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Abstract: A periodic dynamic factor model (PDFM) is introduced as a
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the PDFM, the loading matrices are allowed to depend on the “season” and
the factors are assumed to follow a periodic vector autoregressive (PVAR)
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introduced estimation procedures, and applications to several real data sets
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1. Introduction

Dynamic factor modeling of multivariate (vector) time series is a common and
popular approach, especially when the dimension of a time series is large, pos-
sibly larger than the sample size. See, for example, Bai and Ng (2008), Stock
and Watson (2011), Doz, Giannone and Reichlin (2011, 2012). A dynamic factor
model (DFM, for short) of a q-vector time series {Xn}n∈Z is expressed as

Xn − μ = Λ0Fn + εn, (1.1)

where μ is the mean of Xn, Λ0 is a loading matrix of dimension q× r, {Fn} is a
r-vector time series consisting of r factors with r typically much smaller than q
and {εn} is a q-vector time series uncorrelated with {Fn}, sometimes assumed
to be white noise (i.e. {εn} ∼ WN(0,Σε)) though it can also be correlated in
time. The factors {Fn} are commonly assumed to follow a vector autoregressive
model of order p (VAR(p) model),

Φ(B)Fn = ζn, (1.2)

where Φ(B) = I − Φ1B − . . . − ΦpB
p is a VAR matrix polynomial with the

usual backward shift operator B, each matrix Φi of dimension r × r, and
{ζn} ∼ WN(0,Σζ). In fact, the DFM (1.1)–(1.2) is also called static; more
generally, DFM is defined by replacing Λ0 in (1.1) by a loading matrix poly-
nomial Λ(B). Depending on the assumptions and the estimation method used,
additional restrictions on the model parameters are also made (e.g. Λ0 is lower
triangular, Σε is diagonal and Σζ = Ir, the r × r identity matrix). The model
(1.2) is also commonly assumed to be strictly stationary and causal, though
nonstationary DFMs have also been considered.

In this work, we are interested broadly in dynamic factor models for multi-
variate series exhibiting cyclical behavior with period s. We use the term “cycli-
cal behavior” loosely and rather mean by it a collection of associated models.
Two main modeling approaches for univariate series exhibiting cyclical behav-
ior are based on either (multiplicative) seasonal ARIMA models (e.g. Brockwell
and Davis (2009), Ghysels and Osborn (2001)) or periodic ARMA models (e.g.
Franses and Paap (2004), Hurd and Miamee (2007)). Dynamic factor modeling
based on seasonal vector ARIMA models has been studied by several authors.
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Alonso, Garćıa-Martos, Rodŕıguez and Sánchez (2011) assume that common
factors follow a seasonal VARIMA(p, d, q)×(P,D,Q)s model

(I −B)d(I −Bs)DΦ(B)Φs(B
s)Fn = c+Θ(B)Θs(B

s)ζn, (1.3)

where s is the period, Φ(B) is as in (1.2), Φs(B
s) = I−Φs,1B

s− . . .−Φs,PB
sP

is a seasonal VAR matrix polynomial, Θ(B) and Θs(B
s) are, similarly, MA

matrix polynomials of respective orders q and Q,1 and d,D are non-negative
integers (that allow for factors to be non-stationary when d ≥ 1 or D ≥ 1).
Using a state space formulation of the model (1.1)–(1.2), and imposing flexible
restrictions on model parameters, the authors developed an EM algorithm for
model estimation. Furthermore, bootstrap strategies were proposed to quantify
statistical uncertainty associated with parameter estimates and forecasts. Nieto,
Pena and Saboyá (2016) proposed a similar model but identifying separately
the factors that are (i) non-stationary and non-seasonal, (ii) (non-stationary)
seasonal, and (iii) stationary. A notable procedure to estimate the dimension
of the three different types of factors was proposed by the authors, based solely
on suitable covariance matrices.

In contrast to seasonal models, there has seemingly been no work on dynamic
factor modeling of multivariate series for which periodic models are better or
more natural alternatives than the seasonal models above. The goal of this paper
is to introduce and to study several approaches to such periodic dynamic factor
modeling. The most general form might be to assume, in the “stationary” and
“static” form, that

Xn − μm = ΛmFn + εn, (1.4)

where m = m(n) = 1, . . . , s, refers to the season that n belongs to, the q × r
loading factors Λm possibly depend on the season m, {εn} is a WN series whose
covariance matrix Eεnε

′
n = Σε,m possibly depends on the season m (denoted

{εn} ∼ WN(0,Σε,m)) and the r×1 factors {Fn}, which are independent of {εn},
are assumed to follow a periodic VAR model of order p (PVAR(p), for short),

Φm(B)Fn = ζn (1.5)

with the VAR matrix polynomial Φm(B) = I−Φm,1B−. . .−Φm,pB
p depending

on the season m and {ζn} ∼ WN(0,Σζ,m). (The order p may depend on the
season as well but we consider the case of a single p for simplicity.) We shall
refer to (1.4)–(1.5) as a periodic dynamic factor model (PDFM). As with (1.2),
we also assume that (1.5) is in the stationary and causal regime.

We note that as defined above, the PDFM is quite general. It includes several
potentially interesting special cases including:

• periodic Λm, Σε,m, non-periodic stationary Fn;

• constant Λm = Λ, Σε,m = Σε, periodic Fn; (1.6)

• periodic Σε,m, constant Λm = Λ, non-periodic stationary Fn;

1 The MA orders q and Q are used only in this part of the paper and should not be
confused with the dimension of the series X.
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and others (but see also Remark 2.1 below). In all these special and general cases,
the component series of the PDFM (1.4)–(1.5) are periodically correlated in the
sense that the mean μ(n) = EXn and the autocovariance function γ(n1, n2) =
Cov(Xn1 , Xn2) are periodic with period s, that is,

μ(n) = μ(n+ s), γ(n1, n2) = γ(n1 + s, n2 + s), n, n1, n2 ∈ Z. (1.7)

Hence, PDFMs should be used primarily when periodic correlations are observed
for univariate component series. This will be illustrated on real time series below.

In this work, we shall study estimation methods for the PDFM (1.4)–(1.5)
and some of its special cases as in (1.6). Following the approaches taken for
DFMs in the literature, we shall consider two estimation frameworks for the
so-called exact and approximate model formulations. (The distinction is made
and discussed nicely in Doz et al. (2012).) For the exact DFM formulation, it is
assumed for identification purposes that Σζ is the identity matrix and Λ0 is lower
triangular, and without sacrificing much model flexibility, it is further assumed
that Σε is diagonal (see, e.g. Peña and Poncela (2006), Alonso et al. (2011)).
Sometimes, the polynomials Φ(B) are assumed to be diagonal as well (e.g. Nieto
et al. (2016)). Other identifiable model formulations are also used (e.g. Bai and
Wang (2015)). For the exact model formulation, estimation is typically carried
out using the EM algorithm. We shall also make similar assumptions on our
PDFM in the exact case and employ the EM algorithm. The exact model though
is usually fitted for smaller dimensions q, which we shall also do here.

In higher dimension q, assuming that both q and T , the sample size, con-
verge to infinity, it has been well recognized that weaker assumptions on the
model factor structure can be imposed, under the term “approximate DFM”,
which lead to consistency results subject to properly rotated factors. See Doz
et al. (2011, 2012), Bai and Ng (2007), Forni, Hallin, Lippi and Reichlin (2000).
Moreover, in this case, the model parameters in approximate DFMs can be es-
timated using principal components, though the effects of additional iteration
steps involving smoothing as in the EM algorithm have also been studied. In
this work, we shall extend the approximate DFM formulation and convergence
results to PDFMs, relying heavily on the work by Doz et al. (2011, 2012). An
additional important feature of this work is that we shall also be using sparse
models on multiple occasions. This should come as no surprise since allowing
DFM coefficients to depend on the season increases their number considerably.

The rest of the paper is organized as follows. Estimation of PDFMs is consid-
ered in Section 2, including the statements of the main results of this work. A
competing approach where standard DFM is applied to the multivariate series
obtained by “stacking” Xn’s across the s seasons, is also discussed in Section
2. A simulation study is presented in Section 3, and applications to several real
data sets can be found in Section 4. Section 5 concludes while Appendix A
includes the proofs of the results mentioned in Section 2, and Appendix B dis-
cusses the adaptive lasso estimation procedure for the so-called Fourier PVAR
model.
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2. Estimation of PDFMs

We present here estimation methods for PDFMs in the two formulations, exact
(Section 2.1) and approximate (Section 2.2), as discussed in the context of DFMs
in Section 1. Some asymptotic results for the approximate formulation are also
given (Section 2.3) along with estimation methods based on sparsity and the
Fourier representation (Section 2.4). The case of a different number of factors
across seasons in (1.4) is also discussed (Section 2.5).

2.1. Exact model formulation and EM estimation

In the exact formation, we assume that the PDFM parameters in (1.4)–(1.5)
satisfy:

Λm =

(
Ir
Bm

)
, (2.1)

where Bm has dimension (q − r) × r. For the usual DFMs, the identifiability
of model parameters under the assumption analogous to (2.1) was proved in
Bai and Wang (2015), and their arguments extend straightforwardly to PDFMs
under (2.1). In fact, a basic reason for (2.1) leading to identifiability is that
essentially any q × r loading matrix Λm can be reduced to the form (2.1) as

ΛmCm =

(
Λ
(1)
m

Λ
(2)
m

)
Cm =

(
Λ
(1)
m Cm

Λ
(2)
m Cm

)
=

(
Ir
Bm

)
, (2.2)

where Λ
(1)
m and Λ

(2)
m are r× r and (q− r)× r, respectively, and the r× r matrix

Cm is such that Λ
(1)
m Cm = Ir (which requires that Λ

(1)
m is non-singular). Since

ΛmFn = ΛmCmC−1
m Fn, the use of Cm to achieve the identifiable form (2.2) just

means that the factors Fn similarly need to be adjusted through C−1
m .

As in the usual exact DFMs, the parameters of the models (1.4)–(1.5) can
be estimated with the EM algorithm. For this purpose and e.g. when p = 1,
we have adapted here the arguments in the R code for the EM algorithm found
in Shumway and Stoffer (2006), pp. 342–344, with the following changes: in
the M-step of the algorithm, we also need to minimize with respect to the
loading matrix (At in Shumway and Stoffer (2006)); we allow both the loading
matrix At and the PVAR matrix Φt to depend on the season, and, finally, in
the M-step, we also work and perform minimization under the parametrization
(2.1) of the loadings. The R code implementing this will be available online
upon publication of the article. We also note that the EM algorithm requires
initial values of the model parameters. For these, we use the values obtained
from the principal component approach discussed in Section 2.2 below, after
transforming the latter to the used identifiable parametrization through (2.2).
As with all likelihood calculations, the EM algorithm can also yield confidence
intervals for the parameters of interest, through inverting the numeric Hessian.
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2.2. Approximate model formulation and PCA estimation

We discuss here estimation of factors and the underlying PVAR model in the
PDFM defined by (1.4)–(1.5) in its approximate formulation. As noted in Sec-
tion 1, the latter refers to model assumptions and the fact that large q is con-
sidered.

One of the basic observations is that PDFM can be viewed as consisting of

s separate DFMs. That is, let X
(m)
t = Xm+(t−1)s, where s is the period and

m = 1, . . . , s is one of the seasons. Define similarly ε
(m)
t , F

(m)
t and ζ

(m)
t . Then,

(1.4) is equivalent to s “static” DFMs: for m = 1, . . . , s,

X
(m)
t − μm = ΛmF

(m)
t + ε

(m)
t . (2.3)

The factors {F (m)
t } can then be estimated as in the usual DFM. The exact

procedure is adapted from Doz et al. (2011), and is recalled below. Estimation
of the underlying PVAR model in (1.5), which is also discussed below, requires
a more delicate extension. As in Doz et al. (2011), we assume without loss of

generality that EF
(m)
t (F

(m)
t )′ = Ir, where Ir is the r × r identity matrix.

Suppose that we observe a q-vector time series X1, . . . , XN with the sample
size

N = Ts, (2.4)

so that, for simplicity, each season has exactly T observations (or, equivalently,
there are exactly T cycles of length s in the sample of size N). Dynamic factors

F
(m)
t , loading matrices Λm and PVAR matrices Φm,i and Σζ,m are estimated

through the following steps:

1. Deseasonalize the series X
(m)
1 , . . . , X

(m)
T , m = 1, . . . , s, to obtain

Y
(m)
t = X

(m)
t − μ̂m, t = 1, . . . , T,

with μ̂m = 1
T

∑T
t=1 X

(m)
t .

2. For each season m = 1, . . . , s, diagonalize the sample covariance matrix

Σ̂
(m)
Y of Y

(m)
t , t = 1, . . . , T, as

Σ̂
(m)
Y =

1

T

T∑
t=1

Y
(m)
t (Y

(m)
t )′ = ÛmD̂mÛ ′

m, (2.5)

where D̂m = diag(d̂m,1, . . . , d̂m,q) with d̂m,1 ≥ . . . ≥ d̂m,q and Ûm =

(Ûm,1, . . . , Ûm,q) is the orthogonal eigenvector matrix such that ÛmÛ ′
m =

Û ′
mÛm = Iq and Σ̂

(m)
Y Ûm,i = dm,iÛm,i.

3. The principal component estimators of F
(m)
t and Λm for season m =

1, . . . , s, are given by

F̂
(m)
t =

1

q
Λ̂′
mY

(m)
t , Λ̂m =

√
q(Û1, . . . , Ûr), t = 1, . . . , T, (2.6)

where r is the number of factors used.
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4. Use the least squares method to estimate the parameters of the PVAR(p)

model in (1.5) based on F̂n, n = 1, . . . , T s, to obtain the estimates Φ̂m,1,

. . . , Φ̂m,p and Σ̂ζ,m, m = 1, . . . , s. The covariance matrix Σε,m =

Eε
(m)
t (ε

(m)
t )′ is estimated as Σ̂ε,m = Σ̂

(m)
Y − Λ̂mΛ̂′

m.
5. Run one iteration of the Kalman smoother based on (1.4)–(1.5) by re-

placing μm, Λm, Σε,m, Φm,1, . . . ,Φm,p and Σζ,m by μ̂m, Λ̂m, diag
(
Σ̂

(m)
Y −

Λ̂mΛ̂′
m

)
, Φ̂m,1, . . . , Φ̂m,p and Σ̂ζ,m, respectively. The smoother yields the

final estimate F̃n of the factors.

Several comments regarding the steps above are in order. The estimators (2.6)
are defined as they appear in the literature of principal component analysis,
e.g., Bai and Ng (2008), Stock and Watson (2011). The principal component

estimators in (2.6) of Step 3 are the solutions F
(m)
t and Λm minimizing the sum

of squares

SSE(m)(r) =
1

qT

T∑
t=1

(
Y

(m)
t − ΛmF

(m)
t

)′ (
Y

(m)
t − ΛmF

(m)
t

)
, (2.7)

subject to the normalization q−1Λm
′Λm = Ir. The last step, Step 5, follows Doz

et al. (2011). We also note that iterating Steps 4 and 5 is possible and is closely

related to employing the EM algorithm. That is, based on the final estimate F̃n

of the factors, we can get new estimates of PVAR(p) parameters and minimizing

(2.7) for given F̃n subject to normalization on loadings gives updated estimates
of loadings, and so on. This is essentially the same as running the EM algorithm
of Section 2.1, as used by Engle and Watson (1981) in the case of DFMs. Doz
et al. (2011) also mention iteration procedures but their simulation study shows
that just one iteration performs reasonably well in practice. Our simulation
study comparing the exact and approximate model approaches in Section 3.2
also shows that just one iteration seems to work well in practice. The expression
in (2.5) follows the convention used by Stock and Watson (2011).

Finally, we should also note that the “decoupling” of the original PDFM
(1.4)–(1.5) into s separate DFMs should not be too surprising. For example,
estimation of time-varying loadings by means of a time-localizing kernel function
can be found in Su and Wang (2017). As noted above, it is a bit more delicate
to show that the estimated factors can be “pieced” back together into a PVAR
model (1.5), assuming that the latter holds at the PDFM level.

Remark 2.1. Related to the last point, we also make the following important,
even if seemingly trivial, observation. The factors Fn in (1.4)–(1.5) can be iden-
tified up to rotations only, which further can depend on m. In this regard, note
that the PVAR model (1.5) is “closed” under the multiplication of Fn by such
rotation matrices, in the sense that this would only change the parameters of
the PVAR model. Indeed, with rotations Cm and e.g. when p = 1, we have that

Cm(n)Fn =
(
Cm(n)Φm,1C

−1
m(n−1)

)
Cm(n−1)Fn−1 + Cm(n)ζn

=: Φ̃m,1

(
Cm(n−1)Fn−1

)
+ ζ̃n.
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Thus, the new rotated factor process Cm(n)Fn is necessarily a PVAR. This pre-
cludes the first case in (1.6) as a possibility in the model specification (1.4)–(1.5),
and this case should not be considered.

2.3. Asymptotic results for approximate model formulation

The results proved in Doz et al. (2011) can also be used directly to describe
the asymptotics of the estimated factors and the PVAR model parameters in
the approximate model formulation. This shall require q, T → ∞; otherwise,
no consistency can be expected. We shall suppose that the number of factors
r and the underlying PVAR model order p are known – their estimation is
discussed below. For identifiability purposes, we also need to fix a rotation up
to which the factors and the PVAR model parameters will be identified. Thus,
for m = 1, . . . , s, let

Λ′
mΛm = QmDmQ′

m (2.8)

be the eigenvalue decomposition of Λ′
mΛm, where Dm is a diagonal matrix con-

sisting of the eigenvalues of Λ′
mΛm and Qm is the orthogonal matrix consisting

of the corresponding eigenvectors. Set

G
(m)
t = Q′

mF
(m)
t , Πm = ΛmQm, Ψm(B) = Q′

mΦm(B)Qm, (2.9)

so that the PDFM can be expressed as

X
(m)
t − μm = ΠmG

(m)
t + ε

(m)
t , (2.10)

with the underlying PVAR(p) model for {G(m)
t } given by

Ψn(B)Gn = ηm,n, (2.11)

where Gm+(t−1)s = G
(m)
t and {ηm,n} ∼ WN(0,Ση,m) with Ση,m = Q′

mΣζ,mQm.
The key feature of the model (2.10) is that Π′

mΠm is now diagonal (and

EG
(m)
t (G

(m)
t )′ = Ir holds as for F

(m)
t ). Let also D̂m,r = diag(d̂m,1, . . . , d̂m,r)

and P̂m,r = (Ûm,1, . . . , Ûm,r) with d̂m,i and Ûm,i defined following (2.5) and set

Ĝ
(m)
t = D̂−1/2

m,r P̂ ′
m,rY

(m)
t , Π̂m = P̂m,rD̂

1/2
m,r. (2.12)

The estimates of Ψm(B) based on Ĝn will be denoted Ψ̂m(B). Note that F̂
(m)
t

and Λ̂m in (2.6) are equal to Ĝ
(m)
t and Π̂m in (2.12) up to the diagonal matrices

D̂
1/2
m,r/q1/2 and D̂

−1/2
m,r q1/2, respectively, that is,

F̂
(m)
t =

D̂
1/2
m,r

q1/2
Ĝ

(m)
t , Λ̂m = Π̂mD̂−1/2

m,r q1/2. (2.13)

As in Step 5 above, we let G̃n be the smoothed estimate of Ĝn obtained through
the Kalman smoother.

The following assumptions will be made for the PDFM (1.4)–(1.5) following
Doz et al. (2011).
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(A1) For any season m = 1, . . . , s, {X(m)
t } = {(X(m)

1t , . . . , X
(m)
qt )′} is a station-

ary time series with finite variance.

(A2) For each m = 1, . . . , s, there is M > 0 such that Var(X
(m)
it ) ≤ M for all i

and t.
(A3) For all m1,m2 ∈ {1, . . . , s}, {F (m1)

t } and {ε(m2)
t } are independent time

series. Furthermore, {F (m)
t } has a Wold representation:

F
(m)
t =

∞∑
k=0

C
(m)
k Z

(m)
t−k

with
∑∞

k=0 ‖C
(m)
k ‖ < +∞ and {Z(m)

t } is stationary up to order four. The

series {ε(m)
t } also admits a Wold representation:

ε
(m)
t =

∞∑
k=0

D
(m)
k ν

(m)
t−k

with
∑∞

k=0 ‖D
(m)
k ‖ < +∞ and {ν(m)

t } consists of IID random variables

such that E(ν
(m)
it )4 ≤ M for some M > 0.

(A3′) The factors {Fn} follow PVAR(p) model:

Φm(B)Fn = ζm,n,

where the VAR matrix polynomial Φm(B) = I−Φm,1B−. . .−Φm,pB
p may

depend on the season m of the time point n, and {ζm,n} ∼ IID(0,Σζ,m)
with finite fourth moment. Furthermore, the corresponding VAR model

(2.24) of the series F̃t = vec(F
(1)
t , . . . , F

(s)
t ), formed by stacking the factors

over one full period, is stationary and causal. (The conditions for the latter
assumption are well known in the VAR setting but cannot be expressed
succinctly in terms of the matrix polynomials Φm(z), m = 1, . . . , s.)

Basically, the assumptions (A1)–(A3) impose a factor structure characterized
by stationarity and weak temporal dependence of the common and idiosyncratic
components. The summability of the coefficient matrices in the Wold decom-
positions in (A3), in particular, excludes long-memory series. We note that the
moment conditions across component indices i in (A2) and (A3) are assumed to
hold irrespective of q → ∞. The condition (A3′) posits a parametric PVAR(p)
model of the common factors.

We shall further assume weak correlations on idiosyncratic components and
relatively pronounced eigenvalues of the underlying factor structure in the sense
of approximate factor model of Chamberlain and Rothschild (1983). Let ‖A‖ =

(λmax(A
′A))1/2 be the spectral norm of a matrix A with λmax(A

′A) being the
largest eigenvalue of a matrix A′A. Let also λmin(A

′A) be the smallest eigen-
value. For any m = 1, . . . , s, assume:

(CR1) lim inf
q→∞

1

q
λmin(Λ

′
mΛm) > 0.
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(CR2) lim sup
q→∞

1

q
λmax(Λ

′
mΛm) is finite.

(CR3) lim supq→∞
∑

h∈Z
‖E(ε(m)

t ε
(m)
t+h

′)‖ is finite.

(CR4) infq λmin(E(ε
(m)
t ε

(m)
t

′)) > 0.

(A4) Λ′
mΛm has distinct eigenvalues.

Remark 2.2. The summability of the coefficient matrices in the Wold decompo-
sitions in (A3) excludes long-memory series for factors, in particular. Whether
long memory could be assumed in large DFM analysis remains an open question.
Similarly, the Wold decompositions, especially with i.i.d. innovations, preclude
many nonlinear time series of potential interest, for example, heteroscedastic
models. As noted above, the assumptions (CR1) and (CR2) correspond to strong
factors. What happens for weaker factors but for independent observations across
time, is considered in Wang and Fan (2017). It remains to be seen whether their
results can be extended to the dynamic context.

The first result concerns the asymptotics of the estimated quantities in the
relation (2.10).

Proposition 2.1. With the notation above and under the assumptions (CR1)–
(CR4), (A1)–(A4), (A3’), we have: for each m = 1, . . . , s, and fixed t,

Ĝ
(m)
t −G

(m)
t = Op

(
1
√
q

)
+Op

(
1√
T

)
, (2.14)

Π̂m −Πm = Op

(
1
√
q

)
+Op

(
1√
T

)
, (2.15)

Σ̂ε,m − Σε,m = Op

(
1
√
q

)
+Op

(
1√
T

)
, (2.16)

as q, T → ∞.

The convergence of F̂
(m)
t and Λ̂m in (2.13) is discussed in Remark A.1 of

Appendix A.
The next result concerns the asymptotics of the estimated quantities in the

underlying PVAR model.

Proposition 2.2. With the notation above and under the assumptions (CR1)–
(CR4), (A1)–(A4), (A3’), we have: for any i = 1, . . . , p, m = 1, . . . , s,

Ψ̂m,i −Ψm,i = Op

(
1

q

)
+Op

(
1√
T

)
, (2.17)

as q, T → ∞.

Remark 2.3. We expect that the result analogous to (2.14) holds for the

smoothed estimated factors G̃n as in Doz et al. (2011). For brevity, we shall
not pursue this result here – we found the effect of smoothing to be of little
practical significance.
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Several methods have been proposed to estimate the number of dynamic
factors r. For a DFM, one popular approach is based on the information criteria
studied by Bai and Ng (2007). We adapt this information criteria to find the
number of factors for PDFM by setting

r̂ = argmin
k

{log (SSE(k)) + kg(q,N)} , (2.18)

where SSE(k) is the sum of squared errors assuming k factors calculated by

SSE(k) =
1

qN

N∑
n=1

(
Xn − μ̂m − Λ̂mF̂n

)′
(Xn − μ̂m − Λ̂mF̂n) (2.19)

and g(q,N) is one of the following four functions:

g1(q,N) =
q +N

qN
log

(
qN

q +N

)
, g2(q,N) =

q +N

qN
log(q ∧N),

g3(q, T ) =
log(q ∧N)

(q ∧N)
, g4(q,N) =

q +N − k

qN
log(qN), (2.20)

where q ∧ N = min(q,N). We also mention a popular graphical method of
selecting the number of factors through the so-called scree plot. Adapting it to
our context, the eigenvalues of the covariance matrix Σ̂Y from the deseasonalized
series Xn − μ̂m are plotted on the y-axis from the largest to the smallest, and
the leveling-off point is selected as the number of factors r. See Figure 8 below
for an example. A further discussion related to the choice of r can be found in
Section 2.5 below.

The order p of the underlying PVAR model is also estimated using an infor-
mation criteria, namely, the BIC,

p̂ = argmin
k

{
1

s

s∑
m=1

log
(
|Σ̂ζ,m(k)|

)
+

logN

N
(# of freely estimated parameters)

}
, (2.21)

where Σ̂ζ,m(k) is the covariance matrix estimate of PVAR(k) model residuals
at season m.

2.4. Other approaches based on sparsity and DFMs

In the simulation study presented in Section 3 and the applications presented
in Section 4, we also estimate the underlying PVAR model by using several
other estimation methods, than just a simple least squares regression. On the
one hand, we shall use sparse estimation, following our work in Baek, Davis and
Pipiras (2017). Sparsity is natural and convenient to use with PVAR models,
which have a large number of parameters to estimate even for moderate val-
ues of dimension r. On the other hand, we shall also use sparse estimation but
in the Fourier representation of PVAR coefficients. Representing the univari-
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ate PAR coefficients in the Fourier basis is used in PAR model estimation in
Jones and Brelsford (1967), Dudek, Hurd and Wójtowicz (2016a) (see also refer-
ences therein), with the idea that only several of the Fourier coefficients will be
needed assuming the PAR coefficients change slowly over a period. Extending
the Fourier representation approach to PVAR models, the (j, k) element of Φm,i

is represented as

Φm,i(j, k) = a
(j,k)
i,1 +

H∑
h=1

a
(j,k)
i,2h cos

(
2πhm

s

)
+a

(j,k)
k,2h+1 sin

(
2πhm

s

)
, i = 1, . . . , p,

(2.22)
where H is the order of the Fourier approximation. For example, if r = 5,
s = 24 and p = 2, then the number of parameters for PVAR(2) model is given
by r2ps = 1200. While in the Fourier approximation with H = 2, the number
of parameters to be estimated is reduced to r2p(2H +1) = 250. We can further
impose sparsity on the Fourier coefficients to estimate them using adaptive lasso
as described in Appendix B. We shall refer to the modeling approach based on
(2.22) and adaptive lasso as Fourier-PVAR or FPVAR, for short.

Further insight into PDFM can be given through the following discussion.
PVAR time series {Fn} satisfying (1.5) are nonstationary in general but the

multivariate time series F̃t = vec(F
(1)
t , . . . , F

(s)
t ) obtained by stacking Fn’s over

one full period is stationary (see also the notation around (2.3)). In fact, the se-

ries {F̃t} has a VAR representation, and this is why additional suitable assump-

tions on the stationary “block” series {F (m)
t } can be made (as in Section 2.3).

These observations also naturally suggest the following “competing” dynamic
factor approach to multivariate time series with periodic dependence structure.
As with the PVAR model above, a natural possibility is to consider the “block”

vector series X̃t = vec(X
(1)
t , . . . , X

(s)
t ) obtained by stacking the original series

Xn over s seasons of the full period. Then, the usual DFM could be postulated
for {X̃t} as in (1.1)–(1.2), namely,

X̃t − μ̃ = Λ̃0F̃t + ε̃t (2.23)

and
Φ̃(B)F̃t = ζ̃t, (2.24)

where the various components of the model are interpreted as in (1.1)–(1.2).
This “stacking” approach was used by e.g., Dordonnat, Koopman and Ooms
(2012), in the case of univariate series Xn.

For later use, we shall refer to the approach based on (2.23)–(2.24) as block-

DFM (where “block” refers to the blocks X
(m)
t used to construct X̃t). Note

that block-DFM becomes our PDFM when Λ̃0 and Φ̃(B) have block-diagonal
structures, namely,

Λ̃0 = diag(Λ1, . . . ,Λs), Φ̃(B) = diag(Φ1(B), . . . ,Φs(B)). (2.25)

That is, PDFM can be viewed as block-DFM with restrictions (2.25). This
means, in particular, that a larger number of parameters needs to be estimated
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in block-DFM: the loading matrix Λ̃0 has dimension sq × sr and hence s2qr
parameters, and the polynomial Φ̃(B) has p(sr)2 parameters, as opposed to
the respective numbers sqr and spr2 for PDFM. As a consequence, if the data
actually follows PDFM, we can naturally expect better estimation performance
when going the PDFM rather than the block-DFM route. A smaller number of
parameters should also lead to better forecasts – incidentally, this is also what
we generally observe in data applications (see Section 4 below).

The number of parameters aside, the option of using PDFMs versus block-
DFMs is similar to that of using PVAR models versus VARs (or larger dimen-
sional embedded VARs). Discussions for the latter case can be found in Hurd
and Miamee (2007) p. 6, Franses and Paap (2004), Section 1.3. Among ad-
vantages of periodic models, their flexibility and convenient interpretation are
often mentioned. In some applications, periodic dependence structures are also
naturally expected: e.g., in environmental applications, this structure may be
determined by the annual seasons, or in engineering applications, as in vibra-
tions of heavy machinery, they may reflect the periods associated with machinery
rotating parts.

2.5. Varying number of factors

We assumed in the preceding sections that the number of factors is the same
across the s seasons. But the approaches described in Sections 2.1 and 2.2 extend
straightforwardly to the case of varying number of factors, but with several
caveats that are mentioned below. We do not consider this more general case
throughout the paper for two reasons: simplicity and also since the real data
considered in this work do not present strong evidence in favor of using varying
number of factors.

To be more specific, by the case of varying number of factors, we mean the
model (1.4)–(1.5) but with

Λm =
(
Λ0,m 0q×(r−rm)

)
, (2.26)

where Λ0,m has dimension q× rm, 0q×(r−rm) is the q× (r− rm) matrix of zeros,
r = maxm rm and at least one of rm is smaller than r. In other words, only the
first rm components of the r-vector factors Fn load onto Xn. Consider first such
a model in the framework of Sections 2.2–2.3, where q is assumed to be large.
Since Steps 1–3 of the estimation algorithm in Section 2.2 apply for fixed season
m, they can also be used for the model (1.4)–(1.5) with (2.26). Moreover, a
different number of factors might be suggested by using the criterion (2.18) but
replacing SSE(k) in (2.19) by SSEm(k) in (2.7), or also by examining the scree

plots of the eigenvalues of the matrices Σ̂
(m)
Y . The factors that load in season m

can still be estimated consistently by the results analogous to those in Section
2.3.

Step 4 of that algorithm, however, does not apply. One is presented with an
interesting problem of estimating the parameters of a PVAR model but where
for some season(s) m, only rm-vector parts of the r-vector series Fn are actually
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observed. This issue of “missing” data could be dealt with naturally through
the EM algorithm as e.g. in Shumway and Stoffer (2006), Section 6.4. But one
question that remains to be addressed (and that we currently do not know how
to answer) concerns identifiability issues for such PVAR models with “missing”
data. What we mean can be explained through the following simple example.
Suppose Fn is one-dimensional and satisfies a PAR(1) model with period s = 4
and the AR parameters φ1, φ2, φ3 and φ4 for the four seasons. If, for example,
Fn is “missing” in the periods 2 and 3, it is unrealistic that φ2 and φ3 can be
identified since there is no data to deduce the chronological order of seasons 2
and 3 (that is, the model parameters φ2 and φ3 may as well be interchanged).

A similar discussion also applies to the model (1.4)–(1.5) with (2.26), in
the framework of Section 2.1 where q is thought to be small. That is, modulo
the identifiability question raised above, there are a priori no major issues of
running the EM algorithm for the model (1.4)–(1.5) with (2.26) in its state space
formulation. One smaller issue to mention is that in the M-step of the algorithm,
we do not have a closed-form solution to Λm and use direct optimization. The
EM algorithm was tested successfully on simple models with varying number of
factors, and the associated code is available upon request.

3. Simulation study

In this section, we study the finite sample performance of the proposed estima-
tion methods for PDFMs by Monte Carlo simulations. We focus on the PCA
method of Sections 2.2–2.3 and then present briefly the results for the EM al-
gorithm of Section 2.1.

3.1. Approximate model formulation with PCA

For brevity, we consider loadings and idiosyncratic error terms that do not
depend on the season (but naturally the factors follow a PVAR model). The
univariate components Xj,n of Xn in the PDFM (1.4) can then be written as

Xjn =

r∑
k=1

λjkFkn + εjn, j = 1, . . . , q.

The factor loadings λjk of the matrix Λ = (λj,k) are generated as the (j, k)
components of the QR decomposition of q× r matrix consisting of i.i.d. N (0, 1)
random variables and multiplied by

√
q so that

1

q
Λ′Λ = Ir

(see, in particular, Assumptions (CR1) and (CR2) in Appendix A). The idiosyn-
cratic component is assumed to follow the AR(1) model

εjn = ρεj,n−1 + ξjn (3.1)
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with ξjn being i.i.d. N (0, 1− ρ2) so that this yields serial correlations with zero
mean and unit variance. Regarding factors Fkn, we considered two PVAR(1)
models. The first model (DGP1) parameters are given by: for s = 4 and r = 3,

Φ1,1 =

⎛⎝.1 .5 .5
0 0 .3
0 .25 .5

⎞⎠ , Φ2,1 =

⎛⎝.8 0 0
.1 0 0
0 0 .3

⎞⎠ ,

Φ3,1 =

⎛⎝0 .6 0
0 0 .2
0 .1 0

⎞⎠ , Φ4,1 =

⎛⎝.7 0 0
0 −.5 0
0 −.2 .8

⎞⎠
and

Σζ,1 = Σζ,2 = Σζ,3 = Σζ,4 =

⎛⎝ 1 1/4 1/6
1/4 1 0
1/4 0 1

⎞⎠ .

The second model (DGP2) parameters are: for s = 2 and r = 4,

Φ1,1 =

⎛⎜⎜⎝
.2 0 .1 0
0 .2 0 .1
.1 0 0 0
0 .1 0 .3

⎞⎟⎟⎠ , Φ2,1 =

⎛⎜⎜⎝
−.2 0 .1 0
0 .2 .1 .5
0 0 .7 0
.1 .1 0 −.3

⎞⎟⎟⎠ ,

Σζ,1 = Σζ,2 =

⎛⎜⎜⎝
1 1/4 1/4 1/4

1/4 1 0 0
1/4 0 1 0
1/4 0 0 1

⎞⎟⎟⎠ .

Since factors are identifiable up to a rotation (see Section 2 and also Remark
A.1 in Appendix A), we need to reestimate them and PVAR coefficients by
fixing a particular rotation. We estimate the rotation matrix Q in (2.8) (which
does not depend on m by our assumptions) as in Doz et al. (2011), p. 195,

Q̂ =

N∑
n=1

FnG̃
′
n

(
N∑

n=1

G̃nG̃
′
n

)−1

.

Then, the estimates of the PDFM factors and loadings are defined as F̄n = Q̂G̃n,
Λ̄ = Π̂mQ̂′, and the PVAR model parameters Φm,i are re-estimated based on
F̄n, denoted Φ̄m,1, m = 1, . . . , s.

We measure the performance of the estimation procedure through the fol-
lowing statistics. The first statistic measures the discrepancy of the estimated
factors through a trace R2 of the multivariate regression of F̄ onto F . Introduced
in Stock and Watson (2002), it is defined as

R2 =
Ê
[
tr
(
F̄ ′F (F ′F )−1F ′F̄

)]
Ê
[
tr
(
F̄ ′F̄

)] ,
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Table 1

The performance of the PDFM for DGP1 measured by R2 and χ2(F̄ , F ).

R2 χ2(F̄ , F )
ρ = .3 ρ = .7 ρ = .3 ρ = .7

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

q = 20 .956 .959 .955 .96 q = 20 .046 .041 .047 .041
q = 50 .976 .981 .975 .981 q = 50 .025 .019 .026 .020
q = 100 .983 .988 .983 .987 q = 100 .018 .012 .019 .013

Table 2

The MSEs of the PDFM model for DGP1.

MSE(Λ̄,Λ) MSE(Φ̄,Φ)–PVAR
ρ = .3 ρ = .7 ρ = .3 ρ = .7

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

q = 20 .146 .086 .175 .088 q = 20 .352 .171 .363 .180
q = 50 .340 .168 .386 .192 q = 50 .335 .163 .334 .162
q = 100 .667 .331 .751 .375 q = 100 .327 .157 .318 .158

MSE(Φ̄,Φ)–sPVAR MSE(Φ̄,Φ)–FPVAR
ρ = .3 ρ = .7 ρ = .3 ρ = .7

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

q = 20 .252 .121 .258 .123 q = 20 .345 .177 .356 .190
q = 50 .235 .113 .237 .111 q = 50 .333 .171 .331 .170
q = 100 .236 .111 .235 .111 q = 100 .329 .160 .331 .164

Table 3

The performance of the PDFM for DGP2 measured by R2 and χ2(F̄ , F ).

R2 χ2(F̄ , F )
ρ = .3 ρ = .7 ρ = .3 ρ = .7

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

q = 20 .949 .953 .949 .952 q = 20 .056 .05 .057 .051
q = 50 .973 .977 .973 .978 q = 50 .031 .024 .032 .024
q = 100 .981 .986 .981 .986 q = 100 .023 .016 .023 .016

where Ê denotes the empirical expectation calculated by taking average over
Monte Carlo replications. The second summary statistic is a chi-square type
statistic for common component used in Forni et al. (2000). It is given by

χ2(F̄ , F ) =
(Λ̄F̄ − ΛF )′(Λ̄F̄ − ΛF )

(ΛF )′(ΛF )
.

The last summary statistic is a mean squared error of the loading matrices and
PVAR parameters given by

MSE(Λ̄,Λ) = tr(Λ̄− Λ)(Λ̄− Λ)′,

MSE(Φ̄,Φ) =
s∑

m=1

p∑
i=1

tr(Φ̄m,i − Φm,i)(Φ̄m,i − Φm,i)
′.

We considered three different dimensions q = 20, 50 and 100 with sample
sizes T = 100 and T = 200. For the idiosyncratic errors following AR(1) model,
we considered ρ = .3 and .7. All results are based on 500 Monte Carlo repli-
cations. Tables 1 and 2 report on the performance of PDFM for DGP1. It is
observed that R2 approaches 1 and χ2(F̄ , F ) diminishes as the sample size T
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Table 4

The MSEs of the PDFM model for DGP2.

MSE(Λ̄,Λ) MSE(Φ̄,Φ)–PVAR
ρ = .3 ρ = .7 ρ = .3 ρ = .7

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

q = 20 .467 .255 .525 .288 q = 20 .367 .181 .377 .191

q = 50 1.070 .530 1.179 .585 q = 50 .352 .168 .362 .173

q = 100 2.098 1.045 2.289 1.138 q = 100 .340 .168 .346 .164

MSE(Φ̄,Φ)–sPVAR MSE(Φ̄,Φ)–FPVAR
ρ = .3 ρ = .7 ρ = .3 ρ = .7

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

q = 20 .285 .148 .287 .156 q = 20 .249 .120 .243 .128

q = 50 .278 .139 .284 .140 q = 50 .239 .119 .240 .118

q = 100 .280 .140 .271 .136 q = 100 .237 .119 .239 .115

Fig 1. The coefficients of stacked PVAR matrices Φ1,1,Φ2,1,Φ3,1,Φ4,1 for DGP1 (left) and
the averages of estimated coefficients for three different models, namely, PVAR, sPVAR and
FPVAR with q = 100, T = 100 and ρ = .3.

increases and the dimension q increases, as in Doz et al. (2011). This means
that the precision of the factor estimation increases as the data dimension in-
creases in both directions. However, the MSE of loading matrices are increasing
as the dimension q increases while the sample size T is fixed. The MSEs for
PVAR coefficients are all decreasing as the sample size T increases, and sparse
PVAR (sPVAR) method shows the smallest MSEs as we expected since the true
model is sparse. Note also that the performance of PDFM is getting worse under
stronger correlations for idiosyncratic errors.

Similar results are observed for DGP2 as shown in Tables 3–4. It is interesting
that Fourier-PVAR (FPVAR) model gives the smallest MSEs amongst all the
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Fig 2. The coefficients of stacked PVAR coefficient matrices Φ1,1,Φ2,1 for DGP2 (left) and
the averages of estimated coefficients for three different models, namely, PVAR, sPVAR and
FPVAR with q = 100, T = 100 and ρ = .7.

methods considered in this particular simulation setting. This is because, as can
be checked, the number of zero coefficients in the Fourier representation is even
larger than that in the Φm-representation of the DGP2 model. The average
estimated PVAR coefficients are illustrated in Figures 1–2 with the coloring
and its lightness associated with the displayed numerical values. In summary,
the proposed methods for estimating PDFM perform well in finite sample.

3.2. Exact model formulation with EM

We report here briefly on the performance of the estimation procedure in the
exact model formulation with the EM algorithm introduced in Section 2.1. The
data generating process (DGP3) uses the identifiable model assuming (2.1). We
set q = 4 with r = 2 and s = 4 with common loadings

Λ =

⎛⎜⎜⎝
1 0
0 1
.15 −.4
1.5 −2

⎞⎟⎟⎠
over the seasons. The underlying factors follows the PVAR(1) model with

Φ1,1 =

(
.2 0
0 .2

)
, Φ2,1 =

(
.1 .3
.3 .1

)
, Φ3,1 =

(
−.2 0
0 .2

)
, Φ4,1 =

(
.5 0
.1 .1

)
,

and idiosyncratic component follows the AR(1) model (3.1) with ρ = .3 or
ρ = .7. We considered T = 100 and T = 200 and the performance measures
are MSE(Λ̂,Λ) and MSE(Φ̂,Φ). The initial estimates for the EM algorithm are
based on PCA, that is, the principal component estimator (2.6) is rotated as in
the relation (2.2).
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Table 5

The performance of PDFM under the exact model formulation with EM for DGP3.

MSE(Λ̂,Λ) MSE(Φ̂,Φ)
ρ = .3 ρ = .7 ρ = .3 ρ = .7

T = 100 T = 200 T = 100 T = 200 T = 100 T = 200 T = 100 T = 200

Two-stage .637 .280 1.470 .388 .433 .272 .448 .276
EM .596 .265 1.290 .388 .374 .226 .373 .241

Table 5 summarizes the results. We compared the EM results with the two-
stage PCA estimator. For fair comparison, we rotated the estimates from the
two-stage estimation by multiplying C based on the relation (2.2) and re-
estimated the PVAR parameters from the rotated factors C−1Fn. Observe first
that the MSE decreases as the sample size T increases and the autocorrelation
in idiosyncratic component is getting weaker. In short, the EM algorithm suc-
cessfully estimates the underlying parameters. But note also that our two-stage
PCA estimator is comparable to EM even if the dimension q of the data is 4,
that is, quite low.

4. Applications

We apply here PDFMs to several real data sets. As noted in Section 1, PDFM
should be entertained only in the case when univariate component series exhibit
periodic correlations. In the applications below, the latter is the first thing exam-
ined and discussed. We also note that the detection tools not only reveal periodic
correlations but also suggest what the period s is. When fitting a PDFM, the
number of factors needs to be estimated as discussed at the end of Section 2.3.
This is also one of the first tasks carried out in the applications below. The rest
of PDFM analysis involves estimation of the loadings Λm and the parametric
model of the factors Fn. Here, we shall consider a number of possibilities, dis-
cussed in more detail below, with these model components being either periodic
or non-periodic, with estimation being either sparse or not, etc. Furthermore,
the results will be compared to a number of alternative approaches, for example,
the most elementary one where just the univariate series are being modeled.

4.1. Fraser river water flow

The first data set considered here is a monthly water flow from the Fraser River
in British Columbia (BC), Canada. The Fraser River is the longest river in BC
and the largest river by volume flowing into the Pacific seaside. It runs almost
1400 km and the annual discharge at its mouth is 112 cubic kilometers. The
analyzed data are the monthly averages of the daily discharge measurements, in
cubic kilometers. Six locations are selected: the Fraser River above Texas Creek,
at Hansard, at McBride, at Hope, at Red Pass and at Shelly from 1959 to 2010;
hence 624 observations are used in the analysis. We also reserved the last 24
observations for out-of-sample forecasts. The data set is obtained from the Wa-
teroffice of Canada – see http://wateroffice.ec.gc.ca for more information.

http://wateroffice.ec.gc.ca
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Fig 3. Time plots of log-transformed monthly water flow of Fraser river.

Fig 4. Seasonal mean and standard deviation at Texas Creek.

The data is log-transformed and Figure 3 shows time plots of log-transformed
monthly water flow of Fraser river at the six locations. It is clearly observed that
the data show cyclic variations. Figure 4 shows seasonal mean and standard
deviation at the Fraser above Texas creek. The water flow seems low during
the winter season, from December to May, then increasing rapidly from April,
achieving the highest flow in July, and then slowly decreasing afterwards. The
standard deviation is “bimodal” having peaks at April and October, so the water
flow dynamics changes around those times. That is, the water flow dynamics
enters a higher water flow period from May to September, and then changes to
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Fig 5. Spectral coherence plot and Lund test plot for Hope.

Fig 6. The cross-correlation plots at some selected locations.

a slow period from November to March.

Figure 5 presents two commonly used plots to detect periodic correlations
in univariate series (after removing its seasonal mean): the spectral coherence
plot according to Hurd and Gerr (2008), and a related test statistic with a crit-
ical value line from Lund (2011). The spectral coherence is plotted using the R
package perARMA (Dudek, Hurd and Wojtowicz (2016b)). The two plots are for
the univariate series at Hope. If a series exhibits periodic correlations at period
s (after removing the seasonal mean), the spectral coherence plot should have
diagonal lines emerging at multiples of the index N/s, here N/s = 600/12 = 50.
The plot in Figure 5 indeed suggests that the first major diagonal line is around
the index 50. This could be determined easier from the Lund test statistic plot,
which essentially averages the spectral coherence statistic at different indices
along the corresponding diagonals, and also provides a critical values as the
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Fig 7. Coefficient plots of sPVAR(1;110).

dashed line. Note that the Lund test statistic value exceed the critical value
at the indices 50 and 100, suggesting that periodic correlations are present in
this univariate series. Figure 6 presents the sample cross-correlations between
some selected locations prewhitened by fitting univariate AR(1) models. All
four panels show significant lag 1 (cross-) correlation and suggest that the mul-
tivariate modeling is also potentially necessary to account for between-location
dependence.

To account for such periodically correlated observations, we first applied sP-
VAR (sparse PVAR) models as in Baek et al. (2017). The best model is sP-
VAR(1;110), where 110 indicates the number of non-zero coefficients, by mini-
mizing the BIC and using adaptive lasso to estimate coefficients. Figure 7 shows
the autoregressive coefficient matrix stacked by 12 months. For example, the first
6 × 6 matrix on the left panel shows the autoregressive coefficient matrix for
January, the 6×6 submatrix below corresponds to February, and so on. It is ob-
served that coefficients from December to March look similar by having larger
coefficients on the diagonal and little-to-none correlation for the off-diagonal
entries. The coefficients for April are similar to December-March, but having
smaller coefficients and negative coefficients appear first at the Shelley location.
In May, the diagonal entries shrink; then negative correlations amongst different
locations are prominent in June and July. Then, cross-correlations are dramati-
cally weakened in August and within series correlations become dominant with
a few exceptions through September to November. This shows that the water
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Fig 8. Scree plot and estimated factors with r = 2.

Fig 9. Estimated loadings with r = 2.

flow in the Fraser goes through several changes over a year. That is, during
the winter period, December to March, the water flows appear almost decorre-
lated across locations but having strong within-series dependence. From April,
within-series dependence is getting weaker, but between-locations dependence is
getting stronger and peaks during June and July, and then rapidly disappears.
This is consistent with the observations from Figure 4.

The results for PDFM are the following. Using the scree plot and the in-
formation criterion, the number of factors is selected as r = 2; so the PDFM
reduces dimension from 6 to 2. Figure 8 shows the scree plot and time plots
of the two factors found in the PDFM (two factors are also commonly selected
when we considered scree plot for each season).

Twelve loading coefficients corresponding to each season are overlaid in Fig-
ure 9. Observe that there are some similarities in the shapes of loading coeffi-
cients, and if these are grouped by taking averages, Figure 10 is obtained. The
grouping follows three patterns: one from December to March, then April to
November except May, and May. Similar to the earlier interpretations, there is
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Fig 10. Estimated loadings grouped by three similar patterns.

Table 6

h-step-ahead out-of-sample forecasting errors (10×MSE) in Fraser river data.

Models # of non-zero parameters
10×MSE

h = 1 h = 2 h = 4

PAR(1) 72 .398 .509 .645
PVAR(1) 432 .398 .504 .636
sPVAR(1) 123 .382 .491 .599
FPVAR(1) 42 .367 .504 .639

DFM-VAR(1) 4 .389 .536 .632
DFM-sVAR(1) 3 .388 .526 .621
DFM-PVAR(1) 48 .393 .521 .642
DFM-sPVAR(1) 29 .393 .522 .618
DFM-FPVAR(1) 36 .377 .507 .612
DFMS-PVAR(1) 48 .400 .524 .635
DFMS-sPVAR(1) 30 .390 .502 .616
DFMS-FPVAR(1) 36 .391 .487 .590
DFMG-sPVAR(1) 34 .388 .502 .620
EM-DFM-PVAR(1) 48 .388 .526 .621

a seasonal shift in water flow in the Fraser, mainly during the winter season
and the rest of time. However, a further finding is that the water flow dynamics
in May really differs from that for other months. It almost moves in the op-
posite direction and can be interpreted in that the negative between-locations
correlations are dominant at that time.

To evaluate the forecasting ability, we also obtained the h-step-ahead out-of-
sample forecasts and computed the empirical mean squared error (MSE),

MSE =
1

q(Nr − h+ 1)

N−h∑
n=N−Nr

(
Xn+h − X̂n+h

)′ (
Xn+h − X̂n+h

)
, (4.1)

where X̂n+h is the h-step-ahead best linear predictor of Xn+h based on the
training sample size N − Nr and the test sample size Nr − h + 1. Table 6
shows the h-step-ahead out-of-sample forecast error together with the number
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of non-zero parameters for h = 1, 2 and 4. In the column “Models”, DFM
corresponds to a dynamic factor model with common loadings across seasons
while DFMS stands for DFM with seasonal loadings. For example, DFM-PVAR
is the model where the common loadings are assumed for the dynamic factors
and PVAR model is applied for the estimated factors. The DFMG represents
DFM with grouped loadings as in Figure 10. As before, sPVAR corresponds to
sparse PVAR obtained using adaptive lasso, FPVAR to Fourier-PVAR, and PAR
to univariate periodic autoregressive model applied to each component series.
EM-DFM-PVAR refers to DFM-PVAR estimated using the EM algorithm as
discussed in Section 2.1; all other dynamic factor models in the table use PCA
estimation.

The results are mixed and no method outperforms in all cases. For the 1-
step-ahead forecasting, FPVAR(1) model shows the smallest MSE while DFMS-
FPVAR(1) performs best for h = 2 and 4, and DFM-FPVAR(1) is also quite
comparable, while using 6 fewer parameters than FPVAR(1). In general, it is
observed that the PDFM with FPVAR show better forecasting performance
than full models, while using fewer parameters. As seen from Figures 8-10 and
the discussion above, the PDFMs also have nice interpretations. EM-PDFM-
PVAR(1), which is based on the estimation method suggested in Section 2.1,
does not assume sparsity and generally performs worse than its sparse analogues;
but note also that it outperforms (in almost all cases) the non-sparse DFM-
VAR(1), DFM-PVAR(1), DFMS-PVAR(1) and is comparable to the sparse
DFM-sVAR(1) (their performance measures only differ in the fourth decimal
places).

We also report here briefly on comparison to forecasting using block-DFM
(see Section 2.4). Since the block-DFM takes the full period as one block, it is not
fair to compare one-step-ahead out-of-sample forecasts. Instead, we calculated
the sum of 12-step-ahead forecasting errors, where the sum of m-step-ahead
forecasting errors is given by

m∑
h=1

(
XN−m+h − X̂N−m(h)

)′ (
XN−m+h − X̂N−m(h)

)
(4.2)

and X̂N−m(h) is the best linear predictor of XN−m+h from the training sample
{X1, . . . , XN−m}. The block-DFM performs worse than the PDFMs, for exam-
ple, the forecasting error is 153.37 versus 131.70 for DFM-sPVAR.

4.2. US quarterly macroeconomic data

We also considered the quarterly macroeconomic time series of e.g., GDP, GNP
and industrial product index for the United States analyzed in Stock andWatson
(2009). Stock and Watson (2009) argued that a single break is plausible in 1984;
so we only considered the post change data from 1984:I to 2006:IV. We excluded
subaggregate series and applied the transformations detailed in Table A.1 of
Stock and Watson (2009). The final data set has dimension q ×N = 109× 92,
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Fig 11. Spectral coherence plot and Lund test plot for HSWST series in US quarterly data.

reserving the last 12 observations for the evaluation of MSE. The dimension
leads to an infeasible model fit when VAR models are considered, and even a
univariate PAR(1) model requires 109×4 = 436 parameters to estimate. PDFM
seems a natural model to consider for such high-dimensional data.

We checked for periodic correlations through the squared coherence statistic
and Lund test discussed in Section 4.1. For example, Figure 11 shows the plots
for HSWST (housing start west) variable. Here, periodic correlations should
manifest themselves at the index T/s = 80/4 = 20, which is seen more clearly
from the Lund test statistic plot. The scree plot is presented in the left panel
of Figure 12, but it is not very informative to decide on a number of factors.
The information criterion with the penalty function g1 in (2.20) suggested two
factors, which we use here. The other penalty functions g2 and g4 suggested only
one factor and g3 suggested four factors. Based on two factors, the estimated
factors and loadings are depicted in Figures 12 and 13. Similar overall pattern
of loadings amongst quarters suggests DFM or PDFM with common loadings.

The best model is DFM-sPVAR(1;6) showing the smallest h-step-ahead fore-
casting errors for all h = 1, 2 and 4 (see Table 7). It is remarkable that it only
requires 6 non-zero parameters – just 1.37% of a univariate PAR(1) model while
giving the smaller h-step-ahead MSE. The estimated sPVAR(1;6) parameters
are presented in Figure 14. It shows that most of periodic nature is due to lag-1
dependence of the first factor, and that the second factor makes a significant
effect cross-sectionally for the third quarter. The sum of 12-step-ahead forecast-
ing errors of block-DFM as in (4.2) is 838.31 while that of DFMS-sPVAR is
697.56, so PDFM performs better than the block-DFM approach.

5. Conclusions

In this work, we introduced a periodic dynamic factor model (PDFM) that
generalizes the usual dynamic factor model (DFM) by allowing its loadings
to depend on “season,” and its factors to follow a periodic VAR model with
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Fig 12. Scree plot and estimated factors (r = 2) for US quarterly data.

Fig 13. Estimated loadings for US quarterly data.
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Fig 14. Estimated coefficients of sPVAR(1;6) for US quarterly data.

Table 7

1-step-ahead out-of-sample forecasting errors in US quarterly data.

Models # of non-zero parameters
MSE

h = 1 h = 2 h = 4

PAR(1) 436 1.136 1.126 1.165
DFM-VAR(1) 4 .978 .890 .783
DFM-sVAR(1) 3 .979 .883 .771
DFM-PVAR(1) 16 1.037 .967 .849
DFM-sPVAR(1) 6 .908 .783 .693
DFM-FPVAR(1) 8 .941 .843 .745
DFMS-PVAR(1) 16 1.106 .970 .830
DFMS-sPVAR(1) 8 1.025 .860 .729
DFMS-FPVAR(1) 8 .976 .840 .722

coefficients depending on “season” (the so-called PVAR model). Two estimation
approaches for PDFMwere considered: the EM estimation for the so-called exact
formulation and the PCA estimation for the approximate formulation. Some
asymptotic results were proved for the approximate formulation, by adapting
the work on DFM by Doz et al. (2011, 2012). The simulation study showed
satisfactory performance of the proposed estimation procedures and two real
data sets were considered to illustrate the use of PDFMs and related models.

A number of open questions related to PDFMs and the standard DFMs were
already raised in the text, including extensions to long-memory and nonlinear
models, and to weak factors (Remark 2.2), and identifiability issues related
to the varying number of factors (Section 2.5). Another interesting direction
would be to develop detection and testing methods for the various special cases
of PDFMs, as in (1.6). In this work, these various special cases were assessed
just based on the out-of-sample forecasting performance.

Appendix A: Proofs for approximate model formulation

Proof of Proposition 2.1. The relations (2.14)–(2.16) follow immediately by ap-

plying Proposition 2 of Doz et al. (2011) for each fixed season X
(m)
t , m =

1, . . . , s.

Remark A.1. By (2.13), (2.14) above and Lemma 2 in Doz et al. (2011)

(applied for fixed season m), the principal component estimator F̂
(m)
t in (2.13)
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behaves asymptotically as

D
1/2
m,r

q1/2
G

(m)
t .

However, it is not clear whether the assumptions in Doz et al. (2011) stated

above imply the convergence of D
1/2
m,r/q1/2. (The conditions (CR1) and (CR2),

in particular, do not even imply the convergence of the smallest and largest

diagonal elements of D
1/2
m,r/q1/2.) If the following stronger assumption is made,

namely, that
1

q
Λ′
mΛm → Am (A.1)

for some positive definite matrix Am, then one would have the convergence

F̂
(m)
t

p→ B1/2
m G

(m)
t = B1/2

m Q′
mF

(m)
t ,

where Bm is a diagonal matrix consisting of the eigenvalues of Am. That is,

F̂
(m)
t would converge to a (scaled) rotation of F

(m)
t . Similar conclusion applies

for Λ̂m: under (A.1), one would have

Λ̂m
p→ ΛmQmB−1/2

m .

In the dynamic factor literature, the assumption (A.1) is made in e.g., Bai and
Ng (2008).

Proof of Proposition 2.2. We shall adapt the approach used in the proof of
Proposition 3 of Doz et al. (2011). Suppose for simplicity that p < m; appropri-
ate changes in other cases are indicated below. Note that the model (2.11) can
be expressed as

G
(m)
t = Ψ

(m)
1 G

(m,p)
t + η

(m)
t , (A.2)

where η
(m)
t = ηm,m+(t−1)s and

Ψ
(m)
1 = (Ψm,1,Ψm,2, . . . ,Ψm,p), G

(m,p)
t =

⎛⎜⎜⎜⎜⎝
G

(m−1)
t

G
(m−2)
t
...

G
(m−p)
t

⎞⎟⎟⎟⎟⎠ . (A.3)

(For example, if p and m are such that −s < m− p ≤ 0, G
(m,p)
t would have to

be defined based on G
(m−1)
t , . . . , G

(1)
t , G

(s)
t−1, . . . , G

(m−p+s+1)
t−1 .) In particular,

Ψ
(m)
1 =

(
EG

(m)
t G

(m,p)
t

′)(
EG

(m,p)
t G

(m,p)
t

′)−1

=: Υ
(m,p)
1

(
Υ

(m,p)
0

)−1

. (A.4)

Placing the least squares estimators Ψ̂m,1, . . . , Ψ̂m,p into an analogous matrix

Ψ̂
(m)
1 = (Ψ̂m,1, . . . , Ψ̂m,p), one can write similarly

Ψ̂
(m)
1 = Υ̂

(m,p)
1

(
Υ̂

(m,p)
0

)−1

, (A.5)
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where

Υ̂
(m,p)
1 =

1

T

T∑
t=1

Ĝ
(m)
t

(
Ĝ

(m,p)
t

)′
=

(
1

T

T∑
t=1

Ĝ
(m)
t (Ĝ

(m1)
t )′

)
m1=m−1,...,m−p

,

(A.6)

Υ̂
(m,p)
0 =

1

T

T∑
t=1

Ĝ
(m,p)
t

(
Ĝ

(m,p)
t

)′
=

(
1

T

T∑
t=1

Ĝ
(m1)
t (Ĝ

(m2)
t )′

)
m1,m2=m−1,...,m−p

.

(A.7)

As at the end of the proof of Proposition 2 of Doz et al. (2011), it is enough
to show that, for any m1,m2 = 1, . . . , s,

1

T

T∑
t=1

Ĝ
(m1)
t (Ĝ

(m2)
t )′ − E

(
G

(m1)
t (G

(m2)
t )′

)
= Op

(
1

q

)
+Op

(
1√
T

)
. (A.8)

The relation (A.8) can be proved by adapting the proof of part (i) of Propo-
sition 3 in Doz et al. (2011). We assume for simplicity that μm = 0, so that

Y
(m)
t can be taken as X

(m)
t . Write

1

T

T∑
t=1

Ĝ
(m1)
t

(
Ĝ

(m2)
t

)′
= D̂−1/2

m1,r P̂
′
m1,rSm1,m2 P̂m2,rD̂

−1/2
m2,r , (A.9)

where

Sm1,m2 =
1

T

T∑
t=1

Y
(m1)
t

(
Y

(m2)
t

)′
.

Now, decompose the quantity in (A.9) as

1

T

T∑
t=1

Ĝ
(m1)
t

(
Ĝ

(m2)
t

)′
= D̂−1/2

m1,r P̂
′
m1,rΠm1E

(
G

(m1)
t (G

(m2)
t )′

)
Π′

m2
P̂m2,rD̂

−1/2
m2,r

(A.10)

+D̂−1/2
m1,r P̂

′
m1,r

(
Sm1,m2 −Πm1E

(
G

(m1)
t (G

(m2)
t )′

)
Π′

m2

)
P̂m2,rD̂

−1/2
m2,r .

By using the notation in the middle of (2.9), the first term in (A.10) can be
written as

D̂−1/2
m1,r P̂

′
m1,rPm1,rD

1/2
m1,rE

(
G

(m1)
t (G

(m2)
t )′

)
D1/2

m2,rP
′
m2,rP̂m2,rD̂

−1/2
m2,r .

It follows from Lemma 2, (iv), and Lemma 4, (i), in Doz et al. (2011) ap-

plied to the series for seasons m1 and m2, and the fact E

(
G

(m1)
t (G

(m2)
t )′

)
=

E

(
G

(m1)
0 (G

(m2)
0 )′

)
that the first term in (A.10) satisfies

D̂−1/2
m1,r P̂

′
m1,rΠm1E

(
G

(m1)
t (G

(m2)
t )′

)
Π′

m2
P̂m2,rD̂

−1/2
m2,r
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= E

(
G

(m1)
t (G

(m2)
t )′

)
+Op

(
1

q

)
+Op

(
1√
T

)
.

On the other hand, the second term in (A.10) is dealt with as follows. By
Lemma 2, (iii), in Doz et al. (2011), applied to season m and assumptions (CR1)

and (CR2), we have q1/2D̂
−1/2
m,r = Op(1). It is then enough to show that

1

q

(
Sm1,m2 −Πm1E

(
G

(m1)
t (G

(m2)
t )′

)
Π′

m2

)
= Op

(
1

q

)
+Op

(
1√
T

)
. (A.11)

This can be achieved by writing, in view of (2.10),

1

q

(
Sm1,m2 −Πm1E

(
G

(m1)
t (G

(m2)
t )′

)
Π′

m2

)
=

1

q
Πm1

(
1

T

T∑
t=1

G
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t (G
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t )′ − E

(
G
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t (G
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t )′
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Π′
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+
1

qT
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G
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t (ε
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t )′ +

1

qT
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ε
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t (G
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t )′Π′
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+
1

q

(
1

T
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ε
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ε
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t (ε
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+

1

q
E

(
ε
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t (ε

(m2)
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)
,

and then arguing that, for any m1 �= m2,

E

∥∥∥∥∥ 1

T

T∑
t=1

G
(m1)
t (G

(m2)
t )′ − E

(
G

(m1)
t (G

(m2)
t )′
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2

= O

(
1

T

)
, (A.12)

1

T

T∑
t=1

G
(m1)
t (ε

(m2)
t )′ = Op

(√
q√
T

)
, (A.13)

1

T

T∑
t=1

ε
(m1)
t (ε

(m2)
t )′ − E

(
ε
(m1)
t (ε

(m2)
t )′

)
= Op

(
q√
T

)
. (A.14)

In fact, the relations (A.12) and (A.14) follow from similar relations

E

∥∥∥∥∥ 1

T

T∑
t=1

GtG
′
t − E (GtG

′
t)

∥∥∥∥∥
2

= O

(
1

T

)
, (A.15)

1

T

T∑
t=1

εtε
′
t − E (εtε

′
t) = Op

(
q√
T

)
, (A.16)

where G′
t =

(
(G

(1)
t )′, (G

(2)
t )′, . . . , (G

(s)
t )′

)
and ε′t =

(
(ε

(1)
t )′, (ε

(2)
t )′, . . . , (ε

(s)
t )′

)
.

The multivariate series {Gt} and {εt} are stationary and the relations (A.15)
and (A.16) can be proved by adapting the arguments of Brockwell and Davis
(2009), pp. 226-227 (as indicted by Doz et al. (2011)). The relation (A.13), on
the other hand, can be dealt with similarly by using the argument in the proof
of Lemma 2, (i), in Doz et al. (2011).
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Appendix B: Adaptive lasso in Fourier-PVAR

Applying adaptive lasso is immediate once Fourier-PVAR is represented as a
linear model. First, for n falling into season m, the PVAR(p) model is written
in a matrix form as

Fn = Φm,1Fn−1 + . . .+Φm,pFn−p + ζm,n

=
((
F ′
n−1, . . . F

′
n−p

)
⊗ Iq

)
vec (Φm,1, . . . ,Φm,p) + ζn.

By assuming the Fourier representation of the coefficients, the AR coefficients
are represented as

vec (Φm,1, . . . ,Φm,p) =
(
Ipq2 ⊗ w(n)

)
α,

where

w(n) =

(
1, cos

(
2πn

s

)
, sin

(
2πn

s

)
, cos

(
2π2n

s

)
, sin

(
2π2n

s

)
,

. . . , cos

(
2πHn

s

)
, sin

(
2πHn

s

))
is the 1× (2H + 1) vector of Fourier basis functions used in estimation and

α =
(
φ
(1,1)
1,1 , . . . , φ

(1,1)
1,2H+1, φ

(2,1)
1,1 , . . . , φ

(2,1)
1,2H+1, . . . , φ

(q,q)
p,1 , . . . , φ

(q,q)
p,2K+1

)′

is the pq2(2H+1)×1 vector of the corresponding Fourier coefficients. Then, we
can write Fn as

Fn =
((
F ′
n−1, . . . F

′
n−p

)
⊗ Iq

) (
Ipq2 ⊗ w(n)

)
α+ ζm,n =: b(n)α+ ζn.

Therefore, the Fourier-PVAR model can be written in a matrix form as

F = Bα+ ζ,

where

F =

⎛⎜⎝Fp+1

...
FN

⎞⎟⎠ , B =

⎛⎜⎝b(p+ 1)
...

b(N)

⎞⎟⎠ , ζ =

⎛⎜⎝ζp+1

...
ζN

⎞⎟⎠ .

By incorporating possible correlations of ζn through an estimated covariance
matrix Σ̂ of ζn, the adaptive lasso estimator of Fourier-PVAR coefficients is
defined iteratively by

α̂(�) = argmin
α

(
1

N − p
‖(IN−p ⊗ Σ̂

−1/2
� )F− (IN−p ⊗ Σ̂

−1/2
� )Bα‖2

+ λ�

pq2(2H+1)∑
j=1

w
(�)
j |αj |

)
,
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where αj is the jth element of α and the weights are proportional to the inverse
of coefficients, namely,

w
(�)
j =

1

|α̂(�−1)
j |

.

The covariance matrix at the �th iteration is obtained by

Σ̂� =
1

N − p

N∑
i=p+1

(
Fi − b(i)α̂(�−1)

)(
Fi − b(i)α̂(�−1)

)′
.

We have used the 10-fold cross-validation rule to find the tuning penalty pa-
rameter λ� and the initial estimator of the correlation matrix is given by the
identity matrix of dimension q.
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