of shot attempts. It is clear that
both empirical Bayes and partial Bayes results shrink the classical point esti-
mates towards the grand mean, as an effect of combining individual and league
information. To the opposite, for players below the average, such as Tyler John-
son and Raul Neto, their success rates are lifted by a small percentage. Stephen
Curry, as a third case, is almost unaffected by the shrinkage. This is because
he made a large number of shot attempts, so that his personal performance
dominates the overall estimate. It is worth noting that David West has a higher
point estimate of success rate than Stephen Curry in the classical method, but
their rankings are reversed in empirical Bayes and partial Bayes methods.

The comparison of the three methods also highlights the advantage of the
partial Bayes method. It is known that the classical confidence interval is exact,
but is wider than that of the other two methods. The empirical Bayes solution is
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more efficient, but theoretically it is only approximate. The partial Bayes solu-
tion, in contrast, combines the advantages of the other two methods, providing
both exact and efficient inference results. This example hence suggests that the
partial Bayes model framework is useful for real-life data analysis tasks.

7. Conclusion and discussion

This article considers the statistical inference for partial Bayes problems, i.e.,
Bayesian models without fully-specified prior distributions. We have developed
a general model framework for studying such problems, and have provided the-
oretical justification for both the exactness and the efficiency of the inference
results. Compared with other existing methodologies dealing with partial prior
information, such as empirical Bayes and confidence distribution, our proposed
method has shown superior performance.

Indeed, statisticians and scientists do care about exact inference for such
useful models. For example, pioneering work in the empirical Bayes literature,
such as Morris (1983); Laird and Louis (1987); Carlin and Gelfand (1990), has
revealed the fact that empirical Bayes estimators could underestimate the un-
certainty, and these authors all emphasized the importance of providing exact
inference for such problems. To some extent our discussion sheds new light on
this issue and shows promising results. From this perspective, partial Bayes
models are powerful extensions to conventional Bayesian models, as they allow
for more flexibility on the prior specifications, and meanwhile avoid sacrificing
the exactness of inference. As a result, they can be used to combine different
types of information for which other existing methods are difficult.

Of course, “There is no such thing as a free lunch.” The exact and efficient
inference for partial Bayes problems is very useful yet challenging. As has been
illustrated by the three example models, the construction of the interval estima-
tors sometimes needs to be studied case by case. Also, similar to the hierarchical
Bayesian models, partial Bayes solutions usually involve a moderate amount of
computations such as sampling and optimization that need to be taken care
of. Despite all these obstacles, we believe that the partial Bayes model frame-
work is useful in real data analysis, and we expect that more research along
this direction can be fruitful, as far as exact and efficient probabilistic inference
concerns.

Appendix

Proof of Theorem 1

Let Qh(w) = PSh
(w /∈ Sh), and then for any (x,w, η̃) such that b(T (x), η̃) = w,

cplT (x)|h(η̃) = 1− PSh
(ΘT (x)(Sh) ⊆ (−∞, η̃) ∪ (η̃,+∞))

= 1− PSh
(η̃ /∈ ΘT (x)(Sh))

= 1− PSh
(w /∈ Sh) ≡ 1−Qh(w). (20)
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Therefore,
cplT (X)|h(η) ≥ α ⇔ Qh(Wb(θ

∗)) ≤ 1− α. (21)

First fix θ∗, and let PT (X),η|H(X)=h denote the probability measure of (T (X), η)
given H(X) = h, and then we see that PT (X),η|H(X)=h ≡ PWT ,Vη|h. As a result,
we apply the probability measure PWT ,Vη|h on both sides of (21), obtaining

PT (X),η|H(X)=h

(
cplT (X)|h(η) ≥ α

)
= PWb(θ∗)|h (Qh(Wb(θ

∗)) ≤ 1− α) .

The validity of Sh implies PWb(θ∗)|h (Qh(Wb(θ
∗)) ≥ 1− α) ≤ α for any θ∗.

Therefore,

PX,η|H(X)(Cα(X) � η|H(X) = h) = PT (X),η|H(X)=h

(
cplT (X)|h(η) ≥ α

)
≥ 1−α.

(22)
Note that (22) is true for any fixed θ∗, so it also holds with θ∗ ∼ π∗(θ∗), for any
π∗(θ∗).

Proof of Theorem 2

Similar to (20), we have cplT (x)|h,t(η̃) ≥ α ⇔ Qh,t(w) ≤ 1 − α, where (x,w, η̃)
satisfies b(T (x), η̃) = w, and Qh,t(w) = PSh,t

(w /∈ Sh,t). Fixing t ≡ T (x),
η �→ b(t, η) is one-to-one by definition, so the mapping must be monotone.
Without loss of generality we assume b(t, η) is increasing in η, since otherwise
we can use −b in place of b.

Let Zη = aη(U, Vη), and then it can be shown that

FWb|h,t(w) = PWb|h,t (Wb ≤ w|WH = h, ZT = t)

= PZT ,Zη|h,t (b(ZT , Zη) ≤ b(t, η̃)|WH = h, ZT = t)

= PZη|h,t (b(t, Zη) ≤ b(t, η̃)|WH = h, ZT = t)

= PU,Vη|h,t (aη(U, Vη) ≤ η̃|WH = h, ZT = t) .

By the definition of the decomposition in (3), WH = h, aT (θ
∗,WT ) = t ⇔

a(θ∗,W ) = x, and hence WH = h, ZT = t ⇔ a(U,W ) = x. Also it is clear from
the association equations that (θ∗, η,X) ≡ (U, aη(U, Vη), a(U,W )), so we have
FWb|h,t(w) = Pη|X=x(η ≤ η̃|X = x) = Fη|x(η̃).

Finally, let u = FWb|h,t(w). Since

Sh,t =
{
F−1
Wb|h,t

(u′), u′ ∈ (0, 1) : |u′ − 0.5| < |US − 0.5|
}
, US ∼ Unif(0, 1),

we have

Qh,t(w) = PSh,t
(w /∈ Sh,t) = PUS (|u− 0.5| ≥ |US − 0.5|) = |1− 2u|

= |1− 2Fη|x(η̃)|,

and hence cplT (x)|h,t(η̃) ≥ α ⇔ Qh,t(w) ≤ 1− α ⇔ α/2 ≤ Fη|x(η̃) ≤ 1− α/2.
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Proof of Theorem 3

We first show that ZTn

P→ U and Wbn
P→ Vη under conditions (a) and (b).

Let PU be the probability measure of U . Since U and WTn are independent,
we have that for any ε > 0, P (|ZTn − U | > ε) =

∫
fndPU where fn(u) =

PWTn
(|aT (u,WTn)− u| > ε). Condition (a) indicates that fn → 0, and then by

|fn| ≤ 1 and the dominated convergence theorem, we have
∫
fndPU → 0, which

implies that ZTn

P→ U . Moreover, ZTn

P→ U implies (ZTn , Zη)
P→ (U,Zη), where

Zη = aη(U, Vη). Then by the continuous mapping theorem and condition (b) we

obtain Wbn
P→ b(U, aη(U, Vη)) = Vη and Wbn(θ

∗)
P→ Vη.

Next we prove that E(f(Wbn)|ZTn)
P→ E(f(Vη)) for any bounded continuous

function f , where the notation E(X|Y ) stands for the conditional expectation
of X given Y . The main tool to prove this result is Theorem 2.1 of Goggin
(1994). Let Qn be a probability measure under which Wbn and ZTn are in-
dependent, i.e., Qn((−∞, w] × (−∞, z]) = FWbn

(w)FZTn
(z), where FWbn

and
FZTn

are the corresponding marginal c.d.f.’s. Then for any ε > 0, under the
Qn measure, PQn(|ln(Wbn , ZTn) − 1| > ε) =

∫
IAndQn, where IAn is the in-

dicator function of the set An = {(w, z) : |ln(w, z) − 1| > ε}. Condition (c)
implies that IAn → 0 pointwisely, so by the dominated convergence theorem

we have
∫
IAndQn → 0. As a result, under the Qn measure, ln(Wbn , ZTn)

P→ 1

and hence (Wbn , ZTn , ln(Wbn , ZTn))
d→ (Vη, U, 1). Then Theorem 2.1 of Goggin

(1994) claims that E(f(Wbn)|ZTn)
d→ E(f(Vη)|U) for any bounded continuous

function f . Since U and Vη are independent, we have E(f(Vη)|U) = E(f(Vη))

and hence E(f(Wbn)|ZTn)
P→ E(f(Vη).

Finally, Theorem 2.1 of Xiong and Li (2008) shows that E(f(Wbn)|ZTn)
P→

E(f(Vη)) is equivalent to Wbn |ZTn

d.P→ Vη, which concludes the proof.

Proof of (12), (13), and (14)

Let 0k denote the k × 1 zero vector, Ik be the k × k identity matrix, and
Jk be a k × k matrix with all elements being one. It is easy to show that

(Wb,W
′
H)′ = A(e′, ε′)′, where A =

(
1
n

1
n1

′
n−1 ( 1n − 1)τ τ

n1
′
n−1

−1n−1 In−1 −τ1n−1 τIn−1

)
,

e = (e1, . . . , en)
′, and ε = (ε1, . . . , εn)

′. Since (e′, ε′)′ ∼ N(02n, I2n), we have
(Wb,W

′
H)′ ∼ N

(
02n,

(
Σ11 Σ12

Σ21 Σ22

))
, where Σ11 = {1+(n−1)τ2}/n, Σ12 = τ21′

n−1,

and Σ22 = (τ2 + 1)(Jn−1 + In−1).
Simple calculation shows that Σ−1

22 = (τ2 + 1)−1(In−1 − n−1Jn−1), and then
according to the property of multivariate normal distribution, we haveWb|WH =
h ∼ N(μ̃, σ̃2), where μ̃ = Σ12Σ

−1
22 h = τ2(τ2 + 1)−1(x̄ − x1), and σ̃2 = Σ11 −

Σ12Σ
−1
22 Σ21 = n−1(1 + τ2)−1(nτ2 + 1).

Let FWb|h denote the c.d.f. of N(μ̃, σ̃2), then

Sh =
{
F−1
Wb|h(u

′), u′ ∈ (0, 1) : |u′ − 0.5| < |US − 0.5|
}
, US ∼ Unif(0, 1)

= {z : |(z − μ̃)/σ̃| < |ZS |} , ZS ∼ N(0, 1).
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Therefore, define Qh(s) = PSh
(s /∈ Sh), and we get Qh(s) = 2Φ(|(s− μ̃)/σ̃|)−1.

From (20) we have cplT (x)|h(μ1) = 1−Qh(w) where w = b(T (x), μ1) = x̄− μ1.
As a result, cplT (x)|h(μ1) = 2− 2Φ(|(x̄− μ1 − μ̃)/σ̃|) = 2Φ (−|(x̄− μ1 − μ̃)/σ̃|),
which reduces to (13). The interval estimator then follows directly.

Proof of (16) and (17)

Let U = (τε1 + e1 − τ̃Z) /(
√
nτ̃), and then it is easy to verify that (U, e1)

′ ∼
N(0,Σ), where Σ =

( 1 ρ
ρ 1

)
and ρ = (

√
nτ̃)−1. Since U , e1, and M2

n−2 are inde-

pendent, the joint density function of (U, e1,M
2
n−2) can be written as

g0(u, z, x) ∝ exp

{
−1

2
(u, z)Σ−1(u, z)′

}
x

n
2 −2 exp

{
−n− 2

2
x

}
.

LetWe = e1/
√
M2

n−2. Note also thatWH = U/
√
M2

n−2, so with the transforma-

tion of variables s = x/
√
z, h = y/

√
z, t = z, the joint density of (We,WH ,M2

n−2)
is

g(s, h, t) ∝ exp

{
−1

2
(s
√
t, h

√
t)Σ−1(s

√
t, h

√
t)′
}
t
n
2 −2 exp

{
−n− 2

2
t

}
· t

= exp

{
−1

2
t(s, h)Σ−1(s, h)′

}
t
n
2 −1 exp

{
−n− 2

2
t

}
.

For simplicity of notations let Σ−1 = ( A B
B A ), where A = n(τ2 + 1)(nτ2 +

1)−1, B = −(nτ2 + 1)−1
√
n(n− 1)(τ2 + 1), and then the joint density of (We,

M2
n−2) given WH = h is

g(s, t|h) ∝ exp

{
−1

2
t(As2 + 2Bsh+Ah2)

}
t
n
2 −1 exp

{
−n− 2

2
t

}

= exp

{
−A

2
t

(
s+

B

A
h

)2
}

· tn
2 −1 · exp

{
−1

2
(h2 + n− 2)t

}
. (23)

Integrating s out gives g(t|h) ∝ t(n−1)/2−1 exp
{
−(h2 + n− 2)t/2

}
, which cor-

responds to the 2(h2 + n− 2)−1Gamma((n− 1)/2) distribution. (23) also shows
that given WH = h and M2

n−2 = t, the density function of We is g(s|h, t) ∝
exp

{
−At(s+ hB/A)2/2

}
, implying the N

(
−hB/A, (At)−1

)
distribution.

As a consequence, given WH = h, the random variables M2
n−2 and We can

be expressed as M2
n−2 = CM̃2 and We = −hB/A + (AM2

n−2)
−1/2Z̃, where

C = (n − 1)(h2 + n − 2)−1, M̃2 ∼ χ2
n−1/(n − 1), Z̃ ∼ N(0, 1), and M̃2 and

Z̃ are independent. Therefore, e1 = We

√
M2

n−2 = h
√

ω(n− 1)/n ·
√
CM̃ +√

1− ω(n− 1)/n · Z̃.
Now consider the distribution ofX(−1)−μ1. It is easy to see thatX(−1)−μ1 =

e1 −
√
nτ̃WHMn−2, so given WH = h,



Inference for partial Bayes problems 4665

E(X(−1) − μ1|WH = h) = E(e1|WH = h)−
√
nτ̃hE(Mn−2|WH = h)

= h
√
C
(√

ω(n− 1)/n− 1/
√
ω(n− 1)/n

)
E(M̃).

Also E(S(−1)|WH = h) =
√
C/ω ·E(M̃), E(S−1

(−1)|WH = h) =
√

ω/C ·E(M̃−1) =

(n − 1)(n − 2)−1
√

ω/C · E(M̃), so with the μ̃ given in (16), we can show that
E(X(−1) − μ1 − μ̃|WH = h) = 0. Similarly, it can be calculated that

Var(X(−1) − μ1 − μ̃|WH = h) = 1− (n− 1)(n− 2)(n− 3− h2)

n(n− 3)(n− 2 + h2)
ω,

and an unbiased and consistent estimator for ω is ω̂ = (n−3)(h2+n−2)−1S−2
(−1).

Therefore, with the σ̃ in (16), Wb(τ)|WH = h
d→ N(0, 1) for any τ > 0. The n−γ

term is used to guarantee that the variance is always positive.
Finally, the auxiliary variable to predict is

Wb(τ) =
c2
√
ω
(
M̃ − c3M̃

−1
)
+
√

1− ω(n− 1)/nZ̃√
max

{
n−γ , 1− c1ωM̃−2

} ,

and (17) follows immediately.

Computation for the Poisson hierarchical model

We first obtain the expression for �(λ1;x). Given λ1, X1 ∼ Pois(λ1t1), Xi =
F−1
λ1tiVi/V1

(Ui), and X1 and X(−1) = (X2, . . . , Xn)
′ are independent. Marginally

Xi follows a negative binomial distribution NB(s, p) with probability mass func-
tion p(x) ∝ ps(1−p)x, where p = 1/(1+γ). Therefore, the joint density of X(−1)

and V1 is

p(x2, . . . , xn, v1|λ1) =

n∏
i=2

{
Γ(xi + s)

Γ(s)
psi (1− pi)

xi

}
· 1

Γ(s)
vs−1
1 e−v1 ,

pi =
1

1 + λ1ti/v1
,

and hence the density of X(−1) is

p(x2, . . . , xn|λ1) =

∫ +∞

0

n∏
i=2

{
Γ(xi + s)

Γ(s)
psi (1− pi)

xi

}
· 1

Γ(s)
vs−1
1 e−v1dv1.

As a result, �(λ1;x) = x1 log(λ1) − λ1t1 + log p(x2, . . . , xn|λ1) + C, where C
is some constant unrelated to λ1, and the MLE for λ1 can be obtained using
standard optimization methods.

To obtain Gλ1 , the c.d.f. of Wb(λ1), we first use Monte Carlo method to
simulate U and V to get a random sample of Wb(λ1), and then Gλ1 is approxi-
mated by Ĝλ1 , the empirical c.d.f. of Wb(λ1). Finally, the interval estimator is
computed using a grid search on plx(λ1).
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Computation for the binomial rate-difference nodel

It is easy to show that �(δ, ω;x, y) = x log p1 + (m − x) log(1 − p1) + y log p2 +
(n − y) log(1 − p2) + log π(δ), where p1 = {1 + δ + (1 − |δ|)ω}/2 and p2 =
{1− δ + (1− |δ|)ω}/2.

Keeping δ fixed, ω̂δ = argmaxω �(δ, ω;x, y) can be obtained by solving the
equation

∂�

∂ω
=

(
x

p1
− m− x

1− p1
+

y

p2
− n− y

1− p2

)
· 1
2
(1− |δ|) = 0. (24)

Since p1 = p2+δ, (24) reduces to a cubic equation ap32+bp22+cp2+d = 0, where
a = m+n, b = −(x+y)−m(1−δ)−n(1−2δ), c = x−mδ+y(1−2δ)−n(δ−δ2),
and d = y(δ−δ2). The solution should be sought within the range max(0,−δ) <

p2 < min(1, 1 − δ). As a result, (δ̂, ω̂) = argmaxδ,ω �(δ, ω;x, y) is obtained by
computing ω̂δ over a grid of δ values.

The remaining part of the computation proceeds similarly to the Poisson
model, by simulating (U1, U2, U) and computing the distribution of Wb(ω), and
hence the details are omitted.
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