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Abstract: Mode-based clustering methods define clusters in terms of the
modes of a density estimate. The most common mode-based method is
mean shift clustering which defines clusters to be the basins of attraction
of the modes. Specifically, the gradient of the density defines a flow which
is estimated using a gradient ascent algorithm. Rodriguez and Laio (2014)
introduced a new method that is faster and simpler than mean shift cluster-
ing. Furthermore, they define a clustering diagram that provides a simple,
two-dimensional summary of the clustering information. We study the sta-
tistical properties of this diagram and we propose some improvements and
extensions. In particular, we show a connection between the diagram and
robust linear regression.
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1. Introduction

Mode-based clustering methods define clusters in terms of the modes of the
density function. For example, the mean-shift clustering method (Comaniciu
and Meer, 2002; Cheng, 1995) defines the clusters to be the basins of attraction
of each mode. Specifically, if we take any point x and follow the path of steepest
ascent of the density, then we end up at a mode. This assigns every point to a
mode which forms a partition of the space. In practice, the density is estimated
using a kernel density estimate. The mean shift algorithm then approximates
the steepest ascent paths.

Rodriguez and Laio (2014) introduced a new approach to mode-based clus-
tering that avoids iterative computation of the density estimator. Furthermore,
they define a diagram — which we call the mode clustering diagram — that
provides a useful summary of the clustering information. The diagram is simply

∗The authors thanks the reviewers for providing many helpful suggestions.
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Fig 1. Top left: data. Top right: the mode plot. The curved line is the threshold function tn
corresponding to a robust linear regression of log δ̂ on log p̂. Points above the function are
declared to be modes. Bottom left: Histogram of δ̂(Xi). Bottom right: the resulting clusters.

a plot of the pairs (p(Xi), δ(Xi)) where p(Xi) is the density of the ith point and
δ(Xi) is the distance to the nearest neighbor with higher density. Modes tend
to appear as isolated points in the top right of the diagram. See Figure 1 for a
simple example.

In this paper, we study the properties of this diagram. These properties sug-
gest a heuristic for deciding which points are modes. Specifically, if we perform
a robust linear regression of log δ(Xi) on log p(Xi) then modes correspond to
large, positive outliers.

1.1. Related work

The most common mode-based clustering method is mean-shift clustering, de-
veloped by Cheng (1995) and Comaniciu and Meer (2002). The method has
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been developed in the statistics literature by Li et al. (2007); Arias-Castro et al.
(2015); Chacón et al. (2015, 2013); Chacón (2012) and Genovese et al. (2016).

The new method — the subject of this paper — is due to Rodriguez and
Laio (2014). Extensions, including speedups and methods for dealing with higher
dimensional problems include Wang and Xu (2017); Du et al. (2016); Courjault-
Radé et al. (2016).

1.2. Paper outline

In Section 2 we establish the notation and the assumptions. We review mode-
based clustering in Section 3. We establish the theoretical properties of the
population version of the mode diagram in Section 4. We then consider the
estimated diagram in Section 5. Based on these results, we suggest a method
for thresholding the diagram in Section 6. In Section 7 we illustrate the method
with several examples. Section 8 contains some concluding remarks. All proofs
are in the appendix.

2. Notation and assumptions

Let X1, . . . , Xn be a sample from a distribution P on R
d. We make the following

assumptions throughout the paper:
(A1) P is supported on a compact set C and has bounded, continuous density

p. Also, infx∈C p(x) ≥ a > 0.
(A2) p has bounded and continuous first, second and third derivatives. We

let g denote the gradient and we let H denote the Hessian.
Recall that x is a critical point if ||g(x)|| = 0. A function is Morse (Milnor,

2016) if the Hessian is non-degenerate at every critical point.
(A3) p is Morse with finitely many critical points.
The Morse assumption is critical to our proofs. It may be possible to drop

this assumption but the proof techniques would have to change considerably.
The assumption that infx∈X p(x) ≥ a > 0 is not critical and could be dropped
at the expense of more involved statements and proofs.1

A point x is a mode if there exists an ε > 0 and a ball B(x, ε) such that
p(x) > p(y) for all y ∈ B(x, ε), y �= x. Let M = {m1, . . . ,mk} denote the
modes. Because p is Morse, x is a mode if and only if g(x) = (0, . . . , 0)T and
λmax(H(x)) < 0 where λmax(A) denotes the largest eigenvalue of a matrix A.

3. Density mode clustering

In this section, we review mode-based clustering beginning with mean-shift clus-
tering and then we moving on to the approach in Rodriguez and Laio (2014).

1 More specifically, the proofs require dividing the sample space into two regions: the first

where p(x) ≥ n
− 1

d+2 and the second where p(x) < n
− 1

d+2 . Also, points with p̂(x) < n
− 1

d+2

should be removed from the cluster diagram.
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3.1. Mean-shift clustering

The most common mode-based clustering method is mean-shift clustering
(Chacón et al., 2015, 2013; Chacón, 2012; Li et al., 2007; Comaniciu and Meer,
2002; Arias-Castro et al., 2015; Cheng, 1995; Genovese et al., 2016). The idea is
to find modes of the density and then define clusters as the basins of attraction
of the modes.

Let x be an arbitrary point. If we follow the steepest gradient ascent path
starting at x, we will eventually end up at one of the modes. More precisely, the
gradient ascent path (or integral curve) starting at x is the function πx : R → R

d

defined by the differential equation

π′
x(t) = ∇p(πx(t)), πx(0) = x. (1)

The destination of x is defined by

dest(x) = lim
t→∞

πx(t). (2)

It can be shown that, for almost all x, dest(x) ∈ M. (The exceptions, which
have measure 0, lead to saddle points.) The path πx defines the gradient flow
from a point x to its corresponding mode.

The basin of attraction of the mode mj is the set

Cj =
{
x : dest(x) = mj

}
. (3)

In the mean-shift approach to clustering, the population clusters are defined
to be the basins of attraction C1, . . . , Ck. The left plot in Figure 2 shows a
bivariate density with four modes. The right plot shows the partition (basins of
attractions) induced by the modes.

To estimate the clusters, we find the modes M̂ = {m̂1, . . . , m̂r} of a density
estimate p̂. A simple iterative algorithm called the mean shift algorithm (Cheng,
1995; Comaniciu and Meer, 2002) can be used to find the modes and to find the
destination of any point x when p̂ is the kernel density estimator:

p̂(x) =
1

n

n∑
i=1

1

hd
K

(
x−Xi

h

)
(4)

with kernel K and bandwidth h. For any given x, we define the iteration, x(0) ≡
x,

x(j+1) =

∑
i XiK

(
||x(j)−Xi||

h

)
∑

i K
(

||x(j)−Xi||
h

) .

See Figure 3. It can be shown that this algorithm is an adaptive gradient ascent
method, that approximates the gradient flow defined by (1). The convergence
of this algorithm is studied in Arias-Castro et al. (2015).
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Fig 2. Left: a density with four modes. Right: the partition (basins of attraction) of the space
induced by the modes. These are the population clusters.

Fig 3. The mean shift algorithm. The data are represented by the black dots. The modes of
the density estimate are the two blue dots. The red curves show the mean shift paths; each
data point moves along its path towards a mode as we iterate the algorithm.

3.2. The mode diagram

Following Rodriguez and Laio (2014), we define

δ(Xi) = min
{
||Xj −Xi|| : p(Xj) > p(Xi)

}
. (5)

That is, δ(Xi) is the distance of Xi to the closest point with higher density.
In the case where there are no points with p(Xj) > p(Xi) (in other words,
p(Xi) = maxj{p(Xj) : j = 1, . . . , n}) we define δ(Xi) = L where L is any,
arbitrary large constant. The choice of L does not matter. In practice, Rodriguez
and Laio (2014) suggest setting L = maxi,j ||Xj −Xi|| which is the diameter of
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the dataset. In our examples, this is what we shall do. For developing theory, it
will be convenient to just keep L as any arbitrary, large constant.

Next we form the mode plot, where we plot the pairs (p(Xi), δ(Xi)). The
intuition is that δ(Xi) will be small for most points. But if Xi is close to a local
mode, then δ(Xi) will be large since the nearest point with a higher density will
be at another mode. Hence, modes will show up as isolated points in the top
right of the mode plot. A simple example is shown in Figure 1. Formally, the
mode plot is the collection of pairs

D =
{
(p(Xi), δ(Xi)) : i = 1, . . . , n

}
. (6)

The modes can be identified by inspection of the diagram. In this paper, we
suggest a method to separate modes from non-modes using linear regression.

In practice, we need to estimate p. We will use the kernel density estimator
defined in (4). Then we define δ̂(Xi) = min{||Xj − Xi|| : p̂(Xj) > p̂(Xi)}.
We have to decide which points on the diagram correspond to modes. For this
purpose, let tn : R → R be a given function. The points Xi such that

δ̂(Xi) > tn(Ui)

are the estimated modes, where Ui = p̂(Xi). Denote these points by M̂ =
{m̂1, . . . , m̂�}. We call tn the threshold function.

The main contribution of this paper is to study the properties of the mode
diagram. We shall see that the mean of log δ(Xi) as a function of log p(Xi) is
approximately linear, for non-modes. But when Xi is close to a mode, log δ(Xi)
lies far above the line. This suggests the following method for separating modes
from non-modes. We show, theoretically, that that it suffices to use a threshold
function of the form tn(u) = (C log n/(nu))1/d = C0u

−1/d. In practice, we use
the more flexible form tn(u) = C0u

β1 where C0 and β1 are esti9mated as follows.

We perform a robust linear regression of log δ̂(Xi) on log p̂(Xi). That is, we find
β0 and β1 such that

log δ̂(Xi) ≈ β0 + β1 log p̂(Xi).

Then we look for large positive outliers. These are points for which log δ̂(Xi) >
β0+β1 log p̂(Xi)+Ms where s is the estimated residual standard deviation and
M is some large constant; we use M = 3 for the examples in this paper. These
points correspond to modes. This corresponds to taking the threshold function

tn(u) = eβ0+Msuβ1 . (7)

Thus, Xi is declated to be a mode if δ̂(Xi) > tn(Ui) where Ui = p̂(Xi) and
tn(u) = eβ0+Msuβ1 . The reason for this choice of threshold function arises from
the theory in Section 4.

To assign points to modes, Rodriguez and Laio (2014) suggest an approach
that avoids the iterations of the mean-shift method. Instead, we assign each
point to nearest neighbor with higher density. This leads each sample point to
a mode without having to recompute the density estimator at any other points.
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Fig 4. The Rodriguez-Laio Algorithm.

This is essentially a sample-based approximation to the gradient. The steps of
the algorithm are summarized in figure 4.

This method has several advantages over mean-shift clustering. We never
need to estimate or approximate the gradient of the density. There is no need
for any iterative calculation of the density. This makes the method fast. However,
our focus is not on the algorithm but on the mode diagram which gives a nice,
two-dimensional summary of the clustering information.

4. The oracle diagram

In this section we assume that the density p is known. We then call D =
{(p(Xi), δ(Xi)) : i = 1, . . . , n} the oracle diagram. Note that D is a point
process on R

2. The variables δ(Xi) are not independent since δ(Xi) depends on
the configuration of the other points.

We need the following definition from Cuevas et al (1990). A set S is (γ, τ)-
standard if there exist ε0 > 0 and τ ∈ (0, 1) such that: for all 0 < ε ≤ ε0 and all
x ∈ S,

μ
(
B(x, ε)

⋂
S
)
≥ τ μ(B(x, ε)). (8)

A set that is standard does not have sharp protrusions. Our proofs require the
assumption that the level sets {p > t} are standard. However, this requires some
care. Suppose that x = mj where mj is a mode of p. Let S = {y : p(y) ≥ p(x)}.
Then S

⋂
B(x, ε) = {x} and so μ(S

⋂
B(x, ε)) = 0 and standardness thus fails

for points that are modes. More generally, we cannot lower bound μ({p(y) ≥
p(x)}

⋂
B(x, ε)) unless x is at least ε far from the modes. We use the following

restricted standardness assumption. Let Lx = {y : p(y) > p(x)}.
(A4) There exists ε0 > 0 and τ ∈ (0, 1) such that, whenever minj ||x−mj || > t

with 0 < t < ε0, we have that

μ
(
Lx

⋂
B(x, t)

)
≥ τμ(B(x, t)). (9)

In the rest of the section we assume that (A1)-(A4) hold.
Before proceeding, we need a bit more notation. Recall that M = {m1, . . . ,

mk} is the set of true modes. Let mj ∈ M. Let H(mj) be the Hessian at mj .
Let J(mj) = −H(mj) and λj be the smallest eigenvalue of J(mj). Note that
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λj > 0. Since the Hessian is a continuous function, there exists ωj > 0 such that
λmin(J(x)) ≥ λj/2, for all x ∈ B(mj , ωj). Let Λj = supx∈B(mj ,ω) λmax(J(x)).

Define

εn =

(
r log n

n

) 1
d

, tn(u) =

(
C logn

nu

) 1
d

(10)

where

C ≥ Gd2d/2rmax
j

p(mj)

(
Λj

λj

)d/2

, G ≥ max

{
max

j

[
3

(
λj

Λj

)d
1

2d/2vdaτ

] 1
d

, 1

}
(11)

where vd denotes the volume of the unit ball in R
d and r > 1/(avd).

Remark. The constants — such as C, r, G and so on — are only used to state
the theoretical results. The actual procedure described in Section 6 does not
require these constants.

Because p is Morse, the modes are isolated points. It follows that there exists
some c > 0 such that B(ms, cωs)

⋂
B(mt, cωt) = ∅ for all 1 ≤ s < t ≤ k. With-

out loss of generality, we assume that c = 1. Hence, B(ms, ωs)
⋂

B(mt, ωt) = ∅
for 1 ≤ s < t ≤ k.

We assume that (A1)-(A4) hold in the rest of the paper.

4.1. The mode diagram

We first need to define k sample points that can be considered to be sample
modes. These are the points that will be in the upper right portion of the
mode diagram. (For a unimodal density, this would just be the point Xi that
maximizes p(Xi).) We define the sample point Xj ∈ B(mj , ωj) to be a sample
mode if p(Xj) ≥ p(Xi) for all Xi ∈ B(mj , ωj). We renumber the points so that
X1, . . . , Xk denote the k sample modes. Note that these points are not known
since they depend on mj and ωj . But, as we shall see, we can identify them by
using the mode diagram.

The next result shows that Xj is close to mj and that δ(Xj) is bounded
below by a constant.

Theorem 1. Let

ψ2
n,j =

2G2 Λj

λj
ε2n (12)

where G was defined in (11). Also, let ψn = maxj ψn,j. If Xj is a sample mode
then:

(i) Xj ∈ B(mj , ψn,j).

(ii) Any sample point Xi such that p(Xi) > p(Xj) is far from Xj; specifically
δ(Xi) ≥ ωj/2.
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Now let mj , j = 1, . . . , k, denote the modes of p(x), and let Xj , j = 1, . . . , k,

be the local modes. Define Γ =
⋃k

j=1 B(mj , ψn) and divide the dataset into
three groups:

X1 =

{
X1, . . . , Xk

}
, X2 =

{
Xi : Xi ∈ Γ, Xi /∈ X1

}
, X3 =

{
Xi ∈ Γc

}
.

(13)
Note that X1 is precisely the set of sample modes. Theorem 2, below, shows that
δ(Xj) is bounded away from 0 for the points in X1 (and hence they lie above
the threshold function) while δ(Xi) lies below the threshold functions for all Xi

in X2 and Xi in X3.

Remark. If the assumption that p(x) ≥ a > 0 is dropped, then X3 needs to be

re-defined as X3 =

{
Xi ∈ Γc

}
∩
{
Xi : p(Xi) ≥ n−1/(d+2)

}
.

Theorem 2. (i) Let Xj ∈ X1 be the sample mode in B(mj , ψn,j). Then p(Xj) =
p(mj) +OP (ε

2
n) and δ(Xj)/tn(p(Xj)) → ∞.

(ii) For all Xi ∈ X2, we have δ(Xi) ≤ tn(p(Xi)).

(iii) Pn
(
δ(Xi) ≤ tn(p(Xi)) for all Xi ∈ X3

)
→ 1.

4.2. The limiting distribution

To get more information about the shape of the mode diagram we show that for
any x that is not a mode, the distribution of nδd(x) only depends on p(x) and
converges to an exponential random variable with mean 1/(p(x) τ vd) where vd
is the volume of the unit ball. This means that δ(x) ≈ (n τ vd p(x))

−1E where
E ∼ Exp(1) and that a plot of log δ(Xi) versus log p(Xi) should look linear for
all Xi’s not close to a mode. On the other hand if x is a mode, then nδd(x) → ∞.

We will need the following stronger version of (A4). Recall that Lx = {y :
p(y) > p(x)}.

(A4’) There exists τ(x) ∈ (0, 1) such that, for any x /∈ M,

lim
t→0

μ
(
Lx

⋂
B(x, t)

)
μ(B(x, t))

= τ(x). (14)

Theorem 3. Suppose that (A1), (A2), (A3) and (A4’) hold and that x is not
a mode. Then the random variable n δd(x) converges in distribution to an ex-
ponential random variable, with parameter p(x)τ(x) vd. If x is a mode, then
nδd(x) → ∞.

4.3. The linear heuristic

The results in the previous sections show that, for non-modes, logE[n δd(X)]
should be approximately linear in log p(x). On the other hand, points closest to
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modes will lie far above the thredhold. This suggests the following approach:
plot log p(Xi) versus log δ(Xi). Most points will fall below some line. A few
points will be above the line. In Section 6, we will fit a robust linear regression
to the log-mode plot. The outliers above the line will indicate the modes. We
pursue this idea in Section 6.

5. The estimated mode diagram

Since p is not known, we have to estimate the diagram. Let p̂ denote the kernel
density estimator and let

δ̂(Xi) = min
{
||Xj −Xi|| : p̂(Xj) > p̂(Xi)

}
. (15)

As before, if there are no points with p̂(Xj) > p̂(Xi) we define δ(Xi) = L where
L is any positive constant. The estimated diagram is

D̂ =
{
(p̂(Xi), δ̂(Xi)) : i = 1, . . . , n

}
. (16)

Remark. An alternative approach to defining the estimated diagram is as fol-
lows. We draw a sample X∗

1 , . . . , X
∗
N from p̂. We then define

δ̂(X∗
i ) = min

{
||X∗

j −X∗
i || : p̂(X∗

j ) > p̂(X∗
i )

}
(17)

and
D̂∗ =

{
(p̂(X∗

i ), δ̂(X
∗
i )) : i = 1, . . . , N

}
. (18)

This approach has the advantage that we can take N to be much larger than
n. This gives a more accurate summary p̂. On the other hand, if n is huge,
we might even take N smaller than n to reduce computation. At any rate, by
sampling from p̂ we have more control.

The rest of the section is devoted to showing that D̂ has the same behavior
as the oracle diagram in Theorem 2. First, we recall some facts about p̂. Let
M = {m1, . . . ,mk} denote the modes of p and let C = {c1, . . . , cr} denote the

remaining critical points of p̂. Let ĝ be the gradient of p̂ and let Ĥ be the
Hessian. Then, with high probability, for all large n, p̂ is Morse the the same
number of critical points as p. This is summarized in the next result.

Lemma 4. Assume (A1)-(A3). Take the bandwidth to be hn � n−1/(d+6). Let

rn = a1(logn/n)
2/(4+d), sn = a2(1/n)

2/(d+6) (19)

where a1 and a2 are positive constants. There exists a sequence of events An

such that Pn(An) → 1 and such that, on An:
(i) supx∈X ||p̂(x)− p(x)|| ≤ rn.
(ii) p̂ is Morse and has exactly k modes m̂1, . . . , m̂k with maxj ||m̂j−mj || ≤ sn.

(iii) The remaining critical points Ĉ = {ĉ1, . . . , ĉr} of p̂ have the same cardinality
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as the number of critical points of p and also satisfy maxj ||ĉj − cj || ≤ sn.

(iv) supx ||ĝ(x)− g(x)||∞ = oP (1) and supx maxj,k ||Ĥjk(x)−Hjk(x)|| = oP (1),
and the supremum of the third derivative is oP (1).

For proofs of these facts, see Genovese et al. (2016) and Chazal et al. (2017).
In what follows, we assume that the event An holds. In particular, p̂ is Morse.
In what follows, we refer to positive constants c1, c2 which come from Lemma
8.

As in the previous section, we may find constants ωj such that the balls
Bj = B(m̂j , ωj) are disjoint and each contains at least one data point. For
j = 1, . . . , k let Xj = argminXi∈Bj

p̂(Xi). Let X = {X1, . . . , Xn}. Define

X1 = {X1, . . . , Xk}, X2 =

{
Xi : Xi ∈

k⋃
j=1

B(m̂j , c1εn)

}
, X3 = X−(X1

⋃
X2).

As before define tn(p̂(x)) = (C logn/(np̂(x)))1/d. In what follows, we some-
times write tn(x) as short for tn(p̂(x)). The behavior of the diagram in this
case is essentially the same as the oracle diagram as the next result shows. The
proof is much more complicated since p̂ is a random function and is obviously
correlated with the data.

Theorem 5. Let tn be defined as above. Then:
(i) There exists c > 0 such that, with probabality tending one, δ̂(Xi) ≥ c for

all Xi ∈ X1. Hence, δ̂(Xi)/tn(p̂(Xi)) → ∞.

(ii) δ̂(Xi) ≤ c2tn(p̂(Xi)) for all Xi ∈ X2.
(iii) For X3 we have that

Pn
(
δ̂(Xi) ≤ c2tn(p̂(Xi)) for all Xi ∈ X3

)
→ 1.

6. Choosing the threshold using robust regression

We now know that both D and D̂ have the following behavior. There are k points
X1, . . . , Xk, corresponding to the k modes, such that p̂(Xj) and δ̂(Xj) are large.

For the remaining points, δ̂(Xi) is small. Specifically, δ̂(Xi) < tn(p̂(Xi)) =

(C logn/(np̂(Xi)))
1/d. In other words, for non-modes, the points (log δ̂(Xi),

log p̂(Xi)) should fall on or below a line.
The modes could be selected visually by examining the log-log mode plot.

Alternatively, if we perform a robust linear regression of log δ̂(Xi) on log p̂(Xi),
we expect the modes to show up as outliers. Let β0 and β1 be the estimated
intercept and slope from the regression. Thus,

log δ̂(Xi) ≈ β0 + β1 log p(Xi).

Now we look for large positive outliers. These are points for which log δ(Xi) >
β0+β1 log p(Xi)+Ms where s is the estimated residual standard deviation and
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Fig 5. Broken Circle data. Left: Data set. Right: Estimated Mode diagram D̂, with threshold
function.

M is some large constant; we use M = 5 in the examples in this paper. These
points are the estimated modes. This corresponds to taking

tn(u) = eβ0+Msuβ1 . (20)

Remark. It is possible to define some post-processing diagnostics to make sure
that the claimed modes are, in fact, modes. For example, if Xj is declared a
mode, are N is a set of neighbors of Xj , then we can verify that p̂(Xj)− p̂(Xi)
Xi ∈ N .

7. Examples

A first example illustrating the theory in the paper was presented in Figure 1.
That picture shows a simple two-dimensional data set, with two well separated
clusters. In Figure 1 the threshold function tn(p̂(Xi)) was obtained as described

in Section 6. A histogram of δ̂(Xi) was also added for completeness.
The examples of this section consist of data with four or five clusters in two

dimensions, and two three-dimensional data-set with four clusters. The data
sets can be enriched with added random noise. A two-dimensional data set is
Figure 5. The left panel shows five separate clusters, with shapes that are parts
of a broken circle. The data consist of 500 points. The density p is estimated
with the kernel function p̂ in (4).

The estimated mode plot D̂ from (15) and (16), in the right panel of Figure

5, displays values of p̂(Xi) and δ̂(Xi) for each data point Xi with the threshold
function tn(p̂(X)), obtained from the robust regression line. The diagram shows
five outliers at the top right corner, above tn(p̂(X)). They correspond to points

with large values of p̂ and δ̂ that estimate the modes of the density. The robust
regression line for log(p̂) versus log(δ̂) is in the right panel of Figure 6.



4300 I. Verdinelli and L. Wasserman

Fig 6. Broken Circle data. Left: Robust regression line for log(p̂) vs. log(δ̂). Right: Residuals
from robust regression.

Fig 7. Left: Broken Circle data, estimated clusters. Right: New dataset. Four crescent clusters,
with added uniform noise.

Residuals from the robust regression are in the left panel of Figure 6. The
five outliers are even more noticeable, there. Finally, the estimated clusters for
the Broken circle data are in the left panel of Figure 7.

The dataset in the right panel of Figure 7, consists of 400 points clustered in
the shape of four crescent, augmented with 200 points of uniform noise. Despite
the added noise, the mode diagram D̂, in the left panel of Figure 8, correctly
identified four modes. The right panel in the same Figure shows the identified
clusters. Part of the random noise has been, correctly, assigned to some of the
four main clusters.

The left panel in Figure 9 contains an example of a three dimensional data set,
consisting of 400 data points, forming four clusters, and 400 points of uniform
noise. The procedure is unchanged when data are in more than two dimensions.

This is clearly shown in the right panel of Figure 9 where the mode diagram
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Fig 8. Four crescent clusters. Left: Estimated Mode diagram D̂ with threshold function. Right:
Estimated Clusters.

Fig 9. Three dimensional data set. Left: The data. Right: Mode diagram D̂ with threshold
function.

D̂ identifies four points above the threshold function. The left panel in Figure 10
shows the four estimated clusters where, as before, points of random noise are
assigned to the main clusters, according to their closeness to the modes.

The mode plot above includes one point with small values of both δ̂ and p̂,
just below the threshold function. In a different run of the code, points in the
lower left section of the mode diagram might be slightly above the threshold
function.

This would signal the existence of an extra cluster. Data for such an example
are in the right panel of Figure 10. This new data-set presents, in the left panel
of Figure 11, a mode plot where one point in the lower left section of the diagram
is slightly above the threshold function.
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Fig 10. Three dimensional noisy data set. Left: Estimated clusters D̂ with threshold function.
Right: Three dimensional data for an alternative code run.

Fig 11. New set of Three Dimensional Noisy data. Left: Estimated Mode diagram D̂, and
threshold function, showing five modes. Right: Five estimated clusters.

But for a sample point to be a mode, its values of both δ̂ and p̂ need to be
large. Thus, these type of points are not relevant for the final result This can
be seen in the right panel of Figure 11 where the fifth cluster detected from D̂,
consists of just a few points, in pink, that do not affect the qualitative result of
clustering. This observation will be useful for inspecting mode diagrams when
clustering data sets in more than three dimensions.

We conclude this section by mentioning the differences between the method
of Rodriguez and Laio (2014) versus the more traditional mean shift algorithm.
The two main differences are: (i) the new method only requires computing the
estimated density once, at the beginning of the algorithm, while the mean shift
requires recomputing it at each iteration and (ii) the new method provides a
mode clustering diagram. Also, the new algorithm is much faster.
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Fig 12. The blue stars show the modes found using the method of Rodriguez and Laio (2014).
The red dots show the modes found using the mean shift algorithm. The estimates are very
close but the mean shift algorithm is much slower.

As an example, Figure 12 shows the dataset of four crescent, with the addition
of 200 points of uniform noise. In this case, we find that the new algorithm is
typically about 30 to 40 times faster. Of course, they will not find exactly the
same modes since the new method must estimate the modes to be one of the
sample points. But typically, they are very close. In Figure 12, the blue stars
show the modes found from Rodriguez and Laio (2014) algorithm, and the red
dots show the result of 200 interations of the mean shift algorithm. The blue
stars can be masked by the red dots, when the mean shift algorithm identifies
one of the sample points to be a mode. Although the mode estimates are not
identical they are vety similar. In this paper, we have mainly focused on point
(ii). The mode clustering diagram provides a simple visualization tool for mode
based clustering. It should be pointed out that these two approaches can be
combined. We could find the modes with mean shift clustering if we are willing
to do the extra computation, and then display the mode clustering diagram. This
would be more expensive but it would eliminate the need to create a thresholding
rule since we would know what the modes are. In summary, the new approach
is much faster and provides a useful visual summary of the clustering while the
mean shift clustering provides a more exact estimate of the modes.

8. Conclusion

We have studied the properties of the mode diagram introduced by Rodriguez
and Laio (2014). We have seen that, for non-modes, log δ̂(Xi) falls on or below
a linear function of log p̂(Xi). Based on this observation, we suggested a robust
regression method for classifying points on the mode diagram as modes or non-
modes. We would like to emphasize that we think that the mode plot is a useful
visualization method for mode-based clustering regardless of how one separates
modes from non-modes.
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Our analysis depended on a number of assumptions. In particular, we as-
sumed that the density p is Morse. This assumption is made — explicitly or
implicitly — in most density based clustering methods. Loosely speaking, this
means that p has no “flat regions.” (A notable exception is Jiang and Kpotufe
(2016) who specifically allow for such flat region.) We conjecture that the mode
plot still provides useful information when p is not Morse but proving this will
require new tools.

It would be interesting to develop a similar diagnostic plot for other clustering
methods such as k-means clustering. Currently, we are not aware of any such
diagnostic plots.

Appendix: Proofs

Proof of Theorem 1. (i) Let X(j) be the closest point to mj . From Lemma 6
below, ||X(j) −mj || ≤ εn. For any point x ∈ B(mj , ωj) we have

p(x) = p(mj)−
1

2
(x−mj)

T

[ ∫ 1

0

J(umj + (1− u )x) du

]
(x−mj).

Thus for Xj

p(Xj) = p(mj)−
1

2
(Xj −mj)

T

[∫ 1

0

J(u,mj + (1− u)Xj) du

]
(Xj −mj)

(21)

≤ p(mj)−
λj

4
||Xj −mj ||2

and for X(j)

p(X(j)) = p(mj)−
1

2
(X(j) −mj)

T

[∫ 1

0

J(umj + (1− u)X(j))du

]
(X(j) −mj)

≥ p(mj)−
Λj

2
||X(j) −mj ||2.

Then

p(mj)−
λj

4
||Xj −mj ||2 ≥ p(Xj) ≥ p(X(j)) ≥ p(mj)−

Λj

2
||X(j) −mj ||2

which implies that

||Xj −mj ||2 ≤ 2Λj

λj
||X(j) −mj ||2 ≤ 2Λj

λj
ε2n ≤ ψ2

n,j . (22)

This proves (i).
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(ii) Let Xi be any point with p(Xi) > p(Xj). By definition, Xi /∈ B(mj , ωj).
By the triangle inequality,

ωj ≤ ||Xi −mj || ≤ ||Xi −Xj ||+ ||Xj −mj || ≤ ||Xi −Xj ||+
√

2Λj

λj
εn

Thus, since εn → 0

||Xi −Xj || ≥ ωj −
√

2Λj

λj
εn ≥ ωj/2,

and δ(Xj) ≥ ωj/2.

Lemma 6. Let X(j) be the closest point to mj for j = 1, . . . , k. Then

Pn
(
max
1≤j≤k

||X(j) −mj || > εn

)
→ 0. (23)

Hence, with probability tending to 1, each ball B(mj , εn) contains at least one
point.

Proof. Let vd be the volume of the unit ball, let B = B(mj , εn). For a sequence
of points yn,j ∈ B converging to mj as n → ∞

P (B) = p(yn,j)μ(B) = p(yn,j)ε
d
n vd

Since yn,j → mj as n → ∞, when n is large p(yn,j) > p(mj)/2, so

Pn(||X(j) −mj || > εn) = Pn(||Xi −mj || > εn for all i)

= [1− P (B)]n ≤ [1− p(yn,j)ε
d
n vd]

n

≤ exp
{
−np(yn,j)ε

d
n vd

}
=

(
1

n

)vd p(yn,j)

≤
(
1

n

)vd p(mj)/2

.

Hence,

Pn
(
max
1≤j≤k

||X(j) −mj || > εn

)
≤

k∑
j=1

(
1

n

)vd p(mj)/2

→ 0.

Proof of Theorem 2. Let tn(u) be defined in (10).
(i) Let Xj ∈ X1 be a local mode. From (21) and (22) it is immediate that

p(Xj) = p(mj) + OP (ψ
2
n). From Theorem 1, δ(Xj) ≥ ωj/2 > 0, then from the

definition of tn(p(Xj)) we have
δ(Xj)

tn(p(Xj))
→ ∞.

(ii) Let Xi ∈ X2. Since Xi /∈ X1 it is not a local mode. So there exists a local
mode Xi ∈ B(mj , ψn,j) with p(Xi) < p(Xj) ≤ p(mj). Hence, δ(Xi) ≤ ψn,j . So,
from (11),

δ2(Xi) ≤ ψ2
n,j =

2G2Λjε
2
n

λj
≤

(
C logn

np(mj)

)2/d

≤
(
C logn

np(Xi)

)2/d

= t2n(p(Xi)) (24)
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as required.

(iii) Let x ∈ Γc. Recall that p(x) ≥ a > 0 for all x. From (24), we see that
tn(x) ≥ ψn = maxψn,j . So

P (δ(x) > tn(x)) ≤ P (δ(x) > ψn(x)) =
∏
i

P (Xi /∈ B(x, ψn(x))
⋂

Lx)

=
[
1− P (Xi ∈ B(x, ψn(x))

⋂
Lx)

]n
≤

[
1− aμ(B(x, ψn(x))

⋂
Lx)

]n
≤ [1− aτμ(B(x, ψn(x))]

n

≤ exp
(
−naτvdψ

d
n

)
= exp

(
−naτvd2

d/2Gd

(
Λ

λ

)d
logn

n

)

≤ exp (−3 logn) =

(
1

n

)3

where we used the fact that μ(B(x, ψn(x))
⋂

Lx) ≥ τμ(B(x, ψn(x))) due to
(A4). So,

P
(
δ(Xi) > tn(Xi) for some Xi ∈ Γc

)
≤ n

(
1

n

)3

→ 0.

Proof of Lemma 3. Fix s > 0 and let Bn = B
(
x,

(
s
n

)1/d)
. Define Ax =

Bn

⋂{
y : p(y) > p(x)

}
. There exists a sequence yn → x such that P (Ax) =

p(yn)μ(Ax). From (A4’),

P (Ax) = p(yn)μ(Ax) = p(yn)
μ(Ax)

μ(Bn)
μ(Bn)

= (p(x) + o(1))(τ(x) + o(1))
( s

n

)
=

sp(x)τ(x)

n
+ o

(
1

n

)
.

Then

P
(
n δ(x)d ≤ s

)
= P

[
δ(x) ≤ (s/n)1/d

]
= 1− P

[
δ(x) > (s/n)1/d

]
= 1−

n∏
i=1

P [Xi /∈ Ax for all Xi]

= 1− [P (X /∈ Ax)]
n
= 1− [1− P (X ∈ Ax)]

n

= 1− exp {n log [1− P (X ∈ Ax)]}
= 1− e−sτ(x)p(x)eo(1) → 1− e−sτ(x)p(x).

The final statement, about modes, follows since δ(x) is strictly positive.
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Remark. If we had not assume that p is bounded from below, then one needs
to work with the truncated region of the density p(x) ≥ an = n−1/(d+2) and

then Pn(F c
n) ≤ N [1− a vd ε

d
n]

n =
[
C2

εn

]d [
1− n− 1

d+2 vdεn

]n
→ 0.

Proof of Theorem 5. The proofs of (i) and (ii) mimic the proof if Theorem 2,
with p̂ replacing p. We focus on (iii).

In Lemma 7, we show that there exists balls B(c1, εn), . . . , B(cN , εn) such

that the support of p is contained in
⋃N

s=1 B(cj , εn) and such that, Pn(Fn) → 1
where Fn is the event that each ball contains at least one data point.

Let

Γ =
k⋃

j=1

B(m̂j , c1εn).

In Lemma 8, we show that the following is true. For every x ∈ Γc, there exists a
ball B such that (i) the radius of B is 2εn, (ii) x /∈ B but (iii) minz∈B ||z−x|| ≤
c2tn(x) for some c2 > 0 not depending on x. Since this holds for all x ∈ Γc it
also holds for all Xi ∈ X3. So there is a ball Bi such that (i) the radius of Bi is
2εn, (ii) Xi /∈ Bi but (iii) minz∈B ||z−Xi|| ≤ c2tn(Xi). Now B must contain at
least one of the covering balls B(cj , εn). On Fn, this ball contains at least one

point Xj , which is distinct from Xi. It follows that δ̂(Xi) ≤ c2tn(Xi). As this
holds simultaneously for all Xi ∈ X3, the result follows.

Lemma 7. There exists a set B = {B1, . . . , BN} where each Bj is a ball of

radius εn, N = [ξ/εn]
d
for some ξ > 0, X ⊂

⋃
j Bj. Let Fn denote the event

that each ball contains at least one data point. Then Pn(Fn) → 1.

Proof of Lemma 7. Since X is a compact subset of Rd, there exists a covering
B = {B1, . . . , BN} of the sample space with balls of size εn where N = [ξ/εn]

d

for some ξ > 0. Let xj denote the center of Bj . Note that P (X ∈ Bj) ≥ a εdnvd
where vd is the volume of the unit ball. Then

Pn(F c
n) = Pn(some Bj is empty) ≤

N∑
j=1

Pn(Bj is empty)

=

N∑
j=1

n∏
i=1

P (Xi /∈ Bj) =

N∑
j=1

n∏
i=1

[1− P (Xi ∈ Bj)]

≤
N∑
j=1

n∏
i=1

[1− a vd ε
d
n] =

N∑
j=1

[1− a vd ε
d
n]

n = N [1− a vd ε
d
n]

n

≤ Ne−na vdε
d
n =

ξd n

logn

(
1

n

)a vd r

→ 0

since r > 1/(avd). Hence Pn(Fn) → 1.

Lemma 8. Let p be a Morse function with finitely many critical points and
modes M = {m1, . . . ,mk}. There exists positive constants c1 and c2 such that
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the following is true. For every x ∈
(⋃k

j=1 B(mj , c1ε)

)c

, there exists a ball B

of radius 2εn such that:

1. maxz∈B ||z − x|| ≤ c2tn(x) and
2. x /∈ B,
3. p(z) > p(z) for all z ∈ B.

Proof of Lemma 8. Let S = {s1, . . . , sN} be the set of critical points that are
not modes. Let un = c1εn/2.

Let As denote the supremum of all the sth-order partial derivatives of p for
s = 0, 1, 2, 3. (Hence, A0 = supx p(x).)

Case 1: Suppose that ||x − sj || ≤ un for some sj ∈ S. Note that sj cannot
be a mode since un < c1εn. Let λj be the largest eigenvalue of H(sj) and note
that λj > 0 since sj is not a mode. Let v be the corresponding eigenvector and
define B ≡ B(y, 2εn) where

y = x+ c3εnv

where c3 ≡ c3(x) is such that

max

{
2, 4c1

√
2qj/λj ,

√
16

λj
[
√
2qj + 4A2],

32A2

λj

}
< c3 < c2

(
C

A0

)1/d

−2. (25)

Here, c1 and c2 are any positive constants such that the above interval is
nonempty. Let q2j be the largest eigenvalue of H2(sj)/2. Because p is Morse,

q2j > 0.
1. Let z ∈ B. Then

||z − x|| ≤ ||z − y||+ ||y − x|| ≤ 2εn + c3εn ≤ c2tn(x)

where we used the fact (from (25)) that c3 ≤ c2(C/A0)
1/d − 2 which implies

that c3 ≤ c2(p(x)/A0)
1/d − 2 and hence (2 + c3)εn ≤ c2tn(x).

2. Next, note that

min
z∈B

||z − x|| = ||x− y|| − 2εn = c3εn − 2εn > 0

since c3 > 2. Hence, x /∈ B.
3. For all 0 ≤ r ≤ 1, vTH(ry+(1− r)x)v ≥ vTH(sj)v−O(εn) ≥ λj/2 for all

large n. So

p(y) = p(x) + c3εnv
T g(x) +

c23ε
2
n

2
vT

∫ 1

0

H(sy + (1− s)x)ds v

≥ p(x) + c3εnv
T g(x) +

c23ε
2
nλj

4
≥ p(x) +

c23ε
2
nλj

4
− c3εn|vT g(x)|. (26)

Now
g(x) = g(sj) +H(sj)(x− sj) +Rn = H(sj)(x− sj) +Rn



Analysis of a mode clustering diagram 4309

where the norm of the remainder Rn is bounded by
√
dA3u

2
n. So, for all large n,

g(x)T g(x) = (x− sj)
TH2(sj)(x− sj) +O(u3

n) ≤ u2
nq

2
j +O(u3

n) ≤ 2u2
nq

2
j .

So ||g(x)|| ≤
√
2qjun and so c3εn|vT g(x)| ≤ c1c3

√
2qjε

2
n/2 and from (26) we

conclude that

p(y) ≥ p(x)− c1c3
√
2qjε

2
n

2
+

c23ε
2
nλj

4
≥ p(x) +

c23ε
2
nλj

8
(27)

since c3 ≥ 8c1
√
2qj/(2λj).

Now consider any z ∈ B. Then

p(z)− p(x) = p(z)− p(y) + p(y)− p(x) ≥ p(z)− p(y) +
c23ε

2
nλj

8
.

We have

p(z) = p(y) + (z − y)T g(y) +Rn > p(x) +
c23ε

2
nλj

8
+ (z − y)T g(y) +Rn

= p(x) +
c23ε

2
nλj

8
+ (z − y)T [g(x) + R̃n] +Rn

= p(x) +
c23ε

2
nλj

8
+ (z − y)T g(x) + (z − y)R̃n +Rn

where
|(z − y)T g(x)| ≤ ||z − y|| ||g(x)|| ≤ 2εn

√
2qun =

√
2ε2nq,

|Rn| ≤ ||z − y||2A2 ≤ 4ε2nA2

and

||(z − y)R̃n|| ≤ ||z − y|| ||y − x||A2 ≤ (2εn)(c3εn)A2 = 2c3ε
2
nA2

so that

p(z) > p(x) +
c23ε

2
nλj

8
−

√
2ε2nq − 4ε2nA2 − 2c3ε

2
nA2 > p(x)

since

c3 > max

{√
16

λj
[
√
2qj + 4A2],

32A2

λj

}
.

Case 2. Suppose that ||x − sj || > un for all sj . First, we will need to lower
bound ||g(x)||. By definition,

x ∈
[(⋃

r

B(sj , un)

)⋃(⋃
B(mj , c1εn)

)]c

.
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For all large n, the minimum of ||g(x)|| over this set occurs at the boundary of
one of these balls. That is

||g(x)|| ≥ min

{
min
sj∈S

inf
w∈∂B(sj ,un)

||g(w)||, min
mj∈M

inf
w∈∂B(mj ,c1εn)

||g(w)||
}
.

Using a Taylor expansion of g(w) as in Case 1, we then have that

||g(x)|| > min
j

c1εnqj/4 = c1εnq/4. (28)

Choose c3 ≡ c3(x) such that

8

(
A0

C

)1/d

< c3 < min

{
c2 − 2

(
A0

C

)1/d

, c1

( a

C

)1/d q

4A2

}
. (29)

Here, c1 and c2 are any positive constants such that the interval is nonempty.
Let B = B(y, 2εn) where

y = x+
c3tn(x)g(x)

||g(x)|| .

So ||y − x|| = c3tn(x).
1. Let z ∈ B. Then

||z − x|| ≤ ||z − y||+ ||y − x|| ≤ 2εn + c3tn(x) ≤ c2t(x)

since c3 ≥ c2 − 2(A0/C)1/d.
2. Next

min
z∈B

||z − x|| = ||x− y|| − 2εn = c3tn(x)− 2εn > 0

since c3 > 2(A0/C)1/d. So x /∈ B.
3. First we note that

p(y) = p(x) + (y − x)T g(x) +Rn = p(x) + c3tn(x)||g(x)||+Rn

where

|Rn| ≤ ||y − x||2A2/2 = c23t
2
n(x)A2/2 <

c3tn(x)||g(x)||
2

since ||g(x)|| > c1εnq/4 and c3 < (a/C)1/dc1q/(4A2). So

p(y) > p(x) +
c3tn(x)||g(x)||

2
.

Now consider any z ∈ B. Then

p(z)− p(x) = p(z)− p(y) + p(y)− p(x) > p(z)− p(y) +
c3tn(x)||g(x)||

2
.
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Now
p(z)− p(y) = (z − y)T g(y) +O(ε2n)

and so
|p(z)− p(y)| ≤ 2εn||g(y)||+O(ε2n) ≤ 2εn||g(x)||+O(ε2)

and this p(z) > p(x) since

c3tn(x)||g(x)||
2

> 2εn||g(x)||

since c3 > 8
(
A0

C

)1/d
.

References

Ery Arias-Castro, David Mason, and Bruno Pelletier. On the estimation of the
gradient lines of a density and the consistency of the mean-shift algorithm.
Journal of Machine Learning Research, 2015. MR3491137

Chacón. Clusters and water flows: a novel approach to modal clustering through
morse theory. arXiv preprint arXiv:1212.1384, 2012.
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